
PoseGate-Former: Transformer Encoder with
Trainable Gate for 3D Human Pose Estimation

using Weakly Supervised Learning

Shannan Guan1, Haiyan Lu1, and Linchao Zhu1 and Gengfa Fang2

1 Australia Artificial Intelligence Institute
2 Global Big Data Technologies Centre

University of Technology Sydney, Australia, AU

Abstract. Weakly supervised learning for 3D human pose estimation
can learn a real human structure, but it generally has lower accuracy on
reconstructing 3D poses. In this work, we present a 3D pose estimation
model using a Transformer encoder based architecture with a trainable
gate, PoseGate-Former. The model is trained using individual images
from a weakly supervised learning approach. It can reduce possibility
of overfitting on some action categories due to the addition of a train-
able gate to the Transformer encoder. We evaluated this model on two
benchmark datasets: Human3.6M and HumanEva-I. The experimental
results show that this model can obtain substantially better accuracy in
all action categories of 3D human poses in the datasets compared with
some fully-supervised 3D pose estimation approaches.
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1 Introduction

3D human pose estimation from individual monocular images aims to predict
the (x,y,z) coordinates of each key joint of a human body in the camera coor-
dinate system. It is a challenging problem in the computer vision area as the
relationship between 2D and 3D human poses can be one-to-many. There are
two main approaches to estimate 3D human pose from monocular images: su-
pervised approach and a weakly-supervised approach [4–6,8,11,12]. Although it
can learn a real human structure, the weakly-supervised approach generally has
a lower accuracy in predicting the 3D joint coordinates. Therefore, it is highly
desirable to develop a new method to improve the accuracy of 3D human pose
estimation from the weakly supervised learning approach.

With the inspiration of the success of Transformer architecture in Computer
Vision, we proposed a new 3D pose estimation models using a modified trans-
former encoder with a trainable gate, referred to as PoseGate-Former, and
this model is trained by using a weakly supervised learning approach. Compared
with fully connected neural networks, self-attention mechanism in a transformer
architecture could learn the relations among human key joints and improve the
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accuracy of 3D human pose estimation using a weakly supervised learning ap-
proach.

We evaluate our model on two benchmark datasets: 1) Human3.6M [2], and 2)
HumanEva-I [10]. It has been observed that the PoseGate-Former can improve
the estimation accuracy significantly in all action categories and improve the
performance in a few specific action categories. It can reduce 30% in average
MPJPE compared with RepNet [11], and can outperform most of supervised
learning approaches.

Our contributions are twofold: 1) Introduced the self-attention architecture
of a Transformer in 3D human pose estimation with significantly improved per-
formance by using a weakly supervised training approach and 2) Proposed the
PoseGate-Former by adding a trainable gate to the self-attention architecture of
a Transformer to reduce the possibility of overfitting on some specific action cat-
egories, evidenced by our experimental results on Human3.6M and HumanEva-I.

2 Related Work

Two approaches in the literature are relevant to this study: One is 2D to 3D
human pose conversion approaches based on individual images using a weakly
supervised learning. For example, Wandt et al. [11] proposed a weakly supervised
adversarial learning structure to lift human pose from 2D to 3D. The other one
is the Transformer learning architecture. It is promising to use a Transformer
architecture in the Computer Vision area. For examples, work in [4, 12] use a
Transformer encoder architecture to map 2D human poses to 3D poses by using
a sequence of 2D key joints extracted from videos.

3 Method

In this section, we first present our new design of a 3D pose estimator, the
PoseGate-Former, then present the weakly supervised learning structure and
lastly explain the learning procedure.

3.1 PoseGate-Former architecture for 3D Pose Estimation

As shown in Fig1 (a), the PoseGate-Former includes a trainable gate module,
there are two branches feed to the multi-head self-attention module: The left
branch is used for providing matrices Q = (q1, q2, . . . , qh), K = (k1, k2, . . . , kh),
and V = (v1, v2, . . . , vh), where qi,ki, and vi is the ith element in the matrices
Q,K and V , respectively, i = 1, 2, . . . , h. The right branch is split into two paths,
one path outputs a h dimensional gate vector G = (g1, g2, . . . , gh), and the other
path outputs a h dimensional bias vector B = (b1, b2, . . . , bh). In each path,
two fully connected layers of 100 neurons with sigmoid activation function are
used. The sigmoid activation function is used to limit the output value ranging
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Fig. 1. Part (a) shows the structure of PoseGate-Former which is the 3D pose estima-
tor. Part (b) illustrates the calculation procedure of a single head and the logic of how
h heads of self-attention scores are concatenated to multi-head self-attention scores.

from zero to one. From Fig1 (b), the self-attention score of the head i can be
calculated by:

head i =

(
softmax

(
qik

T
i√
dk

)
gi + (1− bi) gi

)
vi (1)

where gi is a gate value from gate vector G and bi is a bias value from bias vector
B. Then, the multi-head self-attention score can be obtained by concatenating
the scores of all heads: MultiHead (Q,K, V,G,B) = Concat (head1, . . . ,headh) .
Based on Eq.1, the multi-head self-attention can be expressed as:

Self-Attention(Q,K, V,G,B) = (softmax

(
QKT

√
dk

)
diag(G)

+ diag(I −B) · diag(G))V

(2)

where I is a h dimensional vector which only consists of one, and diag is a
diagonal matrix. This structure can output corresponding gate and bias values
based on different poses and effectively reduce the possibility of overfitting in
some specific action categories by correcting the multi-head self-attention scores.

3.2 Weakly Supervised Learning Structure

The weakly supervised learning structure for training the PoseGate-Former is
developed based on the training structure in [11], and shown in Fig2. In this
structure, a 2D pose is fed into the PostGate-Former to generate an estimated
3D pose. Meanwhile, this 2D pose is also fed into the camera module which
outputs a projection matrix M for simulating the camera projection. Then, 3D
pose and the generated projection matrix M are fed into a projection module
for projecting the corresponding 2D pose. During the training process, a critic
module will judge whether the generated 3D pose corresponds to a real human
shape.
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Fig. 2. The weakly supervised adversarial learning structure used in this work, which
consists of four modules: 1) a 3D pose generator module, 2) a camera estimation mod-
ule, 3) a projection module, and 4) a critic module.

3D Pose Generator Module. This module implements the PoseGate-
Former. It’s input is the extracted 2D key joints expressed as a matrix W , where
W ∈ R2×n and its output is a 3n dimensional vector that consists of (x,y,z)-
coordinates of each key joint and is reshaped to X. In following expression,
X ∈ R3×n donates the 3D pose and the (x,y,z)-coordinates of each key joint are
recorded in n columns that correspond to the inputs of this module, repectively.

Critic Module. This module is used to ensure that the generated 3D pose
corresponds to a real human shape. The estimated 3D pose from the 3D pose
generator will be transformed by a kinematic chain space (KCS) matrix [11] and
fed into a fully connected neural networks to output a single critic value for
calculating the Wasserstein loss ψ through a Wasserstein loss function [11].

Camera Module. In most instances, we do not know camera parameters to
project 3D poses, therefore, we need to build a camera module to regress camera
parameters to project 3D poses. The camera module regresses a vector with six
parameters, and the vector is reshaped to the projection matrix M ∈ R2×3.

Projection Module. This module is used to transfer the output X from
3D pose generator network to a 2D pose matrix W ′ by multiplying the 3D
pose matrix X with the projection matrix M from camera estimation network:
W ′ = MX.

3.3 Training Procedure

In order to train the PoseGate-Former, we apply three losses to guide the training
from the weakly supervised learning approach: 1) Wasserstein Loss ψ in the
last layer of critic network, 2) Camera Loss Lcam to calculate the camera loss
in the camera network, and 3) Projection Loss Lproj to minimize the errors
between the ground-truth and the estimated poses. In the training procedure,
we implemented the Improved Wasserstein GAN training method [1]. We group
different modules into two models: 1) adversarial model and 2) discriminator
model and train them separately. The adversarial model contains a complete
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learning structure as shown in Fig2, but the critic module only implements
the feed forward inference propagation without training the parameters. The
discriminator model consists of the 3D pose generator module and the critic
module, and only the critic module will be trained.

4 Model Evaluation and Discussion

There are two main evaluation protocols for evaluating the proposed methods,
both of them use the mean per joint positioning error (MPJPE), which calculates
the average Euclidean distance between the estimated joint and the correspond-
ing ground truth joint coordinates. Protocol-I directly calculates the MPJPE.
Protocol-II applies a rigid alignment between the ground truth and the estimated
poses and calculates the P-MPJPE.

4.1 Quantitative Evaluation on Human3.6M

Human3.6M is the largest public 3D human pose estimation dataset. This dataset
contains 15 categories of daily activities of 7 professional subjects. In this work,
we used 5 subjects (1, 5, 6, 7, 8) for training and 2 subjects (9, 11) for evaluating.
Table 1 shows the evaluation results on Human3.6M dataset using Protocol-I.

Table 1. Comparisons of MPJPE error from PoseGate-Former along with other state-
of-the-art 3D post estimation methods. The column WS indicates whether this ap-
proach used a weakly-supervised method. The best are shown in bold, second-best are
underlined.

Protocol-I WS Direct. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait Walk WalkD WalkT Avg.

Park et al. [7] 100.3 116.2 90.0 116.5 115.3 149.5 117.6 106.9 137.2 190.8 105.8 125.1 131.9 62.6 96.2 117.3
Zhou et al. [14] 91.8 102.4 96.7 98.8 113.4 125.2 90.0 93.8 132.2 159.0 107.0 94.4 126.0 79.0 99.0 107.3
Luo et al. [5] 68.4 77.3 70.2 71.4 75.1 86.5 69.0 76.7 88.2 103.4 73.8 72.1 83.9 58.1 65.4 76.0
Pavlakos et al. [8] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Zhou et al. [13] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.2 66.1 63.2 51.4 55.3 64.9
Martinez et al. [6] 53.3 60.8 62.9 62.7 86.4 82.4 57.8 58.7 81.9 99.8 69.1 63.9 50.9 67.1 54.8 67.5
Wandt et al. [11] X 50.0 53.5 44.7 51.6 49.0 58.7 48.8 51.3 51.1 66.0 46.6 50.6 42.5 38.8 60.4 50.9

PoseGate-Former (Ours) X 32.0 34.3 26.9 34.6 37.8 35.7 27.8 38.2 34.9 38.7 31.4 39.8 38.5 37.0 40.2 35.2

It can be seen from Table 1 that the proposed PoseGate-Former shows a sig-
nificant improvement compared with other benchmark methods. For each action
category, the PoseGate-Former is able to mitigate the overfitting problem and
the errors in each category are rapidly reduced or remain the same. The average
error reduced is 30% compared with the one from RepNet [11]. Fig.3 shows the
comparisons of reconstructed 3D poses by our PostGate-Former and the ground
truth 3D poses in the validation dataset in Human3.6M. It can be seen from
Fig.3 that all the poses were well reconstructed, even complex poses, such as
Sitting on the ground, Phoning, and Crossing legs.

4.2 Quantitative Evaluation on HumanEVA-I

Compared with Human3.6M, HumanEVA-I is a smaller dataset which contains
three action categories (Walk, Jog, Box) performed by subjects (S1, S2, S3).
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Table 2 shows the comparison results of P-MPJPE between our structure and
other few state-of-the-art approaches on HumanEva-I. It can be seen that our
PostGate-Former achieved promising performance. Compared with individual
images based fully supervised approaches, our PoseGate-Former has a better
performance across all action categories, including complex action categories
(e.g. Walk S3 subject, Box action category). Compared with video based ap-
proach [4], our PoseGate-Former also achieved a comparable performance.

Fig. 3. Visualization examples of 3D pose reconstruction for some action categories
from the validation dataset of Human3.6M. The GT columns show the ground truth
poses and PoseGate-Former columns show the reconstructed 3D poses.

Table 2. Quantitative results for reconstructing 3D pose of HumanEva-I dataset fol-
lowing Protocol-II.Video means the approach is video based, and the best in bold,
second-best underlined. Our results show P-MPJPE by using ground truth 2D labels.

HumanEVA-I
Walk Jog Box

Avg.
S1 S2 S3 S1 S2 S3 S1 S2 S3

Martinez et al. [6] 19.7 17.4 46.8 26.9 18.2 18.6 - - - -
Pavlakos et al. [8] 22.3 19.5 29.7 28.9 21.9 23.8 - - - -
Lee et al. [3] 18.6 19.9 30.5 25.7 16.8 17.7 42.8 48.1 53.4 30.3
Pavllo et al. [9] 13.9 10.2 46.6 20.9 13.1 13.8 23.8 33.7 32 23.1
Li et al. [4] (Video) 9.7 7.6 15.8 12.3 9.4 11.2 14.8 12.9 16.5 12.2

PoseGate-Former (Ours) 13.0 9.9 15.7 11.9 12.1 10.23 12.4 13.4 12.1 12.3

4.3 Ablation Study

To validate the contribution of key components of PoseGate-Former, e.g., the
self-attention layer and the trainable gate, and the impact of hyperparameters
on performance, we carried out an ablation study on Human3.6M dataset. This
study is to verify the contributions made by the self-attention layer and the
trainable gate to the performance of PoseGate-Former. In this study, we set
the dimension of the Transformer architecture dm to 256, and evaluate the
contributions in each action category based on MPJPE. We implemented the
structure/model under three conditions: 1) We fixed all self-attention scores to
1/n(n = 16). Because we take 16 key joints in Human3.6M and the sum of
self-attention scores is one, thus the average value is 1/16; 2) We use a naive
Transformer self-attention architecture; and 3) We only used one trainable value
in the gate and used a constant value 1/n(n = 16) as the bias.

It can be seen from Table 3 that the attention scores have significant impact
on the performance of our pose generator, PostGate-Former. Compared with the
naive Transformer model, a fixed self-attention score leads MPJPE to increase
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by 15%. The PoseGate-Former with a Fixed-bias column shows that one train-
able value in the gate can enhance the performance by 9% compared with the
naive Transformer model. It shows the best results in some action categories,
such as Direction, Discussion, and Sitting. However, the overall performance un-
der PoseGate-Former with a fixed bias is worse than PoseGate-Former due to
overfitting in some specific action categories.

Table 3. Ablation study on different self-attention layers in the Transformer architec-
ture. The results show MPJPE which are implemented on Human3.6M using Protocol-I
with the ground-truth 2D poses as the inputs. Fix-attn is fixing all self-attention scores,
Fix-bias is using one trainable value as gate and use a constant value as bias.

Ablation study 1 Direct. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait Walk WalkD WalkT Avg. (↓)

Transformer (Fix-attn) 42.0 42.1 41.3 54.2 46.6 51.1 43.8 49.3 46.0 48.6 53.5 57.7 50.2 55.7 53.1 48.7
Naive Transformer 31.5 35.5 33.3 41.7 39.5 43.5 33.6 37.8 37.8 66.6 35.2 47.5 46.8 41.7 50.0 41.5
PoseGate-Former (Fix-bias) 28.9 33.5 30.9 37.3 40.4 38.5 33.7 37.9 34.5 43.5 33.9 45.5 41.5 46.6 41.6 37.9
PoseGate-Former 32.0 34.3 26.9 34.6 37.8 35.7 27.8 38.2 34.9 38.7 31.4 39.8 38.5 37.0 40.2 35.2

Fig. 4. Visualization of multi-head self-attentions in PoseGate-Former, the x-axis in-
dicates input queries and y-axis show the predicted outputs. Yellow color indicates a
stronger attention.

4.4 Self-Attention Visualization.

To illustrate the multi-head self-attention mechanism, we visualized the self-
attention scores of PoseGate-Former. As shown in Fig 4, we can find that the
Head 1 focuses on Thorax joint, Head 2 focuses Spine joint. Head 4 builds the
connection among joints (11, 12, 13) and (14, 15, 16) which are grouped as left
arm and right arm. For Head 8, it connects joints (2, 3, 4) which belong to right
leg. These attention maps show that the PoseGate-Former successfully finds the
relationship between key joints, and these relationships are hard to learn by fully-
connect neural networks. This could explain why a Transformer architecture can
significantly improve the performance of 3D pose estimation model.

5 Conclusions

In this work, we develop a Transformer based PoseGate-Former to lift 2D poses
to 3D domain by using a weakly supervised learning approach. We found that
the multi-head self-attention architecture in Transformer can easily learn the
relationship among human key joints, which can significantly improve the per-
formance of 3D human pose estimator. More importantly, our trainable gate
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mechanism can effectively reduce the possibility of overfitting in some specific
action categories compared with the naive Transformer architecture and further
improve the performance of PoseGate-Former.
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