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Super-resolution microscopy has allowed optical imaging to reach resolutions
well beyond the limit imposed by the diffraction of light. The advancement of super-
resolution techniques is often an application-driven endeavor. However, progress
in material science plays a central role too, as it allows for the synthesis and
engineering of nanomaterials with the unique chemical and physical properties required
to realize super-resolution imaging strategies. This aspect is the focus of this review.
We show that quantum emitters in two-dimensional hexagonal boron nitride are proving
to be excellent candidate systems for the realization of advanced high-resolution imaging
techniques, and spin-based quantum sensing applications.

Keywords: hexagonal boron-nitride, quantum emitters, super-resolution microscopy, quantum sensing, van der
waals materials

INTRODUCTION

Super-Resolution Microscopy
Super-resolution microscopy (SRM) has expanded optical imaging to resolutions well beyond the
diffraction limit of light. While traditional microscopy techniques can resolve lateral spot sizes
∼200–300 nm (and ∼500–700 nm, axially), super-resolution fluorescence microscopy can achieve
resolutions of the order of ∼20–50 nm, and in some cases <10 nm [1–3]. The key of SRM is to render
the fluorophores within the same diffraction region transiently discernible from one another for a
short period of time. This is achieved through several strategies (briefly summarized below) that
exploit the specific optical properties of photoluminescent materials, such as the non-linearity or
stochastic nature of their emission.

Resolft
In reversible saturable/switchable optical linear fluorescence transitions (RESOLFT) microscopy, the
super-resolved detection of individual emitters is achieved through non-linear optical excitation and
emission schemes. RESOLFT microscopy generalizes the principles of techniques such as stimulated
emission depletion (STED) and ground state depletion (GSD) microscopy [4, 5]. These usually
involve point-scanning strategies where the laser excitation and photoluminescence collection are
designed ad hoc. A standard approach is to co-excite the sample with a torus-shaped beam
overlapped to a confocal one to selectively induce “off” and “on” states in the fluorophores, and
separate them in time/space as the beam is scanned across the sample. RESOLFT approaches can
routinely achieve lateral resolutions of ∼40–80 nm.
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Structured Illumination
In structured illumination microscopy (SIM) the sample is
illuminated by high spatial-frequency patterns with a specific
profile e.g., parallel lines [6]. Fluorophores are resolved beyond
the diffraction limit as their emission combined with the
patterned illumination generates large and detectable
interference patterns. The incident pattern is applied in
different orientations, and the super-resolution image is
mathematically deconvolved from the interference signal. SIM
methods can reach lateral and axial resolutions of ∼125 nm and
350 nm, respectively. Higher lateral resolutions of ∼50 nm can be
achieved combining SIM with RESOLFT strategies, as for the case
of nonlinear SIM [7] and instant SIM [8].

Stochastic Methods
Rather than through point-scanning or structured excitation,
single-molecule localization microscopy (SMLM) achieves sub-
diffraction resolution via wide-field illumination. The emission of
the fluorophores is photo-controlled as these are switched “on”
and “off” by the laser. This is the case, for instance, for stochastic
optical reconstruction microscopy (STORM) [9] and
photoactivated localization microscopy (PALM) [10, 11].
Different fluorophores within the (wide-field) excitation area
are detected individually as their photo-blinking and/or
-bleaching behavior render them optically active and inactive
at different (random) times. Stochastic, state-switching detection
is also the working principle of points accumulation for imaging
in nanoscale topography (PAINT) [12]. PAINT exploits single
fluorophores becoming optically “bright” as they (reversibly)
bind to a target structure, which in turns makes them
individually distinguishable from the “dark”, unbound ones.
Stochastic methods can generally achieve lateral resolutions of
∼20–25 nm with advanced setups reaching the ∼5 nm limit.

Off-State Microscopy
A particularly powerful SRM approach is minimal photon flux
microscopy (MINFLUX) [3, 13]. The method can operate both
with scanning beam and standing wave microscopy
arrangements. It relies on detecting the position of single
fluorophores at the deep intensity minimum of e.g., a torus-
shaped excitation spot, as this is sequentially moved in space. The
location of the emitter is inferred using a statistical maximum
likelihood strategy that estimates the exact position based on
where the fluorescence intensity is ∼zero (i.e., where the emitter is
minimally excited at the center of the torus beam). MINFLUX
microscopy can achieve lateral resolutions of ∼1–3 nm. Variants
of MINFLUX include multiple off-state transitions for nanoscopy
[14] and MINFIELD [15], which are designed to improve
resolution, signal contrast and/or temporal sampling while
reducing the light dose to the sample.

The Role of Material Science in SRM
Super resolution microscopy is an active field of research whose
steady objective is to both develop new SRM approaches and
design strategies to improve existing ones. Notably, this is not a
mere application-driven endeavor. On one hand super-resolution
microscopy has certainly being advanced as an indispensable

characterization tool; for example in biology for monitoring
cellular and subcellular processes [1], or in material science for
studying complex materials [16]. On the other hand however,
SRM has certainly been advanced by the progress made in
material science and in the synthesis of nanomaterials with the
unique chemical and physical properties required to realize
super-resolution imaging strategies. This second aspect is the
focus of this review. The goal is to present and discuss recent
developments in high resolution imaging and sensing
applications based on a specific two-dimensional material:
hexagonal boron-nitride (hBN). We show that this material
possesses distinctive physical and spin-optical properties that
make it a desirable system for advanced realizations requiring
the measurement of objects and quantities at the nanoscale.

This review is organized as per the following. The first part
focuses on the hBN material and its properties. Emphasis is put
on those most relevant for high resolution (bio)imaging and (bio)
sensing such as the material’s optical properties, the synthesis of
hBN nanostructures as well as their toxicity, surface chemistry
and functionalization. The second part discusses a selection of the
most recent fundamental and practical realizations in super-
resolution microscopy and spin sensing based on quantum
emitters in hBN.

HEXAGONAL BORON-NITRIDE

Hexagonal boron-nitride (hBN) is a two-dimensional (2D) van
der Waals (vdW) material. Two-dimensional materials which
also include materials of the graphene family, 2D chalcogenides
and 2D oxides are rapidly becoming one of the most studied
subject in condensed matter physics [17]. Their low
dimensionality confers them unique properties. For instance,
they can be used to engineer heterostructure and hybrid
devices consisting of ordered stacks of atom-thin layers, with
designer properties [17, 18]. They are being widely utilized to
explore characteristic physical phenomena [17, 19, 20] such as
Moiré patterns [21], high-temperature quantum spin Hall effect
[22] and interlayer excitons with valley-/spin-contrasting degrees
of freedom [23–27]. Besides fundamental studies, vdW
heterostructures are also largely investigated for technological
realizations e.g., in electronic, opto-electronic and nanophotonic
devices such as lasers [28], diodes [29], transistors [30–33],
sensors [34, 35], photodetectors [36–38] and amplifiers [39].

Here, we focus specifically on hexagonal boron-nitride and its
recent developments as a desirable material for high-resolution
imaging and sensing. The material’s properties are therefore
presented with attention to the main key features required for
ideal (bio)probes: 1) bright and photo-stable or controllable
fluorescence, 2) small size (<10 nm), 3) non-toxicity, 4) room-
temperature operation, water solubility and ability to withstand
pH variability, 5) controllable chemistry and high binding-
specificity.

Crystalline Structure
Two-dimensional hexagonal boron-nitride is a van der Waals
material with a graphite-like crystalline structure where boron
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and nitrogen atoms are organized in atom-thin layers stacked
over one another (Figure 1A). Within each layer, B and N atoms
are bound in a honeycomb hexagonal lattice (lattice constant
2.504 Å). The B–N bonds are sp [2]-hybridized, partially covalent
and partially ionic, with the electron pairs more confined to the N
atoms due to their high electronegativity.

The different atomic layers are instead connected (layer
spacing 3.30–3.33 Å) mainly via weaker van der Waals forces
[40]. This structure makes hBN a versatile material that can be
produced using different methods and in a variety of
nanostructures. The material has a large energy bandgap of
∼5–6 eV [41], which is the basis of some of its optical
properties (Note that values of the bandgap have been
reported in the wider range 3.6–7.1 eV [42], with the
variability depending on hBN being mono- or multi-layered
and on the stacking arrangement of its layers [43, 44]).

Optical Properties
Hexagonal boron-nitride exhibits optical properties which are the
foundations of several photoluminescence-based imaging and
sensing applications. Being a wide-bandgap material, pristine
hBN is nominally transparent in the visible spectral range
(∼390–700 nm). It displays absorption and emission in the
deep ultraviolet (∼210–220 nm) due to generation and
recombination of free (∼215 nm) and bound excitons
(∼227 nm) [45, 46].

However, hBN generally hosts various type of crystalline
defects: dislocations, grain boundaries, edges, vacancies and
interstitial atoms [47–53]. Amongst these, atom-like defects

consisting of complexes of vacancies and/or foreign atoms are
of particular interest, as they give rise to characteristic
photoluminescence emission in the visible and near infrared
spectral range (Figures 1A,B) [54, 55].

Besides a few exceptions [56–58], the exact chemical
composition and structure of these defects are still unknown.
Yet, these so-called color centers are widely utilized in both
fundamental and practical realizations as they display
properties that are ideal for photoluminescence-based
applications (Figures 1A–D). These include bright, polarized
[52], multi-wavelength [54], single-photon (quantum)
emission [52], as well as chemical stability [59], high photon
purity [58, 60, 61], large stark-shift wavelength tuning [62, 63],
non-linear photo-physics compatible to super-resolution imaging
[64, 65], and addressable spin-dependent photo-emission [56].

Note also that due to the 2D nature of the host hBN material,
the photon extraction efficiency from these atom-like emitters is
comparatively high (∼106 counts/s at saturation)—as phenomena
like Fresnel and total internal reflection, scattering and re-
absorption are negligible [60]. This is ideal for
photoluminescence-based applications as high collection
efficiencies translate into high signal-to-noise ratio and thus
better signal and/or temporal resolution.

Synthesis and Nanostructures
One of the key factors for practical high-resolution imaging and
sensing applications is the ability to readily fabricate fluorescent
nanoprobes. In this regard, hBN is an extremely versatile material
as there are several methods available to synthesize 2D BN

FIGURE 1 | Properties of hexagonal boron-nitride. (A) Crystalline structure of hBN and point defects consisting of (complexes of) vacancies and foreign atoms. (B)
Multicolor photoluminescence from point defects in hBN. (C) Photoluminescence saturation curve from a single hBN defect (maximum emission rate 4.26 × 106 counts/
s). Inset: excitation (red, circles) and emission (blue, squares) polarization curves from a single hBN defect. (D) Second-order autocorrelation measurement g(2)(τ � 0) �
0.033(47) of a single hBN defect, indicating the quantum (single-photon emission) nature of the emitter (conventionally attributed for g(2)(0)<0.5). (E) Optical
image of hBN grown for 10 min on copper foil by atmospheric pressure chemical vapor deposition (APCVD). (F) Schematics of a selection of functionalized boron-nitride
nanosheets and nanotubes. Figures adapted and reprinted with permission: (A) [53] Copyright American Chemical Society 2018; (B) [54] Copyright American Chemical
Society 2016; (C) [52] Copyright Springer Nature 2015; (D) [60] Copyright American Chemical Society 2018; (E) [140] Copyright WILEY-VCH Verlag GmbH &Co. KGaA,
Weinheim 2019; (F) [111] Royal Society of Chemistry 2016.
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nanostructures, either via bottom-up or top-down methods.
Bottom-up techniques include synthesis by chemical vapor
deposition (Figure 1E) [66–68], segregation [69] and by solid-
state [70] or substitution reaction [71]. Top-down approaches
include mechanical [72–75] or chemical exfoliation [76–79], as
well as high-energy electron irradiation [80, 81].

Boron-nitride nanomaterials (BNNs) include zero-dimensional
(0D) fullerenes and nanoparticles, one-dimensional (1D)
nanotubes and nanoribbons, two-dimensional (2D) nanosheets
and three-dimensional (3D) nanoporous BN. There are extensive
reviews dedicated to the fabrication of BNNs [82, 83], here we
briefly summarize the methods developed to fabricate fluorescent
nanoparticle-like (0D) objects, which are used in some of the SRM
applications described below. Common nanofabrication
approaches include the breaking down of large hBN
microscopic crystals into nanosized hBN particles e.g., via ball-
milling [84] or acoustic cavitation [85, 86]. These methods can
usually achieve high yields of hBN nanoparticles, but their size is
relatively large (∼tens or ∼ hundreds of nm), especially for
applications in bio-imaging and nanoscale sensing. Recently
however, high yields of hBN nanoparticles less than 10 nm in
size have been achieved via cryogenic-induced cracking of hBN
[87, 88] and by hydrothermal synthesis [89]. It should be noted
that at this size the photostability of the emitters can be
compromised—giving rise to photo-blinking and
-bleaching—due to interaction with surface states and
fluctuations in the local electric field. These are associated, for
instance, with dangling bonds, other point-defects, or trapped
charges, whose effect becomes more prominent as the particle
size reduces [90–93]. These effects can partially be reduced with
surface passivation strategies [94–97], but must be taken into
account for assessing the reliability of the probes. In some cases
however, they are central to achieve super-resolution imaging and
are therefore a desirable feature.

Non-toxicity
Boron-nitride is considered a suitable material for biological and
medical applications. Boron-nitride nanomaterials (BNNs)
possess good biocompatibility [98–101] and high chemical and
mechanical stability [102, 103]. BNNs have been found not to
inhibit cell growth or induce apostosis [104, 105] and they have
been shown to be up-taken by cells [99, 106, 107]. In fact, they
have been used in practical realizations including as drug and
gene carriers [108] and in cancer treatment studies [109]. For
completeness, it should be noted that time-, dose- and cell-
dependent cytotoxicity of BNNs has been reported in a small
number of studies [108, 110].

Functionalization
The chemical functionalization of boron-nitride nanomaterials
(BNNs) is challenging as, in general, the network of B and N atom
connected by sp [2]-hybridized bonds is highly stable and
chemically inert. Nevertheless, several functionalization
strategies have been proposed and realized, albeit with low
overall yields (Figure 1F) [111]. Note that both N and B can
be utilized for functionalization whenever they are at an edge or at

a lattice defect, where they give rise to dangling bonds.
Conversely, reactions on the basal plane require opening of
the B–N bonds. Both B and N must be terminated either by
multiple functional groups (to balance the overall charge) or via a
bridging bond. The B–N bond is partly covalent and partly ionic,
which makes the nitrogen and boron atoms partially negatively
and positively charged, respectively, due to their different
electronegativity. As a result, B tends to bind to nucleophile
(electron-donating) groups while N to electrophile (electron-
accepting) ones. The list of functional groups successfully
conjugated to BN nanomaterials include hydroxyl (–OH),
amino (–NH2), ether (–OR), amine (–NHR), arcyl (–COR),
alkyl (–R), and halogen (–X) groups. The relevant
functionalization methods can be found in dedicated reviews
[111–114] and are summarized here, briefly.

Hydroxyl groups. Hydroxyl groups (–OH) are amongst the
most fundamental functionalization groups for BNNs both for
direct applications (matrix filling and bio-applications) and as
base for more complex conjugations. The functionalization of
BNNs—in particular BN nanotubes and nanosheets—with–OH
groups is generally achieved via covalent bonding to B sites and
has been realized through a series of alternative approaches
including plasma treatment, hydrothermal reactions with
NaOH, NaOH-assisted ball-milling, and reactions with H2O at
a high temperature, or using reagents that can generate OH
radicals [115–121].

Amino and amine groups. Analogously to hydroxyl (–OH)
group, the electrophilic B centers can be functionalized with
amino (–NH2) and amine (–NHR) groups. This can be achieved
for instance by plasma treatment, etched-assisted sonication and
urea-assisted ball-milling [122–125].

Alkoxy groups. Alkoxy groups consisting of an alkyl group
(carbon and hydrogen chain) bonded to an oxygen atom (–OR)
can be functionalized directly onto BN surfaces e.g., by sonication
in primary alcohols solvents [126]. Note that the–OR termination
is advantageous for applications that require (alcoholysized) BN
nanostructures to be readily dispersed in alcohol solvents.

Alkyl groups. Alkyl (–R) groups can attach to BN by forming
B–C–N bridges or directly on B or N sites. This has been realized
e.g., by carbene-assisted substitution and by reaction with a
reductant solution and hexyl-containing compounds [127, 128].

Other groups. A whole suite of other groups has been
successfully conjugated to BNNs. For instance, esterified
(–OCOR), amidated (–NHCOR) and acylated (–COR) groups
have been attached to BN nanostructures directly from their BN
precursors or via their hydroxylated (OH-BN) and aminated
(NH2-BN) intermediates [116, 118, 124, 129–132].
Functionalization with hydrogen and fluorine, as well as other
groups (–CH3, –CHO, –CN, –OH, –NH2, etc.), has been also
largely investigated as these species can significantly affect the
material properties such as the BNNs stability, bandgap energy
and electronic properties [133–135].

It is important to note that the ability to readily functionalize
BN nanostructures—e.g., for stability in physiological
environments and for target-specific labelling of subcellular
structures—is only one of the aspects that must be considered
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for super-resolution imaging and sensing. Another critical factor
to take into account is determining whether the presence of
functionalized groups on the surface of the BN nanostructures
alters their optical properties, possibly hindering their suitability
as super-resolution probes. When nanostructures are smaller
than a few nanometers, surface effects become relevant and
the fluorescence of the hosted emitter can undergo intensity
fluctuations, spectral diffusion, photoluminescence
intermittency (“blinking”) or even cease all together. These
effects are not unique to hBN but rather universal and are due
to the presence of surface states (e.g., dangling bonds, point-
defects, trapped charges and conjugated chemical species) which
can drive the emitter in different charge states or generate
random electric fields that destabilize the optical dipole
moments of the emitters via spontaneous Stark shifts [93,
136, 137].

There are two main considerations to make in this regard.
Firstly, these effects can be mitigated via specific surface
passivation of the hBN nanoprobes. Suitable approaches are
already available e.g., sol-gel coating via Stober reaction [138,
139]. Besides, establishing whether certain functionalization
groups deteriorate the optical properties of the BN nanoprobes
is both feasible and experimentally testable. Secondly, in some
cases the photo-instability of the probes is a desirable—in fact,
necessary—feature. It allows for super-resolution imaging
schemes based on the stochastic intermittency of individual,
and otherwise unresolvable, emitters between “on” and “off”
states, over time.

SUPER-RESOLUTION IMAGING WITH HBN

Standard, diffraction-limited microscopy using hexagonal boron-
nitride nanomaterials (BNNs) is well established. Yet, super-
resolution imaging has been realized only recently, thanks to
the discovery and control of specific optical properties associated
with quantum emitters in hBN (Table 1) [64, 141].

Resolft
One of the first demonstration of super-resolution imaging in
hBN was realized in 2018 [64]. The technique utilizes the non-
linear behavior of a specific class of hBN single-photon emitters
(SPEs). The exact nature and chemical structure of these hBN
emitters is unknown—the emission is likely due to transition
between energy states in the hBN bandgap associated to atom-like
defects in the lattice. Regardless, the non-linear behavior is

observed consistently for an entire family of them with zero-
phonon line (ZPL) emission wavelengths >700 nm.

Upon excitation with a laser (at 675 nm or 708 nm in the
study), the emitters produce a photoluminescence signal with a
sharp ZPL (e.g., 785 nm). When co-excited with a second low-
power (∼30× less) laser at a shorter wavelength (532 nm), the
emitters show a highly non-linear behavior characterized by an
increase in photoluminescence (∼2×) and lowering (∼5×) of
their saturation intensity. This non-linear behavior is
attributed to the 532 nm laser repumping the system from a
metastable “dark” state back to the excited “bright” state. The
existence of photo-switchable dark/bright emission states is
one of the main requirements for RESOLFT super-resolution
microscopy. This unique photo-physical behavior can thus be
harnessed to realize a variant of saturable, far-field, sub-
diffraction fluorescence nanoscopy, which is what was done
in the study.

The technique has two notable advantages. Hexagonal boron-
nitride emitters are extremely robust against high-power
illumination [143]. Whilst this is not a requirement for
RESOLFT SRM, it is a desirable feature. For instance, both in
STED and GSD the transition from the “bright” to the “dark”
state is achieved by optical saturation—via stimulated emission
depletion and ground-state depletion, respectively. This usually
requires high excitation powers, which can lead to photo-
bleaching of the emitters—a problem that has led to the
development of off-state transitions nanoscopy methods. In
addition, the issue of requiring high laser excitations for
inducing saturation is further alleviated with this approach, as
the second repumping laser effectively reduces the saturation
intensity of the emitters. This is shown in the study where a
negative-GSD-like scheme is utilized to assess the resolution of
the technique (Figure 2A).

In the first experiment, a single torus beam (708 nm) is used as
the excitation source. As the beam is scanned, the emitter is
excited by a high–null–high intensity profile and produces a
corresponding high–null–high emission pattern. In the confocal
image, the emitter’s location thus coincides with the center of the
emission null (like in standard off-state transitions nanoscopy)
and is readily extracted via mathematical deconvolution of the
inverse image (Figure 2A, right). Sub-diffraction resolution is
achieved as at higher excitation powers of the scanning torus
beam, the high–null and null–high photoluminescence emission
gradients become steeper. This effectively narrows the full width
at half-maximum (FWHM) of the emission null according to the
relation:

TABLE 1 | Super-resolution imaging techniques based on hBN emitters.

System Method Mechanism Resolution

SPEs in hBN flakes 64 RESOLFT, off-state microscopy Non-linear excitation of SPEs with repumping from metastable state(s) (63 ± 4) nm
SPEs (VB ) in hBN monolayers 141 SMLM Stochastic on/off photo-blinking between charge states (V0

B↔V−
B ) 10.7 nm

SPEs in hBN nanoparticles (≥3 nm) 87 SMLM Stochastic on/off photo-blinking <10 nm
SPEs in monolayer/bulk hBN 65 SMLM Stochastic on/off photo-blinking combined with spectral analysis ∼10 nm
SPEs (V−

B ) in multilayer hBN 142 SMLM Stochastic on/off photo-blinking due to protonation of SPEs (V−
B + H+ →VBH) ∼5–40 nm
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Δr � λ(βπn)− 1 �����
ε + Is

Im

√
(1)

where Δr is the resolution; Im is the maximum laser intensity in
the periphery of the torus, and εIm is the minimum (null)
intensity in the center. The quantity Is is the saturation
intensity, while λ and n are the wavelength and the refractive
index, respectively. The parameter β is the steepness of the point
spread function which depends on the emitter’s properties and
on the periphery-to-minimum intensity gradient of the toroidal
excitation beam.

Equation 1 shows that the resolution Δr improves (Δr
becomes smaller) when the ratio Is/Im is minimized. Generally,
in other RESOLFT approaches, this is done by increasing the
excitation laser intensity Im well above Is. This method, however,
also allows to directly reduce Is via the re-pumping mechanism.
This was demonstrated in a subsequent experiment of the study
(Figure 2A, left and center panel), where a second torus beam
(532 nm laser) was superimposed to the first one (708 nm laser).
The addition of the 532 nm toroidal beam effectively reduces Is
minimizing the ratio Is/Im, for any given intensity Im of the
excitation torus at 708 nm. The highest resolution achieved using
just the 708 nm excitation torus was (87 ± 10) nm, slightly worse

than (63 ± 4) nm obtained with the two 708 nm and 532 nm torus
beams overlapped. Both resolutions are far better than the
∼460 nm value of the confocal setup used in the study.

As a final point, it should be noted that this variant of SRM
developed using hBN emitters could be extended to other classes
of fluorophores, provided that they possess an analogous
behavior characterized by the ability of the system to be re-
pumped from the (“dark”) metastable state to the excited
(“bright”) state.

Single-Molecule Localization Microscopy
(SMLM)
Simultaneously to the approach described in §3.1, SRM was also
realized in hBN monolayers using single-molecule localization
microscopy [141]. The method exploits the on/off photo-
switching behavior (blinking) of hBN emitters, which allows
for their temporal—and thus spatial—separation, by capturing
them when they are “bright/dark” alternately, one at a time
(Figure 2B).

Note that the photo-stability of hBN emitters depends on their
local environment as, e.g., electric field fluctuations and nearby
trap states can induce phenomena such as spectral diffusion and

FIGURE 2 | RESOLFT and SMLM microscopy in hBN. (A) Super-resolution microscopy using dual torus-beam excitation. Left: schematics of the experiment.
Center: point spread function of the confocal system (green), and resolutions obtained under 708 nm torus-beam laser excitation only (violet) and adding a second
532 nm torus-beam (orange). Right: the resolution increases upon increasing the intensity of both the 708 nm and the 532 nm lasers. (B) SMLM imaging of optically
active defects in hBN reconstructed from an image sequence of 20,000 frames, display pixel size: 1 nm. With drift correction using fiducial markers, the method
achieves a resolution of 10.7 nm (C)Widefield and SMLM reconstructed image (based on 6,000 frames) of an ensemble of hBN nanoparticles (average size (3.0 ± 0.7)
nm), synthesized by cryo-exfoliation (scale bar: 5 μm). Inset: zoomed-in section showing two emitters in the super-resolved image (scale bar: 100 nm). (D) Multimodal
SMLM. Left: schematics of the experiment showing dual spatial and spectral detection. Right: Spatial and spectral distribution of centers in a CVD-grown hBN flake. A
dual spectral distribution is visible corresponding to green and red emitters with emission wavelength λ1 and λ2 (right inset). Figures adapted and reprinted with
permission: (A) [64] Copyright Springer Nature 2018; (B) [141] Copyright American Chemical society 2018; (C) [87] Copyright American Chemical society 2019; (D) [65]
Copyright American Chemical society 2019.
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blinking [144, 145]. In the case of hBN, photo-blinking is often
more prominent for small (<10 nm) and thin (∼monolayer)
nanoparticles/nanoflakes as the proximity to the surface
increases the probability of local perturbations.

In the study, the sample consisted of a hBN monolayer. The
material shows optically active emitters which are attributed to
boron monovacancies VB (i.e., a missing B atom in the hBN
lattice)—as deduced form transition electron microscopy (TEM)
analysis. The blinking behavior of the emitters is attributed to
photo-induced ionization and recombination between the
neutral V0

B and negatively charged V−
B states. For SMLM to

work, the sample must be spatially fixed with no drift over
time. This can be achieved either through the use of a closed-
loop feedback-controlled stage or, like in this study, through
post processing alignment using fiducial markers. The spatial
resolution achieved in the study is 10.7 nm (Figure 2B, right
panels).

The approach has a few desirable features. It utilizes wide-field
illumination and detection of large sample areas (∼up to tens
of μm) with fast acquisition (∼ms) and minimum damage to the
sample thanks to the low power density (∼100 kW/m2) of the
excitation laser, compared to e.g., STED microscopy. It also
allows for probing the chemical reactivity of the emitters. In
the study this was done by submerging the sample in solutions of
different pH andmonitoring differences in fluorescence behavior.
To this end, the technique was combined with balanced super-
resolution optical fluctuation imaging (bSOFI) [146], which
utilizes higher-order statistics to increase resolution and image
contrast—provided that the emitters display uncorrelated,
stochastic fluctuations.

Almost at the same time, this SMLM technique developed for
monolayer hBN was successfully implemented to investigate the
optical properties of hBN nanoparticles as small as (3.0 ± 0.7) nm,
produced by cryogenic exfoliation (Figure 2C) [87]. The merit of
the work was to demonstrate that hBN nanoparticles/nanoflakes
possess a combination of optical and size properties that make
them desirable for (bio-)imaging and sensing applications, either
via SMLM or RESOLFT microscopy.

In a follow-up study [65], this SMLM technique was further
improved to include the ability to perform spectral analysis of
the emitters and thus producing super-resolved images
containing spatial, spectral and temporal dynamics of the
emitters (Figure 2D). This was achieved by utilizing a
calcium fluoride (CaF2) filter in one of the detection paths
(Figure 2D, left). This dispersive element allowed for the
simultaneous correlation of spatial and spectral mapping of
each emitter—showcased in the study by clearly distinguishing
two families of hBN emitters one displaying
photoluminescence at ∼585 nm and the other at ∼640 nm
(Figure 2D, right panel).

A key feature of this multimodal SMLM method is the
ability to correlate different characteristics and properties of
the fluorophores, in time. For instance, the study shows the
possibility to extract differences in blinking photo-kinetics for
the two families of emitters and understand their physical origin
(e.g., charge separation or ionization of the defects, as these follow
different dynamics).

The versatility of this single-molecule localization microscopy
technique was recently highlighted in a remarkable experiment
that succeeded in imaging proton transfer phenomena in water, at
an interface with single-charge resolution (Figures 3A,B) [142].

The basic SMLM scheme is analogous to the ones described
above. Multilayer hBN flakes were irradiated in low-power
oxygen plasma to create a high density of surface defects.
These defects are hypothesized to be V−

B and show a
considerably different fluorescence behavior when exposed to
air or submerged in aqueous solutions of different pH.
Monitoring the photoluminescence at ∼2 eV (∼620 nm) reveals
that only a few emitters are luminescent in air (∼0.3 per 2 × 2 μm2

area), while many more are when the sample is submerged in
slightly acidic solutions (∼70 per 2 × 2 μm2 area, in a 3.4 pH
solution). The proposed explanation is that the V−

B defects are
optically dark but become active (emitting photons at ∼ 2 eV) as
solvated protons H+ compensate their charge through the
reaction V−

B + H+ → VBH. The SMLM technique thus allows
monitoring—with high resolution, and over time—the
occurrence of this protonation reaction in solution, at each
one of the hBN defect sites.

Notably, SMLM can capture the specific hopping of protons
between adjacent sites as these sites undergo “dark/bright”
switching events corresponding to their V−

B /VBH states. In the
study, trajectories of single protons moving from site to site over
distances up to ∼1 μm (imaging resolution ∼5–40 nm) were
monitored over time (∼180 s). Different behaviors were
observed, and it was possible to extract parameters such as
diffusion coefficients and mean square displacement of the
moving protons (Figure 3B). The study was able to clearly
show—at the single-molecule scale—the mechanism of
desorption-limited transport of protons occurring in water at a
solid/water interface between adjacent surface defects. It also
underscores how the interface provides a preferential pathway for
charge migration, which is relevant for several fields ranging from
cellular transport and signaling, to catalysis and membrane
dynamics. The study is a remarkable demonstration of the
interfacial transport of protons in relation to the surrounding
bulk water—a mechanism which, up to now, has been beyond
reach due to the inability to measure directly the motion of single
protons in water, with high-enough resolution.

Nonlinear Optical Microscopy
In the context of high-resolution imaging, nonlinear optical
microscopy deserves a special mention as it has become a
powerful tool not just for imaging but also for (2D) material
characterization [147, 148]. Nonlinear microscopy relies on
multi-photon excitation of the fluorophores via virtual states,
which produces a set of inherent benefits compared to traditional
single-photon excitation [149, 150]. These include better
fluorophores-to-background contrast due to lower background
autofluorescence [151], excitation through a favorable biological
window (NIR wavelengths, 650–900 nm, characterized by lower
absorption from hemoglobin and water) [152], as well as
improved imaging resolution [153, 154].

Nonlinear optical excitation of single-photon emitters (SPEs)
in hexagonal boron nitride has been demonstrated [143]. In the
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study, individual atom-like defects with emission wavelength at
670 nm are excited either with a continuous laser at 532 nm or
with a pulsed laser at 708 nm (pulses’ duration 1 ps). The
dependence of the SPEs’ photon emission rate as a function
of the excitation intensity reveals that excitation with the
708 nm pulsed laser takes place via a two-photon absorption
process. In the experiment, large hBN flakes (size ∼200 nm)
were used, but the technique can be readily extended to
smaller hBN nanoparticles (size <10 nm). The results thus
demonstrate the possibility of employing nonlinear
microscopy of fluorescent hBN nanoprobes as a feasible
high-resolution imaging strategy, complementary to super-
resolution microscopy.

BEYOND OPTICAL IMAGING

Beyond SRM, hexagonal boron-nitride is showing promise as the
hardware material for another class of high-resolution sensing
applications at the nanoscale. These are based on monitoring the
spin state of individual hBN quantum emitters in response to
changes in the surrounding environment. In general, optically

active quantum defects can be separated in two categories: single-
photon emitters whose photoluminescence corresponds to
transitions between well-defined quantum states, and so-called
“spin centers” which exhibit coupling between the defects’
intrinsic spin and their optical transitions. In other words,
spin-centers display photoluminescence which is different
depending on which spin state the emitter emits from. An
archetype spin-center is the well-known nitrogen-vacancy
(NV−) center in diamond [155].

Spin-centers are sought after as potential qubits for solid-state,
room-temperature quantum computation and information
technologies [156], but also as ultra-sensitive nanoscale sensors
[157]—which is of interest here. This is because their spin state
can be manipulated and read out optically, while displaying
extreme sensitivity to the local, surrounding environment.

The discovery of spin-centers in hBN is recent [56, 58], with
the first identified one being the boron-vacancy center, V−

B . The
defect possesses distinguishable spin-optical transitions
(Figure 3C). Specifically, the V−

B has a triplet (S � 1) ground
state of multiplicity ms � 0 and ms � ± 1, separated by a zero-
field splitting (ZFS) energy Dgs � 3.46 GHz, in Planck’s
constant units h (Note that, for completeness, the degeneracy

FIGURE 3 | Proton transport and quantum sensing in hBN. (A) Top left: time series for spatial migration of luminescence at the surface of the hBN flake, detected
with wide-field SMLM (scale bar 500 nm; projected pixel size 100 nm). Right: Reconstructed trajectories showing successive activation of adjacent defects at the surface
of the flake and color-coded with increasing time. Localized defects are represented as dots, with the radius corresponding to the localization uncertainty. Bottom left:
schematic depicting luminescence migration events, consisting of successive proton adsorption, diffusion and proton desorption from the surface. (B) Top left:
large-scale mapping of proton trajectories (200 ms) measured at the surface of the hBN flake. Bottom left: representative proton trajectory with the corresponding
evolution of the square displacement (SD). Right: variation of the mean square displacement (MSD) as a function of time for the hBN flake. The dashed line is a linear fit
from which the averaged diffusion coefficient is extracted D � 2.8 × 10–14 m2 s−1. Inset: distribution of the diffusion coefficient determined on individual trajectories, with
the vertical dashed line being the average value. (C) Energy level scheme and atomic structure of the hBN V−

B center; note the triplet ground state of multiplicity ms � 0
and ms � ± 1, with a magnetic field B lifting the ms � ± 1 degeneracy. (D) Optically detected magnetic resonance (ODMR) showing manipulation and read out of the
spin state. The transitions ms � 0→ + 1 and ms � 0→ − 1 are shown by a drop in photoluminescence (ODMR contrast ΔPL/PL) at the corresponding microwave
resonant frequency. The dependence of the relative position betweenms � 0 andms � ± 1 is the basis of quantum sensing applications based on reading out the spin
state of the V−

B center. Figures adapted and reprinted with permission (A,B) [142] Copyright Springer Nature 2020 (C,D) [56] Copyright Springer Nature 2020.
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of the ms � ± 1 states is lifted due to the small off-axial
component of the ZFS, Egs � 50 MHz).

Optical excitation and cycling through the excited state of the
defect ‘spin-polarize’ it in the ms � 0 state, by preferentially
populating it (Figure 3C). Applying a microwave field
resonant with the transitions ms � 0↔ ± 1 allows
manipulating the defect’s spin state, which can then be read
out, optically—as the excitation-decay cycle from the ms � 0
ground state scatters more photons than the one from the ms �
± 1 one. These features are the basis of optically detected
magnetic resonance (ODMR) in which the spin state of
individual point-like defects can be prepared, manipulated,
and read out optically at room temperature (Figure 3D).

This is relevant for high resolution, quantum sensing
applications as the ground state ZFS splitting (Dgs, Egs) can
vary in response to external stimuli such as e.g., magnetic
and electric fields, local chemistry or temperature. These
quantities can therefore be measured directly using the V−

B
defect in hBN as nanoprobes, simply by measuring changes in
photoluminescence.

Spin defects in three-dimensional materials, such as diamond
(e.g., nitrogen vacancy and silicon vacancy centers) [155, 158],
silicon carbide (e.g., di-vacancy centers) [159, 160] and rare earth
materials (e.g., Yb ions in yttrium orthovanadate hosts) [161, 162]
have been extensively used for quantum sensing realizations.
Examples include single-spin detection and magnetometry [163,
164], electrometry [165], decoherence microscopy [166],
thermometry [167], optical trapping [168] and Forster
resonance energy transfer [169, 170]. These exceptional
demonstrations raise the question of how hBN V−

B centers
benchmark in this context, especially since—currently—all the
realizations involving hBN V−

B centers have been fundamental
rather than practical.

There are several aspects that make spin-defects in hBN
particularly attractive for quantum sensing applications. Unlike
3D semiconductor hosts, layered hBN are less prone to having
unsaturated dangling bonds. These can act as fluctuating electron
spins that generate magnetic noise and degrade the spin
coherence—which is crucial for applications in quantum
sensing [171].

The 2D nature of hBN confers it several additional, unique
features. It allows for extremely high photon-extraction
efficiencies. In fact, the out-coupling efficiency of hBN
emitters is near-unity, as they are not surrounded by any high
refractive index material and are not affected by Fresnel or total
internal reflection, scattering and re-absorption [60]. This is
desirable for nanoscale sensing applications based on
photoluminescence detection, for it increases the signal-to-
noise ratio and, thus, signal and/or temporal resolution.

Furthermore, the weak van der Waals forces between layers
allow hBN to be readily transferred and integrated with other
(hybrid) nanoscale systems made e.g., of 2D materials
heterostructures [17, 172–174]. It also allows for the accurate
placement of individual nanoprobe with respect to target areas or
objects. This was demonstrated in a study that used a fluorescent
hBN nanoparticle as an optical nanothermometer—placed
deterministically onto a micro-circuit—to measure local

temperature and potential hot spots in target areas of the
device [175].

Another feature granted by the 2D nature of hBN is the
potential close proximity between the emitter-sensors and the
object or quantity to be sensed. This can be ∼(sub)nm, which is
highly desirable as, for instance in magnetometry, dipolar
magnetic fields decay as the third inverse power of the
distance between sensor and spin [176], which makes their
relative separation a critical limiting factor for the sensitivity
of the technique.

It should be noted that the field of spin-based quantum
sensing, whilst well established in 3D semiconductors such as
diamond, is at its absolute infancy in 2D hBN. The spin-
addressable properties of the V−

B have been discovered only
recently [56, 57]. In fact, while it has been shown that V−

B
defects can be engineered in hBN via targeted irradiation, the
isolation of individual defects is still beyond reach.

The research is certainly very active in the field. Shortly after
the report of the V−

B center, a second and different type of spin-
defect has been identified in hBN [58]. The defect is carbon-
related (possibly the negatively charged VBC−

N). It emits with a
sharp zero-phonon line wavelength at ∼585 nm and is spin-active
(S≥ 1/2) with a detectable ODMR spectrum. Again, the defect has
not been isolated at a single-center level (ODMR has only been
observed in ensemble, currently), but there is optimism as
emission at ∼585 nm from single centers is common in hBN.

CONCLUSION AND OUTLOOK

Two-dimensional materials have garnered a lot of attention in
recent years, mostly because their low dimensionality and relative
ease of fabrication have allowed the accomplishment of a whole
suite of interesting demonstrations difficult to attain with
traditional 3D bulk materials. Amongst 2D materials,
hexagonal boron-nitride has become object of intense research
since 2015, when quantum (single-photon) emission from atom-
like defects has been identified [52]. While hBN color centers
have—arguably—been trailing behind their well-established
counterparts in e.g., diamond and silicon carbide, they are
quickly becoming an active field of research in their own
right. Their characteristic optical (and recently discovered)
spin properties combined with the unique physico-chemical
features granted by the low dimensionality of the hBN host
make them ideal systems for several fundamental and practical
applications—including in high resolution imaging and sensing.

In this review, we have highlighted the role hBN quantum
emitters have recently played in the realization of novel super-
resolution imaging techniques (RESOLFT and SMLM), as well as
their potential impact in advanced spin-based quantum sensing
applications. Research geared towards exploiting hBN and its
color centers for sensing and imaging is at its infancy. Future
endeavors should focus on fully identifying the origin of the
defects (besides theV−

B ) and improving material and color centers
engineering to move from fundamental demonstrations to
practical realizations. In this regard, experiments such as
observing single proton transport at the solid/water interface
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by hBN-based super-resolution microscopy are encouraging.
They show that the material is offering novel capabilities that
allow for the exploration of regimes inaccessible with alternative
methods.
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