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Abstract: Air pollution exposure during pregnancy may be a risk factor for altered immune mat-
uration in the offspring. We investigated the association between ambient air pollutants during
pregnancy and cell populations in cord blood from babies born to mothers with asthma enrolled in
the Breathing for Life Trial. For each patient (n = 91), daily mean ambient air pollutant levels were
extracted during their entire pregnancy for sulfur dioxide (SO2), nitric oxide, nitrogen dioxide, carbon
monoxide, ozone, particulate matter <10 µm (PM10) or <2.5 µm (PM2.5), humidity, and temperature.
Ninety-one cord blood samples were collected, stained, and assessed using fluorescence-activated
cell sorting (FACS). Principal Component (PC) analyses of both air pollutants and cell types with
linear regression were employed to define associations. Considering risk factors and correlations
between PCs, only one PC from air pollutants and two from cell types were statistically significant.
PCs from air pollutants were characterized by higher PM2.5 and lower SO2 levels. PCs from cell
types were characterized by high numbers of CD8 T cells, low numbers of CD4 T cells, and by high
numbers of plasmacytoid dendritic cells (pDC) and low numbers of myeloid DCs (mDCs). PM2.5

levels during pregnancy were significantly associated with high numbers of pDCs (p = 0.006), and
SO2 with high numbers of CD8 T cells (p = 0.002) and low numbers of CD4 T cells (p = 0.011) and
mDCs (p = 4.43 × 10−6) in cord blood. These data suggest that ambient SO2 and PM2.5 exposure are
associated with shifts in cord blood cell types that are known to play significant roles in inflammatory
respiratory disease in childhood.

Keywords: air pollutants; cord blood; asthma; prenatal risk factors; particulate matter

1. Introduction

Asthma is the most common medical condition during pregnancy, with up to 45% of
pregnant women with asthma requiring medical care for it [1,2]. Maternal asthma has
been found to increase the risk of adverse neonatal outcomes, including respiratory com-
plications [3–5], and it has been reported that prenatal exposure to air pollutants such as
particulate matter, ozone, and nitrogen oxides increased the risk of transient tachypnea of
the newborn, asphyxia, and respiratory distress syndrome [6].
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Air pollution refers to the mixture of gases and particulate matter (PM) composed
of organic chemicals, metals, gases, biological agents, volatile organic compounds, and
minerals carried in the air [7–9], which collectively have been linked to harm in nearly
every organ in the body [10,11]. Around 91% of the world’s population lives in areas where
the levels of air pollutants exceed the World Health Organization (WHO) safe limits [12].
The primary gaseous contaminants are carbon monoxide (CO) and dioxide (CO2), nitrogen
dioxide (NO2), ozone (O3), and sulfur dioxide (SO2) [13]. According to the WHO, it is
estimated that environmental exposure to PM is responsible for significant morbidity and
mortality, including ~16% of lung cancer and 11% of chronic obstructive lung disease
(COPD) deaths, and more than 20% of ischemic heart disease and stroke [12].

There is a growing body of epidemiological evidence that links exposure to outdoor
air pollution and worsening of pre-existing asthma. These changes have been linked to
enhanced inflammation through both innate and adaptive immune pathways as reviewed
by Bontinck et al. [14]. Such immunological shifts will alter the interaction between the
maternal and developing infant immune systems, and in line with the developmental
origins of disease hypothesis, have the potential to shape the future susceptibility to
disease [15]. The placenta is a natural barrier between mother and fetus during pregnancy;
however, it is not an impenetrable barrier, and environmental air pollutants can cross the
placenta; therefore, recent studies have explored the impact of air pollutant exposure during
gestation on the unborn child [16,17]. Environmental air pollutants particles that translocate
into and cross the placental barrier may also indirectly impact the developing immune
system of the child through altering the maternal immune environment [16,17]. Maternal
exposure to deleterious environmental factors may negatively impact the developing
fetus either directly or indirectly and has been shown to have specific effect on birth
weight [18–20], potentially altering immune cell maturation and function, subsequently
influencing the risk of postnatally acquiring inflammatory and allergic diseases [21].

Neonatal susceptibility to environmental pollutants may be due to either direct or
indirect effects on various cell types that exert influence over key processes, including
cell differentiation, proliferation, and/or maturation [22]. Previous studies have demon-
strated that environmental factors including NO2, SO2, PM < 10 µm in diameter (PM10),
PM < 2.5 µm (PM2.5), and polycyclic aromatic hydrocarbons (PAHs) are associated with
different cell populations measured in cord blood [23–27]. For instance, global cord blood
lymphocyte levels and activity are associated with prenatal air pollution exposure to PAHs
and PM2.5 [23,28,29]. Thus, early exposure to air pollution and environmental contaminants
may affect the newborn immune system [30]. As many of these changes persist throughout
life, alterations in the development of the immune system may be linked to an increased
risk of an allergic phenotype in childhood and beyond [31–33].

Although there are reports of the effects of environmental factors on cord blood
cell populations, previous studies did not phenotype the cell populations in great de-
tail [23–29,34] and did not account for the influence that maternal asthma has on the
newborn immune system [35]. Thus, we investigated the association between levels of
ambient air pollutants during pregnancy (SO2, nitric oxide (NO), NO2, CO, O3, PM10, and
PM2.5) on populations of well-defined cord blood cells using exposure dimensionality-
reduction methods (principal component analysis, PCA) and linear regression approaches
to assess associations between maternal exposure and cord blood cell populations from
babies born to asthmatic mothers.

2. Materials and Methods
2.1. Study Design and Participants

Pregnant asthmatic women, 18 years or older, with physician-diagnosed asthma, were
enrolled in the Breathing for Life Trial (BLT) [36]. The BLT is a multicenter (Brisbane (QLD),
Canberra (ACT), Newcastle (NSW), and Sydney (NSW)) randomized controlled trial of
asthma management during pregnancy, with follow-up into childhood. Maternal drug
or alcohol dependence, chronic oral corticosteroid use, chronic lung disease other than
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asthma, concomitant chronic illness were exclusion criteria. Eligible mothers agreed to have
an interviewer-administered questionnaire conducted during enrolment and information
ascertained covered sociodemographic characteristics and lifestyle factors. Participants
self-reported age, ethnicity, parity, health status, drug/alcohol dependence. Height and
weight were also measured during the first visit. Enrolled mothers at the Newcastle site
who consented to participate in the infant follow-up had cord blood collected after delivery.
Trained staff extracted information from medical records on gestational age at birth, birth
weight, birth length, mode of delivery, maternal and neonatal complications. In this study,
91 pregnant asthmatic woman and their babies were included from mothers previously
enrolled in the Breathing for Life Trial (Figure S1).

2.2. Ethics Statement

The study was approved by the Hunter New England Human Research Ethics Com-
mittee (Ref no 12/10/17/3.04) and all women provided written informed consent be-
fore participation.

2.3. Cord Blood Collection

Cord blood samples were collected at John Hunter Hospital (New Lambton Heights,
NSW, Australia) immediately after birth (n = 91) by needle puncture of the umbilical vein
after the umbilical cord was detached from the infant. All samples were transferred into
EDTA tubes to be processed by trained staff within six hours.

2.4. Flow Cytometry Analysis

Cord blood cells were stained in whole blood and subsets were pre-defined based on
specific surface markers as follows: Eosinophils (CD45+, CD193+, CD16−), neutrophils
(CD45+, CD193−, CD16+), CD4 T lymphocytes (CD3+, αβ T-cell receptor [TCR]+, CD4+),
CD8 T lymphocytes (CD3+, αβTCR+, CD8+), regulatory T (Treg) cells (CD3+, αβTCR+,
CD4+, CD25+, CD127−), natural killer (NK) cells (CD14−, CD3−, CD56+, CD16+), myeloid
dendritic cells (mDCs—CD3−, CD19−, CD56−, CD14−, HLA-DR+, CD303−, CD16+/−,
CD1c+/−, CD141+), plasmacytoid dendritic cells (pDCs—CD3−, CD19−, CD56−, CD14−,
HLA-DR+, CD303+), innate lymphoid cells (ILCs) type 1 (ILC1—CD45+, lineage-negative
(Lin–; CD3, TCR-αβ, TCR-γδ, CD19, CD11c, CD94, CD14, CD1a, CD34, CD123, CD303,
FcεRIα), CD127+, CD161+, CD117–, CRTh2–, NKp44–), ILCs type 2 (ILC2—CD45+, Lin–,
CD127+, CD161+, CRTh2high, CD117–), ILCs type 3 (ILC3) natural-cytotoxicity-receptor-
negative (NCR–; CD45+, Lin–, CD127+, CD161+, CD294–, CD117+, NKp44–), ILC3 natural-
cytotoxicity-receptor-positive (NCR+; CD45+, Lin–, CD127+, CD161+, CD294−, CD117+,
NKp44+) (Table S1). After 30 min of incubation, red blood cells were lysed, and cells
were fixed using BD FACS™ Lysing Solution and washed. Samples were stored at 4 ◦C
and acquired within 48 h on a LSRFortessa X-20 flow cytometer (BD Biosciences, San
Diego, CA, USA). For the granulocyte panel, NK, lymphocytes and DCs panels a total of
1,000,000 events were acquired and recorded for each subject. The ILCs panels had a total
of 2,500,000 events recorded for each subject. Analyses of cell types were conducted with
FlowJo software (v 10.5, Flow Jo LLC, Ashland, OR, USA). Results are shown as positive
cells in 103 of CD45 positive cells (for granulocytes, ILCs), as positive cells in 103 of CD3
positive cells (NK cells, lymphocytes), and as positive cells in 103 of HLA-DR (DCs).

2.5. Air Pollutant Assessment

Maternal exposure to air pollutants throughout pregnancy was approximated using
data from the New South Wales (NSW) Air Quality Monitoring Network [37]. NSW air
quality monitoring is achieved through an extensive network of National Association of
Testing Authorities-accredited air quality monitoring stations. It reports the data as ambi-
ent concentrations and air quality index values, which are stored in a searchable public
database. The data undergo rigorous quality assurance processes to ensure reliability.
Quality assurance procedures are implemented, both in-the-field and post-data-collection,
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to ensure that air quality and meteorological parameters measured by the Office of Envi-
ronment and Heritage air quality monitoring network are reliable. Data are available for
the duration of the study period 2017–2019. All air pollution monitors used within this
study contribute data on a regular basis and data are updated every morning [37,38].

Air pollutant levels were extracted as the mean daily level across pregnancy from
hourly measurements. Levels were obtained for SO2, NO, NO2, CO, O3, PM10, PM2.5,
humidity, and temperature. For each air pollutant, the trimesters’ mean level throughout
pregnancy was normalized as a quotient of the hourly temperature and humidity at the
time of collection prior to further analysis.

Air pollution exposure data during pregnancy and the distribution of prenatal risk
factors are shown in Table 1. The relationship among the pollutants is shown in Figure 1.

Table 1. Population characteristics.

Mean
(Min–Max)/n (%)

Total
(n)

Demographic Characteristics
Maternal smoking during pregnancy 11 (12.1) 91

Maternal recurrent asthma exacerbation during pregnancy 4 (4.9) 81
Maternal age at delivery 30.0 (19.0–41.5) 91

Gestational age at delivery (weeks) 39 (34–41) 91
Caesarean section 33 (36.3) 90

Mode of labor, spontaneous 16 (17.8) 90
Mode of labor, augmented 9 (10.0) 90

Mode of labor, induced 48 (53.3) 90
Fetal heart rate decelerations during labor 29 (32.2) 90

Male sex 49 (53.8) 91
Older siblings 46 (51.1) 90

Birth weight (kg) 3.5 (2.1–4.9) 90
Birth length (cm) 51.6 (30.7–58.0) 86

Air pollution exposure during pregnancy—
Mean daily concentration

SO2 (µg/m3) 4.2 (3.5–5.0) 91
PM10 (µg/m3) 23.6 (20.4–26.8) 91
PM2.5 (µg/m3) 7.8 (7.1–8.5) 91
NO (µg/m3) 7.9 (4.1–9.7) 91
NO2 (µg/m3) 15.0 (10.2–17.6) 91
CO (µg/m3) 0.3 (0.2–0.4) 91
O3 (µg/m3) 39.0 (34.6–44.4) 91

Humidity (%) 69.9 (66.1–73.9) 91
Temperature (

◦
C) 18.6 (16.8–20.7) 91

SO2 sulfur dioxide, PM10 particulate matter < 10 µm in diameter, PM2.5 particulate matter < 2.5 µm in diameter,
NO nitric oxide, NO2 nitrogen dioxide, CO carbon monoxide, O3 ozone.
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Figure 1. Correlation plots between SO2, NO, NO2, CO, O3, PM10, and PM2.5. Air pollutant levels are represented as the mean daily level across pregnancy from hourly measurements. 
Each air pollutant was normalized as a quotient of the hourly temperature and humidity at the time of collection. 

Figure 1. Correlation plots between SO2, NO, NO2, CO, O3, PM10, and PM2.5. Air pollutant levels are represented as the mean daily level across pregnancy from hourly measurements.
Each air pollutant was normalized as a quotient of the hourly temperature and humidity at the time of collection.
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2.6. Statistical Analysis

Analyses were performed using Stata IC 16.1 (Stata Corporation, College Station,
TX, USA). Prior to the analysis of individual air pollutants and cord blood cells, to avoid
multicollinearity, PCs of the seven air pollutants were identified. A similar approach
was conducted to capture latent features or correlated cells. Through this multivariate
analysis, it was possible to select subgroups of pollutants and cells that comprised multiple
correlated individual markers and explain their variance [39]. The PCA approach first
linearly re-arranged the original correlated variables into fewer new integrated variables
(PCs). After varimax rotation, the PCA reduced the data dimensionality and increased
interpretability and minimized information loss creating new uncorrelated variables that
successively maximized the variance of the PC capturing the seven air pollutants. Hence,
PCA found the most informative or explanatory features hidden in the data without a
priori knowledge and reduced the number of tests needed for multiple pollutants.

PCA analysis was first applied for air pollutants (SO2, NO, NO2, CO, O3, PM10, PM2.5).
This approach was also applied to cell types (eosinophils, neutrophils, Treg cells, CD4 T
cells, CD8 T cells, NK cell, pDCs, mDCs, ILC1, CRTh2high ILC2, NCR− ILC3, NCR+ ILC3),
focusing on factors with an eigenvalue of ≥1. Linear regression analyses were then applied
to identify significant associations between the PCs of air pollutants and cell types. Here,
PCs were considered for further analysis when p < 0.05. PCs previously selected were
subsequently adjusted by potential confounders (other risk factors).

From the PCs considered for further analysis, individual components were selected
based on PC loadings to further understand the specific air pollutants and cell types’
relationships. Here, PCs with a cut-off of ±0.4 were considered for further multivariable
regression models. The following covariates of interest, based on work by Lura and
collaborators [27], were included in the multiregression model: (a) male sex, (b) gestational
age, (c) maternal smoking during pregnancy, (d) parity, (e) fetal heart rate decelerations
during labor, and (f) mode of delivery. To adjust for multiple comparisons with Bonferroni
correction, the error rate (0.05) was divided by the number of tests [40], which varied
between the two multivariable regressions applied with the final cut off for significance in
each analysis identified in the table legend.

3. Results
3.1. PCA from Air Pollutants Have Positive Loading for O3 and PM2.5

To condense the information of a large number of variables into a smaller set of new
composite dimensions, with a minimum loss of information, PCAs were applied to air
pollutants and cell types separately. Two PCs were retained on the PCA for the analysis of
inhaled air pollutants during pregnancy. These two PCs account for 75.0% of the variance
in the original seven variables. The first PC is described by having positive loading for O3
and the second had higher loadings for PM2.5 (Table 2, Figure S2).

Table 2. Components loadings for air pollutant PC1 and PC2 after varimax rotation.

Air Pollutants PC1 PC2

SO2 0.144 −0.719
NO −0.464 −0.002
NO2 −0.430 0.260
CO 0.268 0.051
O3 0.505 −0.197

PM10 0.396 0.386
PM2.5 0.309 0.474

SO2 sulfur dioxide, PM10 particulate matter < 10 µm in diameter, PM2.5 particulate matter < 2.5 µm in diameter,
NO nitric oxide, NO2 nitrogen dioxide, CO carbon monoxide, O3 ozone.
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3.2. PCA from Cell Types Have Positive Loading for CD8 T cells, ILC1, CRTh2high ILC2, NCR−

ILC3, Neutrophils, pDCs, and NCR+ ILC3

For the analysis of cord blood cell types, four PCs were retained in the PCA, which
together accounted for 60.7% of the variation in the original 12 variables. PC1 presented
high numbers of CD8 T cells, while PC2 had higher ILC1, CRTh2high ILC2, and NCR− ILC3
cell numbers. The third PC3 was loaded with neutrophils, and the fourth was characterized
by pDCs and NCR+ ILC3 (Table 3, Figures S3 and S4).

Table 3. Component loadings for cell types PC1, PC2, PC3, and PC4 after varimax rotation.

Cell Types PC1 PC2 PC3 PC4

Eosinophils 0.006 0.045 −0.683 −0.005
Neutrophils −0.002 0.051 0.698 −0.014

Treg −0.325 −0.125 0.036 0.304
TCD4 −0.583 −0.018 −0.018 −0.163
TCD8 0.557 0.058 −0.055 −0.003

NK cells 0.362 −0.234 0.110 −0.050
pDC 0.183 −0.064 −0.063 0.585
mDC 0.196 0.047 0.071 −0.402
ILC1 −0.172 0.488 0.041 0.064

CRTh2high ILC2 0.063 0.564 −0.093 −0.158
NCR− ILC3 0.086 0.586 0.078 0.115
NCR+ ILC3 0.012 0.123 0.065 0.577

3.3. Air Pollutant PC2 Associates with Cell Type PC1 and Cell Type PC4

To avoid multiple testing between all air pollutants and all cell types, the analysis first
focused on associations between PCs of air pollutants and PCs of cell types. To this end,
we conducted eight tests, not adjusting for potential confounders. These crude associations
were considered for further regression analysis, if their p-value was <0.05 divided by the
number of tests (p < 0.006); this resulted in three significant associations (Table 4).

Table 4. Crude regression model of PCs of air pollutants and cord blood cell types. After Bonferroni correction, significance
was considered when p < 0.006.

Crude
Regression

PC1
Cell Types

PC2
Cell Types

PC3
Cell Types

PC4
Cell Types

Coef.
(95% CI) p Value Coef.

(95% CI) p Value Coef.
(95% CI) p Value Coef.

(95% CI) p Value

PC1
Air pollutant

−0.021
(−0.173; 0.129) 0.776 0.018

(−0.129; 0.165) 0.804 −0.055
(−0.198; 0.087) 0.443 0.083

(−0.053; 0.219) 0.230
PC2

Air pollutant
−0.411

(−0.632; −0.190) 0.0004 −0.187
(−0.415; 0.040) 0.106 −0.320

(−0.535; −0.106) 0.004 0.495
(0.305; 0.684) 1.29 × 10−6

After further adjustment for prenatal risk factors (male sex, gestational age, maternal
smoking during pregnancy, parity, fetal heart rate decelerations during labor, and mode of
delivery) in regression models, only associations between air pollutant PC2 and cell type
PC1 (β = −0.429, CI = −0.618 to −0.239, p = 2.19 × 10−5); and air pollutant PC2 and cell
type PC4 (β = 0.471, CI = 0.273 to 0.668, p = 8.91 × 10−6) maintained statistical significance
(Table 5). Thus, only these two associations were considered for further analysis.

3.4. SO2 Associates with CD8 T Cells, CD4 T Cells and mDCs While PM2.5 Associates with pDCs
in a Multipollutant Multivariable Regression Models

After screening for potential associations using PCs capturing air pollutants and a
distinct PC capturing cell counts, the next steps focused on individual air pollutants and
cell types identified in the associations between the PCs. The only PC from air pollutants
associated with cell type PCs in the multivariable regression model was PC2 (Table 5). Thus,
only PC2 from air pollutants was considered for the multipollutant multi-cell analyses
(Tables 2 and 5).
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Table 5. Multivariable regression model of PCs of air pollutants previously associated with PCs of cord blood cell types in
an univariable regression model. After Bonferroni correction, significance was considered when p < 0.016.

Multivariable
Regression *

PC1
Cell Types

PC3
Cell Types

PC4
Cell Types

Coef.
(95% CI) p Value Coef.

(95% CI) p Value Coef.
(95% CI) p Value

PC2
Air pollutant

−0.429
(−0.618; −0.239) 2.19 × 10−5 −0.192

(−0.390; 0.005) 0.056 0.471
(0.273; 0.668) 8.91 × 10−6

Coef. coefficient; CI confidence interval. * Adjusted for male sex, gestational age, maternal smoking during pregnancy, parity, fetal heart
rate deceleration during labor, mode of delivery.

Regarding the two significant PC of the cells, CD4 T cells and CD8 T cells were
considered for further analysis from PC1. For PC4 of the cells, pDC and NCR+ ILC3 had
loadings >0.4, and mDCs presented loadings < −0.4 (Tables 3 and 5, Figures S3 and S4). For
this model, the following potential confounders were taken into consideration: male sex,
gestational age, maternal smoking during pregnancy, parity, fetal heart rate decelerations
during labor, and mode of delivery, with the addition of the concentration of the pollutants
with the magnitude of 0.4 (PM2.5 and SO2).

In the second multipollutant multivariable regression model that considered pollu-
tants selected in PC2 (air pollutants) and cells selected in PC1 (cell types), SO2 positively
correlated with CD8 T cells (β = 260.242, CI = 99.087 to 421.397, p = 0.002), and negatively
associated with CD4 T cells (β = −234.283, CI = −413.582 to −54.984, p = 0.011; Table 6).
Here, applying the Bonferroni correction to four tests the critical p-value was 0.012.

Table 6. Multipollutant multivariable regression models of pollutants and cord blood cells previously
associated in PCA. PC2 from air pollutants and PC1 from cell types with ≥0.4 for the highest loadings
and ≤−0.4 for the lowest loadings. After Bonferroni correction, significance was considered when
p < 0.012.

Multipollutant Multivariable Model *

PM2.5 SO2

Coef.
(95% CI) p Value Coef.

(95% CI) p Value

TCD8 † −4.268
(−104.138; 95.602)

0.932 260.242
(99.087; 421.397)

0.002

TCD4 † 63.128
(−47.986; 174.242)

0.262 −234.283
(−413.582–54.984)

0.011

PM2.5 particulate matter < 2.5 µm in diameter; SO2 sulfur dioxide; Coef coefficient; CI confidence interval;
* Adjusted for male sex, gestational age, maternal smoking during pregnancy, parity, fetal heart rate deceleration
during labor, mode of delivery, SO2, and PM2.5. † Results are expressed in 103 of CD3 positive cells.

Analyzing individual components of PC2 (air pollutants) and of PC4 (cell types),
a positive association was found between PM2.5 and pDCs (β = 155.158, CI = 46.578 to
263.738, p = 0.006) and between SO2 and mDCs (β = 879.250, CI = 523.834 to 1234.666,
p = 4.43 × 10−06). For this analysis with six tests, after Bonferroni correction, statistical
significance was considered when p was less than 0.008 (Table 7).
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Table 7. Multipollutant multivariable regression models of cord blood cells and pollutants previously
associated in PCA. PC2 from air pollutants and PC4 from cell types with ≥0.4 for the highest loadings
and ≤−0.4 for the lowest loadings. After Bonferroni correction, significance was considered when
p < 0.008.

Multipollutant Multivariable Model *

PM2.5 SO2

Coef.
(95% CI) p Value Coef.

(95% CI) p Value

pDC † 155.158
(46.578; 263.738) 0.006 −169.378

(−344.588; 5.832) 0.058

mDC †
−90.800

(−311.056,
129.456)

0.414 879.250
(523.834; 1234.666) 4.43 × 10−6

NCR + ILC3 ‡ 0.149
(0.006; 0.290) 0.041 0.011

(−0.219; 0.240) 0.927

PM2.5 particulate matter < 2.5 µm in diameter; PM10 particulate matter < 10 µm in diameter; SO2 sulfur dioxide;
Coef coefficient; CI confidence interval; * Adjusted for male sex, gestational age, maternal smoking during
pregnancy, parity, fetal heart rate deceleration during labor, mode of delivery, SO2, and PM2.5. † Results are
expressed in 103 of HLA-DR positive cells. ‡ Results are expressed in 103 of CD45 positive cells.

4. Discussion

During pregnancy, the fetus has an intense and prolonged interaction with the mother
at the maternal–fetus interface. Within this period, a complex network of interactions
which provide passive immunity to the newborn, program the neonatal immune system,
and tune its homeostatic regulation, is formed [35,41]. Maternal asthma represents a
unique risk factor for childhood health, and asthmatic individuals are more susceptible
to environmental exposures which can both interact with the maternal immune system
and cross the placenta to directly interact with the developing child with detrimental
health effects previously reported from early life onwards [16,17]. In this study, of the air
pollutants investigated, only SO2 and PM2.5 were associated with differences in any of
the 12 pre-defined cord blood cell populations after screening employing dimensionality-
reduction. Mean daily local SO2 levels during gestation were negatively associated with
CD4 T cells in cord blood, and positively associated with both CD8 T cells and mDCs
numbers. In addition, mean daily local PM2.5 levels through pregnancy were positively
associated with pDCs in the cord blood.

T-lymphocytes play an important role in the immune system, tailoring the body’s
immune response to specific pathogens through the release of regulatory cytokines. T-cell
development starts during the early weeks of gestation [32] during which toxic exposure
can result in failure of stem cell formation or, in the later phases of gestation, can cause
abnormal stem cell formation, interrupting cell migration and proliferation [42–44]. Based
on cytokine production, activated CD4 T cells are predominantly classified as either T
helper (Th) type 1 (Th1) lymphocytes that produce interferon (IFN)-γ, interleukin (IL)-2
and IL-12, or Th type 2 (Th2) lymphocytes that produce mainly IL-4, IL-5, and IL-13 [45].
The counter-regulation between Th1 and Th2 is capable of inhibiting or inducing the
development of an allergic phenotype [46,47]. Exposure to immunotoxic compounds in
utero can cause immuno-suppression and predispose to aberrant immune responses later
in life [48].

Gaseous molecules can freely diffuse through biological membranes and SO2 inhala-
tion can cause oxidative injury in the cardiovascular, respiratory, digestive, reproductive,
endocrine, and neurological systems [49]. Several studies point to the relationship between
SO2 exposure and inflammation; SO2 levels were significantly increased in acute pneumo-
nia and chronic renal failure patients [50,51], and pro-inflammatory cytokines levels were
increased in the lungs of mice after exposure to SO2 [52].

In this study, SO2 negatively associated with cord blood CD4 T cells, while positively
associating with CD8 T cells. Air pollutant exposure during the early months of pregnancy
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has previously been shown to influence the Th1/Th2 homeostatic balance [23], and levels
of cell proliferation in the cord blood have also been reported to be associated with air
pollutant exposure ex vivo [53]. A recent experimental study showed epithelial damage
and increased infiltration of inflammatory cells into the airways after PM2.5 exposure and
also an immune imbalance of Th cells [54]. The exposure to PM2.5 also disturbs the balance
of T helper 17 (Th17)/Treg cells [55]. Both acute and long-term exposure to high levels of
PM2.5 were associated with alterations in differentially methylated regions of forkhead box
P3 (Foxp3) [56].

Previous studies conducted in Australia report with similar levels of PM2.5 and iden-
tify an association between air pollutant exposure and pregnancy disorders such as hy-
pertensive disorders during pregnancy and increased likelihood of gestational diabetes
mellitus [57] which can further affect the fetus [58,59]. Another study conducted in the
United States, also showing similar levels of PM2.5 in similar cohorts, has demonstrated
that later phases of prenatal lung development may be particularly sensitive to the devel-
opmental toxicity of PM2.5 [60]. Although air pollution is a universal issue, it is likely that
there are high-risk individuals who are susceptible to the greatest harm when exposed to
PM2.5 [61]. It has further shown that PM2.5 can induce allergic airway inflammation [62],
and trigger exacerbations in pre-existing asthma and COPD [63]. As smaller particles,
PM2.5 is readily able to penetrate deeper into the lungs and cross into the bloodstream at a
higher rate than larger particles [64], which can cause chronic inflammation in pregnant
women and hamper fetal development [21,65,66]. Air pollution exposure during pregnancy
has been linked to placental inflammation and impairment of placental function [67]. PM2.5
exposure may cause inflammatory responses in the placenta, which may be transmitted
from the mother to the fetus and contribute to the development of abnormalities [68,69].

Interestingly, DC subsets quantified in the cord blood positively associated with
environmental SO2 as well as PM2.5. DCs are a major link between the innate and the
adaptive immune system. They recognize antigens through the expression of innate
receptors such as toll-like receptor (TLR), and process and present fragments of these
antigens on their cell surface to T-lymphocytes that then deliver effector responses. Studies
show that a pro-inflammatory response in the airway mediated by TLR activation, might
be stimulated by PM-associated biological components, such as pollen, bacteria, fungal
spores, and viruses, as well as with soluble metals, and organic content [70–74]. Here, air
pollutant measurements were taken in a region of Australia and included months with
potentially increased air pollution due to environmental events such as bushfires which
may also have contributed to the alterations seen in DC subsets [75–78].

PM acts on APCs, such as DCs, as an adjuvant. Cultured DCs stimulated by PM in-
crease maturation with elevated expression of CD80 and major histocompatibility complex
class II (MHC-II) and increased pro-inflammatory cytokine release [79,80]. PM-stimulation
also promotes DC expression of C-C chemokine receptor type 7 (CCR7), which directs
lymph-node homing [81] initiating the immune response cascade. Thus, enhanced DC
maturation may promote an enhanced T-lymphocyte response to PM [79,82,83]. In indi-
viduals with existing asthma, increased pDC numbers and activity have been linked to
acute exacerbations, particularly virally induced exacerbations [84]. Indeed, pDC function
may play a significant role in the pathogenesis of asthma. We used animal models to
demonstrate that pDCs deficient in TLR7 contribute to virally induced exacerbations of
allergic airways disease that is reversed by TLR7 competent pDCs [85]. Thus, it is tempting
to speculate that the increased pDC levels found in children whose mothers had highest
exposure to PM2.5 may contribute to an increased susceptibility to develop virally induced
wheeze and asthma later in life. This will be of interest as our cohort grows to an age
where these measures can be evaluated. Children born to mothers with moderate to severe
uncontrolled asthma during pregnancy are at increased risk of developing asthma and
more commonly have lung function abnormalities [4,5]. However, studies have shown that
with better asthma control during pregnancy and fewer exacerbations, there was a better
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respiratory health outcome for the children [86,87], suggesting that these pathways may be
modified through improved maternal asthma management.

During pregnancy, maternal immune responses shift towards a type 2 (T2) predom-
inance that promotes immunological tolerance towards the fetus. The balance of type 1
(T1) and T2 cytokines in pregnancy is thought to be crucial to maternal tolerance of the
infant [88,89]. The fetal immune system is thought to be under the direct influence of
the maternal immune response mounted at the fetus–maternal interface and studies have
demonstrated that asthmatic individuals are susceptible to environmental exposure, and
air pollution can cause exacerbations of pre-existing asthma [90–92]. Air pollution exposure
during pregnancy was previously shown to be associated with reduced postnatal lung func-
tion [93], and it has been demonstrated that the effect of prenatal air pollution exposure on
lung function at five weeks are sustained up to 11 years of age [94]. Perinatal air pollution
exposure was also demonstrated to affect asthma onset during pre-school and school age
periods [60,95]. It is emerging that there might be further life-long implications with several
recent studies having shown that lung function in early life tracks into adulthood [96–99],
and is associated with an increased risk of chronic respiratory diseases including asthma
and COPD [100].

The findings observed in this study are limited to pregnancies in mothers with asthma,
and the air pollution data available were generalized from local air pollution monitoring
stations which are limited in their accuracy to the actual levels in the air breathed by the
participants in their homes and workplaces. This study shares the limited sample size
that is a common limitation of cord blood studies. Our sample included cord blood of 91
newborns, however, the advantages are the ability to access a suitable quantity of blood so
early in life. This has enabled cord blood studies to make significant contributions to our
understanding of early life immune and respiratory development [101–106]. In addition,
all samples collected and analyzed in this study were from a population at high-risk of
developing lung disease, who were infants born to asthmatic mothers, which may provide
increased power to detect immune changes associated with subsequent lung disease.

In summary, higher levels of inhaled SO2 during pregnancy may have a direct effect,
reducing cord blood CD4 T cells while increasing CD8 T cells and mDCs. It is suggested
that inhaled PM2.5 exert their effects by increasing cord blood pDCs numbers. Through the
evaluation of the association between ambient air pollutants during pregnancy and cord
blood immune cell types, this study shows that SO2 and PM2.5 exposure during pregnancy
are associated with shifts in cord blood cell types which may cause an inflammatory
response in the placenta that may influence fetal development. Further follow-up studies
of this cohort and complimentary mechanistic studies are required to elucidate if these
immunological shifts persist into later life and/or are associated with increased risk of
subsequent chronic disease.

5. Conclusions

In summary, higher levels of inhaled SO2 during pregnancy are associated with
reduced cord blood CD4 T cells and increased CD8 T cells and mDCs. Local PM2.5 lev-
els through pregnancy were also associated with increased cord blood pDCs numbers.
Through the evaluation of the association between ambient air pollutants during pregnan-
cies complicated by asthma and cord blood immune cell types, this study shows that SO2
and PM2.5 exposure is associated with shifts in cord blood cell types that are known to
play significant roles in inflammatory respiratory disease in childhood. Further follow-up
studies of this cohort and complimentary mechanistic studies are required to elucidate if
these immunological shifts persist into later life and/or are associated with subsequent
chronic disease.
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