
Blood Reviews xxx (xxxx) xxx

Please cite this article as: Nitin B. Charbe, Blood Reviews, https://doi.org/10.1016/j.blre.2022.100927

Available online 21 January 2022
0268-960X/© 2022 Published by Elsevier Ltd.

Review 

A new era in oxygen therapeutics? From perfluorocarbon systems to 
haemoglobin-based oxygen carriers 

Nitin B. Charbe a,b, Francisco Castillo a, Murtaza M. Tambuwala c, Parteek Prasher d,e, 
Dinesh Kumar Chellappan f, Aurora Carreño a,g, Saurabh Satija h,i, Sachin Kumar Singh i, 
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A B S T R A C T   

Blood transfusion is the key to life in case of traumatic emergencies, surgeries and in several pathological 
conditions. An important goal of whole blood or red blood cell transfusion is the fast delivery of oxygen to vital 
organs and restoration of circulation volume. Whole blood or red blood cell transfusion has several limitations. 
Free haemoglobin not only loses its tetrameric configuration and extracts via the kidney leading to nephrotox-
icity but also scavenges nitric oxide (NO), leading to vasoconstriction and hypertension. PFC based formulations 
transport oxygen in vivo, the contribution in terms of clinical outcome is challenging. The oxygen-carrying ca-
pacity is not the only criterion for the successful development of haemoglobin-based oxygen carriers (HBOCs). 
This review is a bird’s eye view on the present state of the PFCs and HBOCs in which we analyzed the current 

Abbreviations: ATP, adenosine triphosphate; B-PEG-Hb, bovine pegylated-haemoglobin; bis-Mal-PEG2000, bis(maleidophenyl)-PEG2000; CO, carbon monoxide; 
CO2, carbon dioxide; DBBF, bis-(3,5-dibromosalicyl)-fumarate; deoxyHb, deoxyhaemoglobin; DPG, diphosphoglycerate; DPPC, 2-dipalmitoyl-sn-glycero-3-phos-
phatidylcholine; EAF, extension arm facilitated; E. coli, Escherichia coli; FDA, Food and Drug Administration; GU-HP-Hb, glutaraldehyde-polymerized human 
placenta haemoglobin; Hb, haemoglobin or hemoglobin; HBOC, haemoglobin-based oxygen carrier; HBOCs, haemoglobin-based oxygen carriers; HIF-⍺, hypoxia- 
inducible factor 1-alpha; HIF-β, hypoxia-inducible factor 1-beta; HO-1, heme oxygenase-1; IgM, immunoglobin M; LHb, liposome-encapsulated haemoglobin; MAP, 
mean arterial pressure; MNBs, micro-nanobubbles; MnCO3, manganese carbonate; MP4CO, pegylated human haemoglobin-based carbon monoxide; mPEG-PLA- 
mPEG, methoxy poly(ethylene glycol)-b-poly(L-lactide); N2, nitrogen gas; NFPLP, 2-nor-2-formylpyridoxal phosphate; NO, nitric oxide; O2, oxygen gas; O-R-Hb, O- 
raffinose cross-linked haemoglobin; oxyHb, oxyhaemoglobin; p50, oxygen half-saturation; PC, phosphatidylcholine; PEG, poly(ethylene glycol); PEG-COHb, carboxy 
form of poly(ethylene glycol)-haemoglobin; PEG-DSPE, 1, 2-Distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol); PEG-Hb, poly(ethylene glycol)- 
haemoglobin; PFC, perfluorocarbon; PFCs, perfluorocarbons; PLA, polylactic acid; PLGA, polylactic-co-glycolic acid; PolyHeme®, human polymerized haemoglobin; 
PPHb, polynitroxylated PEGylated haemoglobin; pPolyHb, glutaraldehyde-polymerized porcine haemoglobin; PS, phosphatidylserine; RBC, red blood cells; rHb, 
recombinant haemoglobin; rHb 1.1, first generation of recombinant haemoglobin; rHb 2.0, second generation of recombinant haemoglobin; TLR4, toll-like receptor 
4; Val, valine; ZO-1, zonula occludens-1 or tight junction protein-1.. 

* Corresponding authors at”: Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, 
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modifications made or which are underway in development, their promises, and hurdles in clinical 
implementation.   

1. Introduction 

Considering the use of donated blood products is relatively safe 
nowadays, there are some inherent problems in allogeneic blood 
transfusions. Transmission of infectious diseases, compatibility issues, 
cost of blood processing, wastage during storage over extended period of 
time, sterilization, post-operatory complications, immunosuppression 
due to transfusions, requirement of an extremely skilled person for 
transfusion, use of glycerol to store the blood cells, and eventually low 
availability of units when disaster strikes are just some of the reasons 
that have encouraged decades of the search for alternatives to whole 
blood transfusion [1–6]. Furthermore, it is crucial to restore the blood 
volume immediately in case of loss of 30 to 40% of the blood volume. 
This ensure that the oxygen support to the tissue does not compromise. 
The whole blood transfusion is naturally the first choice to replace the 
lost blood, because it matches all the natural components which are 
normally present in the blood. However, because of the obvious con-
cerns of the immediate availability and safety issues, efforts are now 
being invested to produce artificial oxygen carrier that can substitute 
and restore the normal blood functions. 

Artificial oxygen carriers have emerged as an alternative to alloge-
neic blood transfusions. It decreases the risk of disease transmission and 
avoids not only incompatibility problems, but also transports and de-
livers oxygen to organs and tissues and acts as an anti-ischemic agent in 
a variety of pathogenic conditions that compromise tissue oxygenation 
[7,8]. Ideally the blood substitute should not trigger immune response 
and should not transmit infections. Furthermore, it should be easy to 
make, readily available, not depend on the availability of the whole 
blood, have the long half-life, and be stable at room temperature and 
above all, should be universally acceptable to be use in emergencies. 

Artificial oxygen carriers require haemoglobin (Hb), which is 
generally sourced from bovine or humans. Other types of oxygen car-
riers without haemoglobin, like perfluorocarbon (PFC) emulsions, have 
been examined for their oxygen delivery capacity. However, some for-
mulations are found to be potentially toxic to the renal system and have 
been associated with immune system inhibition and increased pulmo-
nary and systemic blood pressure, gastrointestinal irritability, and 
inefficient blood supply to the tissues [9]. Additionally, oxygen carriers 
are usually called blood substitutes, although these compounds do not 
replace all its components and do not cover all blood functions, such as 
nutrient transport, coagulation, or immune response [10–13]. They are 
synthetic solutions with the ability to bind, transport, and deliver oxy-
gen to any tissue or organ that needs it. However, these characteristics 
are not enough for medicinal and clinical uses. Ideally, these systems 
should not interfere with capillary circulation or interact with the im-
mune system; instead, they should have the ability to access all areas of 
the human body, be metabolized and eliminated quickly, maintaining 
adequate blood pressure [14]. Based on its intrinsic characteristics, as 
discussed earlier, oxygen carriers are categorized into haemoglobin- 
based oxygen carriers (HBOCs) and perfluorocarbons (PFCs). In warm- 
blooded animals, the modified Hb method (i.e., HBOCs) follows the 
natural way of oxygen delivery to the tissues. This approach is based on 
the reversible binding of the diatomic oxygen molecule to the metal- 
centered coordination complexes. Whereas in the perfluorocarbons 
approach, oxygen is dissolved in the inert perfluorocarbons in the 
presence of the emulsifying agent. 

Nevertheless, substantial efforts and resources are required to 
develop a product to address the global shortage of the blood and safety 
issues of PFCs and HBOCs. Efforts are also required to refine the existing 
products and develop next generation products based on the existing 
ones. 

Because the research in the development of the oxygen transporters 
mostly address the clinical issues involving emergencies, surgeries, and 
very sick patients, it is therefore not very surprising that insufficient 
efforts are directed towards resolving the performance issues of these 
products. Therefore, in the present article we critically reviewed the 
available artificial oxygen transporters, their pre-clinical development, 
clinical performance, potential adverse effects, and future directions. 

2. Perfluorocarbon’s (PFCs) derivatives 

Due to their chemical and physical properties, perfluorinated com-
pounds have a long history of industrial and biomedical applications 
[15]. Their industrial and commercial applications includes, refrigerant 
agents, aerosol propellants, foam-blowing agents, solvents, polymers, 
and even in fire extinguishers. In medicine, fluorine-containing com-
pounds are used in orthopedic implants, replacement for vascular 
structures, inhalation anesthetics (one of the most important contribu-
tions considering that prior to 1940 commonly used anesthetics were 
inflammable compounds e.g. cyclopropane and diethyl ether), anti- 
inflammatory agents, synthetic drugs and steroids [16–21]. Chemi-
cally, PFC liquids contain chains of 8 to 10 carbon, where hydrogen 
atoms are completely replaced with fluorine atoms to get C-F polar 
bonds. These liquids have special characteristics like water immisci-
bility, chemical inertness, higher density than water, and comparatively 
higher solubility for respiratory gases, making them a unique vehicle to 
deliver respiratory gases. Because of these characteristics, PFC emul-
sions in normal saline solution have been extensively studied over the 
past six decades as an artificial oxygen-carrier vehicle. PFC emulsions 
have the potential to replace Hb to supply oxygen to vital organs in case 
of an emergency. The discovery that PFC fluids can largely solubilize 
gases such as oxygen (O2) and carbon dioxide (CO2) led to their evalu-
ation as vehicles for the transport of respiratory gas [22–25]. Moreover, 
PFCs were the first synthetic compounds tested as oxygen carriers [26]. 

PFCs compounds are halogenated molecules obtained from linear, 
cyclic, or polycyclic anthropogenic hydrocarbons. Common PFCs are 
chemically inert, extraordinarily hydrophobic, and stable at elevated 
temperatures. These materials also present high chemical resistance and 
low coefficients of friction. These characteristics are observed because 
the fluorine nucleus, being the most electronegative of all elements, has 
a high ionization potential energy, considerably larger electron affinity, 
low polarizability, and van der Waals interactions, which dramatically 
change the stability, lipophilicity, and bioavailability of the resulting 
compound, when compared to hydrogen [27–31]. 

Single carbon-fluorine C–F bond is the strongest single bond in 
organic chemistry (147 kJ/mol and 170 kJ/mol stronger than C–C and 
C–Cl respectively) being able to strengthen adjacent aliphatic bonds, e. 
g., aliphatic C–C bond in hexafluoroethane is 42 kJ/mol stronger than 
the same bond in ethane molecule [28]. As a result of all the fluorine 
characteristics discussed above, PFCs backbone adopts a helical chain 
orientation, with C-F dipoles distributed axially around the chain helix, 
rather than the usual planar zigzag configuration observed in hydro-
carbons [29–31]. The capacity of PFCs to dissolve large amounts of gases 
is explained due to the absence of accessible low energy molecular or-
bitals capable of binding gases as O2, CO2, N2, or NO. As denser fluorine 
atoms generate a repellent sheath that covers and protects the per-
fluorinated backbone against reagents, gases occupy intermolecular 
spaces within the PFC. Moreover, the solubility of O2 in PFCs is inversely 
related to temperature and increases linearly with a partial pressure, in 
contrast with the sigmoid curve of O2 in Hb, so the amount of gas dis-
solved depends upon the PFC concentration and its solubility coefficient 
for the gas [32]. Due to their extreme hydrophobicity, PFCs are not 
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Table 1 
Available PFCs: characteristics and their uses.  

Names Chemical structure and formula - 
Molecular weight (MW) - CAS 

Formulation Uses 

Perfluorobutyl 
tetrahydrofuran, FX-80, 

FC-80, F‑2‑butyl 
Tetrahydro 

Furan   

C8H7F9O 
MW: 290.13 
CAS: 26446-59-3 

Initially pure, used as an emulsion afterwards (20% 
PFC) with Krebs-Ringer bicarbonate buffer solution, 
using bovine serum as surfactant. 

Used pure in the first experiment (Clark) 
and by Sloviter as an emulsion afterwards, 
solving the problem with salts and 
metabolites transportation [41].               

Perfluoro tributylamine, FC- 
47, F‑tri‑n‑ 

butylamine, FTBA, F-43, 
Fluosol-43, Oxypherol ®  

C12NF27 o N(C4F9)3 

MW: 671.09 
CAS: 311-89-7 

Emulsion (12% PFC) with Pluronic F-68 as surfactant. Highly stable. Used in experiments with 
rats, completely replacing blood with the 
emulsion; retained in the liver. Limited 
animal survival [41].            

Perfluoro decalin, Fluosol- 
DC, F-decalin, PFD  

C10F18 

MW: 462.08 
CAS: 306-94-5 

Emulsion (10% PFC) with Pluronic F-68 as surfactant. Used in experiments with monkeys; has a 
better and faster excretion [41].            

Perfluoro tripropylamine, 
FTPA, F‑tripropyl amine  

C9NF21 o N(C3F7)3 

MW: 521.07 
CAS: 338-83-0 

Emulsion based on Fluosol-DC, with 30% total PFC. Improved emulsion stability, longer half- 
life in organs. Had to be frozen for shipping 
and reconstituted prior to use [42].        

Perfluoro-n-octane, PFO, 
octadeca fluorooctane, FC- 

77   

C8F18 

MW: 438.06 
CAS: 307-34-6 

Emulsion with Pluronic F-68 or Vitrum egg 
phospholipid. 

Used to test perfusion media in dogs, 
retained in liver and kidney. Later, used to 
maintain viability for up to 37 days of fish 
sperm, promoting oxygen and/or nutrient 
uptake [43,44].    

(continued on next page) 
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miscible in water or plasma, low molecular weight PFCs are gaseous and 
can be aspirated, but higher molecular weight PFCs are generally liquids 
that must be emulsified for in vivo applications [33]. Nowadays, because 
of the well-established synthetic routes that allow the production of 
PFCs and availability of tested emulsifying agents, it is possible to 

generate a stable PFC nanoemulsion. 
As PFCs deliver oxygen due to its gases solubilizing ability, their 

delivery capacity is relative to the arterial oxygen pressure, and to be 
effective, it needs high arterial oxygen pressure (> 300 mmHg) [34]. 
Higher arterial blood tension-based oxygen delivery was confirmed in a 

Table 1 (continued ) 

Names Chemical structure and formula - 
Molecular weight (MW) - CAS 

Formulation Uses 

Perfluoro decane, PFD   

C10F22 

MW: 538.07 
CAS: 307-45-9 

Emulsion with Pluronic F-68 Used to test perfusion media in dogs and 
rats [43].        

F-dimethyl adamantane, 
FMD, PP-9, F‑DMA, 

F‑1,3‑DMA    

C12F20 

MW: 524.11 
CAS: 36481-20-6 

Lecithin emulsified Long tissue residence, initially tested to 
prevent central nervous tissue ischemia, 
increasing oxygen delivery [45]. 

F-methyl 
adamantane, PFDMA, 
Perfluoro (1‑methyl 
adamantane), F-MA   

C11F18 

MW: 474.09 
CAS: 60096-00-6  

Emulsion with Vitrum egg phospholipid Initially used in the preclinical test as an 
oxygen carrier. Shorter tissue residence 
than F-DMA. Highly stable under 4 ◦C [46].       

Perfluoro octylbromide, 
PFOBT, Perflubron   

C8F17Br 
MW: 498.96 
CAS: 425-25-2 

Emulsion with lecithin Can be stored in cold for 2 years. Increases 
blood oxygenation levels on tissue. 
Associated with improved myocardial 
recovery post-bypass [47].          

Perfluoro-N-(4- 
methylcyclohexyl)- 

piperidine, PFMCP, FMCP, 
Perftoran, Ftorosan   

C12F23N 
MW: 595.09 
CAS: 86630-50-4 (PFC), 99752-82-6 
(Emulsion)   

Emulsion with 11%-14% of PFC (PFMCP +
perfluorodecaline) with poloxamer as emulsifier and F- 
68 as surfactant. 

Initially was an emulsion with 15.2% of 
perfluorodecaline (PFD) and 7.6% of 
PFMCP. Extensively used clinically in 
Russia, Mexico, South Africa, Kazakhstan, 
Ukraine, and Kirghiz Republic. Later was 
changed to 14% of PFD and 6% of PFMCP; 
stable for 1 month at low temperature; half- 
life of 90 days in human organs [48].  
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clinical trial of the marketed formulation of PFC (e.g. Fluosol-DA® and 
Fluosol-43®). The study was conducted in severely anemic patients 
before surgery. It was observed that when the arterial pressure was 
around 101 mmHg, oxygen delivery was low, but as the patient was 
administered with pure oxygen (arterial oxygen tension of 361 mmHg), 
oxygen consumption was found to increase by around 24% [34]. 
Moreover, Fluosol- DA® was approved by the FDA for coronary 

transluminal angioplasty and it was withdrawn from the market due to 
low oxygen transport capability and deficient stability. 

Very recently, a study was conducted to analyze the effect of PFCs 
formulation on hypoxia, sepsis-induced renal tubular epithelial cells 
injury, and renal CD133+ progenitor differentiation. The plasma of the 
septic patients was found to potentiate the renal cell apoptosis along 
with downregulation of overall oxidative metabolism, reduction of 

Fig. 1. Chronological developments of PFCs based oxygen carriers: from 1949 to present. [53–124]  
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albumin uptake, and downregulation of ZO-1, a cell junction protein. 
This hallmark was even found to be substantially reduced by the PFC 
emulsion. PFCs emulsions were also found to enhance the viability of 
tubular epithelial cells along with the induction in the expression of 
insulin and hepatocyte growth factors [35a]. For intravenous thera-
peutic use, PFC preparations need to be formulated into the form, which 
should be acceptable in vivo by blood [35b]. Emulsification of PFCs is 
one of the options, but the side effects associated with emulsifier agents 
already have limited its use [36]. Another feasible option is the forma-
tion of the PFC core in an albumin shell. Tsuchida et al. have first 
demonstrated the role of albumin in the manufacture of Hb based arti-
ficial oxygen transporter [37]. This formulation has shown the desired 
properties, including appropriate oxygen binding, and releasing fea-
tures, absence of pathogens, no blood antigen, highly stable on long 
term storage and biocompatibility [37]. Wrobeln et al. have developed 
and evaluated nanoparticles with an albumin shell and perfluorodecalin 
core [38]. Administration of these nanoparticles to the healthy rats was 
found to be very well tolerated except few doses dependent side effects. 

Later, they proved the functionality of these nanocapsules in 
Langendorff-heart [39]. 

Furthermore, tumor hypoxia has been associated with the formation 
of new vessels and cell survival. It is also linked with the resistance of 
cancer cells towards chemo, photo, and radiotherapy. Maintenance of 
normoxia conditions could reverse the situation and could sensitize the 
cancer cells towards cancer therapy. Oxygen delivery to the tumor cells 
is considered as a viable option. Various PFCs formulations are widely 
investigated for their role as oxygen carriers in sensitizing the cancer cell 
towards cancer therapy. Zhou et al. have reported the development of 
PFC and etoposide loaded hollow magnetic nanoparticles [40]. These 
nanoparticles were designed to deliver the anticancer drug to the cancer 
cell and, at the same time, improve the oxygen status inside the cell. 
Besides, these nanoparticles were found to significantly reduce the 
hypoxic condition and increased its susceptibility towards the anti-
cancer activity of etoposide [40]. 

Some oxygen carriers approved by the FDA are based on PFC and are 
currently being investigated for oxygen delivery to tumors. Table 1 

Fig. 1. (continued). 
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summarizes the different basic PFCs commercially available to support 
the development of PFC based oxygen carriers. 

Additionally, PFCs are quickly eliminated from the vascular space by 
the reticuloendothelial system and stay in organs like the spleen and 
liver for weeks [34]. Prolonged stays in the liver limits the possibility to 
repeat the dosing of PFCs in a short time [49] and pharmaceutical 
formulation stability is another limitation of PFCs. In clinical trials, 
emulsion instability was reported, which makes it compulsory to store 
them frozen [34,50]. Dosing and formulation stability issues are 
addressed using advanced formulation techniques, but oxygen delivery 
at high arterial blood tension is an inherent characteristic and remains 
an important challenge in PFCs based oxygen delivery. Furthermore, 
PFC based formulations transport oxygen in vivo, the contribution in 
terms of clinical outcome is presently under investigation. It is note-
worthy that Perftoran (Vidaphor), the first generation of PFCs product, 
is used in Russia, Mexico (under the name of Perftec), South Africa, 
Kazakhstan, Ukraine, and Kirghiz Republic. Moreover, Perftoran has 
been used to improve plastic surgery, to avoid rejection of transplant, to 
treat various occlusion vessels pathologies, among others. Additionally, 
Oxygent and Oxycyte products are still available commercially (Oxygen 
Biotherapeutics, Inc., NC, USA and Alliance Pharmaceutical Corp., CA, 
USA, respectively). Oxycyte has been studied to overcome spinal cord 
injury in swine models [51]. However, from the available clinical trial 
data, PFCs as an artificial oxygen transporter can expand the options 
available for red blood cells, especially for eliminating the risk of allo-
geneic blood transfusion (Fig. 1.). With the current advances in science, 
the utility of additional PFCs products in real clinical settings is around 
the corner [51,52]. 

3. Haemoglobin-based oxygen carriers (HBOCs) 

HBOCs try to mimic the oxygen and nutrient transport functions of 
red blood cells. Their aim is to act as an alternative to the blood or red 
blood cell transfusion to eliminate the risk of pathogen transmission, 
blood group matching, blood shortage, and stability issues. To date, 
there is no perfect alternative to blood transfusion, something which 
could replace all its functions. Cell-free Hb does not behave like Hb 
enclosed in the cell membrane. They have several issues like high oxy-
gen affinity, high elimination rate, nephrotoxicity, vasoconstriction, etc. 
To overcome these issues, several options like recombinant Hb, cross- 
linked Hb, PEGylated Hb, and liposomal Hb have been proposed. Such 
products could be critical to improving clinical trial outcomes of car-
diovascular disorders, trauma victims, and patients undergoing surgical 
procedures by replacing oxygen and nutrient transport functions of red 
blood cells artificially. It is generally understood that an artificial 
approach cannot carry out the numerous complex functions of blood. 
The potential advantages of the artificial oxygen transporters not only 
include the universal transfusion without matching the antigen groups, 
but also ready availability, long term stability, and lack of infection are 
other key advantages [125]. 

Transport of oxygen in the blood is performed by the major protein of 
red blood cells, the haemoglobin [126]. Each Hb subunit has an iron II 
(Fe2+) atom in a porphyrin ring, which is the site where the oxygen 
binds, and its affinity is principally controlled by the 2,3-diphosphogly-
cerate (2,3-DPG) molecule that changes the Hb conformation by 
increasing its oxygen tension, known as T state. When oxygen binds to 
the iron atom, 2,3-DPG is released, and the oxygen affinity increases, 
changing to R state [127,128]. Early development of oxygen carriers 
involved the use of stroma-free Hb solutions. Unfortunately, stroma-free 
Hb from red blood cells cannot be used as an oxygen carrier itself since 
the extracted Hb tetramers tend to dissociate into α-β dimers that are 
rapidly excreted by the kidneys and trigger a nephrotoxic secondary 
action [129]. 

In the last five decades, different methods have been developed to 
prevent these problems by chemically modifying and stabilizing the Hb 
molecule, with the aim to have a better oxygen release, e.g., 

intramolecular cross-links were used to stabilized the tetramer, while 
the high oxygen affinity has been reduced using 2,3-DPG analogs or by 
combining intramolecular cross-linked/oxygen affinity modifier mole-
cules as 2-nor-2-formylpyridoxal phosphate (NFPLP) and bis-(3,5- 
dibromosalicyl)-fumarate (DBBF) [130]. 

HBOCs are generally based on the modifications of Hb purified from 
human or bovine blood [13]. Based on the functionalization process, 
HBOCs could be classified into:  

- polymerized Hb,  
- cross-linked Hb,  
- polyethylene glycol conjugated Hb,  
- liposome-encapsulated Hb, and  
- recombinant Hb 

Functionalization is generally aimed to inhibit renal filtration by 
preventing tetramer dissociation, increase the oxygen affinity of Hb, and 
to increase the molecular weight and size to avoid renal filtration [131]. 
Modifications to reduce the renal clearance include intramolecular 
crosslinking, intermolecular cross-linking with bifunctional agents 
[132–135], and large-molecular-weight polymers to increase the circu-
lation time [132,134]. 

3.1. Chemical modifications of Hb for effective oxygen transport 

Various limitation of the use of whole blood or red blood cell for 
transfusion leads to the search for HBOCs. Eliminating side effects of free 
Hb, enhancing the self-life, and circulation time is the rational thinking 
behind resource investment in the development of HBOCs. Several 
chemical modifications dealing with the reduction of the toxicity and 
improvement in the efficiency of HBOCs has been studied and reported 
in the literature. The following section of the review deals with the 
discussion of various chemical modifications carried out to improve the 
acceptability of HBOCs. 

3.1.1. Pyridoxalation of Hb-oxygen affinity modulation 
The Hills Coefficient (nH) is a measure of cooperativity in a binding 

process, providing a way to quantify interaction between ligands, and 
denotes the shift between the different Hb conformations. A nH of 2 
reflects cooperative oxygen binding, and 1 demonstrates the negative 
cooperativity between protein subunits [136]. The typical normal value 
of 2,3-DGP concentration in red blood cells (RBC) is around 5 mmol/L. 
Moreover, oxygen half-saturation (p50) of normal human blood is 
around 27 mmHg, and this is the optimal value for HOBCs development. 
2,3-DGP bound to the deoxyHb and stabilized it in the peripheral site 
where oxygen levels are low and required the oxygen release. Cell-free 
and some chemically modified Hb lose 2,3-DGP activity, and hence 
such Hbs have higher oxygen affinity and thereby, low release rate. Most 
of HBOCs are based on acellular Hb, except liposome encapsulated Hb, 
so mimicking such ability is a difficult task. Some cross-linking meth-
odologies are available in the literature to stabilize the Hb in T state 
(deoxy state), and the use of bovine or recombinant haemoglobin (rHb) 
for HBOCs preparations is also possible due to the fact that bovine Hb 
works similarly to human Hb, at very low levels of 2,3-DGP. This means 
that stromal free bovine Hb has low oxygen affinity as compared to 
stromal free human Hb [137]. 

The undesirable character of cell-free Hb is the high oxygen affinity 
due to the loss of 2,3-DGP. Unsuccessful attempts were made to restore 
the original oxygen binding of cell-free Hb by merely adding the 2,3- 
DGP [138]. Pyridoxalation of Hb improved the Hb function by bind-
ing to the same site where 2,3-DGP links and it occurs at the N terminal 
group of the β-chain when the reaction is carried out on deoxyHb and at 
the N terminal of α chain reaction carried out on oxyHb. Residue 
binding, bridge formation, gelation, and conformation arrangement are 
also similar to the 2,3-DPG binding [139,140]. 
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3.2. Intramolecular and intermolecular cross-linking of Hb / rational 
thinking behind the cross-linking Hb molecules 

Reducing the nephron toxicity due to the dissociation of Hb tetramer 
is the principal aim of the cross-linked Hb. Advanced medical tech-
niques, along with organ transplants further enhanced the need for 
blood and its components. An artificial oxygen transporter capable not 
only of transporting the oxygen but also reconstituting the volume is the 
most sought-after medical discovery. To avoid the complexities associ-
ated with it, the Hb solution was considered as the more feasible 
approach. Use of Hb has several advantages as compared with the whole 
blood due to these solutions are more useful in emergencies. Moreover, 
repeated Hb transfusion to maintain the steady state of transfused Hb 
could pose a severe hazard to the patient with the history of renal dis-
order [141,142]. Therefore, the idea of encapsulated Hb of the stromal- 
free Hb in lipid membrane, without antigen, would not only increase the 
circulation time of Hb by reducing the renal excretion but could also 
eliminate the need for blood group matching. 

Chang proposed the first concept of Hb-based oxygen transporter in 
1964, the renal toxicity, and a few other adverse events were reported in 
phase I clinical trial by Savitsky et al. in 1978 [143,144]. All the 
shortcomings of the stromal free oxygen were attempted to overcome by 
modified Hb, including 1) Molecular-based modified products like 
polymeric, crosslinked, recombinant, and conjugated Hb and 2) 
Nanotechnology-based modified Hb products which include encapsu-
lated or liposomal Hb. 

The early idea of modified Hb was available in the 1970s; however, 
research interest developed considerably only after the toxicity of 
stromal-free Hb, and the possibility of HIV and hepatitis transmission 
was reported. The primary focus of the early work was on the function 
and stability of synthetic membrane, permeability, membrane fusion, 
physicochemical properties of the lipid bilayer, prevent renal excretion, 
etc. Several interesting approaches to modified Hb are investigated, 
which are discussed below. 

3.2.1. Molecular-based modified Hb products 
Toxicity is the critical hurdle in HBOCs development. Free Hb, unlike 

cellular Hb, undergoes irreversible damage, which not only disturbs its 
oxygen-carrying capabilities but also makes them more toxic. Stabili-
zation of acellular Hb molecules using chemical modification ap-
proaches like irreversible cross-linking of the monomers of Hb and 
conjugating the cross-linked Hb molecules with inert high molecular 
weight compounds are few of the first generation molecular-based 
modification of the Hb molecules. 

3.2.1.1. Cross-linked modified products. In addition to the nephrotoxi-
city and vasoconstriction, another major issue with the acellular Hb is 
the oxidation of the iron atom inside Hb. In the absence of a cell 
membrane, Hb undergoes autoxidation from iron II (Fe2+) to iron III 
(Fe3+) (methaemoglobin). Methaemoglobin does not bind with oxygen, 
thereby limiting the oxygen transport capability of Hb, which can lead to 
the ischemic condition in the tissues [145]. Cross-linking of Hb is aimed 
to solve some of the problems associated with unmodified stroma-free 
Hb. Cross-linking of Hb involves chemically linking α and β chains of 
Hb to impart stability in the cell-free tetramer. Such modifications were 
also found to increase the half-life of Hb. In spite of advancements in 
cross-linking and improvement in stability, side effects like vasocon-
striction are still a significant challenge. 

Highly purified Hb found to be more prone to the oxidative degra-
dation when exposed to the plasma containing hydrogen peroxide, 
which is the major oxidizing agent present in the blood. For example, 
Kulger et al. prepared N,N’-5,5’-bis[bis(3,5-dibromosalicyl)isophthalyl] 
terephthalamide and this is a multifunctional agent that is useful to 
cross-link inter and intra monomers of tetramer. Moreover, Bis’Hb forms 
when deoxyHb reacts with N,N’-5,5’-bis[bis(3,5-dibromosalicyl) 

isophthalyl]terephthalamide. This cross-linked product was found to 
have low oxygen affinity, but the simultaneous reduction in cooperative 
based oxygen binding was also observed [146]. Gourianov et al. and 
Kluger et al. modified this agent and reported the synthesis of tetrakis 
acylphosphate esters and its derivatives [147,148]. Hb cross-linked with 
this agent has shown cooperative based oxygen binding but lower Hill 
coefficients as compared to the native Hb. 

Alagic et al. developed a dual functional protein [149] to combine 
the oxygen transport capability of Hb and superoxide radical catalyzing 
ability of superoxide dismutase. The product was found to have less 
cooperative based oxygen binding, but the radical catalyzing ability of 
superoxide dismutase remains the same [149]. Cross-linking Hb in 
dendritic assembly was reported by Hu et al. [150]. This cross-linking 
produces dendritic products with similar cooperative based oxygen- 
binding as of human Hb [150]. 

Diaspirin, bis(o-carboxyphenyl) succinate was also shown to have 
cross-linked the Hb subunits [151,152]. Walder et al. reported two esters 
of dibromosalicyl acid via bis(3,5-dibromosalicyl) succinate and DBBF 
as a potential acetylating agent [153]. Diaspirin cross-linked Hb was 
later checked for their immunogenicity in patients enrolled in phase II 
and III clinical trials by Patel et al. All the patient specimens (preinfusion 
and postinfusion) of the clinical trial confirmed the lack of preexisting 
antibodies to diaspirin cross-linked Hb and the absence of antibodies 
after exposure to this new biologic entity [154]. 

Site-specific cross-linking of Hb and its relationship with activity was 
studied by various research groups [155–157]. Jones et al. managed to 
make double-crossed linked Hb [156] and Walder et al., developed an 
efficient Hb-based oxygen carrier [157]. The oxygen affinity of double 
cross-linked Hb was found to retain significant cooperativity with a Hill 
coefficient of 2.3 compared with 3.0 for unmodified Hb [156]. Chatterje 
et al., used bis(3,5-dibromosalicyl)fumarate to form the fumaryl bridge 
between Lys-99α1 and Lys99 α2, spanning the central cavity of the 
tetramer of deoxyHb. Similar to Jones et al., Chatterjee’s cross-linked Hb 
retained highly cooperative oxygen binding. These examples suggest 
that the DBBF could be used to cross-link Hb both in the oxy and deoxy 
states at β and α chains [158]. 

Hbs tetramers are held together with the help of noncovalent bonds. 
Covalent or noncovalent modifications of Hb are the preferred method 
of shifting the Hb S (abnormal Hb) conformational equilibrium toward 
the oxygenated state. Hence, covalent modification of the terminal 
amino residue of the beta chain is an attractive target because this site 
overlaps with the binding site of 2,3-DPG. A few of the covalent modi-
fication approaches include Schiff base formation between an aldehyde 
and the terminal α-NH2 group. Other classes of covalent approaches 
include cyanate and the aspirin reaction products. May et al. confirmed 
the relationship of Hbs carbamylation (with cyanate) with its increased 
oxygen affinity [159]. In an attempt to make the clinically useful anti-
sickling agents, aspirin was used to acetylate the Hb of the sickle cell by 
Klotz et al. [160] Acetylated Hb was found to have a higher oxygen af-
finity as compared to the unacetylated one. A few of the significant 
advantages of aspirin is that it is an old, very well-tolerated drug with 
the additional benefit of prostaglandin inhibition. Prostaglandin has 
been positively associated with cell sickling [161]. Unfortunately, 
aspirin was found not to be an effective antisickling agent [162]. 
However, this investigation has brought the focus on the new chemical 
compound, which has the potential of further exploitation for the 
development of clinically relevant antisickling agents. 

Hb dissociate into dimers when it is placed outside the erythrocyte 
and in solution. Two dimers come together to form the central cavity. 
Several attempts have been made to cross-link the tetramer utilizing the 
residues within this central cavity. Few of the investigations include an 
extension of the aspirin base antisickling agent’s approach. For example, 
Walder et al. tested bifunctional acylating agent bis(3,5-dibromosalicyl) 
fumarate and bis(3,5-dibromosalicyl) succinate to halt the sickling 
process [163]. DPG binding to the Hb regulates the oxygen affinity of the 
erythrocyte, which makes DPG binding site a critical target for the 
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development of the antisickling agent and dimer stabilization. Halogen 
in both the diesters makes them more lipophilic, which ease their 
transfer across the erythrocyte cell membrane and makes them active in 
vivo. Overall, the study directed the research focus on the 2,3-DPG 
binding site for the development of clinically useful antisickling and 
artificial oxygen transport agents [163]. 

3.2.1.2. Non-specific Hb cross-linking. Cross-linking Hb using agents like 
glutaraldehyde and oxidized sugars (raffinose and dextran) generally 
yield heterogeneous Hb cross-linked tetramers. Such a mix of products 
has different physical, chemical, and biological properties, which 
sometimes are the leading cause of toxicity [164]. Human or bovine Hb 
with a range of purity is used as a starting material for cross-linking. As 
acellular Hb loses 2,3-DPG, oxygen release from the modified Hb is the 
function of the site and nature of chemical linking. 

As an example, glutaraldehyde is a most common nonspecific 
crosslinking agent used to prevent the Hb tetramer [165,166]. It can 
cross-link with a variety of amino acids of Hb molecule obtained from a 
human or bovine source [167]. 

PolyHeme® is a glutaraldehyde cross-linked pyridoxalated human 
Hb product which is manufactured by Northfield Laboratories. Phase III 
clinical trials of PolyHeme® were conducted on 714 patients, resulting 
in 40% of patients administered with PolyHeme®, and 35% of control 
group patients experiencing severe side effects [168,169]. Hemopure® 
is glutaraldehyde cross-linked bovine Hb manufactured by Biopure 
Corporation and has p50 of 36 mmHg, circulation half-life of 19 hours, 
and shelf life of three years. In phase III clinical trial of Hemopure® at 
least one adverse event, including an elevation in blood pressure, was 
observed. Based on this clinical observation, trials of Hemopure® were 
halted [170]. Another glutaraldehyde cross-linked bovine Hb is Oxy-
globin®, which is produced by Biopure for veterinary use and is 
approved to treat canine anemia in the United States and Europe [171]. 
These three glutaraldehydes cross-linked Hb products possess relatively 
low O2 affinities. The oxygen affinity of these HBOCs was designed to 
match the p50 of human Hb to transport oxygen to tissues and organs 
properly. 

3.2.1.3. O-raffinose linked Hb. Raffinose is a trisaccharide composed of 
fructose, glucose, and galactose. O-raffinose cross-linked Hb (O-R-Hb) 
solutions are now in clinical trials as an HBOCs. HemolinkTM is a 
formulation tested in humans, produced by a Canadian company, 
Hemosol Inc. (Toronto, ON, Canada) [172]. Boykines et al. were among 
the first groups who created the O-R-Hb by cross-linking ultra-pure 
deoxy-Hb with O-raffinose [173]. 

As stromal free Hb could potentially affect tissues, organs, and 
cellular components of blood, a study was conducted by Leytin et al. to 
examine the effect of O-R-Hb on blood platelets in vitro [174]. No 
adverse effects on blood platelets could be observed when studying 
clusters of differentiation proteins in flow cytometry experiments, 
furthermore repeated dose studies in rats did not reveal immunogenic 
effects, underlining the overall safety of O-R-Hb [175]. 

Cross-linking of Hb generally locks the conformation, e.g., if the 
cross-linking takes place in R state, then its transformation into T state 
conformation is inhibited. Hence stabilization of Hb in T state using 
crosslinking agents is the most sought approach to make ideal HBOCs. 
When deoxyHb is cross-linked using O-raffinose, it not only stabilized 
the Hb in T state but also oligomerized the Hb. Jia et al. revealed that Hb 
cross-linked with O-raffinose maintains the T state conformation [176]. 

To study the safety and efficacy of O-R-Hb, phase I placebo- 
controlled, randomized, double-blind clinical trial was conducted on 
42 normal humans [177]. O-R-Hb in a dose of 0.025 - 0.6 g/kg or 
Ringer’s solution was injected, and volunteers were monitored for three 
days, and a forty two-day follow-up period was taken. Dose dependent 
rise in mean arterial pressure, severe to moderate abdominal pain, lower 
heart rate, increased serum bilirubin level and higher creatine kinase 

levels were the most common associated effects, whereas a minor in-
crease in aspartate aminotransferase and alanine aminotransferase was 
noted in a few patients [177]. In phase II, single-blind, randomized, 
open-label clinical trial conducted at multiple sites in Canada and UK, 
analysis of dose-response of Hb raffimer in a coronary bypass surgery 
was reported. Hb raffimer is an o-raffinose cross-linked Hb developed by 
Hemosol Inc, Canada. In this trial, atrial fibrillation elevated blood 
pressure, and jaundice was the most cited side effect in the Hb raffimer 
group. Overall, this trial confirmed that the Hb raffimer is safe to use in 
the patients undergoing coronary artery bypass graft surgery [178]. As 
observed in both animals and humans, HBOCs are associated with the 
rise in blood pressure. 

In animal studies conducted on rats, unmodified Hb was found to 
induce mean arterial pressure (MAP) by 14 % when compared with O-R- 
Hb [179,180]. Cardiac output was unaffected by O-R-Hb, but unmodi-
fied Hb was found to reduce it substantially. O-R-Hb does not affect the 
renal function system, but unmodified Hb is found to have adverse ef-
fects on the renal vitals [179,180]. In another study conducted on 
anesthetized rabbits, O-R-Hb has shown a very low effect on heart rate, 
MAP, cardiac output, vasoconstricting properties of Hb, abdominal 
aortic, and vascular resistance when compared with other modified Hbs 
[181]. In a separate study conducted by Wong et al. on anesthetized rats, 
similar observations were made about mean arterial pressure and heart 
rate [182]. 

Based on these clinical and preclinical animals studied of O-R-Hb it 
appears that its use is free of severe toxicity. O-R-Hb has no immuno-
genic interference in animals and humans. However, antibodies against 
O-R-Hb in animals are reported and it is also found to be useful when 
used as an alternative to blood transfusion in a murine model of malaria 
[183]. In conclusion, O-R-Hb based HBOCs could be the potential 
alternative to whole blood or blood cell transfusion. Current and plan-
ned clinical trials will further analyze the safety profile and dose 
regimes. 

3.2.1.4. Polymerized Hb. Polymerized Hb has been considered as an 
essential alternative to the oxygen-carrying fluid in case of emergencies 
when blood is not available. The lifesaving ability of polymerized Hb has 
led to the development of the various polymerization methods useful for 
retaining the tetramer structure of Hb. Like stromal Hb, unstromal 
polymerized Hb should reversibly bind the oxygen to deliver it to the 
required tissues. In its natural form, Hb is a conjugated non-crossed link 
protein, an essential characteristic for the normal red blood cell (RBC) 
shape and function. Kent et al. reported a critical method for the intra-
molecular cross-linking of stromal free human Hb. The separation of Hb 
from the cell membrane can be an important step to avoid vasocon-
striction. Commonly it is intramolecularly cross-linked, forming water- 
soluble macro-molecular stromal-free Hb [184]. 

Several laboratories have confirmed the vasoconstriction related side 
effect of HBOCs, including that of glutaraldehyde-polymerized human 
and bovine Hb. For example, Irwin et al. reported the decrease in oxygen 
delivery during normoxia and acute hypoxia in the rat when adminis-
tered with polymerized bovine Hb [185]. Optimal dosing regimen and 
time interval is critical. Shen et al. reported the bioanalytical method to 
determine the polymerized porcine Hb levels over a period of time in 
different animal models [186]. Polymerized porcine Hb (pPolyHb) is a 
kind of glutaraldehyde-polymerized Hb-based oxygen carrier. Zhu et al. 
have developed pPolyHb and studied its pharmacokinetics in a rat 
model of exchange transfusion [187] using the versatile glutaraldehyde 
polymerization method for porcine Hb, and few products have already 
been tested in clinical trials [188–191]. Additionally, the half-life of 
pPolyHb was higher and found to be in non-pathological conditions, but 
in adverse clinical events such as trauma and anemia, the half-life of 
pPolyHb was found low [187]. pPolyHb has also been tested in reper-
fusion injury, which is considered more serious then cerebral ischemic 
injury [192]. pPolyHb, when administered in a rat model, was not only 
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found to inhibit the expression of the TNF-α and IL-1β but a substantial 
reduction in the cerebral infarct size and lipid peroxidase and myelo-
peroxidase (markers of oxidative damage) activity is also observed 
[192]. Overall, there was a significant reduction in the infarcted volume 
and improved neurological function. 

The availability of universal oxygen carriers in case of emergency is 
an unmet challenge. The shortage of RBCs, immunologic reactions, 
transport, and infection transmission is the major issue. PolyHeme®, 
which is a Human polymerized Hb developed by Northfield Labora-
tories, is currently under clinical trial [193] and developed for its 
negligible NO scavenging activity. In clinical trials, this product was 
proven to be equally effective to that of RBCs which makes it a crucial 
candidate for the through clinical investigation [194,195]. Moor et al. 
conducted clinical trials with the aim to analyze the survival benefits of 
the PolyHeme® in the case of haemorrhagic shock and compared it with 
the classical blood resuscitated [196]. When tested on 700 patients it 
was observed that the resuscitation with PolyHeme® early 12 hours 
after injury had a similar outcome to that of classical resuscitation. 
However, adverse event frequency with PolyHeme® was more than 
compared with that of classical resuscitation, but the risk to benefit ratio 
was in favor of this product when whole blood is not accessible easily 
[196]. 

Similarly, Gould et al. also conducted the first prospective, ran-
domized trial to analyze the beneficial advantage of PolyHeme® when 
compared with a whole blood transfusion [194]. It was observed that 
oxygen consumption from PolyHeme® was high when compared with 
whole blood transfusion, and it was safe to repeatedly administer the six 
units of PolyHeme® with observed minor adverse events. Also, Poly-
Heme® was also found to be safe in another clinical trial conducted by 
Gould et al. on 171 patients [194]. In a separate study conducted on 39 
healthy volunteers, Gould et al. again confirmed the safety of polymer-
ized Hb [197]. 

Another polymerized Hb product is the OxyVita®Hb. This poly-
merized Hb is termed as the potential substitute of the blood based on 
different results documented from preclinical and clinical studies 
[198,199]. Wollocko et al. led a study to analyze the resistance to heme 
exposure of bHb, myoglobin, and OxyVita®Hb when exposed to the 
denaturant like urea [200]. This observation is crucial because the heme 
released is associated with adverse events like oxidative stress when 
substituted with blood [201]. Hemopure®, which is another polymer-
ized Hb, manufactured by OPK Biotech, was approved for clinical use in 
South Africa and Russia for the treatment of anemia. Furthermore, 
Hemopure® has been utilized in the United States to treat patients with 
life-threatening anemia for whom blood transfusion is recommended 
and who have tried all the treatment alternatives without success. The 
therapeutic efficiency of Hemopure® was compared with blood by 
analyzing their effect on microcirculation at a concentration between 4 
to 12 gHb/dL [202,203]. Furthermore, another clinical study, showed 
that a high dose administration into injured patients does not show a 
vasoconstriction effect [204]. 

Immune response towards the acellular polymerized Hb was 
analyzed by Marks et al. in a dog model [205]. Hemorrhagic animals 
were administered with polymerized Hb. A significant level of antibody 
was detected in the test animals after the 10th week when compared with 
the control. In contrast, Bleeker et al investigated the potential immu-
nogenicity of human Hb polymerized using glutaraldehyde. The anti-
body response was analyzed in rabbit by weekly intravenous infusion of 
the clinically relevant dose of the rabbit Hb what was prepared in the 
same way as that of the human glutaraldehyde Hb. The study confirmed 
the weak immune response in the experimental condition [206]. Yan 
et al. studied the immune response against polymerized porcine Hb. 
Three inflammation indicators (C3a, IL-6 and TNF-α) were analyzed in 
rat model and cultured cells. The level of these three indicators were not 
changed, indicating no immunotoxicity for the polymerized Hb [207]. 

In another preclinical safety study of polymerized Hb, the car-
dioprotective role was analysed [208]. In this study, glutaraldehyde- 

polymerized human placenta Hb (GU-HP-Hb) benefit was accessed in 
cardiopulmonary bypass surgery in a dog model. The low dose of GU- 
HP-Hb was proven to be protective again cardiac ischemia when 
compared with the high dose, which was verified by the overall 
impaired cardiac function [208]. 

Similarly, in another study conducted by Heneka et al., polymerized 
Hb was found to reinstate cardio and glomerular function in an 
endotoxin-induced animal model [209,210]. Polymerized bovine Hb 
(HBOC-201) was compared with Hetastarch concerning resuscitation 
performance in pig models [211]. For pigs treated with polymerized Hb, 
survival rate was 100%, animals exposed to Hetastarch survived in 88% 
of the cases and of the non-resuscitated control group only 63% animals 
survived. Tissue oxygen levels and, at the same time, mean arterial 
pressure was also high in polymerized Hb administered group. In 
conclusion, polymerized Hb groups were found to restore the cardio-
pulmonary function to the normal in comparison with Hetastarch group 
and ultimately proved better in a hemorrhagic animal model. 

Belcher et al. analyzed the chemotherapy when polymerized Hb was 
transfused simultaneously. Regular polymerized Hb transfusion to the 
mice displaying breast cancer cells established the reduced angiogen-
esis, hypoxic condition, and tumor growth. Simultaneously, clearance of 
polymerized Hb was observed through the liver signifying lower neph-
rotoxicity [212]. Cytoprotective role of polymerized Hb was also 
observed when lipopolysaccharide induces inflammation was attenu-
ated by it [213]. 

Alternatively, Ohta et al. developed microspheres made up of human 
albumin and Hb obtained from human RBCs [214]. The oxygen loading 
capacity and oxygen dissociation characteristics were found to be 
similar to the ones of red blood cells. When HeLa cells were treated with 
these microspheres, significant oxygen supply from the microsphere was 
observed [214]. 

Overall, polymerized Hb is found to be safe in preclinical and clinical 
studies. Polymerized Hb was also useful in maintaining the normoxia 
condition of the tumor and hence could also sensitize chemotherapy. 
Along with nonimmunogenic character, and less renal and vasocon-
striction activity polymerized Hb is undoubtedly a potential candidate 
for HBOCs. 

3.2.1.5. PEGylated Hb. Another vital approach includes the use of 
polyethylene glycol (PEG). PEG has been utilized in the development of 
non-immunogenic, sustained therapeutics with longer circulation time. 
Few PEGylated Hb have entered Phase II clinical trials, including 
MP4OX, MP4CO, and Hemospan of Sangart Pharmaceuticals 
[215–218]. The unmet challenge before the inclusion of PEGylated Hb 
clinical trials includes 1) Direct PEGylation of uncross linked Hb 
weakens the tetramers to dissociate into dimers, which ultimately re-
duces oxygen-binding and 2) Its increased oxygen affinity, which leads 
to a decreased delivery of oxygen to the tissue. 

PEGylation of Hb is now considered as the newest approach to 
attenuate the vasoconstriction activity of acellular Hb, which is a sig-
nificant hurdle in its clinical application. The earliest PEGylation was 
carried out of the bovine Hb [219–221]. HexaPEGylated Hb generated 
using 2-iminothiolane approach was served as the model for the prep-
aration of MP4 (Hemospan), which entered in Phase III clinical trials 
[222]. 

The PEG-linked on Hb molecule was found to increase the viscosity 
on the molecular surface of Hb. The viscous PEG should slow down the 
entry and release of oxygen to and from the central cavity of the heme. 
The direct influence of PEG density on the tissue oxygenation is an area 
of research that has yet to be explored in depth. Studies related to this 
topic are especially important, since PEG density has shown interesting 
effects concerning oxygen uptake and release in seminal studies. This 
was proved by the variable oxygen-binding capabilities of various 
PEGylated Hb (e.g., PEG5K2 Hb, PEG10K2 Hb, PEG5K4 canine Hb, and 
PEG5K6 Hb) containing a different number of cross-linked PEG 
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[223–228]. 
Preparation of Human PEG-Hb required human adult Hb as a starting 

material. However, obtaining Hb from human blood is difficult due to 
the limited availability of outdated human blood. Bovine Hb offers a 
better alternative due to the availability of ample resources for mass 
production. Bovine PEG-Hb (B-PEG-Hb) was reported by Wang et al. 
[229]. When B-PEG-Hb was compared with human PEG-Hg, B-PEG-Hg 
showed higher hydrodynamic volume and was devoid of vascular ac-
tivity. B-PEG-Hg was also found to recover mean arterial blood pressure 
in the hemorrhagic shock animal model. This observation makes B-PEG- 
Hba a versatile HBOC because of its high oxygen delivery capability and 
plasma expanding ability. 

Another approach proposed by Webster et al. known as “Inside out 
method”, is the reverse of previously employed PEGylation methods 
[230]. Inside-out PEG-Hb has also been shown to enhance structural and 
protein stability without significantly affecting the p50 value when 
compared with the native protein [230]. 

Despite the several benefits PEG-Hb offers, limitations associated 
with them can’t be overlooked; this includes higher oxidative stress and 
its effects on the various organs. Alomari et al. observed a positive cor-
relation between higher tissue damage and high oxygen-affinity of 
HBOC when compared to the high and low-affinity PEG-Hb products in 
an animal model [231]. These observations call for the development of 
low-affinity PEG-Hb with low NO dioxygenase reactivity. 

3.2.1.6. Polynitroxylated PEGylated Hb. HBOCs further refinement 
derived in the polynitroxylated PEGylated Hb (PPHb). PPHb was first 
studied in neuroprotection, where it was found to reduce infarcts by 
around 53% [232]. Present generation HBOCs have vasoconstriction 
activities because of their NO scavenging activity. The severity of which 
could be explained with the decrease in posttraumatic blood flow to the 
vital organs, like the brain [233]. 

Traumatic and infarcted brain injuries have been associated with 
reduced levels of NO and nitric oxide synthase [234]. This explains the 
additional harmful effects of HBOCs in such situations. Additionally, 
cell-free Hb is also found to hurt neurons in cell culture. As discussed 
earlier, various modified Hb had been proposed to tone down the 
harmful side effects associated with cell-free Hb, including the addition 
of nitroxyl groups due to their antioxidant activity and superoxide dis-
mutase mimetic activity. 

On the other hand, PEGylation of Hb adds various beneficial effects, 
including limiting direct interaction of Hb with the endothelium, 
thereby avoiding oxygen-mediated vasoconstriction with enhanced NO 
synthesis [235]. PEGylation was also found to prolong the circulation 
time of Hb. SenZyme technologies were the first to introduce PPHb, a 
novel bovine HBOC based on PEG-Hb. Moreover, Shellington et al. re-
ported PPHb for neuroprotection during acute brain injury and hemor-
rhagic hypotension in mice [233]. The proposed PPHb found to have 
unique neuroprotective activity, both in vitro and in vivo models, hence 
considered as a suitable candidate for clinical development [233]. 
Furthermore, transfusion of PPHb was not only found to be protective in 
the rat filament model of middle cerebral artery occlusion but also found 
to increase the perfusion in the ischemic border region and reduce the 
infarct volume [236]. Resuscitation with PPHb as compared to lactated 
Ringer’s solution improved the mean arterial pressure, heart rate, and 
reduced intracranial pressure along with maintenance of proper potas-
sium levels at a well-tolerated wide range dose, further supporting its 
clinical development [237]. 

Multiple therapeutic benefits of PPHb prepared from bovine PEG-Hb 
are observed in three indications 1) Traumatic brain injury with hem-
orrhagic shock, 2) Stroke, and 3) Sickle cell disease [232]. These 
available preclinical evidences suggest that the PPHb is the future of the 
Hb-based oxygen carriers, which reduces the oxidative stress, corrects 
inadequate blood flow, and hence could meet the FDA mandate for an 
HBOC with the substantial advance in therapeutic index. 

3.2.2. Encapsulated HBOCs 
Molecular-based crosslinked Hb are the first HBOCs which are ready 

for the clinical trials. Encapsulation of the purified Hb or crossed linked 
Hb, along with the necessary co-factors, can make HBOCs more like the 
red blood cells. The following section deals with the encapsulation of Hb 
in the lipid bilayer and the challenges it could face until it gets approval 
for clinical use. 

3.2.2.1. Haemoglobin encapsulation. Free Hb tetramer scavenge NO, 
causing vasoconstriction. It is therefore advisable to re-encapsulate the 
Hb in a lipid bilayer, which could eliminate side effects and rule out the 
blood grouping step required during a conventional blood transfusion. 
Initial efforts were focused on relatively large semipermeable micro-
capsules, primarily composed of synthetic materials like nylon [143]. 
Arakawa et al. were the first to report the hemolysate microcapsules 
made up of poly(N-⍺, N-ε-L-lysinediylterephthaloyl) [238]. Hb encap-
sulation in the liposome (also called hemosomes) is mostly focused on 
reducing the toxicity of free Hb and on enhancing the circulation time. 
Although, the Food and Drug Administration (FDA) approved some 
liposome-encapsulated antiviral and anticancer drugs, but liposome- 
encapsulated Hb is still facing some clinical and pharmaceutical chal-
lenges [239–241]. These challenges include oxidation of Hb, very high 
encapsulation efficiency, pilot to large scale transfer, large scale dose 
administration, and stability. Normal red blood cells have 300 g/dL of 
Hb, and matching this entrapment is a difficult task. Such physico-
chemical interaction is a great cause of concern to the development of 
pharmaceutically formulations, as it limits the use of lipids, which are 
more prone to oxidation [242]. Liposome removal from the blood varies 
with the charge on the lipids. The removal rate observed is positively 
charged liposomes > negatively charges liposomes > neutral liposomes. 
However, negatively charged lipids like phosphatidylinositol was found 
to inhibit liposome aggregation and fusion during long term storage. The 
following section of the review is focused on the recent advances in the 
Hb encapsulation. 

3.2.2.2. Liposomal Haemoglobin (LHb). To address the side effects of the 
free Hb, liposome-encapsulated Hb was developed as an artificial oxy-
gen carrier. They were developed to address the urgent need for post- 
hemorrhage oxygen demand and volume deficit. From the physiolog-
ical and anatomical prospects, liposomes are the artificial models of the 
cell membrane made up of various lipids. One of the applications is the 
encapsulation of Hb to deliver oxygen during emergency conditions and 
to protect its tetrameric conformation. Lipids, like the 2-dipalmitoyl-sn- 
glycero-3-phosphatidylcholine (DPPC), cholesterol, 1,5-O-dihexadecyl- 
D-glutamate, and 1,2-distearoyl-sn-glycero-3-phosphatidylethanol-
amine-N-PEG5000, have been used for the encapsulation of purified, 
virus-free, Hb solution [243]. Liposomal encapsulation of Hb inside the 
lipid shell has tremendously reduced the toxic effect of acellular Hb; 
however, the biocompatibility of lipids used is still a critical issue [244]. 
Moreover, liposome was found to be stable over a period of 2 years and 
found to be intact in the blood circulation [245]. In the case of encap-
sulated Hb, it is possible to directly use it for resuscitation by following 
the protocol generally used for RBC transfusion. Before transfusion, 
encapsulated Hb needs to be mixed with a plasma expander to adjust the 
osmotic pressure equal to the physiological pressure [243]. 

One of the major advantages of encapsulated Hb over RBCs is the 
zero risk of blood transfusion-related viruses like HIV and hepatitis, no 
matching of blood group antigens, less oxidative damage, and increased 
shelf-life over long-term storage. Acellular Hb oxygen carrier is under 
development as a substituent for the red blood cells. However, the 
deleterious effect on kidney, vasoconstriction, and hypertension due to 
NO scavenging activity has hampered its clinical approval. Hence 
various studies were undertaken to test the hypothesis that the encap-
sulation of Hb tetramer inside the hydrophilic core of liposome could not 
only regulate the NO levels and oxygen release but also, in turn, could 
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regulate the vasoconstriction and hypertension. To test this hypothesis, 
Rameez et al. encapsulated bovine and human Hb in PEG conjugated 
liposomes [246]. In this study, oxygen dissociation, CO association, and 
NO dioxygenation were studied for free Hb and LHb. The most impor-
tant observation was that the encapsulated Hb prevented the NO scav-
enging and ultimately reduced hypertension, and no changes were 
observed in the CO association between free Hb and liposome- 
encapsulated Hb [246]. 

Szebeni et al. encapsulated Hb in liposomes composed of different 
lipids [247]. Phosphatidylinositol (PI) containing liposomes were found 
to transport in vivo oxygen with a less adverse effect on immunity [248], 
and cholesterol in the lipid bilayer was found to stabilize Hb in the li-
posomes [247,248]. 

Other than the oxygen supply to the tissues and organs, LHb was also 
tested for its role in transporting oxygen to cultured cells. In one unique 
study conducted by Sakai et al., Hep G2 and rat liver cells were used to 
study toxicity and oxygen-carrying capacity of Hb encapsulated in 
PEGylated liposome [249]. Cytotoxicity to Hep G2 cells was observed 
during the first six days of the culture, which was subsequently dimin-
ished with the addition of bovine serum albumin to the medium. On the 
other hand, normal rat hepatocytes did not show any adverse effect of 
liposomal encapsulated Hb when cultured as a monolayer. Secondly, it 
was observed that the improved oxygen levels by supplementing the 
culture with liposome-encapsulated Hb recovered the deteriorating cells 
[249]. Similarly, the feasibility of LHb as an oxygen transporter was 
studied using adult rat and primary fetal rat liver cells respectively 
[250]. These cells were found to be unaffected by liposome- 
encapsulated Hb, remarkably growth was even improved when culti-
vated in a perfused flat plate bioreactor under these conditions. 

Clinical development of the Hb encapsulated in liposomes was sup-
ported by the various safety studies carried out. For example, lyophi-
lized LHb infusion at 1 to 6 mL/kg of body weight not only has no 
detectable effects on cardiac output, total peripheral resistance, blood 
pressure, and heart rate for the period of 5 hours but also has no effect on 
various hematological parameters (RBC, platelets, and coagulation fac-
tors) including TNF-α levels. The survival rate after 7 days was also 
found to be a hundred percent [251,252]. Although the effect of 
encapsulated Hb on RBC; platelets and coagulation factors were studied 
for the first time, its impact on the immune system was studied by 
Azuma et al. and the antibody production was also found to be unaf-
fected [253]. 

Besides, Terumo Corporation’s TRM-645, a liposome-encapsulated 
Hb formulation, also underwent the basic safety and efficacy studies 
during the preclinical evaluation and entering clinical trials [254]. 

An immune response, like an accelerated blood clearance phenom-
enon, which leads to the reduction of the circulation half-life, was 
studied on a rat model of haemorrhagic shock, because it can be caused 
by the repeated administration of liposomes to the same animals 
[255,256]. After the initial dose of the encapsulated Hb (1400 mg/kg), 
rapid clearance was observed. Immunoglobin M (IgM) against liposome- 
encapsulated Hb was formed at day four after the first dose of liposomes, 
but levels reduced on day seven. Increased phagocyte activity was also 
observed. These results indicate that consideration of accelerated blood 
clearance could be very beneficial for repeated dose regimes of liposome 
encapsulated Hb [256]. 

Similarly, hexadecylcarbamoylmethylhexadecanoate-PEG-modified 
liposomes were evaluated for their immune response [257]. Repeated 
injection of modified liposome-encapsulated Hb was found to have 
reduced levels of anaphylatoxins C3a and C5a and thromboxane B2 in 
rats, nor does it have an effect on accelerated blood clearance, and no 
antibodies against encapsulated Hb and liposomes were detected [257]. 
On the other hand, to evaluate the effect of a liposomal formulation of 
Hb on macrophages, Azuma et al. analyzed the effect of empty and Hb 
loaded liposomes on T cell proliferation, where splenic T cell suppres-
sion was observed when rats were administered with empty and Hb 
loaded liposomes. The observed effect was transient, and the 

macrophages were found to be responsible for the T cell suppression 
with no change in the antibody production [253]. 

LHb also demonstrated its usefulness in hypohemoglobinemic con-
dition [258]. LHb improved cardiac dysfunction during severe hemo-
dilation. Hypoxia-inducible factor 1 α levels, which are generally high 
during hypoxic conditions, were also found to be low, and sympathetic 
nerve activity, along with its neurotransmitter was at the optimum 
levels. These observations suggest that cardiac dysfunction and sympa-
thetic stimulation (epinephrine and norepinephrine) during blood loss 
in hemorrhagic shock was mitigated by the liposome-encapsulated Hb 
[258]. This study was carried out in a rat model of acute hemodilution. 

The success of LHb depends on its stability in the circulation supply 
and tissues. However, the stability is the limiting factor in the devel-
opment of a pharmaceutically acceptable formulation. Therefore, to 
obtain a stable LHb Liu et al. first made silica conjugated Hb and then 
nanoparticles [259]. 

Similarly, tissue distribution is an essential factor in the success of 
LHb. 99mTc-labeled-LEHSN was used to study its distribution in an 
anesthetized rabbit [260]. Biodistribution data indicated a distribution 
of 42.6% in the blood, 15.4% in the liver, 18.1% in spleen, 3.2% in the 
lungs, 2.4% in muscle, 1.6% in urine, and less than one percent in the 
kidney, brain, and heart after 20 hours of infusion [260]. 42.6 % in the 
blood indicate an increased circulation time of the Hb as compared to 
the stromal free Hb. 

Interaction with the platelets is also one of the concerns in the 
development of LHb. To demonstrate this effect, PEG-DSPE was incor-
porated in the lipid membrane of the anionic and neutral liposome. 
PEGylation of anionic liposome found to inhibit the thrombocytopenia 
by 45.3%, whereas the PEGylated neutral liposomal encapsulated Hb 
showed the least thrombocytopenia (23.8%) [261]. 

Overall, LHb has no serious side-effects and is a promising approach 
to safely administer HBOCs. However, more work is required to optimize 
the lipid content of the liposomes, PEGylation effect on the circulation, 
release time, and effect of Hb on the stability of liposomes. Future work 
will be focused on these questions and towards a detailed investigation 
of the molecular events involved in the interaction of Hb with charged 
phospholipid bilayers. 

3.2.2.3. Surface-modified liposomes. Surface modification of LHb can be 
used to enhance the circulation time of the liposome and to deliver it at 
the desired site. PEG derivatives, phosphatidylinositol, and poly-
saccharide derivatives were studied for surface modification. Phospha-
tidylinositol was reported to increase the circulation time from 15 to 20 
hours [262]. PEG was found to increase the half-life of liposome- 
encapsulated Hb up to 65 hours [263,264]. Similarly, PEG conjugated 
liposomes significantly inhibit particle aggregation and reduce the vis-
cosity [264]. 

These PEG conjugated liposomes were found to have no effect of 
clearance rate, no observed antibody response, and it was found to 
reduce the liposome aggregation considerably [257,265]. When poly-
ethylene glycol (PEG5000)-conjugated phosphatidylethanolamine was 
introduced on the liposome surface and suspended in the albumin, the 
viscosity observed was 3.5 cP at 358 s-1 (Shear Rate), which is compa-
rable to that of human blood. This is an important observation because 
when unmodified liposome is suspended in albumin, the viscosity 
observed was 37 cp at 0.58 s-1 [266]. To increase the circulation time, 
distearoyl phosphoethanolamine PEG 5000 (10 mol%) was added to the 
formulation of liposome-encapsulated Hb to reduce the reticuloendo-
thelial system uptake [261]. Surface modification with PEG is also found 
to be associated with the reducing thrombocytopenic reaction. 

It is clear that surface modification can modulate the pharmaceutical 
characteristics of the liposome. However, conjugating the target-specific 
ligand on the liposome surface can substantially enhance the cellular 
uptake [267–270]. In the future, to inhibit liposome clearance, reduce 
viscosity and nanoparticle aggregation, PEGylated liposome is the most 

N.B. Charbe et al.                                                                                                                                                                                                                               



Blood Reviews xxx (xxxx) xxx

13

relevant approach. Surface modification of the LHb is the most promi-
nent step towards a sustained and extended delivery of oxygen. 

3.3. Genetic engineering of Haemoglobin 

Genetic engineering is one of the most important tools to study the 
function and modifications of proteins. The production of mutant Hb is 
the best approach to study the oxygen affinity towards the globin. 
Several Hb mutants have been reported and clinically studied, but these 
mutants have restricted utility in the investigation towards the Hb 
functions. Genetic engineering, along with various biophysical tech-
niques allows us to analyze the role of a particular sequence in the 
physiological function. Hb is one of the first few proteins which was 
structurally analyzed to study the concept of cell-to-cell interaction, cell- 
to-protein interaction, cooperative ligand binding, protein folding, and 
the functions of various conformers. The structure-activity relationship 
is still far from being completely explored. During the last two decades, 
there has been an explosion in Hb research. Modern tools like the 
CRISPR-CAS system further enhanced our ability to easily create more 
complicated mutants. The following section deals with the recent ad-
vances made by the recombinant Hb in HBOCs. 

3.3.1. A step closer to HBOCs- Recombinant Hb- Genetically engineered Hb 
NO scavenging activity, the risk of blood-transmitted viral and bac-

terial infections, the issue of tetramer stability, and a limited supply of 
human Hb prompted the search for a better source of human Hb. Use of 
recombinant technology to express the genetically modified Hb from 
Escherichia coli (E. coli) to get a fully functional Hb without the risk of 
blood-transmitted diseases and less NO scavenging activity is the current 
research focus. The most sought genetic modification includes the 1) 
modification which could alter the metabolism and the oxygen affinity 
of native Hb, 2) modifications which could prevent the dissociation of 
the functional Hb tetramer into dimers and 3) genetic modifications 
which have the least NO scavenging activity. 

Scientific advancement has led to the development of highly efficient 
vectors and methods to produce rHb. The primary goals for the devel-
opment of the suitable vector for expression are the cell-free Hb without 
the risk of pathogen transfer. Nagai et al., Olson et al., and Hoffman et al. 
developed a few of the first bacterial expression system for rHb in E. coli 
[271–274]. Hoffman et al. reported the use of polycistronic transcript 
with Tac promoter [274]. This method involves the addition of an 
exogenous Heme. Fronticelli et al. describes a plasmid similar to that of 
Nagai et al. type, which, by chemical induction, produces a β-globin 
fusion protein. They also proposed the feasible method to produce Hb 
tetramer from β-globin chains [275]. Expression of the soluble Hb is the 
target, and Vasseur-Godbillonn et al. expressed the soluble globin with 
high yield in E. coli [276]. They also co-expressed the erythroid-specific 
chaperone protein, which prevents the protein precipitation, specifically 
by binding to free α-globin. Natarajan et al. also described the system 
and conditions for the expression of the soluble rHb of the deer mouse 
[277]. One of the major advantages of this system is that it does not need 
the co-expression of the molecular chaperones, and no additional Heme 
incorporation step is involved. 

For cooperativity-based oxygen binding and also ease of autoxida-
tion of the heme group, Jeong et al. proposed three rHb with amino 
residue substitution [278]. These mutations were found to exhibit high 
cooperativity-based oxygen binding and resistance to autoxidation. 

As discussed earlier, NO scavenging by stromal free Hb leads to 
vasoconstriction. Pancreatic hypoxia is also one of the consequences of 
hemorrhagic shock, which leads to the inhibition of its microcirculatory 
system [279]. Therefore, von Dobschuetz et al. tested and compared the 
activity of rHb 2.0, having 20-30-fold, lower the NO scavenging activity 
with rHb on the microhemodynamics and leucocyte activity on pancreas 
venules after hemorrhagic shock [280]. In conclusion, it was observed 
that this rHb is an effective resuscitation fluid that effectively restores 
the pancreatic microcirculation aftershock [280]. 

Baxter therapeutics rHb 2.0 was the first rHb to enter clinical trials. 
20-to-30 times lower NO scavenging activity is the highlight of the rHb 
2.0, and reduction in the cooperativity-based oxygen binding was one of 
the major disadvantages. It was observed that the total oxygen-binding 
capacity was unchanged. Raat et al. compared rHb 2.0 (second genera-
tion rHb) with rHb 1.1 (first generation rHb, a product of Somatogen 
Inc.), rHb having NO scavenging activity similar to that of adult Hb in a 
fixed pressure rat model [281]. It was observed that rHb 2.0 reduced the 
mean atrial pressure in pressures around 27% from the baseline, con-
firming the 20-to-30 times NO scavenging activity reduction of rHb 2.0. 
Similarly, Hermann et al. compared rHb 2.0 with rHb 1.1 in a rodent 
model of hemorrhagic shock, with a particular focus in the microcir-
culatory situation [282]. Resuscitation with rHb 2.0 was found to 
recover the mean arterial pressure with statically significant improve-
ment in functional capillary density. rHb 1.1 was also able to restore the 
mean arterial pressure, but at the cost of a loss in functional capillary 
density [282]. Similarly, when rHb 2.0 was tested in an animal model of 
hemorrhagic shock, pancreatic microcirculation was found to be effec-
tively restored [280]. This effect was attributed to its low NO scavenging 
activity. Rattan et al confirmed the effect of rHb 1.1 on gastrointestinal 
and internal anal sphincter smooth muscle [283]. 

Furthermore, the decrease in the NO scavenging and associated 
vasoconstriction properties with recombinant technology is feasible. 
Nevertheless, mutations that lead to such phenotypes could compromise 
the Hb stability and could enhance heme loss and related toxicities 
[284]. As an example, fetal Hb was vastly studied for its higher stability 
as compared with the adult Hb due to its reducing oxidative reactivity 
[285]. Moreover, Simons et al. compared the oxidative and functional 
properties of fetal rHb and adult rHb [286]. The results showed that both 
rHbs were expressed in E. coli. and there were not differences in terms of 
their reactivity towards NO scavenging activity, hydrogen peroxide, and 
autoxidation rate. Therefore, both rHb were recommended as a starting 
material for HBOC production [286]. Additionally, Silkstone et al. pro-
posed that tyrosine mutation in Hb could reduce the heme-mediated 
oxidative reactivity and NO scavenging activities with the consequent 
enhancing stabilization [284]. This mutation in the adult human Hb was 
found not only to have the stabilizing effects but also to have reduced 
vasoactivity and hence considered as the precursor for HBOC production 
[284]. 

Additionally, rHb is not only a robust system to study any number of 
mutation and variation in Hb. In the near future, it has the potential to 
replace the whole blood or red blood cell transfusion. A few of the major 
challenges that rHb production need to overcome are the misfolding and 
denaturation of the globin molecules. Post-purification formulations like 
crosslinking, PEGylation, and encapsulation in liposomes also 
contribute to the time and cost of the final product. 

Expression systems successfully exploited to produce rHb are E. coli 
and yeast cell along with a few mammals and insect cells [287]. Overall, 
the Hb function and structure is highly conserved through evolution. 
The non-protein part of Hb i.e., the Heme is common across the heme- 
containing Hb proteins across the diverse species of animals [288]. 
This peculiar character of Hb resolves the complications involved in the 
production of rHb. Once produced, rHb proteins can be combined with 
the externally supplied heme to get the functional Hb molecule [289]. 
Conservation of Hb function throughout the evolution also facilitates the 
expression of rHb in any mammals because rHb can substitute for the 
function of the Hb functions in other mammals, including humans 
[290]. Therefore, the important requirements of the recombinant pro-
duction of Hb are the synthesis of a soluble form of globin proteins, their 
proper recovery, and recombination with heme moiety. 

3.4. Lipid-coated oxygen microbubble, hollow microparticles, and 
polymer-based hollow microparticles 

Lipid-coated microbubbles are a new class of nanoparticles that have 
the potential to become an important therapeutic aid in the future. 
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Microbubbles are composed of a gas core which is stabilized by the lipid 
coat. These particles have diagnostic and oxygen/drug delivery appli-
cations. Oxygen carriers like PFCs or the oxygen gas can be trapped 
inside the core of such particles making the microbubbles stable enough 
to withstand the circulation whirlpool. Such microbubble can be made 
targeted by linking it with targeting proteins or peptides or could trigger 
them to release the content at a specific pH or with ultrasound. On the 
other hand, polymer-based hollow microparticles are polymeric spheres 
with pores on its surface. They are considered to be more stable than the 
lipid-coated hollow particles, and hence, the recent research focus is 
mostly on their ability to deliver therapeutic gases and drugs. 

Oxygen microbubbles have been tested for their role in sensitizing 
chemotherapy by increasing the oxygen levels [291]. Localized oxygen 
microbubble delivery to the hypoxic tumor was studied by Eisenbrey 
et al. for its effect on radiotherapy [292]. The oxygen delivery capacity 
of the oxygen microbubbles was also studied for its potential application 
in cardiac arrest, hypoxemia, and resuscitation, which is the most col-
lective cause of mortality in critically ill patients [293,294]. Oxygen 
microbubble transfusion has been associated with a rapid rise in arterial 
blood saturation and improved survival rate in animal models of hem-
orrhage shock. 

Moreover, lipid-based oxygen microbubbles have the potential to 
become an effective theragnostic agent in cancer and cardiotherapy, and 
most recently, for its role as an effective oxygen carrier. The first oxygen 
microbubbles was prepared from lipids, which are not suitable for long 
storage conditions and hence are unsuitable for clinical application. 
Similarly, the coalesce of microbubbles to form a large bubble could lead 
to obstruction and could be lethal to patients. The stability issues of 

microbubbles and potential blockage by large bubbles need to be 
addressed to exploit its potential application. To overcome the issue of 
oxygen microbubbles, Polizzotti et al. and Seekell et al. have proposed 
the concept of polymer-based hollow microparticles [295,296]. To 
develop these microparticles, they dissolved the polymer (poly(D,L- 
lactic-coglycolic acid) and perfluorooctyl bromide in oil emulsion and 
emulsified it with Pluronic F-68 [296]. These particles were stable 
during rapid infusion and when stored in dispersion and freeze-dried 
form [295]. As the oxygen delivery via oxygen microbubble and per-
fluorocarbon emulsions undergoes premature oxygen release and are 
unsuitable for long term storage, Song et al. addressed this limitation by 
developing oxygen bilayer nanobubbles [297]. These nanobubbles 
possessed excellent stability reducing the risk of premature oxygen 
release and were stored as freeze-dried powders to avoid shelf storage 
issues. Moreover, these nanobubbles were the first to use as an adjunct 
agent in cancer photodynamic therapy 

Microbubbles, nanobubbles, and hollow particles have a core con-
taining gas, which imparts them with the echogenic character [298] 
(Fig. 2). Furthermore, oxygen microbubbles and nanobubbles have been 
linked with the restoration of the normoxia condition in tumors and 
could be used as an adjuvant along with various types of cancer therapy 
[298]. 

These studies have confirmed that oxygen microbubbles, hollow 
microparticles, and polymer-based hollow microparticles are promising 
artificial oxygen delivery systems suitable for cell proliferation, reju-
venation of ischemic organs and tissues, and sensitization of cancer 
chemo, radio, and phototherapy. 

Fig. 2. Schematic of micro-nanobubbles (MNBs) and their functionalization. Adapted from Khan et al. [298]  
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4. Recent clinical development of HBOCs 

The regular treatment for sickle cell anemia is based on supportive 
therapy. When Hb levels decrease to perform the basal metabolic 
functions, whole blood or blood cell transfusion is recommended. Oc-
casionally, patients may deny a blood transfusion based on religious or 
cultural beliefs, and sometimes the compatible blood products are not 
available. To manage these circumstances, several products are under 
clinical development, one of which is the HBOC-201, a polymerized 
bovine Hb created by Biopure Corporation. This product is currently 
available in the USA, and it has been previously utilized to treat severe 
sickle cell anemia and in multi-organic failure events [299]. Due to the 
NO scavenging by Hb, transient hypertension due to the administration 
of HBOC-201 continues to be a clinical challenge. Despite these minor 
drawbacks, HBOC-201 is under clinical trial due to the several advan-
tages it presents. 

Another product called “HemoAct” has been clinically tested for its 
potential to replace the RBC. HemoAct is a Hb molecule covalently 
linked with the albumin protein. When tested in rats, it was found that 
HemoAct does not affect blood pressure. HemoAct was tested for its 
influence on the intrinsic and extrinsic pathways by measuring pro-
thrombin time and activated partial thromboplastic time. When 
HemoAct was mixed with blood, no change in the prothrombin and 
activated partial thromboplastic time was observed and when it was 
examined in vitro, it showed good blood compatibility [300]. 

HemoCD is an artificial oxygen transporter made to replace the 
haemoglobin molecules [301]. It shows favorable reversible oxygen 
binding in aqueous solution unlike another similar kind of preparations 
that shows oxygen binding in anhydrous organic solvents [302]. Due to 
its reversible oxygen binding in aqueous solvent HemoCD is considered 
as one of the few artificial oxygen transporters, which could be cate-
gorized as a complete synthetic oxygen transporter. Other than the 
favorable oxygen-binding, it has shown widespread stability in circu-
lation, non-toxic to cells, with no vasoconstriction effect. Despite its 
synthetic nature, it is not free of undesirable effects; the most noted are 
1) low synthetic yield, 2) high intravenous CO binding, and 3) short 
circulation time due to the rapid clearance from the renal system 
[301,302]. 

HEMOXCell is another artificial oxygen carrier developed recently to 
supplement oxygen to the mesenchymal stem cell culture [303]. The 
rational thinking behind the development of HEMOXCell is the inherent 
problems associated with the traditional supplements, contamination 
and immunogenic reactions are the major cause of concern with fetal 
bovine serum uses. One of the limiting factors in cell culture is the 
proliferation of the cells and the reduction of available oxygen. 
HEMOXCell, which is developed by the Hemarina SA (Morlaix, France) 
is focused on the oxygen supply during mesenchymal stem cell culture 
[303,304]. 

Currently, Erythromer is an artificial red cell under development to 
substitute the red blood cells [305]. Inadequate physiological interac-
tion of available artificial oxygen carrier with oxygen and NO scav-
enging are the major limiting factors in clinical development. 
Erythromer is designed to overcome this limitation by controlling 
adequate oxygen release, adding novel 2,3-DPG in the capsule along 
with the Hb molecules and mitigating the NO scavenging activity. In 
hemorrhagic shock model, Erythromer was found to have very little NO 
scavenging activity and to be stable over a 3-month storage period 
[305]. Erythromer has the greatest potential to substitute red blood cells 
due to its negligible NO scavenging activity and high stability in the 
lyophilized form. 

5. Challenges in HBOCs development 

Several clinical trials suggest that acellular unmodified Hb is unsafe 
to use, even when is highly purified. Hb sourced from bovine or humans 
requires downstream processing to eliminate toxicity and impart red 

blood cell functions. Ideal HBOCs should have stable tetramer, low ox-
ygen affinity, cooperation-based oxygen binding, less oxidation, no 
vasoconstriction, and nephrotoxicity, nonimmunogenic, and no inter-
ference with normal physiological functions. Some important issues to 
consider in HBOCs developments are pure raw material supply, hurdles 
in site-specific crosslinking or modifications, high cost of large-scale 
manufacturing, and a stable product. 

As discussed earlier, stromal-free Hb tetramer, when exposed to an 
internal environment, dissociates into dimers, which are readily elimi-
nated through glomerular filtration. Rapid excretion results in short 
half-life and renal toxicity. It is observed that the heme molecule readily 
dissociates from the dimers when compared with the tetramer. Various 
approaches studied to impart stability to the tetrameric Hb include 
chemical or genetic crosslinking of the Hb protein, polymerization, 
crosslinking to the polymer, and encapsulation in the liposomes. These 
approaches reduce the Hb interactions with the endothelial layer, sta-
bilized the tetramer, and reduce elimination via the kidney. 

Altering oxygen affinity is another important goal. Acellular Hb has 
no 2,3-DPG, which could regulate its oxygen affinity. In the absence of 
2,3-DPG, oxygen affinity towards Hb increases, leading to the reduced 
release inside the tissues. The higher plasma pH, as compared to the 
inside of RBCs, increase the affinity of Hb towards oxygen. The impor-
tance of conserving an original oxygen affinity and cooperative oxygen 
binding is a crucial challenge for the commercial success of the HBOCs. 
Emphasis is shifted to preserve the morphology of the binding site. 
Various chemical and recombinant modifications are found to be 
effective to keep the original oxygen affinity. Bovine Hb offer an effec-
tive approach to tackle this issue. Oxygen delivery by the bovine Hb is 
chlorine ion concentration sensitive and is independent of 2,3-DGP 
[306]. Point mutation for appropriate oxygen affinity and recombi-
nant Hb expression along with 2,3-DGP are now advanced means to 
decrease oxygen affinity [289]. 

One of the principal methodologies to inhibit vasoconstriction 
comprise of PEGylation and encapsulation of Hb in liposomes. Oxygen 
and NO have almost a similar binding site in heme hence, making 
mutant Hb having preferential oxygen binging over the NO could be the 
potential approach [307]. 

The immunogenic response of the body towards modified Hb is a 
primary cause of concern. Responses like accelerated clearance on 
repeated dosing, macrophages accumulation in the reticuloendothelial 
system, suppression of T cell multiplication, decreased lymphocyte 
ratio, increased granulocyte ratio, less neutrophil infiltration, and more 
macrophage infiltration are reported [252–254]. Genetically or chemi-
cally modified Hb may induce the immune response, and proper mea-
sures should be addressed in the future development of HBOCs. 

Ensuring sterility and endotoxin elimination from the final product is 
one of the most prominent goals to be achieved immediately. Hb cannot 
survive heat sterilization [308]. Denatured Hb can enhance the coagu-
lation activity, and hence terminal sterilization of Hb is managed by 
filtration. Some modified Hb́s like crossed linked and PEGylated are 
stable and subject to the pasteurization process. However, complete 
elimination of endotoxins from rHb expressed in bacteria like E. coli is a 
continuous scientific challenge [309–311]. 

The basis of HBOCs is the modification at the specific site of Hb using 
selective chemistry. However, Hb is a complex molecule with multiple 
functional groups and several potential sites for modifications, making 
them a difficult task. Most of the reagents used in the modifications are 
functional group-specific, but due to the heterogeneous nature of Hb, 
site-specificity is not an easy task. Also, the specificity of the reaction 
depends upon the temperature, pH, and the presence or absence of co-
factors. Hb functions can vary with the type and site of chemical mod-
ifications, and proper purification is the essential prerequisite to get the 
homogenous product. 

All the above-mentioned factors are the primary reasons for the slow 
development of the HBOCs. Incomplete understanding of the complex-
ities of oxygen physiology, interactions with normal physiological 
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functions, insufficient elucidation of the mechanism of side effects, 
incomplete standardized validation protocol, strict regulatory compli-
ances, time, and investments required to develop the viable products, to 
name a few, are the significant other hurdles in HBOCs development. 
Practically, there are several obstacles; however, each barrier creates a 
new line of research. Over the last five decades, these challenges have 
significantly enhanced our knowledge about oxygen physiology, in vitro 
behavior of PFCs, and HBOCs resulting in considerable advances in the 
product safety, efficiency, efficacy, and potency. 

6. Future considerations in the oxygen carrier’s field 

Although a lot of efforts were put into overcoming the problems of 
oxygen delivery by Hb based oxygen carriers, their toxicity has 
hampered their clinical application. The development of new PFCs for-
mulations is a must to get similar features to an ideal oxygen carrier. 
Improving the emulsifying agent and other formulation conditions must 
be addressed in the search for clinical approval. To do this, interdisci-
plinary studies are needed to improve the safety for PFCs as oxygen 
carriers. 

HBOCs cause clinically significant vasoconstriction, which may be 
advantageous in case of hypovolemic shock. However, such vascular 
constriction could impair local blood flow to the organs. Chemical 
modifications and genetic alterations play a crucial role in the effec-
tiveness of the HBOCs, including its efficiency and side effects. Parallel 
investigation of the HBOCs derived from bovine or human sources on 
the various metabolic functions of the cells is required [312]. Mapping 
of the cellular events adversely affected by HBOCs would prove bene-
ficial to design the next generation HBOCs without side effects. Poly-
merized and crosslinked HBOCs has significantly reduced the adverse 
effects of cell free Hb. Development of different polymerization tech-
niques could further help to develop different polymeric Hb with better 
oxygen carrying capabilities. Polymerization was also found to reduce 
the ability of Hb to adjust with the pH change, which is a crucial regu-
lator of Hb binding with oxygen. Investigation of polymerized Hb 
revealed that it has a reduced CO2 binding, which confirms the modi-
fications of Val residue, an important site for CO2 binding [313]. 
Noteworthy, the site of polymerization is also crucial for the oxygen 
carrying ability of the polymerized Hb. Hence, one of the significant 
challenges could be the identification of the optimized site of the poly-
merized which does not affect the oxygen binding abilities of the Hb 
complex. 

Higher heme iron oxidation and heme loss were both reported in the 
HBOCs and more significantly in PEGylated Hb [312,314–316]. The 
present Hb based products have not undertaken the effects of HBOCs 
exposure to the physiological condition, which may expose them to the 
oxidative pathways and heme loss. As oxidative damage and heme loss 
lead to the immunological and inflammatory reactions [317,318], it is 
crucial to test HBOCs against such physiological response. 

All the issues mentioned above, and challenges associated with 
HBOCs are mostly linked with the complex chemistries involved in 
product formulations. Better knowledge and innovative improvements 
will provide a strong foundation to design and deliver safe and more 
efficient HBOCs [319]. For example, PPHb haemoglobin is developed to 
avoid the side effects associated with Hb oxidation. Erythromer is not 
only morphologically similar to RBCs but also has similar oxygen 
binding and release properties, resistance towards oxidation, and lower 
NO sequestration. HBOCs display different physiochemical properties 
based on the degree of polymerization and crosslinking methods 
resulting in variable oxygen binding and release properties. This also 
affects oxidative related side effects, heme clearance, and NO 
scavenging. 

An alternative approach is the development of the recombinant Hb 
for HBOCs. Recombinant Hb based HBOCs offers the advantage of 1) 
natural origin for the alternative transfusion approach, 2) lower disease 
transmission risk, 3) better shelf-life, 4) a standardized and uniform final 

product, and 5) universal acceptability. Despite these advantages, suf-
ficient efforts are not seen in the development of recombinant based 
HBOCs which could result in a product fit for clinical use. To date, Hb 
has been successfully expressed from transgenic hosts like yeast, bac-
teria, mice, among others [142]. The physiological stability of these 
products could be enhanced by the point mutation strategy. Mutagenesis 
in the Hb gene could 1) enhance oxygen affinity by several-fold, 2) 
inhibit heme oxidation and NO scavenging, and 3) resist dissociation of 
Hb subunits. Recombinant Hb, other than the lower side effect, could 
also be the source of unlimited Hb supply. Moreover, it could have 
universal acceptability and could be the product of choice for the patient 
who does not have an alternative blood product or when allogeneic 
blood transfusion is not the best choice or is not available. The various 
mutations for higher Hb stability, lower rate of iron oxidation, and heme 
loss studies are identified; however, the precise assembly of the muta-
tions is not yet studied to develop the ideal Hb with the characteristics 
described above. In the future, proper selection of mutations to develop 
recombinant Hb with lower oxidation, heme loss, and NO scavenging 
without affecting the core properties of Hb is the immediate challenge. 
Consequently, this source of Hb will be the most economical way of 
producing a feasible oxygen carrier with no side effects. 

Polymerized and crosslinked Hb or encapsulation of such Hb prod-
ucts requires matching with the RBC molecules in terms of physico-
chemical and morphological properties. Adaptation with RBC properties 
is crucial because most of the RBC functions are governed by such 
characteristics. RBC flexibility allows it to squeeze through the micro 
blood capillaries. This elasticity and mechanical strength are provided 
by the specialized erythrocyte cytoskeletal proteins called spectrin. 
Oxygenation of Hb leads to the greater morphological changes in the 
RBCs than the deoxygenated Hb. Morphological changes are dynami-
cally absorbed by virtue of its elastic nature and allows them to pass 
through the microvasculature [320]. All these considerations recently 
lead to a focus on the development of the biomaterials for HBOCs, which 
could mimic RBC’s size, shape, flexibility, and mechanical strength. For 
example, Doshi et al. developed Hb microparticles that mimic the flex-
ibility and morphological characters of RBCs [321]. Haghgooie et al. also 
reported the RBC similar Hb microparticles, prepared using the stop- 
flow-lithography technique. They used polyethylene glycol hydrogel 
particles with morphology similar to RBCs [322]. Merkel at al. prepared 
RBC shaped mimetic microparticles from acrylate hydrogels. They also 
confirmed enhanced circulation time and biodistribution of the RBC 
mimetic nanoparticles by increasing the deformability of the micro-
particles [323]. For example, actin haemoglobin was encapsulated in the 
liposomes to emulate the RBC morphology [324] where the negative 
charges on the RBC avoid their aggregation. Moreover, Xu et al. devel-
oped Hb loaded polymeric nanoparticles using mPEG-PLA-mPEG, 
regulating the surface charge by using cationized cetyl-
trimethylammonium bromide and anionized sodium dodecyl sulphate 
[325]. Anionic nanoparticles were rapidly removed, although the 
cationic nanoparticles were observed to have a half-life of eleven hours. 

On the other hand, obtaining Hb for HBOCs will be challenging and 
crucial to produce an innovative and useful product. Nowadays the 
utilization of recombinant Hb could provide an unlimited source of Hb. 
Nevertheless, it should be highlighted that human Hb function is 
controlled by compounds like 2,3-DPG which binds the deoxygenated 
Hb with more affinity than the oxygenated Hb. However, the cell-free 
Hb, which loses out 2,3-DPG, has much higher affinity towards the ox-
ygen, which shifts the oxygen equilibrium curve (OEC) to the left and 
leads to the lower tissue oxygenation [326]. Conversely, bovine Hb is 
not dependent on the 2,3-DPG for its oxygen affinity; rather, it depends 
on the chloride ions, which are abundantly available in human blood. 
Bovine Hb also has much higher stability at higher temperatures during 
isolation and processing [327]. Therefore, from the viewpoint of avail-
ability, stability, and oxygen transport capacity, bovine Hb offers several 
advantages over human Hb. A product approved for veterinary use 
called Hemopure® is developed from bovine Hb. HBOCs developed from 
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such sources need to be further studied for their immunogenic proper-
ties. Besides Hb based HBOCs, compounds like PFCs are also underdoing 
preclinical and clinical testing, but none of them are yet classified as safe 
for clinical use. Cell-free donor independence Hbs are also under 
development from stem cells [328,329]. Innovative research work is 
also directed towards the development of donor independent RBCs. The 
translation of this research to the patient who needs it is the immediate 
challenge. It requires overcoming the issue of ethical approvals for 
preclinical and clinical studies, consistency in the final product, scaling 
up the pilot to large-scale production, etc. 

7. Conclusions 

In a nutshell, the PFCs have been the object of multiple clinical trials, 
their use in clinical treatment is suggested in several studies and 
approved by the FDA in some cases. Most of them are not used today due 
to problems associated mainly with the formulation regardless of the 
known PFC capability to capture and transport oxygen and other gases. 

Moreover, the use of PFCs is a different approximation to oxygen 
carriers and brings a new perspective to conditions associated with the 
lack of oxygen on different systems. 

Additionally, the development of an Hb based oxygen transporter is 
the most sought-after discovery in haematology. Hb can be readily 
available from the outdated blood from blood banks and can be chem-
ically modified for use in clinical emergencies. Bovine Hb is also cross-
linked, PEGylated, and encapsulated in liposomes to study its clinical 
applications [8]. The use of rHb has eliminated the risk of infection and 
provides the tools to modify the globin protein to study the structure 
base oxygen-binding research. 

In fact, the development of HBOCs has faced several challenges in the 
past; most important of them are the severe side effects of acellular Hb. 
Nephrotoxicity of the dissociated tetramer, hypertension mediated by 
the NO scavenging, and inflammation are the major ones. In this review, 
several approaches like crosslinking, polymerization, conjugation, 
PEGylation, encapsulation of Hb in liposomes are described. As dis-
cussed, recombinant technology has already provided the means to 
produce stable Hb, which has minimum NO scavenging activity and an 
extended half-life. In early clinical trials, these rHb 1.1 and rHb 2.0 are 
found to be safe with no nephrotoxicity and less vasoactivity. Infarct side 
effects like fever, GIT problems, and mild hypertension were reported in 
the patients receiving low to high doses of experimental Hb but some of 
these drawbacks are because of the endotoxin, which could be best 
rectified by proper purification of the product. The most important 
approach to avoid these side effects is the production of recombinant Hb 
with specific mutations [281]. Similarly, several studies are underway to 
predict the required mutation to convert the Hb to a chloride regulated 
oxygen carrier instead of 2,3-DPG [330]. If successful, this approach has 
the potential to offer the new modified Hbs to produce HBOCs. 

One of the primary causes of the short life of Hb is its oxidation. 
Attempts are underway to identify the mutation in Hb, which could 
reduce the oxidation of Heme in solution [331–333]. Attempts are also 
underway to alter the Hb oxidation by site-directed mutation to change 
the heme pocket morphology and confirmation [331]. NO, CO2, and O2 
bind to the Hb via heme pocket, and future mutations and chemical 
modifications in the globin proteins will be focused on the differentia-
tion between these gases. 

Practice points  

• Features of an ideal oxygen carrier: no impact on circulation and 
blood pressure, immunological inertness, easy uptake, distribution, 
metabolism, and elimination.  

• Linear increase of oxygen solubility within the intermolecular spaces 
of the PFCs depends on temperature and pressure  

• Sigmoidally dependent oxygen solubility in haemoglobin its Fe atom 
is controlled by the 2,3-diphosphoglycerate metabolite.  

• Severe anemic patients administrated with Fluosol have resulted in a 
24% increase in oxygen uptake.  

• Perftoran it is used widely in Russia, Mexico, South Africa, 
Kazakhstan, Ukraine, and Kirghiz Republic. It was also used in 
México from 2005 to 2010. Over 35.000 patients have been treated 
over the world. Later was commercialized in the USA for acute 
anemia in animals  

• PFCs have seen limited clinical use due to the side effects associated 
with the emulsifying agents. 

• The administration of Oxygent and acute norvomolemic hemodilu-
tion have reduced the need for red blood cell transfusion in non- 
cardiac surgery patients.  

• Clinical trials have confirmed the lack of diasparin cross-linked Hb 
antibodies before and after the infusion.  

• Hemopure® can cause elevated blood pressure and it was approved 
for clinical use in South Africa and Russia.  

• Hemopure® has been utilized to treat patients in the USA under the 
FDA’s Expanded Access Program (EAP)  

• Currently, Oxyglobin was approved for the treatment of canine 
anemia.  

• Oxycyte has been used for lung injury in veterinary treatments. 

Research agenda  

• More complete clinical studies considering Oxycyte (PFCs) and the 
safety and dose regimes of O-raffinose cross-linked Hb are necessary.  

• The impact of PEGylation on the tetramer formation of non-cross 
linked Hb should be studied, focusing on the improvement of their 
oxygen binding properties.  

• Further research regarding the morbidity and mortality associated 
with different encapsulated HOBCs is needed.  

• Preclinical evidence suggests a great potential of PPHb, but studies 
regarding its impact on oxidative stress and blood flow are essential.  

• Optimization of the lipid content of the liposomes in LHb is required.  
• Complementary interdisciplinary studies considering the safety of 

clinical use of artificial oxygen carriers are desirable. 
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