
“© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 
all other uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.” 
 



Graph modelling approaches for motorway traffic flow prediction

Adriana-Simona Mihaita1, Zac Papachatgis1 and Marian-Andrei Rizoiu1

Abstract— Traffic flow prediction, particularly in areas that
experience highly dynamic flows such as motorways, is a major
issue faced in traffic management. Due to increasingly large
volumes of data being generated every minute, deep learning
methods have been used extensively in the latest years for
both short and long term traffic flow prediction. However, such
models, despite their efficiency, need large amounts of historical
information to be provided, and they take a considerable
amount of time and computing resources to train, validate and
test. This paper presents two new spatial-temporal approaches
for building accurate short-term predictions along a popular
motorway in Sydney Australia, by making use of the graph
structure of the motorway network (including exits and entries).
Our proposed methods are proximity-based, and they use the
most recent available traffic flow information of the upstream
counting stations closest to a given target station. Where such
information is not available they employ daily historical means
instead. We show that for short-term predictions (less than 10
minutes into the future), our proposed graph-based approaches
outperform state-of-the-art deep learning models, such as long-
term short memory, convolutional neuronal networks or hybrid
models.

Index Terms— motorway flow predicting, graph-based pre-
diction, backtracking, interpolation, deep learning analysis.

I. INTRODUCTION
Traffic flow prediction is an essential element of any

Intelligent Transportation System, as the traffic flow data
is a key element for accurately determining both seasonal
factors (such as the times of congestion, seasonality of traffic
flows, impact of public holidays), as well as stochastic factors
(abnormal flows due to events, impact of weather, etc).
Particularly for the stochastic factors, accurate and timely
forecasts are paramount to understanding these issues, so
they can be actioned, before or as they arise. However,
obtaining accurate prediction results still represents a chal-
lenge due to several reasons such as: a) the large amounts
of data sets generated every minute across large areas, b)
the spatial structure and layout of the network can induce
high complexity in the localisation of traffic count stations
and their utilisation, c) the stochastic events which can
severely disturb regular traffic conditions, d) the spatial and
temporal distribution of traffic flow can induce direct and
indirect congestion propagation patterns and e) missing or
erroneous data due to varying equipment functioning state,
or inconsistent human reporting. All these factors make the
prediction exercise a very challenging task.

Deep Learning for traffic flow prediction. Across the
years, there have been several models and prediction ap-
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proaches being developed. Auto-regressive models, starting
with ARIMA in the early 1990s [2], made use of traffic
flow’s strong seasonality. Such models were further extended
by SARIMA [3] and ARIMAX [4]. Auto-regressive models
were later surpassed by the Deep Learning (DL) model
BPNN [5] in 1997, which was shown to produce lower
error scores overall, marking the beginning of successful
application of deep learning approaches for traffic flow
prediction. From 2015 onwards, the number of proposed
approaches in the area of traffic flow prediction began to rise.
Stacked Autoencoders (SAE) were introduced in 2015 [6],
followed by the widely referenced convolutional neuronal
network CNN in 2016 [7]. In the same year DLL, DLM8L,
DLM8, DLTF15, VARM8L and VARTF15L methods were
introduced by Polson and Sokolov [8], who found that
“future traffic conditions are more similar to current ones
as compared to those from previous days”. A second leap in
using Deep Learning to traffic flow prediction came with
the usage of Recurrent Neural Networks (RNN), which
were designed for sequence modelling and had already
revolutionised fields such as Natural Language Processing
and automatic translation. Such a model is the Short-Term
Memory Model (LSTM) [9] popularised in 2017. Its exten-
sions were designed to accommodate external factors such as
rain, and led to models such as R-LSTM, R-DPN, R-BPNN
and R-ARIMA [10]. Starting from 2018, a series of hybrid
deep-learning models have been proposed [11], generating
debates on whether hybrid modelling brings a true benefit
when accounting for the increase in architecture complexity,
and sometimes even a decrease in the prediction accuracy
[12].

Graph modelling approaches. Another family of ap-
proaches gaining popularity aim to integrate the spatial
structure of the transport network into the prediction model –
dubbed graph modelling approaches. Various such methods
have been proposed, such as graph-convolution neuronal
networks (e.g. GRNN [13], STGCN [14], DCRNN [13])
or spatio-temporal approaches such as GTSNet [15]. These
approaches provide boosts of performance, however suffer
the typical complexity overhead of Deep Learning tools.

The work in this paper proposes two approaches –
dubbed backtracking (BKTR-P) and interpolation (INTR-P)
– that leverage the structure of the motorway network to
predict traffic flow. Our graph modelling approaches join the
spatial and temporal traffic flow information in a dynamic
fashion, without incurring the complexity of deep learning.
To predict traffic for a given station, both methods rely
on the recent traffic flow information received from closest
interconnected traffic flow stations, which are aggregated to
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Fig. 1: Methodology for the proposed graph-flow prediction along the M7 motorway, as a succession of five steps.

reflect the traffic flow dynamics on a real motorway network
from Sydney, Australia. The prediction performances are
compared against state-of-the-art deep learning approaches
that we have deployed for the network (including hybrid
modelling of CNN-LTSM). We showcase an outstanding
accuracy for short-term traffic prediction.

II. METHODOLOGY

In this section we introduce our proposed graph-based
methodology for predicting the traffic flow along motorways.
Fig. 1 summarises the methodological framework, which
consists of five steps: a) mapping stations to the motorway
geography, b) building the graph of traffic flow between
stations, c) analysing three spatial configurations of stations
and flow (all detailed in Section II-A), d) proposing two
graph-based prediction models presented in order of their
efficiency (detailed in Sections II-B and II-C) and finally,
obtaining e) the traffic flow prediction results.

A. Spatial and graph structure

Traffic flow notations. Our traffic flow models assume
that data is recorded at individual stations, and reported
at time intervals of equal length d by each station. We
denote by F(s; i) the vehicle flow recorded by a station
s, during the ith time interval. Furthermore, because the
stations are physically positioned along motorway segments
(see Fig. 1a), they are of three types: stations placed at the
motorway entries and exists (denoted as e and x respectively),
and stations placed along the main motorway (denoted here
as a). Stations also have a geographical relation (e.g. s1→ s2)
when they are consecutive along the motorway. For example
in s1 → s2, a car that is recorded by s1 could be recorded
next by s2. Note that s1, s2 could be of type a, e or x, with
at least one of type a.

Graph structure. We encode the geographical relations
between stations into a graph structure of the stations G(V,E)
(depicted in Fig. 1b). V is the set of vertexes (or nodes)
– here the stations. E is the set of edges (or arcs) – the
geographical relation s1→ s2, with s1,s2 ∈G. The edges are

uni-directional as the physical motorway has separate ways
for upstream and downstream traffic The edges also have
attributes, in our case we record the geographical distance
between two stations, and the typical time it takes a vehicle
to cover this distance at a constant speed of 90km/h.

Spatial station configurations. Within the graph G, we
identify three station spatial structures of interest, showcased
in Fig. 1c using real traffic flows from the dataset described in
Section III. The first structure is Passing traffic, consisting
of two consecutive stations of type a, with no entries or
exits between them. Fig. 1c1 shows the relation 19A→ 18A,
which follows the equation F(19A; i) = F(18A; i)±ε , where
ε accounts for the time cars take to move between stations,
and for the inherent detector equipment error. The second
structure is Exiting traffic, containing one exit station.
Fig. 1c2 shows that the traffic of station 4A splits into
the traffic recorded by 3A and the exit 3X , i.e. F(4A; i) =
F(3A; i)+F(3X ; i)± ε . The red line shows the sum of the
two downstream stations 3A and 3X , which matches closely
the flow of station 4A (shown in green). Finally, the third
structure is Merging traffic and contains entry stations,
shown in Fig. 1c3. Here the traffic from 12A and the entry
12E (their summed traffic shown in red) merge into the
traffic recorded by 11A (shown in blue), i.e. F(11A; i) =
F(12A; i)+F(12E; i)± ε . Again we observe a tight overlap
in the observed data corresponding to the two sides of the
above equation, which motivates our graph flow prediction
models detailed next.

B. Backtracking prediction method (BKTR-P)

Our backtracking prediction approach builds on the three
spatial configurations of stations described in Section II-A
and on the following observation: once a vehicle is recorded
by a given station, it has no other option but to travel
downstream along the graph and be recorded at the following
motorway stations (of type a), or at an exit station (type e).
Therefore, to predict the flow for a station in the future,
it suffices to analyse the past recorded flow at upstream
stations, adjusted for entries and exits.
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Fig. 2: Graphical representation for Backtracking and Interpolation methods on a selected motorway portion: a) BKTR-P exemplification,
b) flow representation between two time intervals and c) INTR-P exemplification.

One step prediction. Formally, we aim to predict the
flow for a station v at p time intervals in the future from
the current time t, i.e. F̂(v, t + p), using the flow from r
intervals in the past F(·, t−r) – here the dot is a placeholder
for any station. We identify the station u of type a which
lies approximately r+ p time intervals upstream of station v
along the motorway. This can be easily achieved by building
a distance matrix between each two stations, and performing
a lookup – a vehicle will cover an expected distance of
(r + p)× d × speed during r + p time intervals. Next, we
traverse the graph structure between u and v and, in doing
so, we identify the set of entries E and the set of exits X
that a vehicle could take between stations u and v. Finally, to
predict the flow at station v one step into the future (p = 1)
we use the flow at u one step in the past (r = 1), to which
we add the recorded flow of entries and we subtract the flow
of exits:

F̂(v; t +1) = F(u; t−1)+ ∑
e∈E

F(e; t−1)− ∑
x∈X

F(x; t−1)

(1)
where F(u; t−1) denotes the flow at station u during the last
time interval before the present.

Multi step prediction. When predicting more than one
time step into the future, Eq. (1) does not hold. This is
because F̂(v; t + p) is a function of F(·; t + p− 1), which
is also in the future for p > 1, and therefore unobserved.
One could build F(·, t + p−1) (the historical average for a
given station at a given time interval) and assume that the
future traffic flow across the motorway follows the historical
patterns of the given time of day. However, doing so ignores
changes, disruptions and other stochastic events that might
be occurring at the time of prediction. Our solution is to go
further in the past (i.e. r > 1) and upstream on the motorway
to find actual recorded flow values. We call this approach
backtracking.

Fig. 2a illustrates the backtracking approach over multiple
time periods for r = 2 and p = 2. The graph structure of
the network is shown on the right hand side of the figure.
The x-axis represents time, with being t the current time.
For a random vehicle to be recorded by station 33A at time
t +2 (i.e. p = 2, shown in yellow), it will need to originate

from 43A three time intervals earlier (at t − r,r = 2). The
purple rectangles and the arrow between them represent the
positions of the vehicle as it passes through the different
stations while travelling between the stations 43A and 33A,
at a constant speed. Visibly, the vehicle is recorded by the
stations 43A, 42A, 41A and 40A during the first time interval
(t−2, r = 2), and by 39A, 38A and 37A during the second
time interval. At the present time t, the car is located in
between 37A and 36A. Two time intervals into the future, it
is projected to reach 33A (the station for which we predict
the flow). Given the inputs r = 2, p = 2, the backtracking
algorithm will estimate the flow at the station 33A at time
interval t + p using the values from 43A with a lag of r+ p
time intervals, to which it adds the entries and subtracts the
exists at the corresponding time intervals (here +F(41E; t−
2), +F(38E; t−1) and −F(39X ; t−1)). In Fig. 2a, it adds
and subtracts the areas in light blue, and ignores the areas
in red. For any entries and exits occurring in the future, we
use the historical mean, e.g. F(·, t +1).

The backtracking algorithm (summarised in Algorithm 1)
aligns entries and exits to exact time intervals using the
distance from station u, alongside with the length between
stations and the average travel speed. We make the ob-
servation that p(head) stands for the predecessor of the
“head” node extracted from B, which is the “Breadth First
Search node set” (a computer science typical graph-traversal
algorithm). It then chooses the time interval closest to the
computed time interval. Obviously, the travel time between
stations does not align with the time intervals. Therefore,
we also tested another method to estimate the traffic at these
stations based on observed traffic and historical means to
see whether this would further improve efficiency of our
proposed algorithm or not.

C. Interpolation prediction using actual and historical data
(INTR-P)

Interpolating flow across two stations. We further test
a method to estimate the number of vehicles that pass
through a station by interpolating the recorded values in
two consecutive time intervals – denoted as F∗(s; i→ i+1).
Fig. 2b shows how the interpolation is achieved. We aim



Algorithm 1 BTRK-P: predict traffic flow using backtrack-
ing, for a single station on one day.

Input: G(V,E) – graph of stations along motorway;
V – set of stations; E – set of geographical relations
between stations
p – number of steps in the future to predict flow;
r – number of time intervals in the past to use;
v – station for which to predict the flow;
F(·;{t − r, t − r + 1, .., t − 1}) – observed flow for all
stations from t− p until present;
F(·;{t+1, .., t+ p−1}) – historical means for all stations
at future time points.

Output: F̂(v; t + p) – traffic flow for station v at p intervals
in the future.
// find optimal u for target v;
optim dist← (r+ p)×d× speed ;
Find u ∈V of type a so that len(u→ sk)+∑

l−1
j=k len(s j→

s j+1)+ len(sl → v)≈ optim dist, with sk, ..,sl ∈V ;
// traverse from u to v to identify entries and exits;
E ← /0; X ← /0;
B←{u}; // Breadth First Search node set
dist f rom u← 0;
while B 6= /0 do

pop head from B;
if head of type a then

// update the distance from u
dist f rom u← dist f rom u+ len(head, p(head))
// add stations linked to head to the queue
// first those of type a, then entries and exits
B←B∪{s}, ∀s ∈V with head→ s, type(s) = a
B←B∪{s}, ∀s∈V with head→ s, type(s)∈ {e,x}

p(s)← head,∀s ∈V with head→ s
if head of type e then

// add head to entries group
E ← E ∪{head};

if head of type x then
// add head to exits group
X ←X ∪{head};

compute align(head) on time intervals based on
dist f rom u;

// compute predicted flow for v;
F̂(v; t + p)← F(u; t− r)
// add traffic of entries
for each e ∈ E do

if align(e)< p then
F̂(v; t + p)← F̂(v; t + p)+F(e;align(e))

else
F̂(v; t + p)← F̂(v; t + p)+F(e;align(e))

// subtract traffic of exits
for each x ∈X do

if align(e)< p then
F̂(v; t + p)← F̂(v; t + p)−F(x;align(x))

else
F̂(v; t + p)← F̂(v; t + p)−F(x;align(x))

return F̂(v; t + p)

to compute the flow for a station overlapped over two time
intervals, which covers the last t1 seconds from the first time
interval and the first t2 seconds from the second interval. Note
that t1 + t2 = d (with d the length of time intervals), so we
compute the interpolation over a length d shifted from the
reported values. We assume that vehicles arrive uniformly
distributed in front of the station detectors. Consequently,

during the time t1 < d there are
t1F(s; i)

d
vehicles passing

by (where F(s; i) is the recorded flow at the ith interval).
Similarly, during the first t2 period of the second interval

i + 1 pass
t2F(s; i+1)

d
vehicles. Finally, we estimate the

interpolated traffic flow at station s as:

F∗(s; i→ i+1) =
t1F(s; i)+ t2F(s; i+1)

d
, with t1 + t2 = d

(2)
Fig. 2c revisits the previous example for r = 2, p = 2

discussed in Fig. 2a and Section II-B. The purple rectangle
again represents a random vehicle and is its position when
travelling from 43A to 33A at constant speed. Given the
interpolation described above, the areas that we add or
substract can overlap over two time intervals (see 41E, 39X
and 38E). Visibly, for the intervals not contributing to the
computation (red areas of main motorway), the vehicle now
stays at the same position in the interpolated flow segment.
In the original backtracking example (Fig. 2a), the vehicle
changed from being at the back to being closer to the front
of the flow until eventually returning to the initial position
on the predicted flow.

The interpolation algorithm (INTR-P). The interpola-
tion method is a variation of the backtracking algorithm.
Just like Algorithm 1, it searches for the optimal station u
which is located (r+ p)×d× speed distance away from v.
However, when it adds and subtracts the flow of entries and
exits, it uses the interpolated flow F∗(s; i→ i+1) instead of
the actual flow. There are two more changes for INTR-P over
BKTR-P. First, the times t1 and t2 are computed based on
the physical distance between the station s, type(s) ∈ {e,x}
and station u. Second, when the interpolated interval spans
across an observed interval and a future interval, we use the
historical mean for a particular day of the week in the second
term of the right hand side of Eq. (2). The overall algorithm
for INTR-P is shown in the online supplement [1] due to
space constraints.

III. CASE STUDY

A. Description

The current work employs the same motorway traffic flow
dataset as our prior work [12]. The dataset was collected over
the entire year of 2017, by recording the traffic flow at each
of the 208 bi-directional “flow counting stations” along the
M7 Motorway in Sydney, Australia (see Fig. 1). The dataset
contains 36.34 million data points, where one data point is
the flow recorded by one station during time intervals of
length d = 3min. We denote as di the ith interval of a day,
i = 1..480.
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Fig. 3: a) Daily Profile - Historical data by day of the week, b) Ex-
ample of traffic outliers and anomaly detection across consecutive
traffic flow stations without any entries/exits in between.

B. Data profiling

The daily profile. We first observe that the traffic flow
at any given station presents a strong daily and weekly
seasonality, mainly driven by the users daily work commute
patterns. We define the daily profile as the typical daily traffic
flow series recorded at a given station and we compute it as
the average flow for each di, for a given day of the week,
over a training period of 6 months from the study year.
Fig. 3a shows the Daily profile extracted by each day of the
week, which indicates two peaks corresponding to two rush
hours for Monday-to-Friday days (one in the morning (8-
10AM) corresponding to the daily commute towards work,
and a second one in the afternoon (5-8PM) for returning from
work), and a single peak for weekend between 11AM-4PM.

Outlier analysis and correction. One immediate usage
for the daily profile is to identify the non-standard days such
as public holidays or special-event days. Moreover, the daily
profile can help identify traffic anomalies and other traffic
volume outliers. Fig. 3b presents the example of stations 22A,
23A and 24A, all three consecutive stations of type a arranged
in the passing traffic spatial configuration (see Fig. 1c1). As
there are no entries and no exits in between, the traffic flow
for the three example stations is expected to follow similar
patterns. However, the middle station 23A seems different
from its neighbours 22A and 24A, and has several drop-outs

(between 12PM-17PM) together with a high peak around
2PM – which we interpret as anomalies in the traffic flow.
We remove such outliers by leveraging the method proposed
by Mihaita et al. [16]. In a nutshell, we use the moving
average of the deviation from the daily profile, alongside with
the recent observed traffic volumes to identify and impute
outliers. All results presented in this paper are obtained on
the cleaned data set, after removing outliers and anomalies.

IV. EXPERIMENTAL SET-UP

In this section we describe the set-up and the implemen-
tation of the two proposed graph-based prediction methods,
as well as the comparison with other deep learning method
previously developed for the same motorway network.

a) Prediction setup: To be able to compare to pre-
viously reported results using deep neural approaches, we
train the BKTR-P and INTR-P models on 7 months of the
entire dataset. Mihaita et al. [12] selected this period to
avoid missing and erroneous data. More specifically, we use
the traffic flow from February-April and June-August 2017
respectively, for training the models (6 months in total). The
flow from October 2017 is used for testing. This was kept for
consistency across all the DL models that we have retrained.

b) Past and future prediction horizon selection: r is an
important hyper-parameter of our graph-models (the length
of the learning past horizon) which is tuned on the validation
set in the range R ∈ {1, ..5}, where 5 points in the past
correspond to a 15 min past horizon. Similarly, p represents
the future prediction points to estimate the traffic flow and we
also fluctuate it the range p ∈ {1, ..5}. The main constraint
when applying the above graph-based models relies mainly
on the number of stations that we can use for the prediction.
We are bounded by the lengths of the motorway station, since
we need to go farther upstream on the motorway to produce
predictions further in time.

For example when considering the case of r = 1, p = 1
(predicting 3 min in the future by using the traffic flow of
all closest counting stations from last 3-min time interval),
the BKTR-P and INTR-P prediction models can be applied
on almost all stations, from 072A until 03A. However, when
we increase either the past or future horizon that we want to
use for the prediction (say r = 5, p= 5 standing for predicted
flow 15-min in the future using latest 15-min in the past), we
can only apply the graph modelling predictions for stations
from 26A to 03A, This is mainly due to limited dimension
of the highway and time and space constraints.

For consistency, we keep the same range of variation when
comparing with other deep learning/ baseline models (r, p ∈
{1, ..5}) and the results will be discussed in Section V-C. The
main objective of this experiment is to learn the efficiency
of the proposed models in time and space and answer some
challenging questions such as: a) how much should we learn
from the past to achieve best prediction results when using
graph-oriented models versus regular DL models? b) how
long in the future can we predict accurately using graph-
modelling? c) what is the best past and future combination
that can achieve best prediction results?



c) Other baseline models: we compare the perfor-
mance metrics of the proposed graph models to other models
such as: Daily Profile Prediction (DPP) and various state-
of-art DL models. DPP is a base model in which we use
the Daily Profile (see Section II) computed for each station
and each day of the week as a predictor; this represents
basically the prediction of the average traffic flow counts
by each day of the week which we call “daily profiles”. We
use this as a reference to any prediction comparison and
we believe that any prediction doing worse than predicting
the “historical average traffic profiles” of that particular day
is basically a bad predictor. For example, for each counting
station, we have 7 flow curves and each curve is consisting of
480 flow values (the time interval between counts is 3min).
This model therefore predicts the average traffic flow per
station. We also used our previously developed deep learning
models on the same network structure and available data
set, such as: back-propagation neuronal networks (BPNN),
convolutional neuronal networks (CNN), long-short term
memory models (LSTM) and the hybrid CNN-LSTM. The
deployment, implementation, hyper-parameter tunning of
these DL models has been published in [12]. All our DL
models are implemented in PyTorch [17], using the Adam
optimiser which provided a better performance than SGD or
AdaGrad.

d) Model performance: We evaluate prediction perfor-
mances using three widely used measures such as:

i) the Root Mean Square Error:

RMSE =

√
1
N

N

∑
i=1

(
F̂(v; t)−F(v; t)

)2

ii) the R-squared value:

R2 = 1−
∑

N
i=1

(
F̂(v; t)−F(v; t)

)2

∑
N
i=1
(
F(v; t)−F(v; t)

)2

iii) Symmetric Mean Absolute Percentage Error:

SMAPE =
100%

n

N

∑
i=1

|F̂(v; t)−F(v; t)|
|F̂(v; t)|+ |F(v; t)|

.

V. RESULTS

A. Anomaly and outlier treatment

As mentioned in Section III-B, the data profiling procedure
revealed several missing data points throughout the stations,
outliers (very large or very small vehicle counts compared
to the daily flow trend) or anomalies (very low flow counts
due to public events or traffic disruptions). These phenomena
led to the outlier and anomaly detection algorithm that
we applied for cleaning the data sets before using it for
graph-prediction modelling which can be sensitive to such
abnormal behaviour. As an example, if the prediction of a
station relies purely on its closest preceding stations which
are affected by abnormal events, then the predicted traffic
flow would be also affected.

Fig. 4 showcases the R2 results for DPP, before and after
appplying the cleaning, which we considered as an initial
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Fig. 4: Daily Profile Predictor before and after data cleaning.

baseline model for future model comparison. Although when
using original data sets, R2 recorded a 0.91 value, there
were many zero flow values (and small values less than
500veh/Ti) being over predicted (see Fig. 4a)), whereas after
cleaning, although R2 dropped to 0.86, it obtained better
fitting and reduced significantly the chances of anomalies.
Similar performance improvements have been observed when
analysing RMSE and SMAPE results, which are further
provided in our online supplement [1] (due to lack of space).

B. BKTR-P and INTR-P results

1) Short-term prediction results (r=1,p=1): We now anal-
yse the performance of the two proposed methods: BKTR-P
and INTR-P, across a wide range of stations (71A−03A) for
a short time prediction horizon p = 1 (3min in the future)
using the traffic flow information from the last 3min in the
past (r = 1). Fig. 5 showcases the performance results for the
BKTR-P method such as: the R2 value, this time expressed
as density plots for a better visualisation, followed by the
RMSE and SMAPE across all stations, expressed as box
plots to showcase the variation of prediction results across
all stations. More specifically, Fig. 5a) reflects an R2 of 0.95,
with two main density regions based on the incoming flow
on the motorway (one for flows less than 1000 veh/3min and
another one between 2000-3000 veh/3min) which reflects a
good adaptation of the BKTR-P to the daily vehicle flow
trend. The RMSE values range around 80-90 (compared to
280-300 for DPP - see the supplement [1, Fig. 8c]) while
SMAPE reaches as well very good accuracy of 3−4% across
majority of stations (compared to DPP SMAPE values which
were double or triple on majority of stations as shown in
supplement [1, Fig. 8e]). We also make the observation
the predicted flows for stations between 45A and 35A using
BKTR-P present higher errors than the rest of the motorway;
this is mainly due to the interconnection of M7 motorway
with the M4 motorway (often affected by congestion and
accidents at its merging/diverging with other motorways).

Similarly, INTR-P provides as well good prediction results
in terms of R = 0.94 (see supplement [1, Fig. 9a]), RMSE
ranging from 100-130 (see supplement [1, Fig. 9b]) and
SMAPE maintaining values between 3− 5% (see supple-
ment [1, Fig. 9c]). There is however, a slight better per-
formance of BKTR-P compared to INTR-P which makes it
the preferred graph-predictor for our case so far.
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Fig. 5: Traffic flow prediction using BKTR-P for all direction A
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(b) and SMAPE (b) prediction errors for each station, as boxplots.
The green triangles show average values.

2) Varying past and future prediction horizons: Moving
further, as mentioned in Section IVb), a main question we
want to answer is how much can we use from the past to
achieve good prediction results when using graph-modelling
prediction? Therefore, we have verified the performance of
both models BKTR-P and INTR-P against variations of
p ∈ {1, ..5} and p ∈ {1, ..5} and provided the results in
Fig. 6 and [1, Fig. 10a,b]) respectively. For each variation
of past and future horizon, both methods can be applied on a
limited number of stations, and in this case, for r = 5, p = 5,
the maximum number of stations that can predicted will be
limited to 26A− 03A. The experiments have been carried
by varying both parameters consecutively and the results are
presented incrementally. BKTR-P seems to slightly overtake
the INTR-P in terms of accuracy, achieving best results for
example for short-term predictions (p≤ 3,r ≤ 3); when the
algorithms tries to predict longer periods in the future (p =
5), the relevance of past traffic flow information used for the
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Fig. 6: BKTR-P prediction results for various past and future time
horizons r, p: a) RMSE b) SMAPE.

prediction seems to decrease, providing almost similar results
in terms of both SMAPE and RMSE; similar behaviour is
present for INTR-P. This is mostly related to the nature
and construction of the graph-based approaches in which
the proximity between nodes and the travel time between
them are more critical to how far along the branches you
can predict in both time and space: for example, traffic flow
circulating on far away branches of the graph are less likely
to impact immediately the traffic flow at a current node.

C. Comparison with other Deep Learning models

1) DL comparison (r=1,p=1): In order to test the perfor-
mance of the proposed models, we have further compared
the results across other deep learning models developed for
the flow prediction on M7 motorway. Fig. 7a presents the
comparison of BKTR-P and INTR-P against BPNN, CNN,
LSTM and the hybrid CNN-LSTM, for short term prediction
(r = 1, p = 1) evaluated using SMAPE. The comparison is
done by aggregating all prediction results across all stations
72A−03A. BKTR-P seems to outperform all DL models, by
almost 60% as the previous best DL model LSTM achieved
a SMAPE of 12% compared to BKTR-P at 5%. Similar
performance if obtained when analysing the RMSE (figures
provided in supplement [1, Fig. 11a)].

2) DL comparison (r=1..5,p=1..5): Similarly, we ex-
tended the model comparison against varying r, p horizons
and the SMAPE results are showcased in Fig. 7b in which
each curve represents the aggregated SMAPE values across
stations 26A−03A obtained using best r for each p variation.
Once again, BKTR-P and INTR-P seem to outperform the
other DL models for short-term predictions p = 1 and p = 2
(3min/6min into the future) keeping good performance until
p = 3 (9min ahead). However, after 9min in the future, the
performance of the BKTR-P and INTR-P seem to decrease
in favour of DL models. This is mostly related to the
fact that various DL models applies convolutional layers
using multiple historical datasets, whereas the graph-models
are bounded by time and space restrictions. However, their
performance for short-term predictions is significantly better
than for DL models.

VI. CONCLUSIONS

This paper presents two new graph modelling approaches
for motorway flow prediction by using a backtracking and
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Fig. 7: Traffic flow prediction for stations 71A – 03A a) SMAPE
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interpolation modelling. Findings reveal that the backtrack-
ing algorithm outperforms for short term predictions (less
than 10 minutes) all other models, including daily profile
prediction, interpolation model and deep learning models
(LSTM, CNN, and hybrid CNN-LSTM). This is a proof that
simplified graph-modelling approaches only relying on the
network structure in both time and space can overcome more
complex deep learning approaches for short term predictions;
However, more extensive studies need to be conducted for
long-term prediction impact of using such methods.

Limitations and future work: (1) The algorithms assume
no branching structure of the motorway, i.e. we only have
one main flow, plus entries and exits. If we had two or
more motorways, the traffic at a given station, at a given
time point could have originated from multiple points in the
past, from all motorways; (2) the methods need to be tested
against more complex network structures such as regular
urban traffic networks, when the complexity of the graph
increases; and also (3) testing the performance of the current
models against GCNNs, a popular version of CNN which
embeds the graph structure of the network as well (see [18]).
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