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Abstract. Topic modeling is an unsupervised natural language process-
ing approach for automatically extracting the main topics from a large
collection of documents, and simultaneously assigning the individual doc-
uments to the extracted topics. While many algorithms for topic mod-
elling have been proposed in the literature, to date there has been little
use of the popular reinforcement learning framework for this task. For
this reason, in this paper we leverage two pillars of reinforcement learn-
ing – the policy gradient theorem and the REINFORCE algorithm – to
define a novel loss function for training topic models. In the paper, the
loss function is applied to a state-of-the-art topic model based on a vari-
ational autoencoder. Experimental results on two social media datasets
have shown that the proposed approach has been able to outperform the
original variational autoencoder and other baselines in terms of evalua-
tion measures such as model perplexity and topic coherence.

Keywords: Topic models · deep neural networks · variational autoen-
coders · reinforcement learning · REINFORCE.

1 Introduction and Related Work

The continued growth of digital data sources, and especially social media, has
led to an unprecedented rise in the volume of available text documents. This
presents a major challenge for the systematic analysis of their contents, together
with their management and organisation. While until the recent past these tasks
could be undertaken based on human annotation, nowadays there is a compelling
need for computational tools that can automatically extract topics and patterns
from document collections and organise them accordingly.

In recent years, topic models have emerged as a powerful, unsupervised tool
for identifying useful structure in such vast amounts of unstructured text data.
In technical terms, a topic model is an algorithm that can efficiently discover the
main topics of a potentially large corpus of documents, and assign the individual
documents to the topics. A “topic” is commonly intended as a characteristic
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probability distribution over the words of a vocabulary. For example, a topic like
“computers” can be described by a probability distribution where words such
as “motherboard,” “CPU”, “monitor,” “mouse and the like have the highest
probabilities. In turn, individual documents can be assigned to multiple topics
in specific proportions. Topic models have proved useful for the analysis of a
variety of data, from scientific publications to user posts on social media [1].

Many topic models have been proposed over the years, primarily based on
techniques such as non-negative matrix factorization and variational inference.
Latent semantic indexing (LSI) is generally regarded as the first “proper” topic
model [4]. However, the most widespread topic model is likely the latent Dirichlet
allocation (LDA) [2]. LDA’s basic components are: 1) the word distributions
of each topic, and 2) the topic proportions of each document. Since both are
modeled as multinomial distributions, LDA conveniently uses an eponymous
Dirichlet distribution as their prior. The conjugacy between the multinomial
and the Dirichlet makes it easy to derive the posteriors and support inference
(more details are provided in the following section). In addition, many LDA
derivatives have been proposed over time, including, among others, sparse [3],
sequential [5], and hierarchical [12] versions.

Recently, neural topic models have started to appear in the literature, joining
the benefits of traditional models such as LDA with those of deep generative
models [6, 7, 13, 15, 18]. Some neural topic models have made use of generative
adversarial networks (GANs) [6, 7] and convolutional neural networks (CNNs)
[18]. However, the most effective neural topic models seem to be those based on
variational autoencoders (VAEs) [13,15]. Miao et al. in [13]. have proposed a VAE
based neural topic model using the logistic normal distribution and the stick-
breaking construction to infer the topic proportions. More recently, Srivastava
and Sutton in [15] have proposed a neural topic model integrating LDA with
a variational autoencoder, establishing state-of-the-art performance on all the
tested datasets.

Despite the many available models, to date topic modeling has made limited
use of the popular reinforcement learning framework [16]. Reinforcement learn-
ing offers the potential to leverage both differentiable and non-differentiable “re-
wards” to guide the extraction of the topics. An example of topic modeling with
reinforcement learning has been presented in [8], leveraging word-reweighting re-
wards to encourage within-topic coherence and between-topic separation. How-
ever, we are not aware of any model that has used reinforcement learning to
learn an effective policy over the topics. For this reason, in this paper we pro-
pose a topic model that uses the policy gradient theorem and the REINFORCE
algorithm [17] to improve learning of an effective topic model. Experiments per-
formed over two challenging datasets (20 Newsgroups and Amazon Fine Food
Reviews, both collected from social media) have shown that the proposed ap-
proach has achieved a better performance than all the compared approaches in
terms of topic coherence and model perplexity in a large majority of cases.
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2 Topic Modeling with Variational Autoencoders

In recent years, deep generative models have gained widespread adoption in
the deep learning community, thanks to their effective integration of features of
generative models, Bayesian inference and deep neural networks. In particular,
variational autoencoders (VAEs) have proven specially effective at learning rep-
resentations for latent variables [10], making them appealing for topic modeling.

A VAE is basically a generalized version of an autoencoder, which is a neu-
ral network subdivided into an encoder and a decoder. The encoder takes in
input a multidimensional measurement, and produces a latent representation in
output. In turn, the decoder takes in input the latent representation and pro-
duces a “reconstruction” of the original measurement. In the case of a VAE,
the reconstruction is simply meant as the probability of the measurement in
the parametrized decoder. When VAEs are used for topic modeling, the mea-
surement in input is a document representation, w (typically, a bag-of-words or
a TF-IDF vector), while the latent variable is its topic vector, θ. In turn, the
likelihood of the document representation, w, can be obtained by marginalizing
the topic vector, θ, as in:

p(w|α, β) =

∫
θ

p(w, θ|α, β)dθ (1)

where α is the parameter of the prior probability over the topics, β is the matrix
of the word distributions for all the topics, and p(w, θ|α, β) is the joint probability
of the document representation and the topic vector.

The training of a VAE aims to maximize (1) over the given document col-
lection. However, this is typically impossible to perform directly. Therefore, the
VAE sets to maximize a tractable lower bound (the evidence lower bound, or
ELBO) [10]:

L(w|α, β) =Eq(θ|w)

[
log p(w|θ, β)

]
−DKL(q(θ|w)‖p(θ|α)) (2)

Hereafter, we briefly describe the meaning of the terms in (2); further details
can be found in [10]. Term q(θ|w) (the “encoder”) estimates the probability of
the topic vector for the given document. Term log p(w|θ, β) (the “decoder”) is the
log-probability of the document given its topic vector and the word distributions;
its expectation over q(θ|w), Eq(θ|w)

[
log p(w|θ, β)

]
, is the “reconstruction term”.

Finally, term p(θ|α) is a trainable prior over the topic vectors. During training,
(2) trades off increasing the reconstruction term against reducing the Kullback-
Leibler divergence (DKL) between the encoder and the prior.

To facilitate the reparametrization of the encoder and the prior, Srivastava
and Sutton in [15] have proposed replacing the usual Dirichlet distribution with a
logistic normal distribution. Samples of a logistic normal distribution, LN (µ,Σ),
can be conveniently obtained by applying the softmax operator to samples of
a Gaussian distribution of equal parameters, N (µ,Σ). In turn, the Gaussian
distribution can be reparametrized with the common inverse transform approach.
Srivastava and Sutton’s model, called AVITM (from autoencoding variational
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inference for topic models), models the prior as p(θ|α) = LN (θ|µ(α), Σ(α)),
where µ(α) and Σ(α) are closed-form expressions for the mean and the variance
obtained with a Laplace approximation [9]. In turn, the encoder is modeled as
q(θ|w) = LN (θ|µ(w, φ1), Σ(w, φ2)), where φ1 and φ2 are the parameters of two
feed-forward neural networks that infer, respectively, the mean and covariance
of the encoder. Finally, the decoder is given by:

p(w|θ, β) = Mult(w | softmax(β)θ) (3)

where Mult() denotes the multinomial distribution, and the word distributions
are parametrized as logits rather than probabilities to bypass the simplex con-
straint during gradient descent. A second version of the decoder, inspired by
products-of-experts and nicknamed ProdLDA, first computes the product, and
then the softmax:

p(w|θ, β) = Mult(w | softmax(βθ)). (4)

3 The Proposed Approach: a VAE Topic Model with
REINFORCE

Reinforcement learning has become increasingly popular in recent years thanks
to its ability to train models beyond conventional maximum-likelihood approaches.
The main advantages of reinforcement learning are its ability to minimize non-
differentiable training objectives and its use of sampling, which permits a certain
degree of exploration in the parameter space. In the case of our model, the loss
function in (2) is an expectation over θ, the topic vector for the document, and
should therefore not depend on it. However, since the expectation is empirical
and based on typically only one sample per document, some dependence on θ
persists, and we emphasize it by noting the loss as L(θ) in the following. To
improve the estimate of the encoder distribution, q(θ|w), we choose to minimize
the predictive risk :

R = Eq(θ|w)

[
L(θ)

]
=

∫
θ

L(θ)q(θ|w)dθ (5)

which is the expectation of the loss function, L(θ), over the probability of variable
θ, the document’s topic vector. In order to minimize (5), training will attempt
to assign high probability to values of θ that cause low values of the loss, and
the vice versa, thus promoting an effective encoder. The minimization of (5) can
be performed using the policy gradient theorem [17], which ignores the indirect
dependence of the loss on the model’s parameters and only differentiates the
probability distribution in its own parameters, φ:
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∂

∂φ
R =

∫
θ

L(θ)
∂

∂φ
q(θ|w)dθ

=

∫
θ

L(θ)
∂

∂φ
log q(θ|w)q(θ|w)dθ

= Eq(θ|w)

[
L(θ)

∂

∂φ
log q(θ|w)

]
(6)

As common in practice, we compute the resulting expectation empirically
from a single sample:

∂

∂φ
R ≈ L(θ)

∂

∂φ
log q(θ|w), θ ∼ q(θ|w) (7)

The above estimator of the gradient of the predictive risk is the popular
REINFORCE, a fundamental approach of reinforcement learning which has been
applied successfully in many fields [17]. However, the REINFORCE estimator
typically suffers from high variance, often affecting the stability of training. This
issue can be mollified by subtracting a baseline, b, from the loss (an approach
known as REINFORCE with baseline):

∂

∂φ
R ≈

(
L(θ)− b

) ∂
∂φ

log q(θ|w), θ ∼ q(θ|w) (8)

With this modification, a training iteration will decrease q(θ|w) only if the
loss, L(θ), is greater than b (i.e., a remarkably bad value). Otherwise, it will
increase it or leave it unchanged. In addition, from the gradient estimator we
can derive an expression for a loss that can be automatically differentiated by
common autodiff tools3:

LREINF =
(
L(θ)− b

)
nograd

log q(θ|w) (9)

where subscript nograd prevents differentiating the subscripted term.

The VAE loss (2) and the REINFORCE loss (9) can also be conveniently
mixed, to explore trade-offs between the two. We therefore define the overall
loss as:

Loverall = L(w|α, β) + εLREINF (10)

4 Experiments and Results

The experiments have been carried out over two probing datasets, 20 News-
groups (a benchmark for the field) and Amazon Fine Food Reviews. The 20
Newsgroups dataset comprises 18, 846 documents from news shared on social
media, while Amazon Fine Food Reviews consists of 568, 454 user-posted food
reviews. These datasets are very challenging because of their great variety of

3 http://www.autodiff.org/, https://www.tensorflow.org/guide/autodiff.
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topics and their utmost diversity of authors. As models, we have compared the
proposed approach against two strong baselines (LDA and LSI) and the state-
of-the-art topic model of Srivastava and Sutton, in its two versions AVITM and
ProdLDA. For this reason, we present the results for the corresponding versions
of our model, AVITM-REINF and ProdLDA-REINF. As hyperparameters, for
those shared with the model of Srivastava and Sutton we have used the same
values. For the loss balance parameter, ε, we have carried out a preliminary eval-
uation and chosen ε = 10−15 since the scale of LREINF is much larger. To set
the baseline, b, we have first trained the models without the REINFORCE loss
and recorded the value of their loss at convergence, noted as l; then, we have set
b in the range [l, l± 25, l± 50], using only the training set for the selection. As a
number of topics to explore, we have used the oft-used values of 20 and 50. For
performance evaluation, we have adopted two popular measures, the perplexity
and the topic coherence. The perplexity measures how poorly the model fits a
given set of data (NB: lower values are better); to assess the models’ ability to
generalize, we have measured it over the test sets. The topic coherence measures
the internal “coherence” of the extracted topics (NB: higher values are better).
Since coherence can be quantified in different ways, we report both the nor-
malized pointwise mutual information (coher-NMPI) [11] and the CV coherence
(coher-Cv) [14]. Unlike the perplexity, the coherence is computed over the train-
ing set itself to ensure that all of the topics’ M most-frequent words are present
in the set. In all the experiments, M has been set to 10. Given the significantly
different nature of the perplexity and the topic coherence, some disagreement in
their ranking of the models is to be expected.

4.1 Results

Tables 1 and 2 show the experimental results for the 20 Newsgroups dataset for
20 and 50 topics, respectively. Due to the different architecture and amount of
degrees of freedom, the perplexity values for LDA cannot be directly compared
to those of the autoencoder models; for this reason, we display them in italics.
At its turn, LSI is not a probabilistic model and the perplexity values are not
defined. When compared to the variational autoencoder approaches in terms
of coherence, both LDA and LSI have reported significantly worse results and
cannot be considered competitive. AVITM has achieved better perplexity val-
ues than ProdLDA, but ProdLDA has achieved higher coherence values in most
cases, so there is no clear winner between them. However, both our proposed
variants have been able to gain improvements over AVITM and ProdLDA, re-
spectively: compared to AVITM, AVITM-REINF has achieved better perplexity
and coherence in the case of 20 topics, and coherence in the case of 50 top-
ics; compared to ProdLDA, ProdLDA-REINF has achieved better perplexity as
well as coherence in the case of 20 topics, and coherence in the case of 50 top-
ics. Overall, AVITM-REINF has achieved the best perplexity of all compared
models, and ProdLDA-REINF the best coherence.

Tables 3 and 4 show the results for the Amazon Fine Food Reviews dataset
with 20 and 50 topics, respectively. Again, LDA and LSI have reported sig-
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Table 1. Results on the 20 Newsgroups dataset with 20 topics.

Metrics LDA LSI AVITM ProdLDA AVITM-REINF ProdLDA-REINF

Perplexity 1480.3 — 1140.2 1173.3 1137.8 1167.8

Coher-NPMI -0.033 -0.053 0.094 0.141 0.131 0.153

Coher-Cv 0.309 0.371 0.671 0.779 0.734 0.786
Table 2. Results on the 20 Newsgroups dataset with 50 topics.

Metrics LDA LSI AVITM ProdLDA AVITM-REINF ProdLDA-REINF

Perplexity 2389.6 — 1133.1 1159.9 1132.1 1162.8

Coher-NPMI -2.346 -0.062 0.117 0.111 0.115 0.141

Coher-Cv -0.053 0.294 0.704 0.751 0.699 0.763
Table 3. Results on the Amazon Fine Food Reviews dataset with 20 topics.

Metrics LDA LSI AVITM ProdLDA AVITM-REINF ProdLDA-REINF

Perplexity 1480.3 — 1000.9 1099.7 1137.8 1091.4

Coher-NPMI 0.047 0.004 0.144 0.066 0.131 0.105

Coher-Cv 0.493 0.395 0.707 0.651 0.734 0.676
Table 4. Results on the Amazon Fine Food Reviews dataset with 50 topics.

Metrics LDA LSI AVITM ProdLDA AVITM-REINF ProdLDA-REINF

Perplexity 2697.3 — 1008.6 1012.5 1008.3 1009.0

Coher-NPMI 0.033 -0.008 0.144 -0.048 0.155 0.036

Coher-Cv 0.470 0.359 0.682 0.430 0.699 0.588

nificantly lower coherence values than all the autoencoder models and cannot
be regarded as competitive. For this dataset, AVITM has neatly outperformed
ProdLDA in both perplexity and coherence. At its turn, our proposed AVITM-
REINF has outperformed AVITM in 4 out of 6 measures across 20 and 50 topics,
and should be deemed as the best performing model for this dataset. In addi-
tion, ProdLDA-REINF has improved in all measures compared to the original
ProdLDA. Overall, we can conclude that our REINFORCE-based models have
led to marked improvements over both datasets.

As further analysis, we have explored the sensitivity of the topic coherence to
the value of the baseline, b, using the test set to simultaneously probe general-
ization. To this aim, Figure 1 plots the values of the CV coherence for ProdLDA-
REINF (20 Newsgroups, 50 topics) over the range of the baseline values. The
coherence value for ProdLDA is also displayed for comparison. In this experi-
ment, the loss at convergence without REINFORCE has been l = 630, and the
best coherence value over the training set has been obtained for b = l−25 = 605.
Figure 1 shows that this has also been the best value for the test set, showing
excellent generalization. In addition, ProdLDA-REINF has achieved better co-
herence values than ProdLDA for all values of the baseline.

Finally, for a qualitative analysis of the results, Table 5 displays a few ex-
amples of topics extracted from the 20 Newsgroups dataset. The first topic ex-
tracted by LDA is clearly meaningful, but the other two (highlighted in red)
seem incoherent. The third topic extracted by AVITM also seems, at least, un-
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Fig. 1. Comparison of coher-CV on the test data for ProdLDA and ProdLDA-REINF
(20 Newsgroups, 50 topics) by varying the baseline, b.

informative. Conversely, all the examples of topics extracted by AVITM-REINF
seem consistent and properly descriptive.

Table 5. Topics discovered from the 20 Newsgroups dataset (50 topics). Seemingly
incoherent topics are highlighted in red.

LDA:
monitor keyboard event appl mac usa ibm adapt use multi
date paper star robert confer divis surface mean june present
know say dont week white go your think year that

AVITM:
car bike ride honda bmw gear motorcycle rear dod ford
game team baseball player pitcher braves hitter score pitch fan
sea newspaper mountain april ii times angeles york francisco cambridge

AVITM-REINF:
windows microsoft memory setup mode modem nt port video vga
clinton congress economic government bush country administration economy american billion
laboratory nasa shuttle lab space engineering flight institute solar spacecraft

5 Conclusion

This paper has presented a novel training loss function for VAE topic models
based on the reinforcement learning framework. In the proposed approach, we
leverage the predictive risk and the REINFORCE algorithm to learn an effective
policy over the topic vectors. The experimental results over two social media
datasets have shown that the proposed approach has been able to attain a strong
performance as measured by perplexity and topic coherence, with improvements
of up to 2.4 percentage points in NPMI coherence and 2.7 percentage points
in CV coherence compared to the runner-up. In addition, the model has given
evidence of good generalization over new documents. In the near future, we
plan to explore other architectures for the implementation of the model’s neural
networks, possibly including transformers and document embeddings.
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