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The K-means algorithm is a widely used clustering algorithm that offers simplicity and
efficiency. However, the traditional K-means algorithm uses a random method to
determine the initial cluster centers, which make clustering results prone to local
optima and then result in worse clustering performance. In this research, we propose
an adaptive initialization method for the K-means algorithm (AIMK) which can adapt to the
various characteristics in different datasets and obtain better clustering performance with
stable results. For larger or higher-dimensional datasets, we even leverage random
sampling in AIMK (name as AIMK-RS) to reduce the time complexity. 22 real-world
datasets were applied for performance comparisons. The experimental results show AIMK
and AIMK-RS outperform the current initialization methods and several well-known
clustering algorithms. Specifically, AIMK-RS can significantly reduce the time
complexity to O (n). Moreover, we exploit AIMK to initialize K-medoids and spectral
clustering, and better performance is also explored. The above results demonstrate
superior performance and good scalability by AIMK or AIMK-RS. In the future, we
would like to apply AIMK to more partition-based clustering algorithms to solve real-life
practical problems.

Keywords: k-means, adaptive, initialization method, initial cluster centers, clustering

INTRODUCTION

The clustering algorithm is a classical algorithm in the field of data mining. It is used in virtually all
natural and social sciences and has played a central role in various fields such as biology, astronomy,
psychology, medicine, and chemistry (Shah and Koltun 2017). For example, in the commercial field,
Horng-Jinh Chang et al. proposed an anticipationmodel of potential customers’ purchasing behavior
based on clustering analysis (Chang et al., 2007). In the biology field, clustering is of central
importance for the analysis of genetic data, as it is used to identify putative cell types (Kiselev et al.,
2019). In addition, the applications of the clustering algorithm also include image segmentation,
object or character recognition (Dorai and Jain 1995), (Connell and Jain 1998) and data reduction
(Huang 1997) (Jiang et al., 2014). The clustering algorithm mainly includes hierarchy-based
algorithms, partition-based algorithms, density-based algorithms, model-based algorithms and
grid-based algorithms (Saxena et al., 2017).

The K-means algorithm is widely used because of its simplicity and efficiency (MacQueen 1967).
Even it was proposed for more than 50 years, there are still many related studies today (Bu et al., 2019;
Lai et al., 2019; I.; Khan et al., 2019). The K-means algorithm is a classic partition-based clustering
algorithm. However, the traditional K-means algorithm uses the random method to determine the
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initial cluster centers, which make clustering results prone to local
optima and then result in worse clustering performance. To
overcome this disadvantage, many improved methods have
been proposed. However, providing an optimal partition is an
NP hard problem under a specific metric (Redmond and
Heneghan, 2007).

Forgy randomly selected K points from the data as the initial
cluster centers without a theoretical basis, and the final clustering
results more easily fell into a local optimum (Forgy, 1965).
Jancey’s method assigned a randomly generated synthetic
point from the data space to each initial clustering center
(Jancey 1966). However, some of these centers may be quite
distant from any of the points, which might lead to the formation
of empty clusters. MacQueen proposed using the first K points in
the dataset as the initial centers. The disadvantage of this
approach is that the method is extremely sensitive to data
order (MacQueen 1967). In addition, the above methods do
not take into account the characteristics of data distribution,
using randomly generated points or synthetic points as the initial
cluster centers, resulting in poor and unstable clustering results
(Yang et al., 2017a). Selecting clustering centers is actually
selecting the representative points for specific classes. The
density of data points can be used to measure the
representativeness of points. Redmond et al. estimated the
density distribution of the dataset by constructing a Kd-tree
(Redmond and Heneghan 2007), but its density calculation
method was unreasonable (Wang et al., 2009). Zhang et al.
proposed an initialization method based on density Canopy
with complexity O(n2) (Zhang et al., 2018). In addition, Cao
et al. used the neighborhood-based rough set mode to measure
the representativeness of the points to generate the initial cluster
centers, but the method was sensitive to parameters (Cao et al.,
2009). Khan et al. calculated the representative points from the
dimensions of the data points based on the principle of data
compression (S. S. Khan and Ahmad 2004). The overall effect of
this method is good, but its complexity is positively related to the
dimensionality of the data and is not applicable to high-
dimensional data. Based on the minimum spanning tree
(MST), Yang et al. selected representative points, which are
also called skeleton points, from the datasets and then
regarded some skeleton points that are far away from each
other as the final initial cluster centers (Yang et al., 2017b).
However, the complexity of this method is quadratic. S.
Manochandar et al. chose representative points by computing
the eigenvectors of the dataset-relative matrix, but this method
has only been proven to reduce the sum of squared error (SSE) of
the partitions, instead of to improve objective clustering accuracy
(Manochandar et al., 2020). In addition to the density of the data
points, the distance between the data points is also regarded as
one of the criteria for selecting the initial cluster centers. Gonzalez
proposed a maximin method; the idea is to select the data points,
which are as far as possible from each other, as the initial cluster
centers, to make the cluster centers more evenly dispersed in each
class (Gonzalez 1985). However, this method has strong
randomness, resulting in unstable clustering results. Arthur
et al. proposed K-means++ (Arthur and Vassilvitskii 2007),
which has disadvantages similar to the maximin method. For

example, K-means++ will result in unstable clustering results
because of the randomly selected first cluster center, or it may
generate no representative initial cluster centers. Murugesan et al.
determined the initial cluster centers by the maximum average
distance model, but this model is sensitive to outliers (Murugesan
and Punniyamoorthy, 2020). To obtain better clustering results,
somemethods consider both the representativeness of data points
and the distance between data points. Rodriguez et al. proposed a
new clustering algorithm based on density peaks and proposed a
method to generate cluster centers based on both density and
distance (Rodriguez and Laio 2014). However, none of the above-
mentioned methods can dynamically adapt to datasets with
various characteristics (Yang et al., 2017a).

Yang et al. proposed a K-means initialization method based on
a hybrid distance, which can dynamically adapt to datasets with
various characteristics (Yang et al., 2017a). The method considers
both the density and the distance and uses a parameter to adjust
the proportion of the two factors. They also proposed an internal
clustering validation index, named the clustering validation index
based on the neighbors (CVN), to select the optimal clustering
results. However, this method also has shortcomings, such as 1)
when calculating density, the threshold cannot be uniquely
determined, resulting in unstable results. 2) Heavily depending
on adjusting the parameter, the parameter must be adjusted five
times to obtain better clustering results. 3) In some cases, the
CVN index values calculated using different parameter settings
are equal. At this time, CVN cannot be used to select better
clustering results. 4) The time complexity of the algorithm is O
(n2), which is difficult to apply to large datasets.

In this paper, we propose an adaptive initialization method for
the K-means algorithm (AIMK), which not only adapts to
datasets with various characteristics but also requires only two
runs to obtain better clustering results. Also, we propose the
AIMK-RS based on random sampling to reduce the time
complexity of the AIMK to O(n). AIMK-RS is easily applied
to large and high-dimensional datasets. First, we propose a new
threshold to calculate the density of the data points based on the
skeleton points of MST. Second, we compute the hybrid distances
based on the density of the data points. Finally, we select K data
points, where the hybrid distances among them are relatively
large, as the final cluster centers. In addition, we apply random
sampling to AIMK to obtain the AIMK-RS, whose time
complexity is only O(n). We also exploit AIMK to initialize
the variants of K-means, such as K-medoids and spectral
clustering. And it can still obtain better clustering
performance, which proves that AIMK also has good
scalability. This paper is organized as follows. In the Adaptive
Initialization Method section, an adaptive initialization method
for K-means is presented. In the Experiments and Results section,
the experimental studies are presented and discussed. Finally, in
the Conclusion section, the relevant conclusions are drawn.

The following are the main contributions of this paper:

1) Proposing an adaptive initialization method for the K-means
algorithm (AIMK), which not only adapts to datasets with
various characteristics but also requires only two runs to
obtain better clustering results;
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2) Proposing the AIMK-RS based on random sampling to reduce
the time complexity of the AIMK to O(n);

3) Proposing a new threshold to estimate the density of the data
points based on the skeleton points of MST;

4) Exploiting AIMK to initialize the variants of K-means, such as
K-medoids and spectral clustering to prove AIMK’s good
scalability;

5) Comprehensive experiments tested on 22 real-world datasets
validate the superiority of the proposed methods compared
with the 11 current state-of-the-art methods.

ADAPTIVE INITIALIZATION METHOD FOR
THE K-MEANS ALGORITHM

In this section, we describe the algorithm for selecting the initial
cluster centers in detail. First, several concepts involving this
algorithm are presented.

Skeleton Points
In a previous study, Jie et al. proposed a new compressed
representation, named skeleton points, from the original
datasets based on an MST and regarded them as candidates
for cluster centers (Yang et al., 2017b). In contrast, we leverage the
skeleton points to determine the threshold for calculating the
density of data points because they can reflect the characteristics
of the datasets to some extent. In the beginning, we introduce how
to construct an MST using the original dataset.

Let X denote a dataset with K clusters and n data points:
X � xi|xi ∈ Rp, i � 1, 2, . . . , n}{ . To use the MST to get the
skeleton points, dataset X should be represented by the
undirected complete weighted graph G � (V, E), where
V � v1, v2, . . . , vn}{ ., |E| � n(n−1)

2 . Each data point xi in dataset
X corresponds to a vertex vi ∈ V in graph G, and the data point
xi (i � 1, 2,. . ., n) and vertex vi (i � 1, 2,. . ., n) have a one-to-one
correlation. The number of vertices in graph G is the same as the
number of data points xi in dataset X. The distance between any
two vertices is equal to the edge weights between that two data
points.

The Prim algorithm (Prim 1957) can be used to generate the
MST of G, which can be described as follows:

Step 1: Pick any vertex vi from graph G to be the root of
the tree.
Step 2: Grow the tree by one edge: of the edges that connect the
tree to vertices not yet in the tree, find the minimum-weight
edge from G and transfer it to the tree.
Step 3: Repeat Step 2 (until the tree contains all vertices in
graph G).

We create an MST from the original dataset using the
procedures above, and then show how to extract skeleton
points from the MST. We start by introducing a concept
called the number of adjacent data points, and then we use it
to generate skeleton points.

Let T � (V, ET) be a minimum spanning tree of G � (V, E),
where V � v1, v2, . . . , vn}{ , ET � e1, e2, . . . , en−1}{ , ei ∈ E(G).

Definition 2.1: (Number of adjacent data points, Yang et al.,
2017b) Let Ui be the set of vertices of T with a degree i andWi be
the complementary set of Ui, that is, Wi � V\Ui. For Ui, the
number of adjacent data points, denoted as fi, is the number of
vertex in Wi being adjacent to vertex in Ui.

Note that only add 1 to fi under the circumstance of one
vertex in Wi being adjacent to more than one vertex in Ui.

Theorem 2.1: If anyone vertex in Wi is adjacent to one and
only one vertex in U1, then f1 � |U1|, otherwise f1 < |U1|.

Now, we introduce how to leverage the number of adjacent
data points fi to obtain the skeleton points.

Definition 2.2: (Skeleton Point, Yang et al., 2017b) Suppose the
maximum degree of T be m; then, V � U1 ∪ U2 ∪ . . . ∪ Um. Let
F � argmax

i
fi. The skeleton points, denoted as S, are the vertices

of T with the degree being greater than or equal to F. Therefore,
S � UF ∪ UF+1 ∪ . . . ∪ Um.

We generate a synthetic dataset, then construct the MST and
calculate the skeleton points according to the Definitions 2.1–2.2
which are enclosed by the triangles, as shown in Figure 1. Next, we
introduce the threshold for calculating the density of data points.

Threshold
Definition 2.3: (Threshold) In T � (V, ET), suppose the number
of skeleton points S is s; if the maximumweights of adjacent edges
of each skeleton point can be denoted as w1, w2, . . . , ws}{ , then we
define a threshold as

Thr � ∑s
i�1 wi

s
(1)

In anMST, the adjacent edge weights of vertices can reflect the
distribution characteristics of the area where the vertices are
located. While vertices contain a large number of unimportant
points or outliers, we only focus on the skeleton points. In
summary, when calculating the threshold, we only consider
the adjacent edge weights of the skeleton points, and the mean
value of the maximum weights of adjacent edges of each skeleton
point is taken as the threshold.

FIGURE 1 | We generate a synthetic dataset, then construct the MST
and calculat the skeleton points according to Definitions 2.1–2.2; they are
enclosed by the triangles. As shown, the skeleton points are a type of
compressed representation based on the characteristic of the dataset.
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Density of Vertices
In the following section, we introduce how to calculate the density
of data points using the threshold Thr. We first construct a Thr-
Connected Graph (TCG).

Definition 2.4: (Thr-Connected Graph) In dataset X, if
d(xi, xj)≤Thr, then add an edge between data points xi and
xj; this is called a Thr-Connected Graph (TCG), where d(xi, xj)
is the distance between the data point xi and xj. Each data point
xi in dataset X corresponds to a vertex vi ∈ V in graph TCG.

Definition 2.5: (density of vi) In TCG, the mean distance
between the vertex vi and the vertices connected to vertex vi,
denoted as vj, is

D(vi) � 1
k

∑
vi,j∈V

d(vi, vj) (2)

where k is the number of vertices vj.
Supposevk � vi| the number of vertices connected to{

vertex vi is k}, Dk
max � max

vi∈vk
D(vi), andDk

min � min
vi∈vk

D(vi); then,
the density of vi is

ρi �
⎧⎪⎪⎨⎪⎪⎩

0, k � 0

k + Dk
max −D(vi)

Dk
max −Dk

min + ε
, k≠ 0

(3)

To make Dk
max−D(vi)

Dk
max−Dk

min
<1, we add an infinite decimal ε to its

denominator, where ε→ 0+.

Hybrid Distance
If the distance among the initial cluster centers is small, it is easy to
make the K-means algorithm fall into a local optimum. However, if
only the distance factor is considered, it is possible to use the outlier
as the initial cluster center. Jie. et al. proposed a new distance, a
hybrid distance, to solve this problem (Yang et al., 2017a). Hybrid
distance considers the distance and density of the cluster centers at
the same time so that the selected cluster centers are far away from
each other and have a higher density.

Definition 2.6: (Hybrid distance between vi) In TCG, suppose

dmax� max
1≤i,j≤n,i≠j

(d(vi, vj)), dmin� min
1≤i,j≤n,i≠j

(d(vi, vj)), Pmax � max
1≤i,j≤n,i≠j

(ρi + ρj), and Pmin � min
1≤i,j≤n,i≠j

(ρi + ρj); the hybrid distance between
the vertex vi and vj is

H(vi, vj) � λ⎡⎣d(vi, vj) − dmin

dmax − dmin

⎤⎦2 + (1 − λ)⎡⎢⎣(ρi + ρj) − Pmin

Pmax − Pmin

⎤⎥⎦2

(4)

TABLE 1 | Comparison of Time complexity.

Algorithm Time Complexity

K-means O(n)
K-means++ O(n)
KT O(nlogn)
MSTI O(n2)
HD O(n2)
K-medoids O(n2)
SFDP O(n2)
FCM O(n)
Sing-linkage O(n2 logn)
Self-tuning Spectral O(n3)
FINCH O(nlogn)
AIMK O(n2)
AIMK-RS O(n)

TABLE 2 | Description of the 22 datasets.

Dataset Number of Instances Number of Attributes Number of Classes

Breast-cancer 683 10 2
Shuttle 14,500 9 7
Pendigits 3,498 16 10
Colon-cancer 62 2000 2
Zoo 101 16 7
Haberman 306 3 2
Svmguide2 391 20 3
Wine 178 13 3
Ionosphere 351 34 2
Leukemia 34 7,129 2
Gisette 1,000 5,000 2
Splice 2,175 60 2
Svmguide4 312 10 6
Liver-disorders 200 5 2
Soybean-small 47 35 4
Balance-scale 625 4 3
Ijcnn1 91,701 22 2
Phishing 11,055 68 2
Protein 6,621 357 3
Mushrooms 8,124 112 2
SensIT Vehicle (seismic) 19,705 50 3
SensIT Vehicle (combined) 19,705 100 3
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where λ is a hyperparameter, normally set by 0 or 1 in practice;
this is explained in detail in the following section.

The Algorithm of the Proposed AIMK
Now we present the algorithm for determining the initial cluster
centers based on the above-defined concepts. The details are as
follows:

Algorithm 1. Algorithm of the proposed AIMK.

Algorithm Analysis
Clustering is NP-hard. No published optimization method provides
theoretical guarantees for optimal partition of K-means for all
datasets, even if the number of clusters is fixed to 2 (Dasgupta
2008). Due to the intractability of NP-hard problems, clustering
algorithms are evaluated in terms of empirical performance on
standard datasets. Therefore, in previous studies, many heuristic
clustering algorithms have been proposed, one of the most well-
known is clustering by fast search and find of density peaks (SFDP)
(Rodriguez and Laio 2014). SFDP determines the cluster centers by
measuring the two factors, the Gaussian kernel density of data points
and the density-relative distance between data points. These two
factors inspired the research of this paper. The proposed model is
based on the skeleton points in the MST to estimate the density of
each data point, and then combines the dissimilarity (i.e., distance)

between the data points to calculate the hybrid distance matrix, and
finally selects K data points, where the hybrid distances among them
are relatively large, as the final cluster centers. In the experiment part,
lots of test cases have demonstrated the effectiveness of the
proposed model.

Time Complexity Analysis
According to the Algorithm 1, the time complexity of AIMK is
analyzed as follows. In Step 3, the time complexity of
computation of the distance between all pairs of vertices and
the Prim algorithm is O(n2), and the time complexity of
calculation of the threshold Thr is O(n). Construction of the
TCG and calculation of the density of every vertex ρi requires
O(n) in Step 4, and the computation of the sum of densities ρi +
ρj between all pairs of vertices requires O(n). In Step 5, because
the distance and the sum of densities between all pairs of vertices
have been obtained in Step 3 and Step 4, the time complexity of
the calculation of the hybrid distance H(vi, vj) between all pairs
of vertices is O(n). Determination of the first and second initial
cluster centers requires O(n) in Step 6 and Step 7. In Steps 8–10,
the remaining initial cluster centers are selected, in which the time
complexity is less than NCpn and approximately equal to
O(NCpn). Because normally the number of clusters NC≪ n,
the entire time complexity of AIMK is O(n2).

Reducing Complexity of AIMK by Sampling
(AIMK-RS)
Due to the time complexity O(n2), it is difficult to apply AIMK to
large or high-dimensional datasets. To solve this problem, we
consider random sampling to extract

�
n

√
samples from the

original dataset, where n means the number of samples of the
dataset, and then use these samples as the input for AIMK. It is
worth mentioning that to make the

�
n

√
samples fully express the

characteristics of the original dataset, we recommend using random
sampling to reduce complexity only when the number of clusters
K≪ n. In this way, the time complexity of AIMK will be reduced to
O(n). AIMK after random sampling, is denoted as AIMK-RS. The
time complexities of all baselines (will be introduced in experiment
part), AIMK and AIMK-RS are listed in Table 1.

EXPERIMENTS

In this section, we mainly introduce the public datasets required
for the experiment, well-known clustering algorithms, and several
validation indices to evaluate the overall clustering performance
and comparisons.

Datasets
In experiments, we use 22 real-world datasets (16 normal and six
larger or higher-dimensional from the UCI Machine Learning
Respository (https://archive.ics.uci.edu/ml/datasets) and
LIBSVM official website (https://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets). The datasets include Breast-cancer,
Shuttle, Pendigits, Colon-cancer, Zoo, Haberman, Svmguide2,

TABLE 3 | AIMK Runs on 16 datasets, Measured by ACC.

λ λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1

Dataset

Breast-cancer 0.6032 0.6032 0.6471 0.6471 0.6471
Shuttle 0.4598 0.4598 0.4598 0.5994 0.8327
Pendigits 0.7424 0.6755 0.6575 0.6161 0.5780
Colon-cancer 0.8710 0.8710 0.8710 0.5484 0.6129
Zoo 0.6436 0.6436 0.6436 0.7624 0.8416
Haberman 0.5000 0.5000 0.5000 0.7582 0.7582
Svmguide2 0.4501 0.4501 0.4501 0.5985 0.5985
Wine 0.7022 0.7022 0.7022 0.7022 0.5730
Ionosphere 0.7123 0.7123 0.7123 0.6439 0.6439
Leukemia 0.5882 0.5882 0.5882 0.6176 0.6176
Gisette 0.6650 0.6650 0.6700 0.6700 0.6700
Splice 0.5160 0.6560 0.6560 0.6560 0.6560
Svmguide4 0.2967 0.2967 0.2600 0.2933 0.2633
Liver-disorders 0.7448 0.7448 0.7448 0.7103 0.7103
Soybean-small 1 1 1 0.7234 0.7447
Balance-scale 0.5488 0.6016 0.6016 0.5264 0.6144

The optimal results for the corresponding dataset are denoted in bold.
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Wine, Ionosphere, Leukemia, Gisette, Splice, Svmguide4, Liver-
disorders, Soybean-small, Balance-scale, Ijcnn1, Phishing,
Protein, Mushrooms, SensIT Vehicle (seismic), SensIT Vehicle
(combined). The description of the datasets is as shown in
Table 2.

State-of-The-Art Clustering Algorithms for
Comparisons
We compare the clustering performance between AIMK and 11
selected clustering algorithms. For the sake of fairness, these
baselines not only include initialization methods for K-means, such
as K-means, K-means++, the method initializing K-means using kd-
trees (KT) (Redmond and Heneghan 2007), the MST-based
initializing K-means (MSTI) (Yang et al., 2017b), and the
initialization method based on hybrid distance for K-means (HD)
(Yang et al., 2017a), but also include some well-known clustering
algorithms, such as K-medoids (Kaufman and Rousseeuw 2009),
clustering by fast search and find of density peaks (SFDP)
(Rodriguez and Laio 2014), fuzzy C-means clustering (FCM)
(Bezdek et al., 1984), single-linkage hierarchical clustering (SH)
(Johnson 1967), and self-tuning spectral clustering (SS) (Zelnik-
Manor and Perona 2005), efficient parameter-free clustering using
first neighbor relations (FINCH) (Sarfraz et al., 2019). Besides, since
the results of K-means, K-means++, K-medoids, FCM, and SS are not
unique, we take the average performance of 10 runs as the real
performance. SFDP has a hyperparameter dc, ranging from 1–2%
(Rodriguez and Laio 2014). We take the average performance while
the hyperparameter equals 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, and
2% because of the sensitivity of the hyperparameter. Furthermore, we
take the ground-truth number of clusters as prior knowledge to choose
the cluster centers in SFDP. For FINCH, we exploit the required
number of clusters mode to ensure fairness of comparison. Note that
all the baselines and AIMK used Euclidean distance as a metric. All
experimentswere performed inMatLab 2019b environment, andwere
conducted on a laptopwith the 4-core Intel i7-10510UCPUclocked at
1.8 and 2.3 GHz and 16 GB memory.

Validation Indices
To evaluate the performance of clustering algorithms, we exploit
three widely used external clustering validation indices including
Accuracy (ACC), Rand Index (RI), and F-measure. These indices
are defined as follows:

ACC � ∑NC
i�1 Pi

n
(5)

RI � TP + TN

TP + FP + FN + TN
(6)

Precision � TP

TP + FP
(7)

Recall � TP

TP + FN
(8)

F −measure � 2pPrecisionpRecall
Precision + Recall

(9)

where n denotes the number of objects. NC is the number of
clusters. Pi is the number of objects that are correctly assigned. TP
means true positive, FP means false positive, FN means false
negative, and TN means true negative (Powers 2011).

RESULTS

In this section, we analyze the parameter setting of AIMK and then
compare the proposed AIMK algorithm with other well-known

TABLE 4 | AIMK Runs on 16 datasets, Measured by RI.

λ Dataset λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1

Breast-cancer 0.5206 0.5206 0.5426 0.5426 0.5426
Shuttle 0.5600 0.5600 0.5600 0.5799 0.7578
Pendigits 0.9214 0.9102 0.9074 0.9001 0.8852
Colon-cancer 0.7715 0.7715 0.7715 0.4966 0.5177
Zoo 0.7580 0.7580 0.7580 0.9115 0.9228
Haberman 0.4984 0.4984 0.4984 0.6321 0.6321
Svmguide2 0.5669 0.5669 0.5669 0.5622 0.5622
Wine 0.7187 0.7187 0.7187 0.7187 0.6919
Ionosphere 0.5889 0.5889 0.5889 0.5401 0.5401
Leukemia 0.5009 0.5009 0.5009 0.5134 0.5134
Gisette 0.5540 0.5540 0.5574 0.5574 0.5574
Splice 0.5000 0.5482 0.5482 0.5482 0.5482
Svmguide4 0.7219 0.7219 0.6999 0.7205 0.6698
Liver-disorders 0.6172 0.6172 0.6172 0.5856 0.5856
Soybean-small 1 1 1 0.8316 0.8335
Balance-scale 0.5741 0.6724 0.6724 0.5959 0.6866

The optimal results for the corresponding dataset are denoted in bold.

TABLE 5 | AIMK Runs on 16 datasets, Measured by F-Measure.

λ
Dataset

λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1

Breast-cancer 0.5852 0.5852 0.7027 0.7027 0.7027
Shuttle 0.5016 0.5016 0.5016 0.5600 0.8430
Pendigits 0.6180 0.5966 0.5902 0.5705 0.5317
Colon-cancer 0.7803 0.7803 0.7803 0.5118 0.6584
Zoo 0.5999 0.5999 0.5999 0.8051 0.8297
Haberman 0.5482 0.5482 0.5482 0.7290 0.7290
Svmguide2 0.4283 0.4283 0.4283 0.5255 0.5255
Wine 0.5835 0.5835 0.5835 0.5835 0.5956
Ionosphere 0.6049 0.6049 0.6049 0.6999 0.6999
Leukemia 0.5156 0.5156 0.5156 0.6625 0.6625
Gisette 0.5788 0.5788 0.6062 0.6062 0.6062
Splice 0.6662 0.5551 0.5551 0.5545 0.5545
Svmguide4 0.2029 0.2029 0.2060 0.2000 0.2178
Liver-disorders 0.6798 0.6798 0.6798 0.6754 0.6754
Soybean-small 1 1 1 0.6566 0.6617
Balance-scale 0.4601 0.5721 0.5721 0.4719 0.5901

The optimal results for the corresponding dataset are denoted in bold.

TABLE 6 | The impact of Threshold Thr on clustering performance.

Thr
Dataset

Min Mean Max

Pendigits 0.5780/0.5780 0.5780/.5780 0.7424/.5780
Shuttle 0.7530/.7530 0.7530/.7530 0.4598/.8327
Wine 0.5730/.5730 0.5730/.5730 0.7022/.5730
Gisette 0.5010/.5010 0.5010/.5010 0.6650/.6700

The optimal results for the corresponding dataset are denoted in bold.
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clustering approaches. We then compare AIMK-RS with the two
baselines with linear complexity on larger or higher-dimensional
datasets. In addition, the AIMK is also applied to the variants of the
K-means algorithm, K-medoids, and spectral clustering to prove
the scalability.

Sensitivity and Setting of λ
To analyze the sensitivity of the parameter λ, we run AIMK on 16
datasets: Breast-cancer, Shuttle, Pendigits, Colon-cancer, Zoo,
Haberman, Svmguide2, Wine, Ionosphere, Leukemia, Gisette,
Splice, Svmguide4, Liver-disorders, Soybean-small, and
Balance-scale while λ is set as 0, 0.25, 0.5, 0.75, 1. Then, we
use ACC, RI, and F-measure to evaluate the performance of

AIMK on each dataset. The results are listed in Tables 3–5.
The optimal results for the corresponding index are denoted in
bold. As the results show, when λ is set as 0 or 1, the optimal
results in each validation index can be always obtained in each
dataset. This is because of K-means’ own iterative mechanism.
Even though different initial cluster centers are obtained because
of different settings of the parameter λ, the same clustering results
are finally obtained after iterating. The HD algorithm is required
to run five times to obtain a better clustering result (Yang et al.,
2017a), but AIMK can obtain a better result with only two runs,
that is when λ is set as 0 or 1, respectively. Therefore, in
subsequent experiments, we only consider the results of AIMK
when λ equals 0 or 1.

TABLE 7 | Results of All Algorithms on 16 Real-World datasets, Measured by ACC.

Algorithm K-means K-means++ KT MSTI HD K-medoids SFDP FCM SH SS FINCH AIMK
(λ = 0)

AIMK
(λ = 1)Dataset

Breast-cancer 0.6032 0.6252 0.6471 0.6032 0.6471 0.6471 0.5928 0.6032 0.6471 0.6471 0.6471 0.6032 0.6471
Shuttle 0.4384 0.4588 0.6590 0.5858 0.8327 0.4683 0.4130 0.4002 0.7914 0.3386 0.3477 0.4598 0.8327
Pendigits 0.6479 0.6609 0.5895 0.6795 0.5780 0.6553 0.6832 0.6048 0.1123 0.6685 0.6744 0.7424 0.5780
Colon-cancer 0.5613 0.6194 0.7742 0.5161 0.6129 0.6258 0.6818 0.5758 0.6290 0.5226 0.5000 0.8710 0.6129
Zoo 0.6644 0.7188 0.7327 0.7921 0.8416 0.7921 0.5644 0.5752 0.6238 0.5406 0.7921 0.6436 0.8416
Haberman 0.5408 0.5121 0.5000 0.5196 0.5196 0.5196 0.5698 0.5098 0.7386 0.5196 0.5163 0.5000 0.7582
Svmguide2 0.4624 0.4737 0.4680 0.5115 0.4655 0.4680 0.4076 0.5151 0.5703 0.4760 0.5985 0.4501 0.5985
Wine 0.6893 0.6640 0.5730 0.7022 0.7022 0.6820 0.7079 0.6854 0.3764 0.7079 0.6124 0.7022 0.5730
Ionosphere 0.7103 0.7100 0.7094 0.7123 0.7094 0.7094 0.5335 0.7094 0.6439 0.7123 0.5413 0.7123 0.6439
Leukemia 0.5765 0.5882 0.5588 0.5294 0.5882 0.5294 0.5294 0.5294 0.6176 0.5588 0.5000 0.5882 0.6176
Gisette 0.6538 0.6548 0.6540 0.6690 0.6650 0.6281 0.6300 0.6595 0.5010 0.6664 0.5540 0.6650 0.6700
Splice 0.6409 0.6539 0.6550 0.6540 0.6550 0.5990 0.5070 0.6283 0.5160 0.6476 0.5220 0.5160 0.6560
Svmguide4 0.2720 0.2597 0.2633 0.2633 0.2867 0.2620 0.2500 0.2590 0.1967 0.2653 0.3067 0.2967 0.2633
Liver-disorders 0.7283 0.7269 0.7103 0.7103 0.7103 0.7034 0.6038 0.7241 0.6276 0.6745 0.6966 0.7448 0.7103
Soybean-small 0.7191 0.7319 0.7447 0.7660 0.7447 0.8085 0.8936 0.7234 1 0.7787 0.8936 1 0.7447
Balance-scale 0.5144 0.5179 0.4400 0.5408 0.6144 0.5363 0.5439 0.5245 0.4640 0.4104 0.4608 0.5488 0.6144
Rank 7.062 6.750 6.562 5.062 4.438 6.375 7.688 7.875 7.062 6.312 7.375 1.188

The optimal results for the corresponding dataset are denoted in bold.

TABLE 8 | Results of All Algorithms on 16 Real-World datasets, Measured by RI.

Algorithm K-means K-means++ KT MSTI HD K-medoids SFDP FCM SH SS FINCH AIMK
(λ = 0)

AIMK
(λ = 1)Dataset

Breast-cancer 0.5228 0.5338 0.5426 0.5206 0.5426 0.5426 0.5179 0.5206 0.5426 0.5426 0.5426 0.5206 0.5426
Shuttle 0.5201 0.5567 0.5846 0.5802 0.7578 0.5652 0.4847 0.5115 0.6520 0.4735 0.4023 0.5600 0.7578
Pendigits 0.9021 0.9148 0.8963 0.9079 0.8852 0.9098 0.9193 0.8869 0.1147 0.9165 0.9083 0.9214 0.8852
Colon-cancer 0.5101 0.5334 0.6446 0.4923 0.5177 0.5454 0.5618 0.5015 0.5256 0.4961 0.4918 0.7715 0.5177
Zoo 0.8283 0.8786 0.8618 0.8994 0.9228 0.8953 0.7657 0.8386 0.7186 0.8088 0.8994 0.7580 0.9228
Haberman 0.4989 0.5122 0.4984 0.4991 0.4991 0.4991 0.5081 0.4986 0.6126 0.4991 0.4989 0.4984 0.6321
Svmguide2 0.5621 0.5646 0.5544 0.5738 0.5532 0.5812 0.4905 0.5585 0.4317 0.5610 0.5158 0.5669 0.5622
Wine 0.7079 0.7049 0.6919 0.7187 0.7187 0.7172 0.7191 0.7105 0.3479 0.7204 0.6262 0.7187 0.6919
Ionosphere 0.5880 0.5870 0.5865 0.5889 0.5865 0.5865 0.5054 0.5865 0.5401 0.5889 0.5020 0.5889 0.5401
Leukemia 0.4955 0.4898 0.4920 0.4866 0.5009 0.4866 0.4866 0.4866 0.5134 0.4920 0.4848 0.5009 0.5134
Gisette 0.5481 0.5534 0.5470 0.5567 0.5540 0.5298 0.5333 0.5610 0.4995 0.5549 0.5053 0.5540 0.5574
Splice 0.5467 0.5471 0.5476 0.5470 0.5476 0.5191 0.4996 0.5262 0.5000 0.5434 0.5005 0.5000 0.5482
Svmguide4 0.7078 0.7010 0.6906 0.6702 0.7181 0.6895 0.7178 0.7208 0.1885 0.7159 0.6337 0.7219 0.6698
Liver-disorders 0.6064 0.5932 0.5856 0.5856 0.5856 0.5799 0.5186 0.5977 0.5293 0.5560 0.5743 0.6172 0.5856
Soybean-small 0.8286 0.8313 0.8335 0.8372 0.8335 0.8501 0.8982 0.8316 1 0.8417 0.8982 1 0.8335
Balance-scale 0.5852 0.5888 0.5428 0.6171 0.6866 0.5889 0.5801 0.6008 0.4329 0.5354 0.4299 0.5741 0.6866
Rank 7.000 6.000 6.500 5.500 4.438 5.812 7.625 7.062 8.062 5.938 9.000 1.312

The optimal results for the corresponding dataset are denoted in bold.
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Impact of Threshold Thr
To explain more clearly how to use skeleton points to determine
the threshold Thr, we perform experiments on four representative
datasets: Pendigits, Shuttle, Wine, and Gisette, whose data size
and dimensions are from small to large and low to high,
respectively. We run AIMK when Thr is set as the mean value
of the maximum weights, mean weights, and minimum weights
of adjacent edges of each skeleton point. Meanwhile, λ is set as 0
or 1, and the final results are shown as both sides of the slash “/’’,
respectively. We use ACC to evaluate the results of each run. The
results are shown in Table 6. For each dataset, the optimal results
can be obtained only when Thr is set as the maximum weights of
adjacent edges of each skeleton point. Therefore, it is more
reasonable to set Thr as the maximum weights of adjacent
edges of each skeleton point. Furthermore, the threshold Thr
can be also used to help density-based clustering algorithms, such
as DBSCAN (Ester et al., 1996), OPTICS (Ankerst et al., 1999),
and SFDP, calculate the density of points without any extra
adjusting parameters.

Comparison With Other Clustering
Algorithms
We compare the clustering performance between AIMK (λ is set
as 0 or 1) and 11 selected algorithms by 16 normal real-world
datasets. ACC, RI, and F-measure are exploited to evaluate the
performance of each baseline on each dataset. The results are
listed in Tables 7–9. The optimal results for the corresponding
dataset are denoted in bold. We use the average rank to measure
the final performance of each baseline across datasets. The rank
means the rank number of each row sorted in descending order. If
there are the same results from two different algorithms, their
ranks are equal.

According to Tables 7–9, AIMK (set λ as 0 or 1) achieves
the best performance on 14, 13, and 8 of the 16 datasets when

measured by ACC, RI, and F-measure, respectively. Moreover,
it can be seen from the ranks that AIMK is obviously superior
to the other 11 baselines, no matter which validation index
we use.

Furthermore, according toTable 7, AIMK achieves the highest
ACC rank compared with the other 11 baselines. The rank of
AIMK 1.188 is much higher than the rank of HD 4.438, which
achieves the second-highest ACC rank. FCM achieves the lowest
ACC rank, at just 7.875. HD is the best-performing initialization
method for K-means in addition to AIMK in Table 7, whose rank
is 4.438. According to Table 8, AIMK achieves the highest RI
rank compared with the other 11 baselines. The rank of AIMK
1.312 is much higher than the rank of HD 4.438, which achieves
the second-highest RI rank. FINCH achieves the lowest RI, at just
9.000. HD is still the best-performing initialization method for
K-means in addition to AIMK in Table 8, whose rank is 4.438.
According to Table 9, AIMK still achieves the highest F-measure
rank compared with the other 11 baselines. The rank of AIMK
1.938 is higher than the rank of SH 3.125, which achieves the
second-highest F-measure rank. FCM achieves the lowest
F-measure, which is just 10.00. MSTI is the best-performing
initialization method for K-means in addition to AIMK in
Table 9, whose rank is 5.938.

To further investigate the statistical differences between the
compared baselines and AIMK, we employ multiple comparisons
with the best (MCB) test (Koning et al., 2005). The test computes
the average ranks (in error rates, that is, 1-index values) of the
forecasting methods according to the specific metric across all
datasets of the competition and concludes whether or not these
are statistically different. Figure 2 presents the results of the
analysis. In addition, the Friedman p-values under the three
indices (ACC, RI, and F-measure) are 1.48 × 10−5, 1.1 × 10−6
and 1.1 × 10−11, respectively. Therefore, in a big picture, we can
conclude AIMK provides significantly better performance than
the other 11 compared baselines.

TABLE 9 | Results of All Algorithms on 16 Real-World datasets, Measured by F-Measure.

Algorithm K-means K-means++ KT MSTI HD K-medoids SFDP FCM SH SS FINCH AIMK
(λ = 0)

AIMK
(λ = 1)Dataset

Breast-cancer 0.5969 0.6557 0.7027 0.5852 0.7027 0.7027 0.5922 0.5852 0.7027 0.7027 0.7027 0.5852 0.7027
Shuttle 0.4291 0.4966 0.5909 0.5603 0.8430 0.5149 0.4199 0.4134 0.7892 0.3535 0.3179 0.5016 0.8430
Pendigits 0.5679 0.5997 0.5499 0.5933 0.5316 0.5809 0.6267 0.5264 0.1816 0.5912 0.6280 0.6180 0.5317
Colon-cancer 0.5339 0.5625 0.6582 0.5176 0.6584 0.5587 0.6610 0.5151 0.6843 0.5096 0.6037 0.7803 0.6584
Zoo 0.6227 0.7171 0.6984 0.7608 0.8297 0.7536 0.4601 0.5845 0.6169 0.5435 0.7608 0.5999 0.8297
Haberman 0.5492 0.5669 0.5482 0.5504 0.5480 0.5479 0.5945 0.5479 0.7583 0.5480 0.5494 0.5482 0.7290
Svmguide2 0.4238 0.4274 0.4143 0.4436 0.4125 0.4487 0.4289 0.4543 0.5986 0.4215 0.6260 0.4283 0.5255
Wine 0.5883 0.5885 0.5956 0.5835 0.5835 0.5858 0.5834 0.5728 0.4959 0.5859 0.5962 0.5835 0.5956
Ionosphere 0.6041 0.6032 0.6028 0.6049 0.6028 0.6024 0.5929 0.6028 0.6999 0.6041 0.6285 0.6049 0.6999
Leu 0.5240 0.5530 0.4991 0.5727 0.5156 0.5017 0.4875 0.4875 0.6625 0.4991 0.6142 0.5156 0.6625
Gisette 0.5772 0.5895 0.5860 0.6053 0.5788 0.6041 0.6157 0.5640 0.6658 0.5583 0.6442 0.5788 0.6062
Splice 0.5533 0.5538 0.5540 0.5539 0.5543 0.5215 0.5750 0.5272 0.6662 0.5478 0.6639 0.6662 0.5545
Svmguide4 0.1990 0.2012 0.2087 0.2171 0.1975 0.2064 0.1829 0.1908 0.2835 0.1979 0.2415 0.2029 0.2178
Liver-disorders 0.6753 0.6739 0.6654 0.6754 0.6754 0.6683 0.5815 0.6567 0.6887 0.6001 0.6821 0.6798 0.6754
Soybean-small 0.6745 0.6882 0.6617 0.6716 0.6617 0.6955 0.7925 0.6566 1 0.7080 0.8173 1 0.6617
Balance-scale 0.4578 0.4629 0.4028 0.4991 0.5901 0.4724 0.4983 0.4827 0.6016 0.3919 0.6013 0.4601 0.5901
Rank 7.812 6.562 7.062 5.938 6.375 7.188 7.500 10.00 3.125 8.688 3.188 1.938

The optimal results for the corresponding dataset are denoted in bold.
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Performance of AIMK-RS
AIMK-RS is compared with two widely used initialization
methods, K-means and K-means++, whose time complexity
is also O(n), on six larger or higher-dimensional datasets.
ACC, RI, and F-measure are also exploited to evaluate the
results. In addition, we take the average performance of 100
runs as the real performance of the AIMK-RS because it
provides for more even sampling and can fully express the
characteristics of the original datasets. The optimal results for
the corresponding datasets are denoted in bold. The results
are listed in Tables 10–12, and we can conclude that
compared with the two baselines, AIMK-RS still achieves

better performance. Particularly, on the dataset Ijcnn1, ACC,
RI, and F-measure of AIMK-RS are increased by 7.68, 7.32,
and 6.59%, respectively.

Initialize Other Clustering Algorithms Using
AIMK
In some variants of the K-means algorithm, the initializationmethod
still plays an important role in the final clustering performance. For
example, the initialization is required in the first step of the
K-medoids algorithm and the last step of spectral clustering.
However, the random initialization method is applied in the

FIGURE 2 | MCB test for AIMK and the compared baselines.
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TABLE 10 | Larger or Higher-Dimensional datasets, Measured by ACC.

Algorithm K-means K-means++ AIMK-RS (λ = 0) AIMK-RS (λ = 1)

Dataset

Ijcnn1 0.7332 0.7472 0.6712 0.8240
Phishing 0.5696 0.5715 0.6208 0.5260
Protein 0.4252 0.4258 0.4173 0.4576
Mushrooms 0.7918 0.8083 0.8027 0.8241
SensIT Vehicle (seismic) 0.4546 0.4657 0.4425 0.4855
SensIT Vehicle (combined) 0.5576 0.5598 0.5636 0.5384

The optimal results for the corresponding dataset are denoted in bold.

TABLE 11 | Larger or Higher-Dimensional datasets, Measured by RI.

Algorithm K-means K-means++ AIMK-RS (λ = 0) AIMK-RS (λ = 1)

Dataset

Ijcnn1 0.6207 0.6367 0.5603 0.7099
Phishing 0.5309 0.5315 0.5682 0.5020
Protein 0.4390 0.4307 0.4476 0.3666
Mushrooms 0.6989 0.7206 0.7126 0.7300
SensIT Vehicle (seismic) 0.5650 0.5653 0.5658 0.5517
SensIT Vehicle (combined) 0.5941 0.5965 0.5975 0.5709

The optimal results for the corresponding dataset are denoted in bold.

TABLE 12 | Larger or Higher-Dimensional datasets, Measured by F-Measure.

Algorithm K-means K-means++ AIMK-RS (λ = 0) AIMK-RS (λ = 1)

Dataset

Ijcnn1 0.7439 0.7581 0.6896 0.8240
Phishing 0.5933 0.5937 0.6046 0.5733
Protein 0.4780 0.4825 0.4683 0.5268
Mushrooms 0.7253 0.7428 0.7364 0.7595
SensIT Vehicle (seismic) 0.4041 0.4118 0.3949 0.4374
SensIT Vehicle (combined) 0.4506 0.4513 0.4495 0.4627

The optimal results for the corresponding dataset are denoted in bold.

TABLE 13 | Use AIMK to initialize the K-Medoids, measured by ACC.

Algorithm K-medoids K-mediods + AIMK
(λ = 0)

K-medoids + AIMK
(λ = 1)Dataset

Breast-cancer 0.6471 0.6471 0.6471
Shuttle 0.4683 0.4280 0.8327
Pendigits 0.6553 0.6830 0.5732
Colon-cancer 0.6258 0.5000 0.7097
Zoo 0.7921 0.7921 0.7921
Haberman 0.5196 0.5196 0.5196
Svmguide2 0.4680 0.4680 0.4680
Wine 0.6820 0.7079 0.7079
Ionosphere 0.7094 0.7094 0.7094
Leukemia 0.5294 0.5294 0.5294
Gisette 0.6281 0.6230 0.6230
Splice 0.5990 0.5990 0.5990
Svmguide4 0.2620 0.2567 0.2667
Liver-disorders 0.7034 0.7034 0.7034
Soybean-small 0.8085 0.8085 0.8085
Balance-scale 0.5363 0.5136 0.5648

The optimal results for the corresponding dataset are denoted in bold.

TABLE 14 | Use AIMK to initialize spectral clustering, measured by ACC.

Algorithm Spectral Spectral + AIMK
(λ = 0)

Spectral + AIMK
(λ = 1)Dataset

Breast-cancer 0.6471 0.6471 0.6471
Shuttle 0.3386 0.3135 0.3561
Pendigits 0.6685 0.6898 0.7376
Colon-cancer 0.5226 0.5484 0.5484
Zoo 0.5406 0.5446 0.5050
Haberman 0.5196 0.5196 0.5196
Svmguide2 0.4760 0.4731 0.4936
Wine 0.7079 0.7079 0.7079
Ionosphere 0.7123 0.7123 0.7123
Leukemia 0.5588 0.5588 0.5588
Gisette 0.6664 0.6670 0.6650
Splice 0.6476 0.6498 0.6440
Svmguide4 0.2653 0.2567 0.2700
Liver-disorders 0.6745 0.6690 0.6828
Soybean-small 0.7787 0.7660 0.7447
Balance-scale 0.4104 0.5552 0.5296

The optimal results for the corresponding dataset are denoted in bold.
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original algorithms. In this section, we even leverage AIMK to
initialize the K-medoids clustering algorithm and spectral
clustering algorithm. Due to the instability of original K-medoids
and spectral clustering, we take the average performance of 10 runs
as their real performance. There is a hyperparameter δ in the spectral
clustering algorithm, so we use the self-tuning mode (Zelnik-Manor
and Perona, 2005). The results are shown in Tables 13 and 14. In
Table 13, the clustering performance of K-medoids initialized by
AIMK, denoted as K-medoids + AIMK reaches the higher or equal
performance on 15 datasets, except for the Gisette one. Particularly,
the performance is increased by 36.44 and 8.39% on the Shuttle and
Colon-cancer datasets, respectively. In Table 14, the overall higher
clustering performance can be explored through spectral clustering
initialized by AIMK, denoted as Spectral + AIMK. Especially
Spectral + AIMK leads to 6.91 and 14.48% higher accuracy on
the dataset Pendigits, Balance-scale, respectively.

DISCUSSION

Choice of λ
After the above experiments, we can see that the parameter λ is
crucial for the final clustering results. To further illustrate the
impact of parameter λ, we generate two types of datasets with
different distributions from a mixture of three bivariate Gaussian
densities. Figure 3A, Figure 3B is given by

1
3
Gaussian( 0

0
)( 0.01 0

0 0.01
)

+ 1
3
Gaussian( 0

1
)( 0.01 0

0 0.01
)

+ 1
3
Gaussian( 0.5

0.5
)( 0.01 0

0 0.01
)

FIGURE 3 | To further illustrate the impact of parameter λ, we generate two types of datasets, (A), (B) and (C), (D), with different distribution from amixture of three
bivariate Gaussian densities. Class 1, Class 2, Class 3, and initial cluster centers are represented by different shapes: circle, cross, triangle, and star, respectively.
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Figures 3C,D is given by 1
3Gaussian(00)(0.01 0

0 0.01
)+

1
3Gaussian(00.6)(0.01 0

0 0.01
) +1

3Gaussian(0.150.15
)(0.01 0

0 0.01
).

where Gaussian (X, Y) is a Gaussian normal distribution with the
mean X and the covariance matrix Y. We stimulate three clusters,
namely, Class 1, Class 2 and Class 3, which are represented by
different shapes: circle (20 points), cross (20 points), and triangle
(20 points), respectively. As shown in Figures 3A–D, we use
AIMK to determine the initial cluster centers marked with the
star when λ is set as 0 and 1. In Figure 3A, Figure 3B, when λ is
equal to 0, the three cluster centers happen to be the centroid of
three classes. When λ is equal to 1, only one cluster center is the
centroid of class 1, and the other two cluster centers are just
outliers in class 2 and class 3, respectively. In Figure 3C,
Figure 3D, when λ is equal to 0, two cluster centers are
dropped in class 1, one cluster center is dropped in class 2,
and no cluster center is dropped in class 3. However, when λ is
equal to 1, three cluster centers happen to be dropped in three
classes, and two of the three are outliers.

According to formula (Eq. 4), when λ is equal to 0, only the top
K points with a higher density are selected as initial cluster
centers. At this time, if all or most of these K initial cluster
centers fall in K different classes, as shown in Figure 3A, then the
initialization effect is better. However, for some datasets, such as
overlapping datasets, shown as Figure 3C, the top K points with
higher density cannot be distributed relatively evenly among K
classes. Therefore, at this time, we need to consider the distance
factor. According to formula (Eq. 4), when λ is equal to 1, we only
select the K points that are far apart from each other as initial
cluster centers. At this time, all or most of these K initial cluster
centers are more likely to be relatively evenly distributed among
the K classes, as shown in Figure 3D.

In summary, if the users have prior knowledge of the datasets,
the parameter λ can be selected more accurately like the examples
above in advance. Otherwise, they can still get good clustering
results by executing the algorithm in just two interactions.

CONCLUSION

In this study, we propose the AIMK algorithm which can not only
adapt to datasets with various characteristics but also obtain better
clustering results within two runs. First, we propose a new
threshold to calculate the density of the data points based on
the skeleton points of MST. Second, we compute the hybrid
distances based on the density of the data points. Finally, we
select K data points, where the hybrid distances among them
are relatively large, as the final cluster centers. In addition, we
apply random sampling to AIMK to obtain the AIMK-RS,
whose time complexity is only O(n).

In the experiment part, first, we analyze the sensitivity of parameter
λ on each dataset, and conclude that better performance can be
obtained when λ is 0 or 1. Second, we compare AIMK with 11
different algorithms on 16 normal datasets. The experimental results
show that AIMK outperforms the current initialization methods and
severalwell-known clustering algorithms.We also compareAIMK-RS

with two widely used initialization methods with linear complexity.
AIMK-RS still achieves better performance. Particularly, the ACC, RI,
and F-measure are increased by 7.68, 7.32, and 6.59% on the dataset
Ijcnn1, respectively. Finally, we exploit AIMK to initialize the variants
of K-means, such as K-medoids and spectral clustering. The better
clustering performance demonstrates AIMK is a good way for
initialization and has the potential to extend to other state-of-the-
art algorithms. Particularly, for the K-medoids initialized by AIMK,
the performance is increased by 36.44 and 8.39% on the Shuttle and
Colon-cancer datasets, respectively. Similarly, spectral clustering
initialized by AIMK leads to 6.91 and 14.48% higher accuracy on
the dataset Pendigits, Balance-scale, respectively. In the discussion
part, we take two toy examples to show the choice of λ for datasets
with different characteristics.

In the future, we will combine AIMK or AIMK-RS with other
state-of-art algorithms to more real-world datasets. Moreover, we
will leverage them to some specific applications, such as image
segmentation, classification of EEG data, etc.
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