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Abstract: Atmospheric transmissivity (τ) is a critical factor in climatology, which affects surface
energy balance, measured at a limited number of meteorological stations worldwide. With the limited
availability of meteorological datasets in remote areas across different climatic regions, estimation
of τ is becoming a challenging task for adequate hydrological, climatic, and crop modeling studies.
The availability of solar radiation data is comparatively less accessible on a global scale than the
temperature and precipitation datasets, which makes it necessary to develop methods to estimate
τ. Most of the previous studies provided region specific datasets of τ, which usually provide
local assessments. Hence, there is a necessity to give the empirical models for τ estimation on a
global scale that can be easily assessed. This study presents the analysis of the τ relationship with
varying geographic features and climatic factors like latitude, aridity index, cloud cover, precipitation,
temperature, diurnal temperature range, and elevation. In addition to these factors, the applicability
of these relationships was evaluated for different climate types. Thus, empirical models have been
proposed for each climate type to estimate τ by using the most effective factors such as cloud cover
and aridity index. The cloud cover is an important yet often overlooked factor that can be used to
determine the global atmospheric transmissivity. The empirical relationship and statistical indicator
provided the best performance in equatorial climates as the coefficient of determination (r2) was 0.88
relatively higher than the warm temperate (r2 = 0.74) and arid regions (r2 = 0.46). According to the
results, it is believed that the analysis presented in this work is applicable for estimating the τ in
different ecosystems across the globe.

Keywords: atmospheric transmissivity; solar radiation; aridity index; cloud cover; Fluxnet;
Ameriflux; Ozflux

1. Introduction

Atmospheric transmissivity (τ) influences the surface energy balance by determining
the fraction of incoming solar radiation reaching the surface to the one at the top of the
atmosphere [1,2]. Temporal distribution of incoming solar radiation and its magnitude are
significant inputs to many modeling studies due to their roles in ecological and physical
processes. Therefore, complete and accurate representation of τ is crucial for modeling
studies related to climate, hydrology, ecology, carbon balances, and agronomy [3–7]. The
growing demand of τ in modeling studies creates a need to develop empirical relation-
ships with different meteorological factors. These empirical relationships can be used in
parsimonious models under different climatic conditions.

Given the importance of τ for modeling studies, the measurement of τ is relatively
scarce because of the cost, maintenance, and calibration requirements of the instruments
used for measuring solar radiation [8]. In the absence of measured global radiation, empiri-
cal equations were developed to estimate global solar radiation from other climate variables,
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which are typically measured at the meteorological stations [2,9–12]. There are several rigor-
ous models that can be categorized into four categories: empirical, parametrization, look-up
table, and machine learning models [13]. Empirical models have been utilized in previous
studies that have proposed temperature-driven, sunshine driven, and cloud driven models.
For instance, Quej et al. [14] utilized precipitation and relative humidity for the estimation
of solar radiation in Mexico. In other efforts carried out by Zhao et al. [15], they developed
a complex model using sunshine hours and air pollution index. Kirmani et al. [16] used
wind speed and precipitation data for the estimation of monthly solar radiation in India.
Various other models based on regression and artificial neural networks have been devel-
oped for the estimation of average global solar radiation [17–19]. However, these methods
are mostly regionally restricted, and the global-scale comparison of factors affecting τ
remains unclear in the literature.

Previous studies have shown that τ depends on atmospheric conditions such as cloud
amount, cloud optical thickness, the optical path length of the atmosphere, atmospheric
absorption characteristics, scattering, water vapor, aerosol, sunshine duration, mean an-
nual precipitation (MAP), mean annual temperature (MAT), and diurnal temperature
range (DTR), and a geographic feature of location (i.e., elevation) [2,10,11,20,21]. The
aerosol content of the atmosphere has a direct effect on atmospheric transmissivity by
modifying the solar radiation and infrared radiation in the earth–atmosphere coupled
system [22,23]. Indirectly, aerosol affects the precipitation production processes by influ-
encing the concentration of cloud condensation nuclei, radiative properties, cloud lifetimes,
and by modifying cloud physical processes [24–27]. Cloud feedback occurs because clouds
both reflect solar radiation, causing cooling, and trap outgoing long-wave radiation, caus-
ing warming. Depending on the height, location, and the type of clouds with their related
optical properties, changes in cloud amount can cause either warming or cooling. Therefore,
we selected cloud cover as an important factor to study its relationship with τ. Most of
the previous studies focused their interest on a limited number of factors [2,20,21] that are
generally site specific. Among all the factors affecting τ, the largest part of the uncertainty
to estimate the incoming solar radiation comes from the cloud factor [28]. However, the im-
portance of cloud cover and its possible effects on τ have not been thoroughly investigated
on a global scale.

Cloud cover affects τ due to its control on the amount of incoming solar radiation and
sunshine duration [29–32]. Moreover, cloud coverage also affects the thermal regime of
the surface and can be linked with DTR, which can be further correlated with τ [33–35].
In addition to regulating the amount of global radiation and exposure time, cloudiness
determines the partitioning of global radiation into the direct and diffuse components, a
discrimination that is essential for ecosystem productivity in vegetation modeling [36,37].
Cloudiness affects the type and the quantity of solar radiation that falls on the surface,
and its observation in the past was mostly limited by human eyesight and mainly based
on its effects over land. The cloud measurements can be done by the reanalysis products
such as Modern-Era Retrospective Analysis for Research and Applications (MERRA; [38]),
the ECMWF’s Fifth generation Reanalysis (ERA5; [39]), Japanese 55-year Reanalysis (JRA-
55; [40]), and the China Meteorological Administration Reanalysis data (CRA; [41]), which
are widely used and compared in weather and climate studies. Nowadays, the cloud cover
can be detected routinely on a global scale by meteorological satellites.

The use of satellite measurements for estimating solar radiation, cloud cover, and
other meteorological and surface energy budget components is becoming increasingly
common [13,42–45]. With the successful launch of the new generation satellite measure-
ments and reanalysis products such as Moderate Resolution Imaging Spectro-radiometer
(MODIS; [46]), Advanced Very High Resolution Radiometer (AVHRR; [47]), AVHRR
Pathfinder Atmospheres-Extended (PATMOS-x) dataset [48], Visible Infrared Solar-infrared
Split-window Technique (VISST; Minnis et al. [49]), Global Energy and Water Cycle Experi-
ment (GEWEX; [50]), National Oceanic and Atmospheric Administration (NOAA) High
Resolution Infrared Radiometer Sounder (HIRS; [51]), and Gridded Satellite (GridSAT; [52]),
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technological advancement in remote sensing offers new opportunities for modelers to
relate cloudiness to τ globally with applications in the field of energy, water resources, and
agriculture. In addition, three more advantages outweigh the use of remotely sensed cloud
cover over other affecting factors. First, it is freely accessible. Second, its spatial coverage
of data collection enables its use in many parts of the world. Third, this dataset can be
updated over time based on the availability of new high resolution spatial-temporal data.

Previous studies in various ecosystems have estimated τ on a regional basis [2,11,53–56];
however, there is no consensus in the literature that shows any relationship between τ with
geographic, physical, and climatic factors globally. On a global scale, the availability of
solar radiation data from meteorological stations is more restricted than for temperature
and precipitation, which makes it necessary to develop methods to estimate τ based on
more readily available data such as cloud climatologies and AI [46,57]. It is necessary to
develop a precise τ model that uses geographical location, climatic characteristics, and
underlying factors that influence τ. In light of the above facts, the current alternative is to
analyze and establish the relationship of τ with various climatic factors and geographic
features affecting it and help to model its effects on Earth’s energy balance. These results
can be utilized to optimize the location of photovoltaic or solar thermal plants as well as
enhance agricultural productivity [2].

In this study, we utilized cloud cover data to establish a global-scale relationship with
τ. Based on the data availability, we considered other climatic factors like MAP, MAT,
and DTR, along with the geographic features such as latitude and elevation. In addition,
aridity index (AI) (i.e., the ratio of mean annual precipitation to mean annual potential
evapotranspiration) [57] is used as climate proxy data in this study since it has been
neglected in previous studies. This index has been widely used for evaluating the trends of
aridity for different ecosystems [58,59]. We show that the climate proxy and remote sensing-
based derived τ relationships can improve predictions of energy fluxes in the ecosystem
as well as τ distributions with reduced spatial uncertainty compared to commonly used
single site-specific values. Applications of these new empirical relationships extend beyond
the site-specific relationships to the validation of hydrological models and applications in
solar energy. It is worth mentioning that in order to avoid the complexity in the individual
factors utilized and to make it computationally efficient, the effects of aerosol and cloud
properties are not considered in this study.

2. Data and Methods

We used global datasets and flux networks to quantify the roles of each factor affecting
τ. These roles were also investigated in various climatic zones. We first describe the sources
from where the datasets were procured, and then we explain the pre-processing of data.

2.1. Data Source

Three freely available global datasets and one global climatic classification were
used to analyze the relationship of transmissivity with cloud cover, aridity index, and
climate. First, the Ameriflux, Fluxnet, and Ozflux data of 313 different flux stations
were used for transmissivity analysis [60] to obtain the factors of interest like geographic
location, elevation, air temperature, DTR, precipitation, incoming shortwave radiation, and
shortwave radiation at the top of the atmosphere. The datasets from the three networks
occupied the entire world, mostly over the Northern Hemisphere (NH), but also with good
coverage in the Southern Hemisphere (SH). Ameriflux comprises sites from North America,
Central America, and South America; Fluxnet comprises sites from Europe, Africa, and
Asia; and Ozflux comprises locations from Australia and New Zealand. As the data density
(number of sites) is higher in the Northern Hemisphere, the analysis may be biased toward
that part of the globe.
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Second, the global cloud cover data were acquired from the Moderate Resolution
Imaging Spectro-radiometer (MODIS) dataset via an archive of twice-daily observations
(http://www.earthenv.org/; [46] accessed on 24 September 2019). These datasets integrate
15 years of twice-daily remote sensing-derived cloud observations at 1 km resolution.
They are bias-corrected and averaged by month from 2000 to 2014 and also validated
using a global observational dataset of weather reports collected at 5388 stations from 1971
to 2009 [61].

The third dataset, AI, was obtained from Zomer et al. [57] at a 1 km resolution (via
http://www.cgiar-csi.org/data/global-aridity-and-pet-database accessed on 10 October
2019). Köppen climatic classification [62] was used for the grouping of stations according to
different climatic zones and is available via the link http://koeppengeiger.vu-wien.ac.at/
on 14 November 2019. It is important to note that 38 stations located near to the ocean
(~7 km) were excluded from this analysis because of the ocean’s moderating influence on
DTR due to the development of a strong temperature inversion over the coastal waters and
the coastline [63].

2.2. Method

Figure 1 illustrates the 275 stations that we used in our analysis, which does not
include stations close to the coastal regions (Table S1, Supplementary Materials). We pre-
processed all datasets from these stations into two different zones falling under the NH
and the SH to visualize the impact of τ on each factor in a clearer way. The databases give
measurements in half-hourly or hourly intervals and contain raw data. The data required
for the analysis of τ were extracted from the raw data using MATLAB. Figure 2 shows
the detailed step-by-step procedure followed in this analysis. Initially, half-hourly data
were converted into daily-basis data by taking the average for each day for all the stations
considered in this study. Since Ameriflux and Ozflux stations do not provide estimated
shortwave radiation at the top of the atmosphere, this value was calculated using the
equations documented in Bras [64]. The latitude of the location is the only required single
input for calculating the shortwave radiation at the top of the atmosphere, SWtoa:

SWtoa =
1440

π
ScdES[ωs sin(φ) sin(δ) + cos(φ) cos(δ) sin(ωs)] (1)

where Sc is solar constant, 0.0820 MJ m−2 min−1 [65]; φ is the latitude in radians; and dES is
the relative distance between the Earth–Sun given by Equation (2):

dES = 1 + 0.033 cos
(

2π

365
DOY

)
(2)

where DOY is the day of the year [66]. ωs is the sunset hour angle (Equation (3)) and δ is
the declination of the Sun given by Equation (4):

ωs = arccos[− tan(φ) tan(δ)] (3)

δ = 0.409 sin
(

2π

365
DOY − 1.39

)
(4)

http://www.earthenv.org/
http://www.cgiar-csi.org/data/global-aridity-and-pet-database
http://www.cgiar-csi.org/data/global-aridity-and-pet-database
http://koeppengeiger.vu-wien.ac.at/
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Figure 1. Geographical distribution of sites (shown in red) used in this study spanned North America, South America, 
Europe, Asia, and Australia by considering the three flux networks namely, Ameriflux, Fluxnet, and Ozflux after exclud-
ing the coastal sites (i.e., lying near to the ocean within ~7 km). 

Thereafter, the inconsistencies in datasets arising due to the presence of null values 
and negative values were removed from the daily values of shortwave radiation. The av-
erage data for each station were then generated, and the relationships of τ with the other 
factors were analyzed. Furthermore, after completing the data pre-processing from the 
three flux networks, we extracted the data of cloud cover and AI for all stations. The DTR, 
aridity index, temperature, cloud cover, and precipitation were then calculated for each 
day. The remaining data were averaged to produce daily data at each station, except in 
the case of precipitation, which was summed. Then, we established a correlation between 
τ with cloud cover and AI for the stations across the world.  

Figure 1. Geographical distribution of sites (shown in red) used in this study spanned North America, South America,
Europe, Asia, and Australia by considering the three flux networks namely, Ameriflux, Fluxnet, and Ozflux after excluding
the coastal sites (i.e., lying near to the ocean within ~7 km).

Thereafter, the inconsistencies in datasets arising due to the presence of null values
and negative values were removed from the daily values of shortwave radiation. The
average data for each station were then generated, and the relationships of τ with the other
factors were analyzed. Furthermore, after completing the data pre-processing from the
three flux networks, we extracted the data of cloud cover and AI for all stations. The DTR,
aridity index, temperature, cloud cover, and precipitation were then calculated for each
day. The remaining data were averaged to produce daily data at each station, except in the
case of precipitation, which was summed. Then, we established a correlation between τ
with cloud cover and AI for the stations across the world.

We used the Köppen climate classification [62,67–69] to classify site locations to relate
with τ. The classification criteria for the climatic types are based on annual and monthly
sums of precipitation and mean annual and mean monthly temperatures (◦C). The basic
scheme of the climate classification consists of five major climate types, namely: A (tropical
rainy climates), B (dry climates), C (warm temperate rainy climates, mild winters), D
(boreal climates, severe winters), and E (polar climates). This analysis will help to establish
an empirical relationship for the ecohydrological and geographical factors for different
climate by using freely accessible data.



Remote Sens. 2021, 13, 1716 6 of 18Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 2. Flowchart representing the step-by-step methodology followed for the calculation of 
atmospheric transmissivity from the Ameriflux, Fluxnet, and Ozflux networks. 

We used the Köppen climate classification [62,67–69] to classify site locations to relate 
with τ. The classification criteria for the climatic types are based on annual and monthly 
sums of precipitation and mean annual and mean monthly temperatures (°C). The basic 
scheme of the climate classification consists of five major climate types, namely: A (tropi-
cal rainy climates), B (dry climates), C (warm temperate rainy climates, mild winters), D 
(boreal climates, severe winters), and E (polar climates). This analysis will help to establish 
an empirical relationship for the ecohydrological and geographical factors for different 
climate by using freely accessible data.  

Figure 2. Flowchart representing the step-by-step methodology followed for the calculation of
atmospheric transmissivity from the Ameriflux, Fluxnet, and Ozflux networks.



Remote Sens. 2021, 13, 1716 7 of 18

3. Results and Discussion

This section describes and discusses the results of the latitudinal patterns of τ and
cloud cover; we briefly compare the role of different τ affecting factors and relationships
developed with aridity and cloud cover. Furthermore, in the following subsection, τ was
analyzed based on different climate classification.

3.1. Latitudinal Pattern of Transmissivity and Cloud Cover

Figure 3 shows latitudinal variations of τ and cloud cover based on the 275 locations
across the world at different latitudes. We explored the variations of τ and cloud cover from
the NH to the SH at different latitudes (Figure 3a,b). Analysis of all stations worldwide
on a yearly basis revealed different zones of τ at various latitudes. We averaged the τ
data within 5◦ latitude bins to more clearly show the latitudinal-variations and trends of
τ with cloud cover. In the NH, τ are predominantly higher throughout the midlatitudes
(20–40◦N), reaching a maximum value of 0.71 at roughly 35◦N latitude. These locations are
of the large-scale subtropical dry zones and the major subtropical deserts, which are largely
determined by the Hadley cell (HC) associated with adiabatic heating and horizontal
divergence near the surface [70,71], which is one of the causes for a rise in the τ values
at midlatitudes. However, there is no clear trend between latitudes 0◦ to 20◦ latitudes
in both the NH and the SH. Particularly for stations that lie between the 30◦N and 55◦N
latitudes, there is an increasing trend of τ values in the NH, which may be attributed to the
increase in cloud cover over those areas, as shown in Figure 3b [46]. Similar findings at the
midlatitudes were reported in the studies of Tang and Leng [72]. At these midlatitudes,
higher values of transmissivity were observed due to global climatological mechanisms
that correspond to arid regions (e.g., the Sahara Desert) and low cloud cover. These patterns
are also consistent with the recent findings of Yao et al. [41], who showed that the reanalysis
cloud cover CRA and MODIS estimates were smaller over the subtropical high-pressure
zones and arid and semi-arid regions due to atmospheric circulation. Values of cloud cover
in these regions are consistent with Lu et al. [70]; Siedel et al. [71]; and Trentberth [73].
Minimum values of τ were observed at the equator and the poles, which is likely to be due
to the existence of significant cloud cover in these regions.

London et al. [74] documented the latitudinal distributions of the average total cloud
cover, and a similar pattern was observed in this study, as shown in Figure 3b. The trend
obtained in this study was also consistent with the pattern observed by Warren et al. [75].
Yao et al. [41] showed similar patterns of cloud cover by using the MODIS and CRA reanal-
ysis products. However, a few variations were observed due to lack of observational sites
at those particular latitudes, and also due to the presence of the Hadley cell. Furthermore,
the impact of rain shadow on the mountain and the presence of subtropical anticyclones
lead to the development of desert and wet areas at the same latitude [2,70,71,73,76]. This
phenomenon occurs in both the NH and the SH, with roughly 30◦ latitudes (Figure 3a,b).
Arid and semi-arid areas cover a big part of the Earth’s surface, which are mostly located
at ~23◦N and ~23◦S. All these complexities indicate that the impact of cloud cover on τ
is not a single factor, which controls it at similar latitudes. Hence, there exists a need to
explore the role of other factors, which may induce variability in transmissivity at a similar
latitude. Our understanding of links between cloud cover and transmissivity does not hold
a reasonable relationship for some of the stations, which may be limited by uncertainty in
the estimations (observations). This uncertainty is governed by the climatic, geographic,
and physical factors that control the spatial distribution of incoming solar radiation on the
Earth’s surface [2].
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variation of cloud cover is shown in red, and the binned averages are shown in blue. The black solid line represents the
latitudinal variation of cloud cover adapted from London et al. [74].

3.2. Transmissivity and Relationship with Other Factors

Figure 4 shows the results of different climatic, physical, and ecohydrological vari-
ables with τ. Following the latitudinal variations of cloud cover and τ, we analyzed the
relationship of different factors affecting τ. Figure 4a shows the precipitation pattern
(as MAP) with τ for all stations in the NH and the SH. Although precipitation generally
increased with cloud cover [77], the relationship of precipitation with τ was extremely
scattered in this study. This is not entirely surprising, as there are many stations where
average cloudiness is high and precipitation is relatively low (e.g., Leinefelde, Germany).
For instance, a similar pattern is supported with the findings of Baigorria et al. [2] for the
study conducted in Peru region. Furthermore, the mean τ values are plotted as a function
of temperature (Figure 4b), where τ does not exhibit any clear pattern with temperature in
our findings. According to the hypothesis, higher average transmissivity leads to more in-
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coming shortwave radiation, hence less cloud cover [33]. However, the results in this study
did not replicate this hypothesis, which may be attributed to the fact that the temperature
does not hold strong control over τ. Elevation determines the optical path length, so it may
be one of the crucial factors that alters τ [20,21]. τ is easily expressed as a function of optical
thickness, which is a measure of the extinction properties (scattering and absorption) of the
light path. When the thickness of the atmospheric optical path length decreases, the path
length of the incoming solar radiation decreases and thus τ increases. Figure 4c shows
the relationship of τ with an elevation, which results in r2 = 0.26 for the NH. τ tends to
increase with an increase in elevation, due to the difference in the optical depth [20,21,78].
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Figure 4. Atmospheric transmissivity (τ) plotted as a function of six different variables for the NH and the SH. Locations
lying in the NH across the globe are denoted by red, and the locations lying in the SH across the globe are denoted with
blue. Six different τ affecting factors selected in this study are (a) precipitation; (b) temperature; (c) elevation; (d) diurnal
temperature range (DTR); (e) cloud cover; and (f) aridity index. All these variables are separated based on their geographical
information obtained from the Ameriflux, Fluxnet, and Ozflux stations.
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Figure 4d shows the relationship of τ with DTR, which showed an increasing trend for
both hemispheres and ranged between 3 ◦C to 17 ◦C. DTR was calculated as the difference
between daily maximum and minimum temperatures (◦C). Low DTR values corresponded
to few stations with cloud cover, while high DTR values corresponded to stations with
relatively clear sky conditions [79]. τ is linked with cloud cover; DTR is highest on bright
days, but cloudy days will have lower temperature ranges and an increase in relative
humidity. Analysis of this study is corroborated by several previous studies done at
various locations using flux towers and satellite based methods [80–83]. The findings
of this study are also consistent with Jin et al. [47], who showed a decreasing trend of
DTR by using AVHRR measurements. Additionally, similar declining trends of DTR were
observed in the Nigerian Coast region and were attributed to the decreasing cloud cover.
Furthermore, Dai et al. [82] showed that 80% of the DTR variation can be explained by the
cloud cover over the United States, Australia, and midlatitudes of Canada. Similar findings
were observed in the Himalayan region of India [84].

Figure 4e shows the τ pattern related to cloud cover variations on a global scale for all
stations in the NH and the SH. Cloud cover and τ are the two most vital environmental
components that can have wide spatial variations due to difficulty in its estimation [46].
An inverse correlation was obtained between τ and cloud cover, with the highest value
for transmittance of 0.71 at Valles Caldera Mixed Conifer, USA, which had a MAP of
665 mm and a cloud cover of 53%. This high value of transmission may be attributed to
less pollution, high elevation (~3000 m), and less scattering (Table S1 in Supplementary
Materials). On the other hand, Leinfelde, Germany showed a lesser value for τ of 0.31,
corresponding to 75.75% cloud cover and MAP of 493.91 mm (Table S1). The relationship
for τ and cloud cover was captured for most stations. The cloud cover was exceptionally
high for the site in the Congo region (89.25%) corresponding to low τ (0.35), which is also
supported with the findings of Wilson and Jetz [46]. The least cloud cover (22.17%) was
observed from Demokeya, Sudan, which was obvious as it falls under a dry region with
a MAP of about 280 mm that corresponded to the presence of low cloud cover [77]. The
findings of this study are also supported by Stanhill et al. [85], who showed the inverse
relation between τ and cloud cover using long-term observations taken at four different
locations in Israel. There was a considerable difference in the extreme τ values, with a
minimum of 0.25 and maximum of 0.71, as seen from the scattered plot.

Figure 4f shows the relationship of transmissivity as a function of AI for the NH and
the SH separately. AI is an essential factor in determining the wetness and dryness state of
an ecosystem. An inverse relation exists between τ and aridity index; τ decreases linearly
with an increase in AI since regions with high AI have a higher water supply [57] and
hence more cloud cover. Furthermore, cloud cover alters the radiative distribution, which
reduces τ [86]. However, the τ values are higher in high aridity regions (AI is low), which
relates to water stressed conditions and less cloud cover. The highest value of AI (2.08)
was observed at Lackenberg (Germany), which falls in the NH with τ of 0.40 and MAP
was 937 mm, whereas the lowest value of AI (0.13) was observed at Lindcove Orange
Orchard (USA) with a τ of 0.56. In the SH, sites did not show a strong relationship toward
high aridity regions and in order to elucidate this relationship, it would require a greater
number of sites. Most of the NH sites having an AI value between zero and one have
higher variability, associated with other factors. A similar trend of the aridity indices was
found by the Lin et al. [87] in China in the NH and central Africa in the SH. Other studies
by Feng and Fu [88] and Cook et al. [89] also showed similar patterns of aridity in western
North America, Central America, the Mediterranean, and southern Africa.
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After comparing all factors, two factors, cloud cover and aridity, were dominant based
on the statistical indicators. These factors can be selected to establish relationships across
the globe and can also be selected for different climatic zones as detailed in later sections.
When selecting the best factor for global estimation, the relationship of τ with cloud cover
was found to be reasonable (r2 = 0.62), [90]. Compared with cloud cover, the other factors
showed a weaker correlation. The correlation for AI with r2 = 0.44 was also reasonable,
followed by precipitation (r2 = 0.14) and temperature (r2 = 0.04). Precipitation can be highly
variable in time and space, and some regions have abrupt changes (rain-shadows) whereas
temperature generally follows relatively simple gradients of latitude and elevation, and
coastal effects [63]. In general, patterns documented in this study suggest satisfactory
correlation with some factors. Moreover, cloud cover and AI reflected reasonable r2 values,
which suggests that these two factors can be used as a covariate in hydrological and
biogeochemical models for global use. Therefore, we took the cloud cover and AI as
the major factors to quantify the transmissivity relationship for all stations. Cloud cover
and aridity act as a surrogate for the estimation of transmissivity as they both strongly
relate to transmissivity.

3.3. Monthly Variations of Transmissivity with Cloud Cover

In Figure 5, we included the monthly variations of cloud cover in order to better
understand the seasonal patterns of τ in the NH and the SH. We explored these patterns by
averaging daily measurements of cloud cover for each month [46]. An inverse correlation
between cloud cover and τ of solar radiation was found in terms of monthly values.
Mean cloud cover patterns in the NH calculated for summer (April–September) and
winter (October–March) seasons showed that the transmissivity was greatest for summer
periods, with clear skies and less cloudy days. In winter months, low transmissivity
values were observed as a result of high cloud cover in the NH. The increase in the
transmissivity value in summer corresponds to the characteristics of the dry season with
a decrease in cloud cover and an increase in the number of clear-sky days. Additionally,
reduction in transmissivity in winter can be linked to solar zenith angle. Longman et al. [56]
showed that for low zenith angle (i.e., for more vertical sun and minimum optical path
length), underestimation of atmospheric transmission was greatest, while for high zenith
angle (low sun, long optical path length), it overestimated transmissivity for some of
the stations. Similar findings of the seasonal mean cloud cover were reported by Yao
et al. [41] using ERA5, CRA, and MODIS. Additionally, the findings in this study are also
in line with results obtained by Poudyal et al. [91], who reported average τ values for
winter, spring, summer, and autumn of 0.75, 0.61, 0.33, and 0.55, respectively. Tang and
Leng [72] and Warren et al. [75] showed that the correlation between τ and cloud cover
was strong in summer due to the presence of limited snow cover at higher latitudes and
large transmittance of solar radiation. At the midlatitudes, the correlation was also strong
in spring and autumn as the transmittance was large. Incorporating this understanding of
cloud cover, we can improve knowledge of the estimation of τ by using linear regression
and interpolation. Henceforth, the cloud cover can be very well related to transmissivity
on a monthly scale, and is useful for parsimonious models to see the variation in several
hydrological processes embedded in it.
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3.4. Embedded Relationship of Aridity and Cloud Cover with Atmospheric Transmissivity

Figure 6 simultaneously shows the relationship of τ with aridity and cloud cover,
which helps understand the influence of these two important factors. The cloud cover
values have an inverse relation with τ with r2 = 0.51. Higher aridity index (AI) values
describe the regions that are in wet conditions. The AI values had an inverse correlation
with τ in the range of 0 to 1.5 roughly (Figure 6), however, aridity trends were not globally
uniform as there were few points, which created noise in the relationship. The majority of
the AI values were in the zone of 0 to 2 (as shown in Figure 4f), and within those, about 20%
presented a value of less than 0.5 corresponding to dry climate, and the rest corresponding
to wet climate. Wetter condition implies that there is an increase in cloud cover, which leads
to more precipitation [72]. Wetter climate along with atmospheric circulation associated
with temperature advection may play an important role in modulating both cloudiness
and aridity [72]. Cloud in the atmosphere increases the vapor pressure and dampens the
temperature. Thus, the change in solar radiation can alter the energy input of land surface
and further impact the temperature, causing a decrease in τ. Low AI values correspond to
dry conditions, and since in dry conditions there is less precipitation and cloud cover, the
scattering of solar radiation was the minimum. The effort was made to relate AI with τ
because it is an ecohydrological factor [92,93], which is used in various modeling studies.
This was also done because AI data access is free for users and, therefore can easily be
used for modeling and estimating the value of τ. Water limitation drives the dynamics
of arid regions, with precipitation being the main controlling factor, whereas energy
limitation drives the dynamics of humid regions, with PET having more importance [94].
Except for a few sites over the United States, the findings of this study are consistent with
results that have shown that the aridity index is negatively correlated with precipitation.
Qian et al. [95] provided an analysis of the aridity and transmittance over the Mississippi
River Basin and found that a decrease in τ over the region was a direct result of an increase
in cloud cover, evapotranspiration, and precipitation.
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3.5. Atmospheric Transmissivity Based on Köppen Classification

Analyzing different factors affecting τ, we further investigated the relationship be-
tween τ and cloud cover for various climatic regions, and its regionalization can be a useful
tool for extrapolation in various hydrological studies. Figure 7 shows the distribution of
the study sites based on Köppen classification with their accuracy of τ values evaluated in
different climatic zones. The τ for three different ecosystems such as equatorial, arid, and
warm temperate regions were analyzed. The grouping of areas follows Köppen classifica-
tion [62] after removing some of the classification regions as they did not have a sufficient
number of stations to represent the ecosystem. Based on these climatic zones, we divided
our stations and analyzed the inverse relationship between transmissivity and cloud cover,
and quantified the best fit linear trend. A good agreement was found for equatorial regions
(Figure 7a) with r2 = 0.88 and for warm temperate regions (Figure 7c) with r2 = 0.74; arid
regions (Figure 7b) showed a lower correlation of r2 = 0.46, which is still reasonable. The
linear relationship developed for the equatorial, arid regions, and warm temperate are
represented by Equations (5)–(7), respectively, given as:

y = −0.0054x + 0.86 (5)

y = −0.004x + 0.76 (6)

y = −0.0057x + 0.83 (7)
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types based on Köppen climate classification: (a) equatorial, (b) arid, and (c) warm temperate regions.

It can be concluded that the relationship between cloud cover and transmissivity is
stronger when the data are classified using the Köppen climate types, with r2 values of the
order of 0.5 or larger.

Transmissivity values for equatorial climates ranged from 0.35 to 0.63; cloud cover
showed values between 44% and 89%. These estimates from the different climatic regions
are well in line with the findings from Yao et al. [41]. Given this, there was low transmis-
sivity in this area due to the presence of more cloud cover since precipitation and cloud
cover are directly inter-related. For arid regions, the range of cloud cover was found to be
narrow, from 22% to 53%, implying that the regions had less humidity compared with the
equatorial regions. High transmissivity values were obtained for these regions, with most
of the regions experiencing a cloud cover range of 27% to 32% (τ = ~0.68) due to low cloud
cover. In this study, the arid regions mainly comprised western parts of the United States of
America (USA), Africa, China, and Australia. For the warm temperate region, the values of
transmissivities and cloud cover were between 0.31 to 0.70 and 27% to 77.5%, respectively.
The warm temperate regions were mainly in an eastern part of the USA, Europe (mostly
Italy, Germany, France, Spain, and the Netherlands), and eastern parts of Australia. In
warm temperate climate, we had the greatest number of points, covering most of the entire
climatic region around the globe, showing a very strong correlation (r2 = 0.74).

The established relationship of the transmissivity values for all the climatic types can
be used when assessing the effects of global warming on actual water loss (i.e., evapo-
transpiration) and understanding the hydrological impacts of climate change. For a given
climate, a suitable choice of transmissivity values can be chosen based on the above rela-
tionships. Although the applicability of the different models established herein might not
be suitable for some purposes or in areas not considered here, the proposed relationships
can be used in many regions of the world with limited data availability.

4. Conclusions

The latitudinal distribution of the observed τ estimated both in the NH and the SH
shows agreement with the pattern documented in the previous literature. A comparison of
all of the τ affecting factors from different sources suggests that the aridity index and cloud
cover are promising alternatives (strong proxies) when solar radiation measurements are
not easily accessible to estimate τ. The results suggest that the temporal variations of τ
with cloud cover were captured reasonably well for the NH and the SH separately. When
analyzing different climatic regions, we found that the relationship between τ and cloud
cover was stronger in warm temperate regions than in arid and equatorial regions. How-
ever, the other two regions displayed relationships with acceptable predictive capabilities.
It should be noted that the established model is rather simple and, therefore, it is possible
that more sophisticated models may provide better results. Furthermore, the relationship
of τ with different variables is not limited to its reliance on solar radiation data for different
climate regions; it also represents a new technique for simulating evapotranspiration in hy-
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drological models and for estimating the inherent uncertainty in the radiation component
of evapotranspiration estimates [7].

The strength of this study is that it can rely exclusively on remote-sensing data and
climatic classification in the absence of ancillary ground observations. Therefore, it has
the potential to be used in estimates of the global surface energy budget. Future work
should incorporate information from more stations in South America, Asia, and Africa,
areas in which data density is low. Including a wider range of latitudes and more arid
regions would also strengthen the results and can help in the validation and improving
the reliability of the linear equations developed in this study. Additionally, natural and
anthropogenic aerosols, water vapor, cloud cover properties, and other atmospheric gases
determine the atmospheric transmission spectrum for solar radiation; therefore, our future
aim is to analyze these physical and chemical properties globally.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13091716/s1, Table S1. List of all the global sites used for the analysis of the atmo-
spheric transmissivity.
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