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Abstract: This brief proposes a novel stochastic method that exploits the particular kinematics1

of mechanisms with redundant actuation and a well-known manipulability measure to track2

the desired end-effector task-space motion in an efficient manner. Whilst closed-form optimal3

solutions to maximise manipulability along a desired trajectory have been proposed in the liter-4

ature, the solvers become unfeasible in the presence of obstacles. A manageable alternative to5

functional motion planning is thus proposed that exploits the inherent characteristics of null-space6

configurations to construct a generic solution able to improve manipulability along a task-space7

trajectory in the presence of obstacles. The proposed Stochastic Constrained Optimization (SCO)8

solution remains close to optimal whilst exhibiting computational tractability, being an attractive9

proposition for implementation on real robots, as shown with results in challenging simulation10

scenarios, as well as with a real 7R Sawyer manipulator, during surface conditioning tasks.11

Keywords: manipulator motion planning; manipulability; stochastic planner12

1. Introduction13

Mapping the path of an end-effector onto a configuration trajectory for the robot14

to accomplish a desired collision-free task is a well-known problem in robotics [1]. The15

consideration of redundancy, where the actuated degrees of freedom of the manipulator16

exceed the end-effector variables defining its functionality in the task space, adds an17

interesting dimension to the planning problem. It effectively facilitates a scheme where18

additional objectives can also be incorporated along the way. Beyond obstacle avoidance,19

constraints such as minimal energy, jerk-free paths, anthropomorphism and so forth20

can thus be considered. A particularly attractive scenario in motion planning is the21

avoidance of undesirable singularities in joint space [2], which limits the ability to move22

in certain task space directions. Increasing the manipulability of the robotic system at23

each time step is regarded as an effective means of moving away from the neigborhood24

of such configurations [3], thus reducing the hazardous condition whereby small task25

space movements may translate to large joint velocities. Avoiding near-singular regions26

is also a particularly concerning situation when the manipulator might be operating27

in close proximity to human operators. Moreover, operating away from singularity28

regions also relaxes the effect of undesirable dynamics that otherwise impose additional29

perturbances to the robot controllers, hence permitting superior end-effector precision30

whilst executing the desired task.31

This brief proposes a stochastic method that exploits the particular kinematics of32

closed-chain mechanisms with redundant actuation and a well-known manipulability33

measure [4] to track the desired end-effector task-space motion in an efficient manner.34

The approach departs from global solutions with high computational costs, or optimal35

formulations that can only be solved numerically, without any guarantee of success ex-36

cept for simple obstacle-free problems. The approach has been tested through simulation37
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on a number of redundant multibody topologies, and via experimental deployment on38

the Rethink Robotics 7R Sawyer arm.39

The rest of the paper is organised as follows: Section 2 provides broad coverage of40

techniques in relation with this motion planning for redundant manipulators in the pres-41

ence of obstacles. Next, Section 3 describes the kinematics of redundant manipulators42

and the exploitation of the null space. The stochastic algorithm to generate collision-free43

trajectories is described in Section 4. Section 5 presents a set of experiments carried out44

both in simulation and with a real platform. Finally, the main conclusions are described45

in Section 6.46

2. Related Work47

A robotic manipulator is considered to be redundant when it exhibits more degrees48

of freedom than those needed to perform the task. Typical examples of these redundant49

robots include serial manipulators with seven or eight degrees of freedom, mobile robots50

equipped with serial arms, humanoid robots and many others.51

Several authors have formulated strategies to exploit the redundant degrees of52

freedom to improve the quality of the task being carried out. In this manner, a main53

task can be accomplished by the robot while the other redundant degrees of freedom54

are used to solve other sub-tasks [3,5] that may include: avoiding joint limits, eluding55

kinematic singularities and preventing the collision with obstacles in the workspace [6].56

Kinematic singularities are often avoided by trying to maximize the volume of the57

end-effector’s velocity ellipsoid [4]. When the robot is placed at a kinematic singularity,58

the volume of this ellipsoid is zero and the robotic manipulator loses one or more degrees59

of freedom. Maximizing the volume of this ellipsoid is regarded as an effective means to60

avoid singularities and expand on the robot’s motion capabilities at a given configuration.61

Moreover, the optimization of the manipulability allows for faster end effector velocities62

(linear and angular speed), which in turn benefits the applicability of the chosen control63

strategies and, given the reciprocity between manipulabity and force ellipsoids, it also64

procures access to more precise forces and contacts. On the other hand, sub-optimal65

reduced manipulability often means that the contact of the end effector with the surface66

cannot be assured.67

A global optimal control of redundancy is formulated in [7] based on Pontryagin’s68

maximum principle. The method employs the redundant degrees of freedom to optimize69

manipulability or joint smoothness while attaining the same position and orientation70

along a trajectory. However, though reliable and fast, the method cannot be applied if the71

gradient of the cost function with respect to the obstacles cannot be computed. Another72

off-line technique along a given path is presented in [8],where a novel combination with73

a smoothing interpolation based on Bezier curves is proven able to avoid sharp edges74

and high accelerations. The method also confers the robot with the ability to avoid75

collisions, by accounting for the velocity of dynamic obstacles and previewing its next76

position in order to plan the optimal correction of the trajectory. This method was further77

extended to the case where redundant manipulators operate in a spatial workspace, with78

the added capability of avoiding sphere-like obstacles [9]. Finally, [10] deals with an79

optimization problem in the case where the robot is redundant along the end effector’s80

tool axis. The technique allows the finding of a sequence via points in order to minimize81

the time between target points whilst avoiding obstacles.82

A number of authors have proposed planning algorithms based on the discretization83

of the workspace. This discretization usually implies that kinematic constraints cannot be84

exactly satisfied and often lack in the quality of the paths produced. In [6], a deterministic85

approach to path planning is presented. The solution is based on the discretization of the86

Jacobian null-space and a backtracking strategy to prevent the incursion into kinematic87

singularities.88

A technique based on gradient descent is presented in [11]. The method relies on89

computing a gradient for a cost function based on smoothness and obstacles. The trajec-90
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tory of the robot inside the workspace is free and the planned position and orientation is91

based on a potential-based cost function.92

Stochastic optimization is presented in [12]. The planner is based on a stochastic93

method that iteratively optimizes non-smooth cost functions, most distinctly when they94

cannot be easily represented by closed functions. The algorithm defines a cost function95

as the sum of obstacle and torque costs, plus errors in the position and orientation of the96

end effector. Being a sum of factors, however, entails that the optimization of the cost97

function cannot ensure that the end effector achieves a given position and orientation98

exactly.99

A significant branch of stochastic planners is based on Rapidly-exploring Random100

Trees (RRTs) [13]. These efficient algorithms usually work by building two trees rooted101

at the beginning and end configurations of the trajectory. A simple greedy heuristic102

is presented in [14,15] to grow the trees and explore the high dimensional space while103

trying to connect both trees. The planner has been successfully applied to a variety of104

path planning problems for the computation of collision-free grasping and manipulation105

tasks. The growing phase of the tree considers a random generation of new samples106

in order to explore new solutions in the joint space, but does not include any feature107

that enables the optimization of the generated trajectories that are, essentially, random.108

A problem that arises in some of these RRT-based planning algorithms is that, often, a109

continuous cyclic path in task space does not correspond to a closed path in joint space.110

As a result, the behavior is not predictable and constitutes a risk if, for instance, a human111

agent is operating in the vicinity of the robot. In [16,17], a variation of an RRT-based112

planning algorithm is proposed that satisfies the constrains of the path and, additionally,113

ensures the attainment of joint trajectories that are cyclic.114

The method presented here presents the following characteristics:115

• Handles kinematic restrictions on the end effector exactly and does not rely on a116

discretization of the task space or configuration space;117

• Exploits the null-space at each configuration along the path to maximize the manip-118

ulability of the robot while avoiding obstacles;119

• Produces smooth trajectories that can be directly commanded to the robot without120

the need for a posterior smoothing phase;121

• Delivers a fitting experimental performance for challenging motion problems.122

3. Kinematics of Redundant Manipulators123

A task generally requires a given number of degrees of freedom to be described and124

solved. In this sense, a manipulator is considered redundant when it possesses more125

degrees of freedom than those required to complete the task. For example, placing the126

robot’s end effector at a given position and orientation inside the robot’s workspace127

typically require six degrees of freedom. This is a main requirement, for example, during128

polishing applications, where the tool must keep close contact with the surface being129

treated [18]. As a result, two different spaces can be defined:130

• The task space IRm: In our case we have six Degrees of Freedom (DoF) in our131

polishing application;132

• The join space IRn, as the number of DoF of the robotic manipulator. In this case we133

have 7DoF.134

The degrees of redundancy of the manipulator is n−m, which means that infinite135

solutions q allow reaching the same position/orientation in space. Thus, in a polishing136

application, 6DoF are needed to place the end effector at a particular position and137

orientation, while controlling the pressure on the surface. The usage of a robot with138

additional DoF (in our case is n−m = 1) may be justified by the need to avoid obstacles139

in the workspace when performing the task or attaining specific poses.140

The inverse kinematic problem in a redundant manipulator possesses, in general,141

infinite solutions. This means that, if we require the end-effector to be placed at a given142
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position and orientation inside its workspace, a self-motion of the kinematic chain can143

be performed. This implies that the arm joints can be reconfigured while the end effector144

maintains the same position and orientation in space. This fact gives these kinds of145

manipulators the ability to find different poses that attain dissimilar characteristics, while146

still complying with the task requirements. Well-known examples include, for instance,147

the Rethink Robotics Sawyer robot or the Willow Garage PR2 arms, with 7DoF available148

through a set of seven rotational joints. Additionally, combinations of robotic arms with149

mobile platforms can be considered within this category of redundant manipulators.150

The relationship between the position and orientation of the end effector can be
expressed as:

x = f(q), (1)

where x is the (m × 1) vector of task variables defining the position and orientation151

of the end effector, f represents a known nonlinear transformation vector and q is the152

(n× 1) vector of joint variables. The robot must then reach a set of goals defined as153

G = {x1, x2, . . . xN} sampled from the desired surface to be tracked defined in the task154

space.155

The above Equation (1) can be differentiated with respect to time as:

ẋ = J(q)q̇, (2)

where J represents the (m × n) manipulator Jacobian matrix (also defined as ∂f/∂q).156

The upper dot denotes time derivative. For simplicity J(q) is written as J. As a re-157

sult, Equation (2) defines the direct kinematics of the manipulator in terms of the end158

effector’s velocity.159

Our particular path planning problem can be posed as follows. Considering a160

given trajectory x(t) as known in the task space, find a joint space trajectory q(t) that161

satisfies f(q(t)) = x(t) for any t. In our case, we try to find a set of joint vectors162

Q = {q1, q2, . . . qN} such that f(qi) = xi for any of the points of the trajectory G. In this163

sense, finding an optimal trajectory with respect to the manipulability index can be stated164

as in Algorithm 1, which essentially proposes the optimization of the manipulability165

along the whole trajectory, considering that the manipulability can be expressed in a166

differential form with respect to the joint coordinates. Solutions to this problem have167

been proposed ([7,19]) at significant computational expense, becoming intractable in the168

presence of complex obstacle settings.169

Algorithm 1 Global Manipulability Optimization.

1: Optimize: ∑N
i=1 ωi = ∑N

i=1 det(Ji JT
i )

2: s.o. qi+1 = qi + q̇i ∗ ∆t.
3: s.o. q̇i = J†

i ẋ + ki ∗ (I − J†
i Ji)q̇0

4: RETURN Q = {q1, q2, . . . , qN} the joint path

A well-known solution to invert the kinematic Equation (2) is:

q̇ = J†ẋ, (3)

where J† is the Moore–Penrose pseudo-inverse [20], defined as J† = JT(J JT)−1. This170

pseudo-inverse has nice properties, since it minimizes the norm |q̇Tq̇|. Thus, given an171

initial joint position qr, the length of the computed joint trajectory is, by nature, minimal.172

This equation allows us to compute the joint positions required to reach a set of positions173

and orientations G = {x1, x2, . . . , xN} of the end effector. This minimum square solution174

is represented in Algorithm 2. The algorithm, for each time step, generates a joint175

speed that brings the solution x closer to the desired goal xi. The final solution of the176

algorithm depends on the initial seed used qr, thus, infinite solutions can be obtained177

by initializing qr randomly. However, this solution may produce a path that includes178
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kinematic singularities [3] or collides with obstacles in the environment. This simple179

planner makes use of Algorithm 3, computing at each time step the inverse kinematics180

solution from a given random joint position qr along the initial trajectory.181

Algorithm 2 Simple Planner (G, qr)
INPUT: G = {x1, x2, . . . xN}, set of positions and orientations
qr, an initial random seed for joint positions
OUTPUT: {q1, q2, . . . , qN}, the joints configuration path

1: function SIMPLE_PLANNER(G)
2: q = qr
3: for i = 1, 2, . . . , N do
4: xi = G{i}
5: qi = Inverse_Kinematics(xi, q)
6: q = qi
7: end for

return Q = {q1, q2, . . . , qN} (the joint path)
8: end function

Algorithm 3 Inverse Kinematics(xi, qr)
INPUT:
xi, the position and orientation of the end effector
qr, the initial seed of the algorithm
OUTPUT:
q, joint positions

1: function INVERSE_KINEMATICS(xi, qr)
2: qi = qr
3: while x 6= xi do
4: ẋ = Compute_VW(xi, x)
5: Ji = Jacobian(qi)
6: q̇i = J†

i ẋ
7: q = q + q̇i ∗ ∆t
8: x = f (q)
9: end while

10: return q
11: end function
12: function COMPUTE_VW(xi, x)
13: //Computes linear and angular speed
14: //to reduce the error in x− xi
15: ẋ = (x− xi)/∆t return ẋ
16: end function

A more general solution to (3) can be written as:

q̇ = J†ẋ + (I − J† J)q̇0, (4)

where I is an (n× n) identity matrix and q̇0 is an arbitrary (n× 1) joint velocity vector.
This solution includes the projector operator (I − J† J), which allows us to project a
vector q̇0 on the null space of the initial solution provided by J†ẋ. Gradient projection
methods exploit this property and compute a joint speed vector q̇ as:

q̇ = J†ẋ + (I − J† J)
∂p0

∂q
(5)

p0 being an arbitrary cost function that needs to be optimized and ∂p0
∂q its gradient.

Equation (5) indicates that the redundant degrees of freedom can be used to attain
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additional constraints, such as obtaining greater manipulability along the trajectory or
avoiding collisions with the environment. Usually, manipulability is measured with the
index introduced by Yoshikawa [4]:

ω =
√

det(J JT) (6)

Additionally, using the manipulability has a strong impact when trying to avoid182

kinematic singularities. In particular, that situation happens whenever the matrix J, at183

some joint position q, has a rank less than m. This situation can be easily detected, since184

the manipulability index ω becomes null and the manipulator loses, at least, one degree185

of freedom, which jeopardizes its ability to complete the task.186

4. Trajectory Tracking Optimisation187

The manipulator task studied in this work corresponds to a tracking problem,188

whereby an end-effector task space trajectory needs to be mapped to a corresponding189

joint space trajectory. Given xi, representing the position and orientation of the end190

effector with respect to a base reference system, the proposed methodology can be191

regarded as a trajectory optimisation problem for the set of N waypoint goals G =192

{x1, x2, . . . xN} defining the contact surface that the robot must follow with precision.193

Maximising the manipulability index along the trajectory whilst avoiding obstacles194

allows us to move away from singularities whilst facilitating the desired motion along195

the desired surface for the contact/visiting task being pursued.196

The method starts by generating a set of K hypotheses on the path:

Qk = {q1, q2 . . . qN}. (7)

Each hypothesis K of the path ensures that the robot’s end effector reaches the197

goal xi for i = 1, . . . N, and utilises an inverse kinematic method based on the Moore–198

Penrose pseudo inverse as described in Algorithm 2. The initial joint positions qr199

of the manipulator are initialized randomly and, as a result, the resulting K paths200

Qk = {q1, q2 . . . qN} are completely random with the property of |q̇Tq̇| being minimal201

for each different trajectory at each time step.202

This set of K joint paths form a set of hypotheses that start from different and
arbitrary initial q1 joint configurations. Each of the generated trajectories is optimized
at each time step i = 1, . . . N in order to increase its manipulability index indicated
in Equation (6) and, at the same time, avoid obstacles. For each of the K hypotheses
over the trajectory, our method performs a sampling on the null space at each step i
of the trajectory. The sampling is achieved by generating H samples around each joint
configuration qi. To generate each new sample, we compute a vector belonging to the
null space as:

q̇h = (I − J† J)q̇0, (8)

where q̇0 represents an arbitrary vector that generates a sample of the null space. Next,
H random movements are generated as:

qh = qi + α · q̇h∆t. (9)

Any of these new samples qh around each joint configuration qi does not alter203

the position and orientation of the end effector since q̇h is only a self-motion and thus204

Jq̇h = 0. The variable α is chosen from a normal distribution and ∆t is an integration205

time. The time integration step ∆t and α are parameters of the algorithm.206
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At each time step, each of the new qh (for h = 1, . . . H) is a self motion around the207

joint positions qi that can potentially improve its manipulability index while avoiding208

obstacles. For each qh, we then compute a weight that accounts for the manipulability:209

ω =
√

J JT (10)

c = 1/(ω + δ) (11)

Wω = e
−c

ωmax , (12)

where ωmax is the maximum observed manipulability of the mechanism. The parameter210

δ avoids the division by zero if the mechanism incurs in a singularity.211

In order to consider the presence of obstacles, for each sample qh, we compute the212

closest distance d of all the points of the robot arm to obstacles and with itself. The213

distance d is negative whenever any point of the manipulator lies inside an obstacle. We214

then compute:215

x = max(ε− d, 0) (13)

Wo = exp(−x/λ). (14)

ε is the minimum required distance to the obstacles and λ is a parameter that smooths216

the computed weights. During the experiments we have used ε = 0.2 m and λ = 0.5 m.217

A weight is computed that accounts for the manipulability index and the distance
to obstacles as:

Wqh = Wω ·Wo. (15)

Finally, a sample qh from the null-space is selected that maximizes the weight Wqh .218

The final path of the robot is obtained by selecting the path with the higher weight Wqh .219

The complete algorithm is described in Algorithm 4.220
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Algorithm 4 Stochastic Planner(G, O)
INPUT:
G = x1, x2, . . . xN , set of positions and orientations.
OUTPUT:
Q = q1, q2, . . . qN , path of the robot.

1: function STOCHASTICPLANNER(G, O)
2: //Build K initial random paths.
3: for k = 1, 2, . . . , K do
4: qr = uni f orm(1, m)
5: for i = 1, 2, . . . , N do
6: qi+1 = InverseKinematics(xi, qi)
7: end for
8: //Store a random path for the K particle.
9: Qk = {q1, q2, . . . , qN}

10: end for
11: while convergence of ∑ Wk do
12: for k = 1, 2, . . . , K do
13: pk = Gk
14: for i = 1, 2, . . . , N do
15: qi=SampleFromNullSpace(Gk,i)
16: wh=ComputeWeights(qh)
17: //Find q that maximizes W = {w1, . . . wH}
18: q̂=argmaxqh(Wh)
19: //Add q̂ to the path
20: end for
21: end for
22: end while
23: return Q = {q1, q2, . . . , qN}, the joint path
24: end function
25: function SAMPLEFROMNULLSPACE(Gk,i) INPUT: Current joint position i at path k.

OUTPUT: H samples qh from null space.
26: for h = 1, 2, . . . , H do
27: q̇h = (I − J† J)q̇0
28: qh = qi + ε · q̇h∆t
29: end for

return qh = {q1, q2, . . . , qH}, samples from null space.
30: end function

5. Results221

The proposed approach is hereby demonstrated through both simulation with a222

4DoF planar manipulator, and experimentally on a real robot—the 7R Rethink Robotics223

Sawyer manipulator. The simulations have been performed in Matlab using the ARTE224

toolbox (freely available at https://arvc.umh.es/arte, last accessed on 11 November225

2021).226

5.1. Preliminaries227

During all the experiments, the robot’s end effector must be able to achieve a given228

position and orientation inside the workspace thus ensuring a precise contact with the229

surface that allows us to complete a hypothetical surface treatment task (polishing,230

deburring etc.). The details of the two different robots are given next.231

• A simulated 4DoF planar robot (shown in Figure 1 in the three simulated workspaces232

first considered): This robot is composed of four rotational joints and four links of233

lengths l1 = l2 = l3 = 1 m and l4 = 0.3 m. The robot is used to track a line defined234

in the workspace. The robot end effector must thus reach a set of goal points in the235

workspace xi = (xi, yi, φi) with i = 1, . . . , N representing the different task goals236

https://arvc.umh.es/arte
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(xi, yi), and a given orientation φi set to remain always perpendicular to the 1D237

surfaces (lines) to be traced. Since the robot has 4DoF, there exists a free degree of238

freedom. At each step i, our proposed algorithm will compute the robot’s path q239

exploiting the null space of the previous task point as described in Section 4.240

• A real 7DoF manipulator: The Sawyer robot, by Rethink Robotics, is composed241

of seven rotational joints. The manipulator is made to follow a virtual straight242

path that lies exactly on a surface. Thus, the robot end effector must be capable of243

visiting a set of positions defined by xi with i = 1, . . . N that sit on the surface, and244

do so with an orientation of the end effector perpendicular to the surface. Since the245

robot has 7DoF, there exists a free degree of freedom. Again, at each time step i, our246

proposed algorithm will compute the robot’s path qi, exploiting the null space of247

the previous task point just visited.248

During the experiments, our proposed algorithm will be used to find a trajec-249

tory that is able to complete the required task while, at the same time, optimising the250

manipulability at each time step and avoiding collisions.251

(a) (b) (c)

Figure 1. Workspaces for simulation experiments. Experiment I (a), Experiment II (b) and Experiment III (c). The
manipulator fixed base is located at the (0, 0) coordinates. The dark grey sections define the obstacle walls, with its surface
identifying the contact line to be tracked by the manipulator end effector.

5.2. Simulation Study

Three different case studies have been carried out in simulation with the same 4DoF
planar manipulator. The workspace has been made to be increasingly challenging to test
the effectiveness of the scheme under controlled but demanding conditions:

• Case study I: In order to complete the task, the robot must follow a trajectory
perpendicular to the given surface shown in Figure 1a. During the trajectory the
robot must not collide with the surface or with itself. This restriction imposes that
any point belonging to links 1, 2 and 3 must be at a distance higher than δ = 0.2 m
to the surface. In addition, any joint in the robot must be at a distance higher than
δ = 0.2 m from any other joint center;

• Case study II: In this simulation, the same restrictions considered in case study I
apply. However, the surface path to be tracked is made more demanding, as can be
seen in Figure 1b. The changes in the normal to the surfaces are accomplished by a
set of smooth changes;

• Case study III: As above, but a workspace with a near-full overhang around the
robot makes tracking particularly challenging for collision checking during the
surface following task, almost encroaching the robot fully by its surroundings and
severely limiting its mobility, as depicted in Figure 1c.

An extensive set of runs has been carried out in order to compare the outcome
of our proposed approach. For each trajectory produced by the algorithm, the mean
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manipulability value is computed as ω̂ = (1/N)∑ wi, considering that the trajectory
has N different waypoints. In addition, the whole trajectory is computed to check for
collisions with the environment and self-collisions. The success rate accounts for the
number of generated trajectories that do not collide with any obstacle.

Figure 2 presents the results in terms of manipulability at each time step along the
single line environment (case studies I, II and III). For all graphs, the blue line represents
the joint trajectory that possesses the higher mean manipulability that the algorithm
can achieve. The trajectory with minimum mean manipulability is also shown in red,
whilst green presents a trajectory that lies in the mean value of all the manipulabilities
obtained. We compare the results of the proposed Stochastic Constrained Optimization
(SCO) method on the right (Figure 2b,d,f) with the output of Algorithm 2 on the left
(Figure 2a,c,e), representing the path solution recovered from an inverse kinematic
solution based on the Moore–Penrose pseudo inverse. The initial position qr used for
this algorithm is selected randomly. It is clearly apparent how SCO is able to consistently
produce trajectories that attain a higher degree of manipulability along the trajectory,
while, at the same time, accomplishing the task at hand. Please, note also the low
dispersion achieved in the manipulabilities represented in Figure 2b,d,f, indicative of
the dependable ability of SCO to produce high manipulability regardless.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. A comparison of the manipulability metric evolution for case studies I, II and III. Cases IA, IIA and IIIA were
carried out over a total of N = 2000 sample waypoints along the desired task-space trajectory. The blue line represents the
trajectory that presents the maximum value in terms of mean manipulability along the line that the algorithm is able to
achieve, red is the minimum and green the mean value across all the runs. The corresponding simulations IB, IIB and IIIB
were obtained by using SCO with K=20 samples. (a) Case study I A, (b) Case study I B, (c) Case study II A, (d) Case study II
B, (e) Case study III A, (f) Case study III B.

Table 1 presents the results of case studies I, II and III. The first row of each simula-
tion, named “Simple Planner”, represents the results obtained using Algorithm 2 when
applied to each of the workspaces represented in Figure 1. The following rows, represent
the results of the SCO algorithm with varying number of samples K. In order to evaluate
the success rate, we check that the robot does not collide with obstacles or derives in
self-collision during the resulting trajectory. As expected, the success rate of this algo-
rithm is low during the three simulations. In addition, it also produces trajectories that
exhibit low manipulability overall along the path. The first row of simulation IB uses
the proposed SCO Algorithm 4 using a single hypothesis on the path (K = 1). In this
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case, the planner is able to produce a significantly higher success rate (76%) compared
to Algorithm 2 (simple planner). In addition, the trajectory is optimized, both avoid-
ing obstacles and increasing the mean manipulability. As the number of hypotheses
K increases, we observe a higher success rate, while, at the same time, increasing the
manipulability along the whole trajectory. It is worth noting that, for K = 10 hypotheses,
the proposed algorithm achieves a success rate of 100%. Further increasing K = 20, 50
hypotheses maintains the same success rate and allows us to obtain an even higher
manipulability index along the trajectories.

Table 1. Results of case studies I, II and III.

Case K N Success
Rate (%)

Manip.
Mean ω̂

Manip.
Max.

Comp.
Time (Sec.)

I A
( Simple_Planner) - 2000 44 1.64 ± 0.48 1.95 0.99 ± 0.01

I B 1 30 76 1.96 ± 0.16 2.04 4.32 ± 0.11
I B 5 30 90 1.98 ± 0.11 2.04 13.38 ± 0.17
I B 10 30 96 2.01 ± 0.05 2.04 24.27 ± 0.62
I B 20 30 100 2.02 ± 0.03 2.04 45.92 ± 2.13
I B 50 30 100 2.03 ± 0.02 2.28 114.18 ± 2.25

II A
( Simple_Planner) - 2000 26 1.29 ± 0.21 1.41 0.56 ± 0.01

II B 1 30 56 1.47 ± 0.12 1.52 4.99 ± 0.12
II B 5 30 80 1.49 ± 0.13 1.52 17.18 ± 0.19
II B 10 30 100 1.50 ± 0.06 1.52 34.66 ± 0.74
II B 20 30 100 1.52 ± 0.02 1.53 64.74 ± 3.33
II B 50 30 100 1.53 ± 0.006 1.53 156.64 ± 4.62

III A
( Simple_Planner) - 2000 12 1.20 ± 0.43 1.61 0.77 ± 0.01

III B 1 30 33 1.58 ± 0.05 1.60 6.37 ± 0.18
III B 5 30 80 1.58 ± 0.06 1.61 23.63 ± 0.66
III B 10 30 97 1.60 ± 0.05 1.61 44.85 ± 0.77
III B 20 30 100 1.60 ± 0.03 1.61 88.99 ± 3.15
III B 50 30 100 1.61 ± 0.009 1.61 219.88 ± 4.68

Table 1 also presents the results of case study II. As before, the “Simple Planner”
in the first row refers to the results of the path obtained with Algorithm 2, where the
simulation samples the path at a total of N = 2000 and, for a successful run, collisions
with itself and the environment for a given trajectory must be avoided. The success rate
of this algorithm is, again, very low. Given the increased complexity of the task when
compared to run IA, the success rate is even lower. The results with SCO are collected
under case study IIB, and as below different cases are investigated with varying initial
hypotheses along the path: K = {1, 5, 10, 20, 30}. It can be observed how the proposed
SCO is successful in producing a 56% of feasible solutions for K = 1 and 80% for K = 5,
a marked improvement over the “Simple Planner” even with these low number of
hypotheses. Moreover, as the number of hypotheses K increases, so does the success rate,
while, at the same time, increasing the manipulability along the length of the trajectory.
It is worth noting that, for K = 10, the proposed algorithm is able to achieve full success
(rate of 100%). Further increasing K to 20 or 50 maintains flawless success and allows
us to obtain even marginally higher manipulability along the trajectories. Table 1 also
collects the results of case study III. As before, “Simple Planner” in the first row refers
to the results of the path obtained with Algorithm 2. The success rate of this algorithm
is, again, very low. The task in case study III is more demanding, which explains the



Version November 11, 2021 submitted to Journal Not Specified 13 of 16

low success rate, compared to case studies IA and IIA. Again, the results with SCO are
collected under simulation IIIB with K = {1, 5, 10, 20, 30}. Following the same trends
observed before, the proposed SCO produces a 33% of successful solutions for K = 1 and
80% for K = 5. The proposed algorithm also succeeds in this more demanding scenario,
and as the number of hypotheses K increases, the success rate and the manipulability are
increased. It is worth noting that for K = 20 the proposed algorithm is able to achieve
full success (rate of 100%). As observed earlier, further increasing K beyond this point
(to the maximum of 50 hypotheses in this case) only slightly increases the optimized
manipulability while maintaining the same success rate.

Table 1 also presents computation times of each simulation carried out on an
Intel™ Core i7 CPU @ 2.90GHz × 16 running Ubuntu 20.04 and Matlab™ R2018a. Mean
computation times (seconds) and 2σ intervals are collected. As expected, a linear trend
is observed in the computational effort.

5.3. Real Experiments

An experiment has been conducted on a physical manipulator to verify the per-
formance of the proposed method under realistic settings. Figure 3 presents the real
experimental setup with the 7R Rethink Robotics Sawyer cobot. The experiment consists
of tracking a reference linear path on a flat surface whist keeping the tool in an orienta-
tion perpendicular to the surface throughout the motion. A force controller developed to
maintain contact with the surface was implemented [18] to aid with the task at hand of
simulating a surface conditioning assignment such as polishing, whilst the pose adopted
along the path is set by the proposed SCO path planning strategy. The experimental
setup is depicted in Figure 3a, consisting of a 7R Rethink Robotics Sawyer cobot, a force
sensor Nano25 SI-25-25 attached to the robot end-effector, a small polishing tool proxy
attached to the sensor (a cylinder of 43 × 43 × 10 mm), and a target flat surface to polish.

As per the test methodology adopted in the simulation cases to show the capabilities
of the proposed method, the routine undertaken includes a comparison with the stan-
dard “Simple Planner” derived from the the Moore–Penrose solution (Algorithm 2). The
initial conditions are set to be the same in both cases: an obstacle-free initial pose with
average manipulability established prior. This was the initial condition fed to both trajec-
tory planners. A video is supplied (https://arvc.umh.es/arte/AppliedSciences21.mp4,
accessed on 11 November 2021) to visualise the full experimental setting and result-
ing motion, with several stills depicting the starting, mid- and end-points of the test
trajectories also being collected in Figure 3. It can be observed how the optimality in
manipulability being sought out by the SCO proposed planners derives configurations
that keep the elbow link down, whereas in the “Simple Planner” case that is not the case,
ultimately even compromising stability by traversing near-singular regions. The reader
is referred to the video linked in the manuscript where the undesirable dynamic distur-
bances induced in the controller are clearly apparent with vibrations at compromised
locations along the path, most notably at the mid-point (Figure 3e).

The final manipulability attained in both instances, shown in Figure 4, corroborates
the ability of the algorithm to seek areas with higher manipulability, hence permitting
operations with manipulator configurations away from singularity regions, ultimately
leading to superior end-effector precision, less energy expenditure and overall safer
trajectories whilst seeking to abide by the desired end effector path during execution.

https://arvc.umh.es/arte/AppliedSciences21.mp4
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Sawyer polishing task experiment: (a) setup: 7R manipulator with a force sensor attached to the robot end-effector,
a tool consisting of a cylinder of 43 × 43 × 10 mm attached to the sensor and a flat surface target, (b) initial pose with
minimal manipulability for both tests, (c,d) proposed SCO algorithm, (e,f) “Simple Planner” case.
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(a)

(b) (c)

Figure 4. Real polishing experiment with the Sawyer robot: (a) Manipulability comparison: attained manipulability
evolution of the traversed path illustrated in Figure 3, with the proposed SCO scheme shown in red (top line), and the
“Simple Case” Moore–Penrose solution depicted in blue (bottom line). Corresponding (b) “Simple Planner” trajectory
evolution, and (c) Evolution of joint trajectories using the SCO algorithm.

6. Conclusions

An efficient stochastic algorithm able to produce obstacle-free configuration tra-
jectories for a given workspace has been proposed. The random process exploits the
particular kinematics of closed-chain mechanisms with redundant actuation to increase
manipulability along a desired end-effector task-space motion in an iterative process.
The stochastic solution remains close to optimal whilst affording computational tractabil-
ity, being an attractive proposition for implementation on real robots. Results from tests
in challenging simulation scenarios, as well as with a 7R manipulator constrained to
undertake surface treatment tasks, have been presented to show the suitability of the
proposed Stochastic Constrained Optimization (SCO) trajectory planner for redundant
manipulators to be able to track arbitrary task-space paths. The challenging aspect of
planning trajectories, where the robot must remain in close contact with non-smooth
irregular surfaces whilst optimizing the manipulability index at each time step, rep-
resents an on-going research effort continuing with the line of work presented in this
manuscript.
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