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Abstract

A predictive agent to help the operator of an
assistive mobility device like a wheelchair to
cooperatively navigate in accordance with the
environment is proposed. The framework is
predicated on interpreting a user’s intended fu-
ture trajectory to take intervention decisions
in real time and collaboratively operate the
robotic agent. The work incorporates user con-
trol signals alongside information from the sur-
roundings via visual feedback and the recent
history of the agent’s motions to learn a con-
ditional Normalizing Flow, an advanced deep
generative model with the crucial ability to re-
cover exact likelihoods for each of its samples.
The integration leads to a uniform probabilistic
framework for user intention estimation condi-
tioned on different types of information. Exper-
imental results in an urban navigation simula-
tor (CARLA) demonstrate prediction accuracy
increases up to 22.89% when user control in-
puts are being modelled jointly by the proposed
end-to-end framework. A baseline comparison
where user controls are considered independent
and subsequently fused also suggests that the
proposed deep learning based solution provides
a stepped improvement. The framework paves
the way for a fully functional shared-control
navigation strategy for intelligent collaborative
control intervention.

1 Motivation

Human-robot interaction (HRI) is a vast field of study
which focuses on robotic agents in use or in interaction
with humans [Goodrich and Schultz, 2008]. Human-
robot collaboration (HRC) is a sub-field of HRI, and
the key attribute of HRC is working towards achieving
a common goal between a human and a robot [Bauer
et al., 2008]. Daily navigation involves a user and an

Figure 1: The likeliest trajectory Y from the proposed
model Q(Y |X, I, C), conditioned on the past trajec-
tory X, scene context I, and the user control C. The
executed trajectory by the user is given as ground truth
trajectory.

assistive mobility device (robotic agent) to work in tight
collaboration to reach the desired destinations. In that
regard, agreeing upon a joint policy through understand-
ing the intention of all the agents involved is crucial,
such that individual actions can be optimised to reach
the common goal [Bauer et al., 2008].

In a human-robot team like an assistive mobility sys-
tem, usually the human assigns the goal and communi-
cates it through either explicit instructions or implicit
actions. The robot interprets the intended goal and acts
to achieve it. Comparing with other types of commu-
nication methods like speech and gesture, the control
signal (if available) is a more natural format in assistive
mobility applications.

The motivation for the work presented in this paper
is to develop a navigational framework based on human-
robot collaboration which can be integrated with exist-
ing mobility platforms incurring minimal changes to the



traditional commanding hardware interfaces that users
are accustomed to. With this in mind, the aim is to
incorporate driving commands from an active human
driver as signalled through the typical control interfaces
of mobility devices to infer the intended future trajec-
tories a user may choose to follow in a given situation.
Without loss of generality, in the case of a power mobility
device these are joystick commands, yet other modalities
could be equally considered (e.g. voice commands, chin-
operated controls, head-rest force sensing devices or Sip-
n Puff). Additional advantages of the intended set-up is
the readily availability of the user command, user’s fa-
miliarity with the generation of user commands leading
to less diversion of attention. However, this also poses
some challenges such as limited information to infer the
user intention and assumption of expert user behaviours.
To alleviate this, other sensors available in the mobile
platform can provide extra information like the past ve-
hicle state and scene context along with the active user
control commands, to produce a more accurate intention
estimation. Figure 1 is an example scene depicting the
outcome from the proposed framework.

2 Related Work and Background

The scope of the work hereby presented sits at the in-
tersection of various domains within the broader realm
of HRC.

2.1 User Intention Definitions

The definition of user intention is rather ambiguous. It
is application specific, and particularly challenging to es-
timate due to the complex nature of human behaviour.
In the context of assistive mobility devices, the user in-
tention has been historically constrained to specific al-
gorithms such as “follow-corridor”, “avoid obstacles”,
“navigate to this place of interest” [Taha et al., 2007].
These systems focus on understanding the environment
instead of dealing with the ambiguity of human inten-
tion. In the recent research on intention estimation, user
intention has been defined as the immediate control for
the mobility device [Katuwandeniya et al., 2020] or the
final goal pose [Narayanan et al., 2016]. [Demeester et
al., 2006] was the first to define the user intention to be
a combination of trajectories with a goal state. The in-
tended future trajectory for a predefined time period is
also used in the literature as a definition for user inten-
tion [Katuwandeniya et al., 2021]. Trajectories capture
the spatio-temporal relationship of an entity and conveys
more information about the user’s traversability prefer-
ence as opposed to a final goal or an immediate control.
Thus for this work the system estimates the intended
future trajectory of the user as their intention.

2.2 Multi-Modal Trajectory Prediction

Complex human psychology imposes on disregarding
hand-tailored deterministic models for trajectory estima-
tion [Kalman, 1960; Priestley, 1981] and to develop data-
driven multi-modal trajectory prediction models. Gen-
erative models are capable of determining the underly-
ing data distribution. Generative Adversarial Networks
(GANs) [Goodfellow et al., 2020; Gupta et al., 2018;
Amirian et al., 2019; Li et al., 2019; Katuwandeniya et
al., 2021], Variational Auto-Encoders (VAEs) [Kingma
and Welling, 2013; Lucas et al., 2019] and Normalizing
Flows (NFs) [Kobyzev et al., 2020; Schöller and Knoll,
2021; Bhattacharyya et al., 2020a; Bhattacharyya et al.,
2020b] are widely used deep generative models in the
trajectory prediction domain.

Unlike other deep generative models, NFs provide the
capability to calculate exact likelihoods for generated
samples. They also do not suffer with mode collapse
as with GANs [Srivastava et al., 2017] and posterior col-
lapse as with VAEs [Lucas et al., 2019]. In our previous
work [Katuwandeniya et al., 2021], a GAN framework
was utilised with a rule-based perception framework to
counteract the converges issues arising due to training
with a small dataset with no visual annotation. In that
work we proved the importance of providing scene con-
text, the resulting framework could generate k trajecto-
ries complaint with the environment. However, when it
comes to executing the intended estimation, a trajectory
has to be picked randomly. Modelling the above problem
with NFs allows a probabilistic approach for trajectory
selection and quantitative evaluation.

2.3 Shared-Control Navigation

Shared-control is a more focused area of research un-
der the field of shared decision-making [Trautman, 2015]

where the control commands sent to the platform to be
executed are a combination of the constant control of
the human and the autonomous system. Since the hu-
man operator is physically on the platform, we are deal-
ing with on-board shared-control as opposed to shared
teleoperation. Combining the two controls has been re-
ported in the literature based on hand-tailored weighted
functions [Urdiales et al., 2007]. The limitation in this
set-up is the need of careful tuning to adapt to differ-
ent scenes and users. The solution is also not suitable
for large, map-less environments. Thus, in this work,
the focus is on generating controls from an end-to-end
framework which accounts the user control as an input.

In this work we advocate for a framework which takes
the user input along with the vehicle state and current
environment context to develop a distribution of the in-
tended trajectory and recommend picking the likeliest
trajectory under the generated distribution to be exe-
cuted. The work in this paper extends a predictive model
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Figure 2: Proposed end-to-end user-centric shared control framework.

to be a user-centric shared-control framework.
We show that frameworks solely based on the past

vehicle state have a lower accuracy in comparison to a
model utilising all the available observations. We also
perform a qualitative evaluation showing how the user
signal is correlated with the output trajectory prediction.
Additionally an experiment is conducted for justification
of integrating user control in an end-to-end framework
as opposed to a decoupled approach.

3 Problem Definition and Approach

Our aim is to model the user’s intention Y given some
observations. We describe the user’s intention by their
future trajectory: a sequence of 2D positions (xti , yti)
at N discrete time-steps into the future t1, . . . , tN .

In this work, we consider three observation modalities
to inform the prediction: the past trajectory X, the cur-
rent scene information I, and the current user control C.
The past trajectory X is described similarly to the fu-
ture trajectory, as a sequence of M past positions up
until the current time t1−M , . . . , t0. The context of the
current scene I is provided as a RGB colour image from
a forward-facing vehicle-mounted camera. Fundamental
to this work, the user’s current control C is given from
a 2-dimensional joystick command.

We believe the user’s intention Y is not fully ob-
servable given (X, I, C). As such, we model the
intention probabilistically, and attempt to learn a
model Q(Y |X, I, C) to approximate the true distribu-
tion Pr(Y |X, I, C). Additionally, we desire an efficient
method of sampling from the proposed distribution: a
generative model. Due to their proven success in approx-
imating complex distributions, and having the desirable
properties, we take our model Q to be a Normalizing
Flow.

Given a training dataset of (Yi, Xi, Ii, Ci) tuples, the
model is optimised by negative log likelihood, thereby
maximising the joint probability of the dataset under
the model,

Q∗ = arg min
Q

−
∑
i

logQ(Yi|Xi, Ii, Ci) . (1)

The overall framework is given in Figure 2.

3.1 Normalizing Flows

Normalizing Flows (NFs) convert a known base distri-
bution Z (often Gaussian) to the distribution of interest
through a sequence of functions fi termed flow modules.
These functions must be both invertible and differen-
tiable, causing the composition to also be invertible and
differentiable. This allows the change of variables for-
mula to be applied for tractable calculation of the resul-
tant probability density.

Z ∼ N (0, 1)

f = fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1
Y = f(Z)

Z = f -1(Y )

(2)

Pr(Y=y) = Pr
(
Z=f -1(y)

) ∣∣∣∣df -1(y)

dy

∣∣∣∣ (3)

The invertability and differentiability constraints im-
posed on the flow modules fi limit the expressivity of the
estimated distribution. Monotonic Rational-Quadratic
Splines (RQSs) are a family of curves that have been
shown to enhance the flexbility of the flow [Durkan et
al., 2019]. They are non-linear and expressive, but an-
alytically invertible and differentiable. Each spline is



described by K + 1 knot points inside a boundary re-
gion [−B,+B]. It requires 3K−1 parameters to describe
a RQS with K + 1 points: 2K parameters for the bin
widths and heights and K−1 parameters for the deriva-
tives at knot points inside the boundary (the derivatives
at the endpoints are set to 1 so that the function is the
identity outside the region). The reader is referred to
[Durkan et al., 2019] for a detailed description of RQS
NFs.

Coupling

Our problem is multi-dimensional: we wish to model the
user’s future trajectory, a 2N -dimensional object. It is
important to correlate the dimensions while maintaining
the ease of invertibility. Coupling layers have been intro-
duced by [Dinh et al., 2014] in an attempt to model high
dimensional, complex distributions using NFs. Coupling
layers serve as the main building box for generating tri-
angular Jacobian matrices, resulting in faster computa-
tion and inference while maintaining the flexibility of the
flow.

For a D-dimensional variable Y ∈ RD, the base dis-
tribution Z ∈ RD must also be D-dimensional for the
flow f to be invertible.

Assume the input to flow module fi is Zi = (ZAi , Z
B
i )

where ZAi ∈ Rd and ZBi ∈ RD−d form a disjoint partition
of Zi. A learnable function hi, termed a conditioner,
takes one part ZBi and generates the parameters θi =
hi(Z

B
i ) required to transform the other part through an

invertible mapping gθi(Z
A
i ) = ZAi+1. The second part ZBi

is passed through identically.
One important thing to note under this scheme is that

g is an invertible function, whereas h is not required to
be, and can be learnt with the full flexibility of a deep
neural network.

3.2 Conditioning

Ultimately, we do not just wish to model the
distribution Pr(Y ), but the conditional distribu-
tion Pr(Y |X, I, C) given the observations of the current
scenario. The conditioning function h can be developed
to accept not just ZBi , but also additional variables that
we wish to condition the output distribution on. As h
is not required to be efficiently invertible, flexible deep
neural networks appropriate to the input data type can
be used. The output is thereby conditioned on X, I,
and C. Each of these inputs can be initially encoded or
feature-engineered to improve the learning process.

Conditioning on Past Trajectory X

The idea of conditioning on the past trajectory X has
been exploited in many deep generative models [Gupta
et al., 2018; Schöller and Knoll, 2021; Katuwandeniya et
al., 2021]. Inspired by these, a recurrent neural network
is used to encode the past vehicle state which outputs

a XD-dimensional vector. The specific implementation
was performed as per [Schöller and Knoll, 2021], readers
are referred there for further details.

GPS and/or IMU sensors mounted on the mobile de-
vice can be used to provide odometry and extract a suf-
ficiently accurate X.

Conditioning on Scene Information I
[Katuwandeniya et al., 2021; Li et al., 2019] have proven
the importance of scene context in future trajectory pre-
diction when modelled using deep generative models. A
low cost RGB camera can be easily integrated to a mo-
bile device (if not already equipped with one) to obtain
visual information from a first-person view. An image
encoder is trained to extract visual cues and reduce the
dimensionality of the image to a ID-dimensional vector.
For this work we used ResNet [He et al., 2016] (initialised
using a model trained on the ImageNet dataset [Deng et
al., 2009]) as the image encoder. The RGB image was
concatenated with 2 additional channels, specifying the
pixel position (u, v) so that the image encoder can easily
maintain the spatial awareness. It was observed empir-
ically that the addition of the (u, v) channels improved
the accuracy of the results.

Conditioning on User Control C

For the developed framework to be a human-robot col-
laboration framework the most crucial input is the user
control. Depending on the mobile platform the user con-
trol could be the joystick axes values or steering wheel
angle, acceleration and brake pedal state. Since the di-
mensionality of the user control is low, it was decided to
integrate it without encoding further (CD = 2). How-
ever, the authors note that the control could be further
encoded or feature-engineered for potentially higher ac-
curacy.

Conditioner Networks

Each conditioner hi is a multi-layer perceptron which
takes an input of size (D− d) +XD + ID +CD and out-
puts a vector θi of size (3K − 1)d giving the parameters
for the RQS of each dimension in ZAi . The multi-layer
perceptron was constructed with 5 hidden layers, each
followed by an ELU activation as suggested by [Schöller
and Knoll, 2021].

4 Implementation

CARLA Dataset The training and evaluation was
carried out using a dataset collected from a wheelchair
platform navigated through realistic urban scenarios in
the CARLA [Dosovitskiy et al., 2017] simulation envi-
ronment. The environment also consisted of pedestrians
and vehicles that obey traffic lights and road rules, and
react to other obstacles in the road. A physical joystick
was used to control the wheelchair through a Robotic



Figure 3: Sample images from the CARLA dataset.

Operating System (ROS) [Quigley et al., 2009] bridge.
Out of the 6 (rosbag) data recordings, each with a dura-
tion of about 10 minutes, one was used for validation, one
for testing, and the remaining 4 for training. Figure 3
shows two sample images from the simulated dataset.
5252 data instances were used for training, 1308 for val-
idating and 1261 for testing.

Data Instances for Training, Validating, and
Testing A data instance representative of the data
used for training, testing and validating is given in Fig-
ure 4. A trajectory of M+N time-steps is selected where
the sampling rate is chosen to be 0.5s. With the obser-
vation and prediction lengths selected as 4s each, the
trajectory consists of 16 (x, y) positions where M = 8
and N = 8. For numerical stability, the initial position
Xt1−M

was subtracted from all points and the entire tra-
jectory was rotated around the last observed point Xt0

such that the global orientation of the trajectory does
not add unnecessary complications for the network to
learn. This results in the estimated distribution’s di-
mension being |Y | = D = 2N = 16. The flow cou-
pling parameter was chosen to split in half, such that
d = D/2 = 8.

The current RGB image I from the front facing cam-
era gives the environment context. The user input is the
joystick control commands C = [axis0, axis1]. The rea-
soning for using only the current joystick command is
that the past trajectory is representative of the past joy-
stick commands and thus is redundant, but the current
active user control is the most up-to-date representation
of the user intention.

The vehicle’s past trajectory X was encoded to a
XD=16-dimensional vector, the image I encoded to
a ID=16-dimensional vector, and the user control is
CD=2-dimensional. K + 1 = 8 knot points were chosen
to represent the RQS in each dimension and the bound-
ary was chosen to be B = 15. Boundary points need
to be chosen to match the dataset. Higher the K, the
better the representation at the cost of computation.

The network is trained to minimise the objective func-
tion mentioned in equation (1) using the ADAM opti-
miser for 150 epochs with a learning rate scheduler which

t1 - M

t- M
t = t0 

t = t1 

t = t2 

t = tN 

C 

I Time
Past Positions

Future Positions
Image
Control

X Y 

Figure 4: A data instance, showing the past and future
trajectories X and Y , the scene information I, the user
control C, and their corresponding times.

updates the learning rate based on the validation loss.

5 Evaluation

The improvement in accuracy of future trajectory pre-
diction is quantitatively justified. A qualitative analysis
of how the framework adapts to an active user control
to comply with user intention is also carried out. Addi-
tionally, the results from an experiment where the user
control was decoupled and was later fused probabilisti-
cally is also given as a justification for the line of thought
for the proposed framework.

5.1 Quantitative Evaluation

It is common in trajectory prediction research to use
Average Displacement Error (ADE) and Final Displace-
ment Error (FDE) as evaluation metrics. ADE mea-
sures the average Euclidean distance between the ground
truth trajectory and the trajectory of interest over the
predicted time horizon, while FDE measures the Eu-
clidean distance between the final positions. For selec-
tion and execution purposes in an online platform where
the ground truth is not available, measuring the ADE
and FDE of the likeliest trajectory out of the k samples
generated from the estimated distribution: ADElike,
FDElike against a randomly generated sample (ADErand

and FDErand) is the most reasonable comparison. For
the purpose of completeness, ADEmin and FDEmin which
is the ADE and FDE of the trajectory closest to the
ground truth (out of the k generated) are included. How-
ever, the selection of the minimum-error trajectory is not
available at runtime and cannot be executed. k was cho-
sen to be 20. All values are given in meters.

We trained 3 models to show the benefits of incorpo-
rating the user’s control input in predicting the future
trajectory of the mobility device. Each model approx-
imates a distribution Q(Y |B) where B is the random
variable the model is conditioned on. The results of
these models are shown in Table 1. It is worth noting
that modelling Q(Y |X) using NFs with RQS as the cou-
pling function is proven to do better (equivalently only
to Trajectron++ [Salzmann et al., 2020]) in comparison
to state-of-the-art generative models [Schöller and Knoll,
2021]. The authors have compared against tractable and



Figure 5: Qualitative Analysis of active user control. On a straight road (left) and at a corner (right).

Metric Q(Y |X) Q(Y |X, I) Q(Y |X, I, C) Improv.
ADEmin 0.62 0.55 0.45 18.18%
ADElike 1.29 0.97 0.80 17.53%
ADErand 1.57 1.11 0.96 13.51%
FDEmin 0.98 0.83 0.64 22.89%
FDElike 2.55 1.80 1.51 16.11%
FDErand 3.12 2.03 1.74 14.29%

Table 1: Comparative results of the proposed frame-
work conditioned with different observation modalities.
Improv. refers to the improvement of the Q(Y |X, I, C)
model over Q(Y |X, I).

non-tractable generative models, which motivates the ar-
chitecture adopted in the proposed framework in this
work.

It is clear from columns 2 and 3 that when condi-
tioned on more information (scene context), the results
improve. With the integration of C, in addition to con-
verting a predictive framework to a human-robot col-
laboration framework, it improves the accuracy of the
considered metrics as shown in column 4. The improve-
ment: a percentage of error reduction from modelling
Q(Y |X, I) to Q(Y |X, I, C) is given in the last column.

For execution, the results justify the selection of the
likeliest trajectory against picking a random trajectory.
In the proposed framework, the improvement of picking
the likeliest over random is 16.67% with regards to ADE
and 13.22% with the FDE.

Table 2 shows a comparison of Q(Y |X, I) with the pro-
posed NFs work when not yet condition on the user in-
put, i.e. only condition on (X, I): QNF(Y |X, I), with re-
spect to our earlier results from the modelQGAN(Y |X, I)
when k number of equally probable trajectories were
generated. QGAN(Y |X, I) was modelled using a GAN,
and later probabilistically fused with a segmented im-
age [Katuwandeniya et al., 2021]. Since all k generated
trajectories (also set to 20) are equally probable, it is

Metric QGAN(Y |X, I) QNF(Y |X, I) Improv.
ADE 1.61 0.97 39.75%
FDE 3.35 1.80 46.27%

Table 2: The improvement of the NF model QNF over a
purely-generative GAN model QGAN.

only fair to compare a random trajectory out of the 20
against the likeliest trajectory from the 20 generated un-
der the model proposed in this paper QNF(Y |X, I) The
significant improvement justifies the utilisation of NFs
for estimating the user’s intention. In addition, unlike
GANs, there are no convergence issues with NFs when
considering high dimensional image data. Thus, the pro-
posed framework is also more suitable for small datasets
with no visual annotations.

5.2 Qualitative Evaluation

It is interesting to visualise how the estimation of user in-
tention adapts to different user control commands given
the same X and I. A qualitative analysis is thus
presented whereby the actual joystick command is re-
placed with 5 preset values: action left, action fwd left,
action fwd, action fwd right, and action right. Results
from a couple of token examples are given in Figure 5.

It is apparent how user control C has a predictable
impact on the generated trajectory: action left trends
left, action fwd left trends left while maintaining for-
ward speed, etc. Crucially however, all generated tra-
jectories are compliant with the other observations: his-
tory X and scene information I. Figure 5 left shows
a straight road scenario, where the system generates
largely forward-directed trajectories under all controls,
whereas the figure on the right shows a right-curved sce-
nario where the system shows a stronger bias for taking
the right corner with confidence. The user is neverthe-
less not prevented from turning against the corner, al-
beit trajectories leading off the footpath are taken at
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Figure 6: Example scenario from the framework devel-
oped with the decoupled user control.

a considerably reduced speed. Notably, the action fwd
trajectory still anticipates a later turn around the corner.

5.3 Decoupled User Control

The effectiveness of integrating user controls in an end-
to-end framework as opposed to fusing user directives
later with a model trained to estimate Q(Y |X, I) was
also carried out as a comparative baseline. Two assump-
tions are required for this experiment to be meaningful
in probabilistic terms: (X, I) and C are independent,
and also conditionally independent given Y :

(X, I)⊥⊥C ,
((X, I)⊥⊥C) | Y .

(4)

This allows Q(Y |X, I, C) to be decomposed and the
likelihood of trajectory y can thus be calculated as

Pr(Y=y|X, I, C) ∝ Pr(Y=y|X, I) · Pr(Y=y|C) (5)

In addition to the model trained to estimate
Pr(Y |X, I), a separate model was trained to estimate
Pr(Y |C), similarly using NFs. A sampler was developed
which generates k trajectories from each model and cal-
culates the total likelihood as per equation (5). It is
precisely the ability of NFs to calculate the likelihood of
samples that makes this feasible. The likeliest trajectory
is the trajectory with the highest likelihood under both
models. An example is shown in Figure 6.

For the considered 1261 test instances, the sampler
selected 653 from the model Q(Y |X, I) and the rest
from Q(Y |C). The ADE and FDE of the likeliest tra-
jectory chosen under this method is compared in Ta-
ble 3 against those using the proposed end-to-end model
directly incorporating user controls Q(Y |X, I, C). The
improved performance for the end-to-end framework is
self-evident.

It is arguable that the independence assumptions
made may be behind the deterioration in the results.
A more intuitive reasoning may also point towards the

Metric arg maxY arg maxY
Q(Y |X, I) ·Q(Y |C) Q(Y |X, I, C)

ADE 1.07 0.80
FDE 1.91 1.51

Table 3: Decoupled learning vs end-to-end learning

fact that without having all the available information (C
in the case of Q(Y |X, I), and (X, I) in the case Q(Y |C)),
it is difficult to make informed decisions.

6 Conclusion

We present a probabilistic framework for user intention
estimation applied to the shared control of an assistive
power mobility device like a wheelchair. The scheme is
built on top of a state-of-the-art deep generative model,
namely Normalizing Flows. The input to the proposed
algorithm includes the device’s historical trajectory, cur-
rent visual information, and the current user controls
via a joystick input device. The algorithm’s output is a
high dimensional multivariate conditional distribution,
representing the device’s predicted future trajectory as
a proxy for user intent. The framework is modular and
can be expanded further to incorporate additional inputs
that may be deemed suitable to the application of inter-
est (platform accelerations, other agent’s paths, etc).

The proposed framework is evaluated on a simu-
lated dataset hence allowing for controlled oracle com-
paratives. Data was collected from driving a simu-
lated wheelchair in a realistic urban navigation simu-
lator (CARLA) with a real joystick. Experimental re-
sults demonstrate that prediction accuracy increases by
a large margin (up to 22.89% depending on the evalu-
ation metrics) when user control inputs are being mod-
elled jointly with other modalities. In addition, anec-
dotal evidence from a qualitative evaluation is supplied
to be able to rationalise the significance of incorporating
user controls into the model, whereby updated predic-
tions can be asserted to align with expectations.

A separate validation considering the user’s control as
independent variables for probabilistic fusion suggests
that the proposed deep learning based solution indeed
provides more accurate results. The proposed data-
driven framework has thus been proven able to infer
most promising user intention predictions allowing for
the development of a fully functional shared navigational
strategy for joint control intervention.

The future work is twofold: explore other formats of
user control signals, including richer information such
as raw predictions from accurate motion models, and
transferring the intervention strategy from simulation to
the real platform, testing with users of varying abilities
under a range of different scenarios.
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