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Abstract: The study focuses on estimating and predicting time-varying origin-destination (OD) trip tables for a dynamic traffic 
assignment (DTA) model. A bi-level optimisation problem is formulated and solved to estimate OD flows from pre-existent 
demand matrix and historical traffic flow counts. The estimated demand is then considered as an input for a time series OD 
demand prediction model to support the DTA model for short-term traffic condition forecasting. Results show a high 
capability of the proposed OD demand estimation method to reduce the DTA model’s error through an iterative solution 
algorithm. Moreover, the applicability of the OD demand prediction approach is investigated for an incident analysis 
application for a major corridor in Sydney, Australia. 
 

 

1. Introduction 

Traffic forecasting is a necessary step for efficient 

network operation and is an integral part of intelligent 

transportation systems (ITS) applications. In the transport 

domain, dynamic traffic assignment (DTA) models are 

known as a reliable tool to replicate complex traffic 

conditions [1]. These models are mainly built based on game 

theory principles. Each traveller attempts to minimize his/her 

travel cost (time) while their decision impacts the traffic 

condition other traveller’s decisions to move in the network 

[2]. By considering this essential principle, the intricate 

traveller route decision can be modelled in the network. DTA 

models are categorized into broad groups of analytical- and 

simulation-based models. Among different types of analytical 

models, variational inequality formulations are more popular 

because they can consider both optimization conditions and 

equilibrium in one formulation [3]. Restrictive assumptions 

often characterize the analytical approach, and they hardly 

represent the complicated interaction between users and the 

network. Also, increasing the computational power leads to a 

growing interest in the development of the simulation-based 

DTA models in recent years.  

The most crucial input for any DTA models is the 

origin-destination (OD) trip table. The success of the DTA 

application relies on the quality of this fundamental input and 

how well it captures the movement in the city from one time-

interval to another. As a result, the estimation of OD trip 

tables still remains a hot research topic for many years [4], 

[5]. Estimating the OD demand by using link traffic data is a 

popular approach and far superior to doing the conventional 

travel surveys which are slow and expensive. The advent of 

the new types of OD demand data such as mobile data or 

vehicle trajectories in recent years provides cheaper and 

faster methods to obtain more accurate OD demand 

information. However, in practice, this type of data also needs 

further adjustments for being usable in DTA models [6]. 

Many studies proposed a bi-level optimization formulation 

where the feedback of demand changes is evaluated by an 

assignment model iteratively [7]. The demand is estimated 

with the objective that the error between the simulated and 

the observed traffic is minimised. The initial studies in OD 

estimation considered a steady state for the transport system, 

and the OD demand was assumed constant during the 

modelling interval [5]. By increasing the congestion in the 

network and improving the assignment methodologies, the 

modelling windows are extended to a few hours or even an 

entire day. Under this scenario, assuming an invariant 

demand for such a long-time interval was an incorrect 

assumption. As a result, the static models are replaced with 

dynamic versions which can handle the variation in demand 

during the study time-interval. Some challenges and 

opportunities of dynamic OD estimation problems are being 

broadly studied in the literature such as the consideration of 

advanced traffic surveillance data [4], methodological 

improvements [8]–[11] and simultaneous calibration of 

supply and demand parameters [12], [13]. 

The above research efforts mostly conducted as offline 

demand estimation models. However, parallel research 

studies focus on the online estimation/prediction of OD 

demand matrices. Offline models usually provide an initial 

OD demand for online applications which can then remove 

the noise from the measurement data and adjust the model’s 

parameters within a reasonable computational time.  

ARIMA-family models  are widely employed for demand 

prediction [14]. Such models predict the OD demand for one 

or more discrete time intervals by encountering the history 

demand variation. The models consist of an autoregressive 

(AR) and a moving average (MA) parts. The principle 

assumption of the ARIMA models is the stationarity of the 

forecasted variable. In other words, the mean and variance of 

the variable should remain constant. However, in case of 

detecting a specific trend in the series, some techniques such 

as logarithmic transformation or differentiation can be 

employed to make series stationarity. 

In this study, we first estimate the dynamic OD trip 

tables through an optimization framework. Thereafter, OD 

flows are predicted for the next time-intervals by using the 

traditional ARIMA models. Although it has been shown that 

the performance of some more advanced OD prediction 
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methods can outperform the ARIMA, its prediction is usually 

considered as a reliable baseline.  Finally, the calibrated DTA 

model is employed to investigate traffic prediction in an 

incident analysis case study for a major corridor in Sydney, 

Australia. The rest of the paper is organized as follow. The 

next section describes the methodology proposed in this study. 

Section 3 presents some results for the application of the 

model in incident analysis. The last section provides a 

conclusion and draws some future research extensions. 

2. Methodology 

The essential objective of the OD demand estimation 

problem is to minimize the error between the simulated and 

the observed traffic measurements. The OD demand 

estimation problem is expressed as a system of equations in 

which the unknown parameters are OD flows, and each 

equation represents the combination of OD flows crossing an 

observed traffic link. Once the system of equations is solved, 

a set of estimated OD demand flows is obtained which should 

be evaluated by using a traffic assignment model. If simulated 

flows are close enough to the observed flows, the estimated 

OD demand matrices are accepted as a final solution. 

Otherwise, the mentioned procedure should be repeated until 

the desired termination criterion is met. In this study, we used 

a bi-level optimization problem in which the upper level 

contains the system of equations to be solved and a DTA 

model in the lower level evaluates the changes in the OD 

demand. In addition to reducing the deviation between 

simulated and observed traffic data, another term in the upper 

level seeks to keep the estimated demand as close as possible 

to the initial demand. The latter term assists the solution to 

avoid merging to the local solutions which far from the initial 

demand flows. We express the problem mathematically as 

follows: 

min 𝜔.  ∑ ∑(𝑥𝑖
𝑡 − �̂�𝑖

𝑡)2

𝑇

𝑡=1𝑖∈𝐼

+ (1 − 𝜔). ∑ ∑(𝑦𝑎
𝑡 − �̂�𝑎

𝑡)2

𝑇

𝑡=1𝑎∈𝐴

 

𝑦𝑎
ℎ = ∑ ∑ 𝑝𝑎,𝑖

ℎ,𝑡(𝑋)𝑥𝑖
𝑡

ℎ

𝑡=1𝑖∈𝐼

 

(1) 

where, 

 �̂�𝑖
𝑡, 𝑥𝑖

𝑡 are the initial and estimated demand flow of OD pair 

i (i ϵ I) at time period t, 

�̂�𝑎
ℎ, 𝑦𝑎

ℎ are the observed and estimated link flow in link “a” at 

a time period h (a ϵ A, h=[1,T]), 

𝑝𝑎,𝑖
ℎ,𝑡

 is the assignment proportion of 𝑥𝑖
𝑡 that passes link “a” 

during a time period h, 

𝜔 is the reliability weight on the initial demand data. 

 

We implemented the Problem (1) in the GAMS 

platform and used the KNITRO solver [15] to obtain the 

solution [16]. The termination criterion is assumed to be met 

when the variation of the model’s fit measurement is less than 

a specific value in successive iterations. R-squared (R2) is 

selected as the goodness-of-fit measurement for N observed 

link at T time intervals.  Equation 2 calculates R-squared as: 

𝑅2 = 1 −  
∑ ∑ (�̂�𝑎

ℎ −  𝑦𝑎
ℎ)2𝑇

ℎ=1𝑎∈𝐴

∑ ∑ (�̅�𝑎
ℎ −  𝑦𝑎

ℎ)
2𝑇

ℎ=1𝑎∈𝐴

 , �̅�𝑎
ℎ =  

∑ ∑  𝑦𝑎
ℎ𝑇

ℎ=1𝑎∈𝐴

𝑁 × 𝑇
 (2) 

The estimated demand for Problem (1) is considered a 

training demand set for the demand prediction module. In this 

study, we use ARIMA technique to forecast OD demand. 

Two ARIMA’s characteristics make the application of the 

model desirable for demand prediction models. First, the 

ARIMA reggresses demand fluctuation with the lagged 

demand values. Therefore, demand flows can be predicted 

when the other exogenous variables are unavailable in real-

time. Second, the ARIMA essentially inclines to concentrate 

on the means and it less digress to the extremes. This model’s 

behaviour suits for prediction of OD flow which usually has 

a smooth trend. In contrast, for link flow prediction due to the 

transition from free-flow conditions to stop-and-go traffic 

state, the perdition should shift quickly to extreme values [14]. 

Given mentioned reasons, the OD demand flows are 

predicted through ARIMA models based on the 4-hour 

morning peak period from 6:00 AM to 10:00 AM. In general, 

the ARIMA model with “𝑝  autoregressive terms” and “𝑞 

moving-average terms” takes the following form: 

𝑥𝑖
𝑡 = ∑ 𝜑𝑙  𝑥𝑖

𝑡−𝑙 + ∑ 𝜃𝑙  𝜖𝑡−𝑙 + 𝑐 + 𝜖𝑡

𝑞

𝑙=1

𝑝

𝑙=1

 (3) 

Producing an ARIMA model requires defining p and 

q in order to specify formulation. Identification of p and q 

terms involves investigating a tentative formulation for the 

model as a starting point. p and q are initially suggested to be 

taken from patterns either in the autocorrelation function 

and/or partial autocorrelation function of the series itself, or 

from the residuals of a previously estimated model [17]. After 

the general model is specified, the parameters 𝜑𝑙 , 𝜃𝑙 and c are 

estimated through a least-squares approach. 

3. Case Study 

The large-scale Sydney transport model is 

implemented at three levels of macroscopic, mesoscopic and 

microscopic modelling and includes both private and public 

transport classes [18]. The large-scale macroscopic model is 

divided into several mesoscopic and microscopic 

subnetworks. The macroscopic large-scale Sydney 

metropolitan network includes 72,065 sections, 41,063 

detectors, almost 3,600 public transport lines and 2,348 traffic 

zones. The model is mainly used for the long-term planning 

purposes and to provide any transversal demand extraction or 

baseline road network indications for several parallel sub-

networks. For any desired sub-network to be used for 

mesoscopic or microscopic traffic modelling, the model can 

generate the corresponding initial traffic demand which will 

be further refined through calibration and used for prediction 

purposes.  

The sub-networks are often modelled at the 

mesoscopic simulation level, however, in a case where more 

traffic details are required the microscopic simulation can be 

easily deployed as well. Although deployment of such 

hierarchical transport model is being acknowledged as an 

efficient approach to deal with the intensive computational 

burden of a large-scale network [19], it needs different 

calibration methods for each simulation level. In this study, 

we evaluate the proposed demand estimation and prediction 

models for one of the major subnetworks, the Victoria road 

corridor. The initial demand used in this study was obtained 

from the Sydney Transport Model (STM). The spatial 

configuration of the large-scale Sydney transport network and 

Victoria corridor are presented in Figure 1 a) and b) 

respectively.  
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Fig 1. (a) Large-scale Sydney metropolitan network and (b) Victoria corridor sub-network. 

 

We implemented the proposed demand 

estimation/prediction model on the Victoria corridor. The 

simulation is conducted for a 4h morning peak hours from 

6:00-10:00 AM using initial OD matrices extracted from the 

large-scale model and further calibrated against available 

traffic flow counts for a regular weekday in March 2017. The 

only parameter which is predefined in Problem (1) is the 

reliability weight (ω) on the deviation functions of demand 

and link flows. Considering a high value for this parameter 

means that the initial demand is reliable and the estimated 

demand keeps close to the initial demand. In contrast, low 

values indicate that we do not trust the initial OD flows and 

the estimated OD flows can be significantly different from 

the initial ones. In general, it is desirable to have more reliable 

initial OD flows and force the solution to pick up OD flows 

around the initial values. Otherwise, the solution of problem 

(1) can result in some inaccurate OD flows which make some 

unrealistic traffic conditions. Figure 2 compares the objective 

function convergence with respect to different ω values. 

Selecting very small values of the reliability weight (see the 

red line) caused sudden changes in the OD demand values 

and consequently determined the appearance of gridlock in 

the network. However, as can be seen, choosing a very high 

value for the reliability weight (ω = 0.99), reduce the 

efficiency of the solution algorithm to minimise the objective 

function. The best result obtained when ω equals to 0.9. The 

solution smoothly converges to the optimum points and the 

objective function value significantly reduces from 700,000 

to around 200,000. Defining an appropriate reliability weight 

can change from case to case and it is often selected through 

a trial and error process [19]. 

Figure 3 presents the scatter plots of observed link 

volumes versus simulated link volumes in four consecutive 

one-hour time-intervals before and after the implementation 

of the demand estimation process. 

 

 
Fig 2. Convergence of the objective function across the 

number of iterations.

Fig 3. Simulated versus observed traffic volumes in four consecutive one-hour interval; before OD estimation implementation 

(a) 6:00–7:00 am, (b) 7:00–8:00 am, (c) 8:00–9:00 am, and (d) 9:00–10:00 am. After OD estimation implementation (e) 6:00–

7:00 am, (f) 7:00–8:00 am, (g) 8:00–9:00 am, and (h) 9:00–10:00 am. 
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The calibrated 4h OD demand for the Victoria corridor 

was then transferred to the demand prediction model. There 

are over 3,000 OD pairs with various demand profiles in the 

study network. For each OD pairs an ARIMA model should 

be fit. Different parameters need to be specified (p, i, q) in the 

ARIMA model. Defining different models’ specification for 

each OD pairs requires a vast amount of modelling effort 

which would be extremely computationally intensive. As a 

result, we consider a unique model specification for all OD 

demands and estimate the model’s parameters (𝜑𝑙 , 𝜃𝑙 and c) 

for each OD pairs. To identify the best model specification (p, 

i, q), we test a few combination of lagged values on the OD 

demand series. We consider the last 30 minutes as a 

validation time window and employed two measures of 

goodness. Due to the high number of small demand values in 

the series, we use normalized root mean squared error 

(NRMSE) in addition to the classical R-squared value to 

better compare the prediction model’s performance. The 

NRMSE is calculated as 

NRMSE = √
∑ ∑ (𝑥𝑖

𝑡 − �̂�𝑖
𝑡)2𝑇

𝑡=𝑇−1𝑎∈𝐴

∑ ∑ (𝑥𝑖
𝑡 + �̂�𝑖

𝑡)𝑇
𝑡=𝑇−1𝑎∈𝐴

 (4) 

We first applied a naïve approach to forecast the 

demand model (𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡) meaning that the demand value 

of the last time interval will be the same for the next 30 

minutes with no major changes. This represent a baseline for 

further OD prediction approaches. Thereafter, four other 

ARIMA models’ specifications are compared with the test 

data set. Results obtained from different models are compared 

in Figure 4.  

As observed, all the estimated models have a better 

performance compared to the naïve estimation approach and 

among them, the ARIMA (1,0,0) (AR-1) and ARIMA (0,0,1) 

(MA-1) have the smallest errors that can be used for demand 

prediction (see Figure 5b and 5d)). Considering the demand 

values at 9:30 AM up to 10:00 AM led to a NRMSE=0.97 

while by implementing these two prediction models the error 

reduced to NRMSE=0.67 meaning a 30% improvement. 

Therefore, with an accuracy of 0.939, we are capable of 

predicting accurately the OD matrices for the next half an 

hour. These matrices can then be used in the meso/micro 

simulation model in order to obtain the predicted travel times 

in the road network. 

4. Incident Management Application 

In this section, we employ the proposed OD demand 

estimation and prediction for an incident analysis application. 

As earlier mentioned, we use the AIMSUN mesoscopic 

model for the Victoria subnetwork due to the reasonable 

computational time and acceptable replication of the traffic 

dynamics in the network. This model was built based on 

simplified car-following and lane changing model [20]. In 

this model, the acceleration and deceleration of vehicles 

assume infinity and this simplification reduces the 

computational burden significantly [21]. However, the 

simplified model fails to fully capture the complex impacts of 

vehicles’ lane changes caused by the incident. To address this 

issue, we used the microscopic simulation by selecting a 2 

kilometres area surrounding the location of the incident. It is 

notable that once an incident was detected and the 

corresponding information is transferred to the DTA model, 

the boundaries of the microsimulation model can also be 

automatically determined. This process has been tested on a 

personal laptop Intel core i7 which took less than 30s. 

We then considered a reported incident on the Anzac 

Bridge towards the Sydney central business district (CBD) as 

shown in Figure 5.  Two lanes have been affected by the 

incident which took place at 09:57 AM. The incident 

information (location and the number of lanes affected) are 

transferred to the simulation model automatically from the 

incident detection model [18]. On the other side, the demand 

prediction module is triggered to forecast the demand starting 

from 10:00 AM for the next half hour. We used the AR-1 

model due to its high performance previously proved in 

model validation step. Since the incident is located in a 

crucial link, there are not too many routes that travellers can 

take to avoid the incident. Therefore, we explore the impact 

of the incident duration on the total travel time in the network 

and the extra delay it caused in the next half an hour. 

 

 

Fig 4. Validation of demand forecasting models: (a) no model, ARIMA (b) (1,0,0), (c) (1,1,0), (d) (0,0,1), (e) (0,1,1).  
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Fig 5. The configuration of the incident area, Anzac Bridge, 

Sydney.  

Figure 6 presents the impact of an incident duration on 

the traffic flows and network delay. We basically simulated 

what would be the impact on the traffic flow if the incident 

would last for 3minutes, 5 minutes, 7 minutes and 10 minutes. 

Figure 6 shows that a short incident duration (less than 5 

minutes) have not significantly reduced the link performance 

in the next 30 minutes time-interval. However, if the incident 

would last more than 7 or even 10 minutes, the impact on the 

flow is significantly higher (which is reducing from almost 

10,000 to 8,000 veh/hr – a 20% reduction in the traffic flow 

in the morning peak hours). That means that severe bottleneck 

will appear in the upper stream of the network and the impact 

on the network will be more sever and it will take a longer 

time before the traffic will re-establish to a normal condition.  

 

 

 
Fig 6. (a) Traffic flow passing through the bridge (b) 

Averaged delay for travellers in the area. 

 

Figure 6 showcases once again the average delay on 

the network which re-iterates the previous finding: every 3 

minutes increase in the total duration of an incident would 

lead in time to an almost exponential increase of the 

experienced network delay. For example, an incident of 10 

minutes would produce an average delay which is almost 5 

times higher than if the network wouldn’t experience any 

incident at all.  

The finding showcases the power of the proposed 

approach and the benefits that it brings to traffic management 

centres for which every minute in in the incident clearance is 

extremely importance. By coupling together OD prediction 

and microsimulation models one can accurately estimate the 

total impact of real accidents and their effect on the network. 

5. Conclusion 

This study proposed an efficient OD estimation and 

prediction approach to reinforce a simulation-based DTA 

model for operational and planning applications. The 

proposed approach initially calibrates the DTA model based 

on the most updated archived traffic data and then use it for 

demand prediction for the next time interval. A bi-level 

dynamic OD demand estimation problem was formulated and 

solved iteratively. The performance of the model was also 

investigated for the short-term OD prediction. Results show 

the high capability of the proposed dynamic OD demand 

estimation to improve the goodness of fit. Moreover, an 

application of the well-calibrated model (R2 =0.93) is 

presented to show the applicability of the model for daily 

network operation purposes under incident circumstances. 

Worthing to note that this paper represent an ongoing study 

for incident analysis in real-time applications. The authors 

have to further validate the proposed approach using more 

real incidents data to ensure the applicability of the proposed 

framework in real-world incident management analysis. 

Limitations, future extensions 

Several limitations exist in this study that can be 

addressed for future studies. Given the available traffic data, 

we only considered a 4-hour OD demand as the training time 

interval. It is preferable to extend this time interval to entire 

day. Moreover, advanced machine learning techniques can be 

used to investigate their performances with the classical time 

series approach proposed in this paper. Finally, it is well-

acknowledged that calibrating the model based on traffic 

volumes alone may be inefficient particularly in highly 

congested urban areas. Integrating other traffic information 

can increase the reliability of the proposed calibration 

framework for real applications.  
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