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Abstract—This work considers the optimal non-revisiting cov-
erage tasks with a single non-redundant manipulator for the
case when the object can be positioned at a predefined set of
locations within the workcell. The scenario is often encountered
in typical industrial settings, for instance when the object presents
itself along a conveyor belt and its surface can not be serviced
at a single location - the object being large or complex for
that endeavour. Given the non-bijective nature of manipula-
tor kinematics between task and joint space, without explicit
consideration of joint-space continuity during its construction,
a continuous coverage path designed in task-space may easily
be truncated into intermittent segments where the manipulator
needs to adopt a different configuration to continue the task,
resulting in manipulator motions where the end-effector will need
to lift off the surface, an altogether undesirable characteristic
affecting the quality of the final product for smooth operations
on objects such as polishing, painting or deburring. In this
work, a novel algorithm to optimally partition the task-space
whilst considering the various finite locations where the object
may be stationed is proposed that ensures joint-space coverage
continuity with minimal lift-offs. Results from the algorithm
being challenged to achieve coverage of a number of objects, both
in simulation and in real tests with an industrial manipulator,
prove the effectiveness of the proposed planner when compared
with classical coverage strategies faced with the same problem.

I. INTRODUCTION

The task of non-revisiting coverage path planning (NCPP)
for a static object with a robotic manipulator is often un-
dertaken in the manufacturing industry for polishing [1],
painting [2], deburring [3], abbrasive blasting [4] or surface
defect inspection [5] tasks. Generically referred to as the
coverage path planning (CPP) problem [6] [7], it is defined
by the end-effector (EE) traversing over all the points that
define the surface of a given object once.

Given the non-bijectivity of a manipulator’s Inverse Kine-
matics (IK) when mapping from task to joint space, a contin-
uous section on an object’s surface may not be continuously
traversable when adopting simplistic greedy strategies [8]. The
manipulator will often need to assume alternative configura-
tions to accomplish the coverage assignment, thus incurring
suboptimal, often undesirable, and potentially hazardous EE
lift-offs. The problem is often compounded by the need to fulfil
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(a) Four different poses for the object with respect to the manipulator. Neither
of them ensures coverage (darker colour) of two corner areas by the manipulator
(lighter colour), which remain unreachable at this object location.

(b) An alternative choice to gain full coverage: first cover half of the object,
rotate the object 𝜋 rad. and repeat the process once more on the opposite end.
(figures rotated with respect to above to better fit on the page).

Fig. 1. Illustration of two strategies for full continuous coverage with object
replacement: (a) (at least) a single object repositioning and (at least) two EE
lift-offs, and (b) using a single object repositioning and requiring only one EE
lift-off. The choice of object position drives the associated cell decomposition
and the final NCPP and number of EE lift-offs required. Dashed lines represent
the reachable boundary of continuous valid configurations, constructed based
on the manipulator IK.

additional task-specific considerations (e.g. limiting contact
forces to pre-specified thresholds, or maintaining a desired EE
orientation against the object surface) which further constraint
the set of suitable configurations that the manipulator may be
allowed to adopt to consummate a coverage task.

For the case when the relative position between the manipu-
lator and the object is known, cellular decomposition strategies
have been proposed in the literature dividing free space into
simpler regions traversable by conventional coverage paths,
generally aimed at guaranteeing minimum overall geometric
cost paths [9] [10]. A globally optimal cellular decomposition
algorithm for simple objects has also been proposed to min-
imise lift-offs by dividing the task-space region into the least
number of continuous cells within which the existence of a
joint-space continuous coverage path can be ensured [8]. The
existence of these simply-connected sub-regions then reveals a
CPP path between the cells where the number of EE departures
from the surface during coverage is optimal. The work has
been extended to dealing with arbitrary non-simply connected
cell topologies, hence allowing more complex forms and task-
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specific constraints, all whilst guaranteeing an optimal solution
in a finite number of steps [11].

Given the fixed relative arrangement between manipulator
and object, the applicability of these algorithms is however
limited by the dimensions of the manipulator workspace,
moreover when the object to be manipulated is large or overly
complex. The rigid organisation between the pair derives in
potentially large surface areas that may remain out of coverage
reach. The solution to increase reachability with a single
manipulator is thus either a mobile manipulator scenario [12]
operating around the assembly line and finding appropriate
locations to complete the full non-revisiting coverage of the
object [13]. Or an arrangement whereby the object may be
presented on an assembly line, stopped at certain locations
to fully and continuously cover an elected sub-region. Either
way, the problem is analogous, allowing the planner increased
freedom to position one relative to the other to optimally
complete coverage. Fig.1 illustrates the problem in covering an
oversized planar object. Fig.1(a) depicts the object at different
poses relative to the fixed manipulator base. Neither of them
will be able to cover two of the farthest corners of the object in
a single go, which calls for (at least one) object repositioning
and two EE lift-offs. However, the alternative strategy in
Fig.1(b) shows two different object poses with respect to
the fixed manipulator, where the one on the right depicts a
rotation of 𝜋 rad. with respect to the one on the left. With
this new arrangement, at each pose half of the surface can be
covered, hence full coverage can be achieved with a single
object repositioning, and a single EE lift-off. Without loss of
generality the problem in this paper will be presented assuming
a fixed manipulator and a moving object over a finite set of
possible poses, the most typical situation in an assembly line.

Under this scenario, a point on the surface is coverable as
long as it is reachable by at least one of the possible position
arrangements for the manipulator-object pair. However, for the
NCPP, an area selected to be covered by the manipulator
in a previous step cannot be revisited again, resulting in
significant restrictions at subsequent covering stages unless
planned carefully. The mechanism proposed in this work is
able to resolve the optimal group of poses out of a finite set
of possible locations for the object in the enlarged operating
domain. At each position, part of the surface is manipulated
with a singular robot configuration, with the EE then lifting
off the surface whilst the object is reposition by stopping the
conveyor belt at a chosen pose further along. EE lift-offs are
proven to be the minimum required for optimal coverage.

The remainder of this paper is organised as follows 1.
Section II reviews existing literature. Section III formally
defines the problem and the topological graph notation used
in the remainder of the manuscript. Section IV delves into
details to formulate the problem within the NCPP framework.
Section V describes a strategy to speed-up the solution.
Experimental results from simulations and on an actual non-
redundant manipulator are collected in Section VI, with final
concluding remarks gathered in Section VII.

1A video illustrating the concepts hereby described can be found here:
https://youtu.be/3ME IC9ilN0

II. RELATED WORK

When applying conventional coverage path planning (CPP)
for the manipulator coverage task, reported solutions consist
of two stages: first, the target surface is divided into several
regions with simple shapes, or cells [14] [9] [10]. Then, a
geometric coverage path, e.g. trapezoidal [15] or boustrophe-
don [16] [17], are planned on each cell to be tracked by the
manipulator EE. When faced with coverage tasks for large or
complex surfaces, parts of the surface may easily be out of
reach and the manipulator cannot establish full coverage.

An improvement often proposed in the literature is to choose
the best pose for the object, e.g. by formulating the place-
ment problem as a non-linear optimisation problem [18]. It
considers a list of constraints: kinematic reachability, collision
avoidance, manipulability, velocity and acceleration limits, etc.
When a redundant manipulator is assumed, the continuity
between two adjacent waypoints in joint-space configuration
can be easily judged through the correlation coefficient of
their Jacobian matrices [19]. Hence the manipulator coverage
task can be completely separated into a two-stage “CPP-
tracking” process. An alternative concept is to employ another
manipulator to hold the object, and freely improve the pose
when the polishing manipulator finds it difficult to track a
pre-defined coverage path on the object [20]. With such high
redundancy, the problem is no longer joint-space continuity
of the coverage motion, but computational complexity and the
presence of local minima in the redundant trajectory planning
problem. Other methods using non-fixed robot systems with
high redundancy have also been proposed, such as redundant
manipulators, dual-arm systems and mobile manipulators [12].

When considered from a multiple manipulator system per-
spective, the area to be covered can be partitioned and assigned
to different manipulators. Then each robot need not have the
ability to operate over the whole object surface, but only
focus on its own surface assignment. Strategies include an
area partitioning and allocation by multiobjective optimiza-
tion and seeding Voronoi graphs [21], combined simulated
annealing and genetic algorithm optimisation of the robot
base placement [22], or a task allocation and optimal number
and placement strategy for multi-robot systems [23], where
they fit the problem into the “Art Gallery Problem” [24],
which considered the minimum number of guards to visually
cover a gallery as a whole. Their proposition combines three
commonly used strategies: greedy, genetic, and simulated
annealing. This is also the case when a single robot (or object)
can move to several desired relative poses, whereby at each
location part of the surface is covered. Under the assumption
that the robot cannot simultaneously do coverage while its
mobile base is in motion, [13] considered a valid criterion to
select the pose of the mobile manipulator.

It is however noticeable that in all these optimal placement
works, the generation of the EE trajectory is independent of
the robot, no matter whether they explicitly partition the target
surface. Indeed, some algorithms [25] considered a maximum
reaching distance of the manipulator when placing the robot.
[26] [27] [18] tried to pre-compute a discretised representation
of the workspace that encodes the position and orientation

https://youtu.be/3ME_IC9ilN0
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reachability of the robot. However, the manipulator kinematics
is extremely non-linear, and non-bijective (task-joint) within a
work cell. Hence any perceived capability cannot be precisely
assigned without explicit consideration of the robot inverse
kinematics: a coverage path designed without strict assurance
of joint-space continuity will easily produce truncated tracing
by the manipulator EE, the main concern of the work hereby
proposed. Noting the inherent joint-space continuity of the
Inverse Kinematic (IK) solutions at different points for a given
fixed relative pose of the manipulator, object, and the environ-
ment, a global optimal cellular decomposition algorithm was
proposed, dividing the task-space region into the least number
of continuous regions [8]. Within each cell, the existence of
a joint-space continuous coverage path could be ensured that
guaranteed smooth a provable minimum path truncations. To
deal with the non-simply connected topology of cells given
more complex task-specific constraints, the work was extended
and reformulated as a finite-step algorithm to solve arbitrary
topological graphs with multi-connected cells [11]. The algo-
rithm runs iteratively in a deepest-first-searching format, so
all optimal physical cellular decompositions can be generated
through a homeomorphic transformation of the shape of cells.
The solution is hereby further extended to accommodate for a
non-fixed scenario, proposing a provable optimal solution to
the paradigm.

III. OPTIMAL OBJECT PLACEMENT NCPP
In this section, we first briefly review existing definitions

for solving the coverage task with minimum discontinuities,
and then solve for the optimal object placement problem.

1) Fixed NCPP Topological Graph Construction: The non-
revisiting coverage path planning (NCPP) problem was first
proposed in [11]. Here we re-state and adapt some of the
notation for the problem at hand. Let the non-redundant
manipulator base be fixed at the origin. The object (surface) 𝑀
is placed at 𝑃 relative to the fixed manipulator base, denoted
by 𝑀𝑃 . The shape of the object 𝑀 , the kinematics of the
manipulator 𝐾 , and the surrounding obstacles {𝑂} are all
known in prior. Point contact between the manipulator EE and
the surface of the object is assumed. Γ is the set of all paths
on 𝑀 . A solution of the coverage task is a set of valid paths
{𝛼 𝑗 } defined on the surface, satisfying:

1) Each path corresponds to a set of continuous valid
Inverse Kinematic (IK) solutions whose EE covers all
waypoints [11].

2) Paths do not intersect with each other.
Given bijectivity between a set of continuous IK solutions and
the surface, colours are used to represent the image of con-
tinuous configurations. Two continuously coverable points on
the surface possess the same possible colour. Then, following
constraint 1), a valid path also corresponds to a colour, and it
must lie within the coverable area of this colour.

Let there be 𝐽 different colours, we can use an indicator
function 1 𝑗 to represent whether we use some of the configu-
rations belonging to the 𝑗-th set to cover the surface:

1 𝑗 =

{
1, if there is a path using colour 𝑗
0, if there is no path using colour 𝑗

, 𝑗 = 1, · · · , 𝐽 (1)

Then the NCPP problem is to find the optimal set of coverage
path segments {𝛼 𝑗 } such that

{𝛼 𝑗 } = argmin
{𝛼𝑗 }⊆Γ

𝐽∑︁
𝑗=1

1 𝑗 (2)

Note that 1 𝑗 will be added twice if there are two paths
𝛼 𝑗 , 𝛼 𝑗′ that both use the 𝑗-th configurations. We omit further
distinguishment but see them as a whole and denote the NCPP
problem by NCPP(𝐾,𝑀𝑃 , {𝑂}).

2) Problem Formulation: In the optimal object placement
problem, the relative poses of the object with respect to the
manipulator base is not a single pose 𝑃 but a finite set of them,
denoted by

{𝑃𝑖}, 𝑖 = 1, · · · , 𝑁, 𝑃𝑖 ∈ 𝑆𝐸 (3) (3)

Without loss of generality, this discrete set of candidate poses
is assumed arbitrarily dictated by environmental constraints
such as space, collisions, speed of operation, etc. Extending
the proposed scheme to a continuous domain is left for future
work.

Once 𝑀 is located at 𝑃𝑖 , denoted by 𝑀𝑃𝑖 , the position of
all points to be covered and the surface normal of all points
are well-defined, and the set of all paths on 𝑀𝑃𝑖 is denoted by
Γ𝑖 . The solution of the nonrepetitive coverage path planning
problem is to find a set of coverage paths

{𝛼𝑖𝑗 }, 𝑖 = 1, · · · , 𝑁, 𝑗 = 0, · · · , 𝐽𝑖 (4)

where 𝐽𝑖 is the number of different colours for the problem
NCPP(𝐾,𝑀𝑃𝑖 , {𝑂}), and 𝛼𝑖

𝑗
is a curve on the surface 𝑀𝑃𝑖 and

is executed by the manipulator through the 𝑗𝑖-th continuous
configurations, such that

1) Same as 1) in Section III-1.
2) The concatenation of all paths visit each point on the

surface for exactly one time, i.e.,⋃
𝑖, 𝑗

𝛼𝑖𝑗 = 𝑀 (5)

𝛼𝑖𝑗 ∩𝛼𝑖
′
𝑗′ = ∅ if 𝑖 ≠ 𝑖′ or 𝑗 ≠ 𝑗 ′ (6)

where the union and intersection of paths is calculated
in the object’s frame.

Then, the optimal object placement problem is to find a subset
of {𝛼𝑖

𝑗
},

{𝛼𝑖𝑗 } = argmin
{𝛼𝑖

𝑗
}⊆

𝑁⋃
𝑖=1

Γ𝑖

𝑁∑︁
𝑖=1

𝐽𝑖∑︁
𝑗=1

1𝑖 𝑗 (7)

where

1𝑖 𝑗 =

{
1, if a path uses colour 𝑗 at position 𝑖
0, if no path uses colour 𝑗 at position 𝑖

(8)

Having ensured equation (7), a secondary goal can then
be established where we also want the number of object re-
positionings to be kept to a minimum, i.e.,

{𝛼𝑖𝑗 } = argmin
{𝛼𝑖

𝑗
}⊆

𝑁⋃
𝑖=1

Γ𝑖

𝑁∑︁
𝑖=1

1𝑖 (9)
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where

1𝑖 =


1, if

𝐽𝑖∑︁
𝑗=1

1𝑖 𝑗 > 0

0, if
𝐽𝑖∑︁
𝑗=1

1𝑖 𝑗 = 0

(10)

The optimal object placement is clearly a generalisation of the
NCPP problem: if 𝑁 = 1 it becomes the NCPP problem.

IV. ALGORITHM

The main difficulty of the optimal object placement problem
is that, say 𝑁 = 2, we can freely divide the surface into two
parts, 𝑀1 and 𝑀2, and let the manipulator cover 𝑀1 at 𝑃1

and finish 𝑀2 at 𝑃2. Given any divisions of the surface,

𝑀1 ∪𝑀2 = 𝑀, 𝑀1 ∩𝑀2 = ∅ (11)

NCPP(𝐾,𝑀1
𝑝1 , {𝑂}) and NCPP(𝐾,𝑀2

𝑃2 , {𝑂}) are fully inde-
pendent NCPP problems.

Although a combination of a finite number of NCPP prob-
lems is still finitely solvable, there are infinitely many different
partitionings to generate 𝑀1 and 𝑀2. As the problem grows
𝑁 = 3,4, · · · , even the initial divisions of the surface cannot
be enumerated. Hence simply embedding the NCPP solver
into the optimal object placement problem is not valid. By
comparing equation (7) and equation (2), we notice that the
optimal object placement problem can be transformed into a
NCPP problem as long as the indicator functions with different
subscripts can be seen as fully independent numbers. This
motivates us to consider a generalised object: let 𝑀̃ be a virtual
object to be manipulated which has 𝑁 separate parts.

𝑀̃ = 𝑀̃1
∐

𝑀̃2
∐

· · ·
∐

𝑀̃𝑁 (12)

where the 𝑖−th part has exactly the same shape as 𝑀 put at
𝑃𝑖 , i.e.,

𝑀̃ 𝑖 � 𝑀𝑃𝑖 , 𝑖 = 1, · · · , 𝑁 (13)

and the coproduct sign indicates the non-intersection union
of NCPP sub-problems defined in each element, i.e., when
calculating the valid configurations for covering 𝑀̃ 𝑖 , any other
parts 𝑀̃ 𝑖′ , 𝑖′ ≠ 𝑖 are not checked in the collision detection
module. Then, NCPP(𝐾, 𝑀̃, {𝑂}) is finitely solvable, whereby
the coverage path covers the original object 𝑁 times, one time
at each position. To transform the 𝑁-time coverage solution
to a non-revisiting coverage solution, the most intuitive way
is to direct overlap the topological graph of 𝑀̃1, 𝑀̃2, · · · , 𝑀̃𝑁 .
The definition of this colour in this graph is generalised from
a number 𝑗 to a pair of numbers (𝑖, 𝑗). Note that the resultant
graph does not have physical meaning corresponding to the
object being placed at one position, but after solving this graph

we will get all optimal combinations within
𝑁⋃
𝑖=1

Γ𝑖 . For each

solution, the “colour” not only specifies the inverse kinematic
solutions but also corresponds to the position where the object
was placed. Finally, now that all optimal solutions of a NCPP
problem can be enumerated [11], the second goal, minimum
number of repositionings for the object, is automatically solved
as long as we exhaustively calculate the number for each
optimal solution and select the minimal one.

Fig. 2. Illustration of the graph simplification process, whereby the intial
9 cells with 5 different colour configurations are reduced to a graph with 3
cells and 2 different colours through prior knowledge of robot kinematics.
The “hidden” configurations can be reinstated in the optimal solution pool
after solving the simplified graph.

V. GRAPH SIMPLIFICATION FOR SOLVER SPEED-UP

As the topological edges from different graphs intersect,
each of them is then subdivided into several new edges. The
computational complexity will soon blow up as an exponential
function of the number of edges. It is however noticeable
how whilst the focus has been necessarily set on the number
of discontinuities, the specific nature of the configurations
has been overlooked. For instance in symmetrical cases, the
coverable region of one configuration (e.g. shoulder-left) and
another one (e.g. shoulder-right) may be known to be the same,
thus so long as we keep in mind that there is an alternative
choice (shoulder-right) to cover the same region, we can tem-
porarily “hide” all shoulder-right configurations and consider
only the shoulder-left configurations in the graph. After an
optimal physical cellular decomposition has been undertaken,
the shoulder-right configurations can be then retrieved and
reinserted in the solution pool. An illustrative example is given
in Fig. 2.

To formally describe the “hide-retrieve” process, we intro-
duce a partial order set for the colours. A partial order set
consists of a set together with a binary relation for certain
pairs of elements. Let 𝐶 (𝑖, 𝑗) be the set of coverable points
on the surface using the 𝑗-th colour when the object is placed
at 𝑖. Then we can create a partial order set 𝒞 whose element is
𝐶 (𝑖, 𝑗), 𝑖 = 1, · · · , 𝑁, 𝑗 = 1, · · · , 𝐽𝑖 , and the partial order is given
by

(𝑖, 𝑗) � (𝑖′, 𝑗 ′) if 𝐶 (𝑖, 𝑗) ⊆ 𝐶 (𝑖′, 𝑗 ′) (14)

where the comparison between 𝐶 (𝑖, 𝑗) and 𝐶 (𝑖′, 𝑗 ′) is the
commonplace relation between sets. For each comparative
sequence of elements in 𝒞, we only reserve one upper bound.
After the geometric cellular decomposition, say a region 𝐶 is
assigned to be covered by the 1-st colour at position 1, we
have

𝐶 ⊆ 𝐶 (1,1) (15)

if the comparative sequence in 𝒞 is like

(1,2) � (2,1) � (1,1) (16)

and
𝐶 ⊆ 𝐶 (2,1), 𝐶 * 𝐶 (1,2) (17)
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Fig. 3. Overall representation of the coverage task on a blade-like object at ten discrete equally-spaced locations along a line (station numbers start on the
left). None of the ten optional positions can ensure full coverage on both sides of the blade. Specifically, (5)-(10) are capable to complete the concave side
(top), whilst only (3) is capable to do so on the convex side (bottom). The convex side is fully uncoverable in (8)-(10) and are not included. We can see
that the combined graph, whilst being finitely solvable, quickly becomes overly complex, increasing further with the number of stations being considered.
However, the proposed simplification strategy reduces the graph to only two cells, one on each side of the blade’s surface.

then we know that this part of the surface can be alternatively
covered by using the 1-st colour at position 2, but cannot be
covered by the 2-nd colour at position 1.

Hiding colours in the graph leads to a reduction in the
possible colours for the cells, and can potentially remove
edges: it is effectively a speed-up strategy for solving the
graph. The simplification strategy can be perceived as aligned
with a greedy scheme: the user cannot have a global view
on the minimum number of discontinuities for the whole
coverage task, but he can always find a pose for the object
where he believes a large section of its surface can be covered
without discontinuities. Intuitively this means that he provides
a relatively large element in the partial order set and is more
likely to “hide” other colours, a perception proven by the blade
example.

VI. EXPERIMENTAL RESULTS

The proposed algorithm selects the optimal set of object
positions among a given finite set of possible poses. In this
section, we imitate the motion of a conveyor belt equipped
next to a manipulator, and 10 possible positions as options
for the object to stop and be operated on. The simulated and
realistic experiments are implemented using a typical 6 DoF
manipulator, the Universal Robots UR5. For such endeavour,
the (commonplace) final revolute joint of the manipulator 2

2https://universal-robots.com/articles/ur/denavit-hartenberg-parameters/

Fig. 4. Example configurations to cover the blade’s concave and convex sides.

is unnecessary given the rotating nature of the polishing tool
itself.

The object employed to illustrate the algorithm is a blade-
like curved piece, seen in Fig. 4, particularly fitting since
covering both sides of the blade provides a natural partition
of the surface into a convex and a concave side, thus the
most suitable positions for covering each side are easily
verifiable. The reader is referred to the video accompanying
the submission where a more detailed visual description of
the setup and comparative results are provided, alongside
further examples with other objects. A short polishing tool has
been fitted to the EE of the manipulator, making the problem
slightly more challenging since on transitioning to the convex
side the wrist has to approach the boundary of the work cell
where the elbow is almost straight, as seen in Fig. 3 (3).

https://universal-robots.com/articles/ur/denavit-hartenberg-parameters/
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TABLE I
COVERAGE PLANNERS COMPARISON

Ours Fixed pose NCPP [8] Pure Spiral (10 average) Pure Boust. (10 average)
at (3) at(5) at (3) at (5) at (3) at (5)

Spiral Boust. Spiral Boust. Spiral Boust. Horizon Vertical Horizon Vertical

Lift-offs 0 0 1 1 1 1 16.5 11.4 6.9 2.7 10.9 7.4
Time 348.25 513.57 469.41 854.88 415.47 763.82 982.87 1026.86 989.72 461.7 1174.29 709.74

Full Coverage Yes Yes No No No No No No No No No No
% of coverage 100% 100% 91.46% 91.46% 82.92% 82.92% 91.46% 82.92% 91.46% 91.46% 82.92% 82.92%

1 To make it equitable, the necessary lift-off during transitions between different sides of the object for any of the algorithms are not accounted for.

The proposed algorithm has been set against comparable
fixed CPP alternatives at set locations. Stations 3 and 5 were
selected to report results on as being fully reachable within
the workspace whilst also offering ample maneuverability in
general, hence assumed representative alternatives to operate
in a typical workcell unit. Other stations are also compared
in the attached video. The comparisons include optimally
covering the object at a fixed pose [8] and pure template
coverage paths (with a Spiral and Boustrophedon paths). Anal-
ysis from the proposed object placement NCPP algorithm with
minimal discontinuities is summarised in Table I, where the
advancements of the proposed strategy are clearly apparent in
regards to guaranteed minimum number of lift-offs, maximum
surface coverage, and minimum coverage time.

It can be seen how only at station (3) full coverage of the
convex side can be established. On the concave side, stations
(5)∼(10) can achieve full coverage, although the movement
is constrained to the manipulator already facing the concave
side, since any other transition from the convex side will likely
induce a collision between the rim and the actual upper- or
fore-arm of the manipulator at the desired EE orientations.

To reveal the performance of the graph simplification strat-
egy, we take the convex side as an example. Since a colour
covering the convex side exists at pose (3), it hides all other
colours. Thus the simplified topological graph has only one
cell with one possible colour. It is so simple that there is even
no need for a graph solver. On the concave side, a fully-
covering colour also exists but the solution is not unique.
which means that after solving the one-cell graph, instead of
the reserved colour, other colours ensuring full coverage can
thus be retrieved. And each of them, together with the unique
solution of the convex side, forms an optimal solution to the
overall object coverage problem. A more detailed description
about the possible colours and solutions is collected in Fig. 5.

A detail of the real-world implementation of the optimal
coverage task with a 3D print of the same object is shown
in Fig. 4, with more extensive demonstrations reported in the
associated video.

VII. CONCLUSIONS

A novel extension to the NCPP problem formulated with
explicit consideration of the mutual influence of the coverage
task executed at a set of possible object poses has been
developed in this work. The aim is to minimize the overall
number of path discontinuities by planning for the coverage of
different parts of the surface at a choice of suitable poses. The

Fig. 5. Details of the simulated experiments are shown in Table I on stations
(3) and (5). Examples of other CPP solutions are also provided for illustration
purposes. The optimal (0 lift-off) solution exists when the object is placed
at (3) and (5) for coverage of the convex and concave side, respectively.
Regarding the problem as independent NCPP problems at stations (3) and
(5) will not achieve an optimal solution, with a requirement for one lift-
off on the concave side at (3), and another one on the convex side at (5).
And substantially more for non-optimal geometric solutions such as Spiral or
Boustrophedon coverage paths.

application is predicated on a typical manufacturing scenario
for robotic surface preparation undertaken over a finite set
of locations in an assembly line. The proposed scheme leads
almost invariably to substantial task execution speed-ups over
classical coverage path alternatives, as shown in the examples
presented. Without loss of generality, the problem is extend-
able to a mobile manipulation unit operating at a set of possible
locations in the workfloor. By overlapping topological graphs
and solving the combined graphs, all optimal task partitionings
are proven finitely solvable. After applying any conventional
CPP algorithm in each of the resulting cells, the nominated
optimal object placement NCPP algorithm is shown able to
generate a coverage path containing the provable least number
of discontinuities. A comprehensive comparison with other
geometric CPPs with a 5 DoF manipulator shows the merit
of the scheme and proves the validity of the proposed strategy
in producing highly effective coverage paths in a simulated
assembly line. Extensive simulation and real-world implemen-
tations in realistic conditions are presented, supplemented by
a detailed video illustrating the operation of the algorithm on
additional objects.
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