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Abstract—In recent years, location-based services (LB-
S) enjoy a rapidly increasing popularity among the vari-
ous mobile applications. As a result, how to protect users’
location privacy has become an urgent issue. To alleviate
this issue, the dummy location selection (DLS) algorithm
based on the k-anonymity criterion has been studied in
many existing works, and it can provide protection against
the adversary with the query probability information.
However, such a method losses its effectiveness when
facing the hybrid Retrospect attack proposed in this
paper. The proposed attacking method is designed to
capture the spatial continuity between adjacent locations
along with the temporal information in continuous queries
of the whole movement trajectory. To demonstrate the
effectiveness of the proposed attacking method, two real-
life datasets are evaluated in comparison with the state-
of-the-art algorithms.

Index Terms—k-anonymity, continuous queries,
privacy-preserving, location-based services

I. INTRODUCTION

With the rapid development of the Internet-based
applications and the popularity of smart mobile termi-
nals, location-based services (LBS) enjoy a burgeoning
development in real-life applications. Typical instances
include finding a nearby parking lot, querying the
fastest route to a destination, or checking local weather.
However, privacy risks exist when users sending their
personal information to the LBS providers, and an
adversary may infer sensitive information from the
collected data. Therefore, how to prevent the privacy
leakage in the LBS becomes a hot research topic.

In [1], Samarati et al. proposed a raw data protection
method called the k-anonymity criterion, which is

designed to hide the sensitive record in other k − 1
similar records. This method is first applied in the
location privacy protection in [2] that dummy locations
with the real one are sent to the LBS service provider.
Then, the disclosure probability can be decreased to
1
k in the single query. Several following up works [3],
[4] based on the k-anonymity were then proposed to
protect LBS privacy. Nevertheless, there is no defi-
nite answer about how to choose dummy locations
appropriately, and the authors in [5] indicated that
the dummy locations generated by ignoring geographic
location are more than 50% implausible. Therefore,
Yamin et al. in [3] selected the dummy locations ac-
cording to the spatial multi-swapping scheme involving
peers and fog nodes. Additionally, the dummy-location
selection (DLS) algorithm was proposed in [4], which
can select a required number of dummy locations that
closes to the user to achieve the maximum information
entropy in terms of the query probability. In detail, a
query means the user launches a LBS request, and the
DLS algorithm can achieve a k−1

k privacy protection
performance in one single query. However, it losses the
effectiveness in the scenario of continuous queries, in
which time correlation exists in adjacent queries [6].
To address this issue, the concept of cloaking region
in continuous queries was introduced in [7], and it
can resist attacks by sending a wide range of regional
locations instead of accurate location.

With the development of defensive methods, how to
discriminate fake locations also attracts increasingly



attentions. With the help of the spatial relationship,
the location-dependent attack (LDA) was proposed in
[8], which utilizes the distance constraints between
anonymity sets (ASs) at adjacent queries to exclude
part of unreasonable dummy locations. Note that, al-
though the time series factor is considered in the LDA,
it can only realize the single query attack in continuous
queries.

Recently, Shaham et al. [6] applied the Viterbi attack
in the hidden markov model (HMM) which can fully
capture the characteristics of the temporal information
in continuous queries. By this method, the multiple
location disclosure problem can be transformed into
a path selection problem in ASs and related analysis
is conducted. To tackle the Viterbi attack, they then
proposed a defensive method based on the transition
entropy. Nevertheless, due to the limitation of the H-
MM, the Viterbi attack can only consider the influence
of the previous moments on the subsequent moments
but ignores the extra information that the subsequent
moments bring to the previous ones.

With the consideration of the time factor, the DLS
algorithm is no longer able to cope with the chal-
lenge of protecting user location privacy. Therefore,
in this work, we propose an attacking method called
the Retrospect attack, which combines the spatial and
time factors to find the real trajectory of the user
in continuous queries. The main contributions of this
paper are as follows.
• We propose a hybrid retospect attack that con-

siders the impact of subsequent time stamps on
previous stamps combined with the HMM. This
algorithm can analyze the real location of the
user at a time stamp by propagating spatial attack
(PSA) and then find the movement trajectory
throughout the continuous queries by the sequent
time attack (STA).

• We validate the effectiveness of the proposed
attacking method by evaluating the comparison
on two real-life datasets with the state-of-the-art
algorithms.

The remainder of the paper is organized as follows.
Section II introduces the system model, including the
system architecture, the adversary model and the pri-
vacy metrics used in the paper. Section III illustrates
the proposed Retrospect attack algorithm. The analysis
of the proposed metrics and algorithms are provided in
Section IV. Finally, we conclude our work in Section
V.

II. SYSTEM MODEL
A. System Architecture

In this paper, the system is composed of three
entities: users, the anonymizer and one LBS server, as
shown in Fig. 1.

Real Location Dummy Location

LBS ServerAnonymizer

Q = { ID, L, t }

Qr = { ID, r, k, t }

CR

Fig. 1. Systey Model. The user sends the anonymity query request
to the LBS providers through the anonymizer, and then the LBS
providers return the request results to the user.

1) Users: One user intends to send an original query
request Qtir = {ID, r, k, ti} to the LBS server, where
ID represents the user’s unique identity, r = (x, y)
represents the real location of the user, k donates the
privacy requirement that the disclosure probability of

the real location should be
1

k
[2], and ti represents

the current time stamp, where i ∈ (1, 2, . . . , c) and c
represents the total number of queries.

2) Anonymizer: Upon receiving a user’s request
Qtir , the anonymizer generates k − 1 virtual requests
to build the anonymity set (AS). The real request
and the virtual requests constitute the new request set
Qti = {ID,L, ti}, where L represents the AS. In
continuous queries, the AS at time stamp ti can be
expressed as

Lti = (eti1 , e
ti
2 , . . . , e

ti
kti

), (1)

where etij represents the real or dummy location and
kti represents the privacy requirement at the time stamp
ti. In addition, the minimum area that surrounds Lti
denotes the cloaking region (CRti ). After the process
of the anonymizer, Qti is sent to LBS server.

3) LBS Server: The LBS server receives Qti and
returns all the query results of Lti to the user.

B. Adversary Model

In this paper, we consider that the LBS server is
honest-but-curious. It may use additional background
knowledge to dig the users’ private information. We
assume that the background knowledge includes the
following.

1) Maximum Moving Velocity: The adversary has
the speed limitation of different regions in the map.
Therefore, the adversary can estimate the maximum



moving distance within each time interval in contin-
uous queries [8]. By comparing the maximum moving
distance with the real distance between two ASs, the
adversary can exclude some unreasonable dummy lo-
cations.

2) Hidden Markov Model (HMM): HMM is used
to describe a markov process with hidden parameters,
which is assumed the homogeneous markov hypothesis
in this paper.

Definition 1. Homogeneous markov hypothesis: A state
at current time stamp of HMM only depends on the
state at the previous time stamp.

For instance, suppose W is a sequence of states
of length M , where W = (w1, w2, · · · , wM ), and O
is the corresponding observation sequence. Then the
homogeneous markov hypothesis can be expressed as

Pr(wt|wt−1, ot−1, · · · , w1, o1) = Pr(wt|wt−1). (2)

According to (2), when the adversary knows the real
location at the previous time stamp, he can select a
most likely location at current time stamp [6], [9].

C. Performance Metrics of Privacy

Since the privacy requirement k is only suitable
to evaluate the location disclosure risk in a single
query, it restricts the accuracy to estimate the trajectory
disclosure probability in continuous queries. In this
section, we introduce a metric called the trajectory
disclosure probability, which measures the privacy level
in continuous queries. We first explain the metrics
including the Hausdorff distance, the trajectory hit
ratio and the trajectory probability used in continuous
queries. The Hausdorff distance is a measurement of
the distance between two regions. The trajectory hit
ratio measures the successful rate of the attacking in
one time, and based on the trajectory probability, the
adversary can find the real trajectory of the user. Then
the privacy expression is obtained with the expectation
of trajectory hit ratios.

1) Hausdorff Distance: Consider two cloaking re-
gions CRti and CRti+1 , the Hausdorff distance [10]
represents the regional distance between CRti and
CRti+1 . It can be formally expressed as

dH(CRti ,CRti+1)

= max
{
dh(CRti ,CRti+1), dh(CRti+1 ,CRti)

}
,

(3)

where

dh(S1, S2) = max
p1∈S1

min
p2∈S2

d(p1, p2). (4)

In (4), d(p1, p2) represents the distance between two
locations p1 and p2.

2) Trajectory Hit Ratio: There are several locations
in one trajectory, and we define the trajectory hit ratio
as the number of real locations chosen by the adversary
in all the locations. Before formally presenting this
expression, we first introduce the definition of the real
trajectory and possible trajectories.

Definition 2. (Real Trajectory) The real trajectory of
the user in continuous queries is expressed as

R = (rt1 , rt2 , · · · , rtc). (5)

Definition 3. (Possible Trajectories) From the time
stamp t1 to tc, the α-th possible trajectory of the user
can be expressed as

Tα = (lt1α , l
t2
α , · · · , ltcα ), (6)

where 1 ≤ α ≤
∏c
i=1 k

ti and ltiα ∈ Lti .

Note that, for any Tα,Tβ and α 6= β, there exists at
least a time stamp ti that satisfies the condition ltiα 6=
ltiβ .

We then use Ni to indicate whether the adversary
can obtain the real location at the ti-th time stamp in
a possible trajectory, and it can be expressed as

Ni =

{
1, ltiα = rti ;
0, others. (7)

As a result, the trajectory hit ratio can be calculated by

η =

∑c
i=1Ni
c

. (8)

Additionally, the low privacy level represents a higher
trajectory hit ratio η.

3) Trajectory Probability: Based on the trajectory
hit ratio, we then define the trajectory probability as the
probability that most clients choose one trajectory as
the real trajectory from all possible trajectories, which
consists of two components.

The first component is the probability that a client
chooses a location lt1α as the origin point in the real
trajectory. It can be expressed by the normalized query
probability and written as

p̂(ltiα ) =
p(ltiα )∑kti

j=1 p(e
ti
j )
, (9)

where p(ltiα ) represents the query probability on ltiα .
The second component is the probability that the

client moves along this trajectory from the origin point
lt1α . It can be expressed by the product of posterior
probabilities as

q̂(lti+1
α |ltiα ) =

q(l
ti+1
α |ltiα )∑kti+1

j=1 q(e
ti+1

j |ltiα )
, (10)

where q(lti+1
α |ltiα ) represents the transition probability

from ltiα to lti+1
α .



Therefore, the trajectory probability can be expressed
as

Pr(Tα) = Pr(lt1α , l
t2
α , · · · , ltcα )

= Pr(lt1α )Pr(lt2α , · · · , ltcα |lt1α )

= Pr(lt1α )Pr(lt2α |lt1α )Pr(lt3α |lt1α , lt2α )

· · ·Pr(ltcα |lt1α , lt2α , · · · , ltc−1
α ),

(11)

According to the Homogeneous markov hypothesis
in Definition 1, Equation (11) can be further simplified
as

Pr(Tα) = Pr(lt1α )Pr(lt2α |lt1α )Pr(lt3α |lt2α ) · · ·Pr(ltcα |ltc−1
α )

= p̂(lt1α ) q̂(lt2α |lt1α ) q̂(lt3α |lt2α ) · · · q̂(ltcα |ltc−1
α ).

(12)

III. RETROSPECT ATTACK
In this section, we propose the Retrospect attack that

can analyze the real location at one time stamp by the
propagating spatial attack (PSA) and then find the real
trajectory by the sequent time attack (STA).

A. Propagating Spatial Attack

Traditional spatial attacks in [8], [11] use a reason-
able moving regions of clients within adjacent time
stamps to exclude fake locations. However, they do
not consider the influence of the reduced region after
excluding some fake locations on the original spatial
relationship. Therefore, in this subsection we first en-
hance the spatial attack, which leads to the propagating
spatial attack (PSA).

In more detail, when some fake locations are exclud-
ed at the current time stamp, certain fake locations at
the previous and next time stamps may be identified
by the decreased Hausdorff distance. Before fully pre-
senting the PSA, we will first introduce two relevant
definitions as follows.

Definition 4. The maximum movement boundary (MM-
B) refers to the maximum region that the client in CRti

can reach in a time interval4ti, where4ti = ti+1−ti.
The maximum movement region is denoted as MRti .

For instance, as shown in Fig. 2, there are three
ASs in the continuous queries. The solid line regions
represent CRt1 , CRt2 and CRt3 , and each of them
consists of the real location and dummy locations. In
addition, the dotted line region represents MRti which
is extended from CRti at a maxium moving distance of
dtimax. Fig. 2(a) indicates that the locations in the green
solid line region CRt3 but outside of the green dotted
line region MRt2 will be recognized as fake locations
by the adversary.

Definition 5. The maximum arrival boundary (MAB)
refers to the maximum region constituted by all real
locations that the client can reach to CRti+1 after a
time interval 4ti, and it is denoted as ARti+1 .

For convenience, we suppose all dtimax are equal
in Fig. 21. Then the dotted line region MRti also
represents the ARti which is extended from CRti at a
maximum moving distance of dti−1

max . Fig. 2(a) indicates
that the locations in the orange solid line region CRt2

but outside of the orange dotted line region ARt3 will
be recognized as fake locations by the adversary.

From Definition 4 and Definition 5, we can observe
that, if dH(CRti ,CRti+1) > dtimax, the PSA works on
the two ASs from time stamp ti to ti+1.

After the comparison with dH(CRti ,CRti+1) and
dtimax on all time stamps, the adversary can recognize
and exclude three gray fake locations in Fig. 2(a). Then
as shown in Fig. 2(b), the area of CRt2 and CRt3 both
decrease. By repeating the attack, we can observe that
there are two red fake locations revealed in CRt1 but
outside of ARt2 , while the adversary cannot exclude
them with the traditional attack [7], [8]. It means that
in comparison with traditional methods, the PSA can
further explore spatial relationships between ASs. The
PSA stops as shown in Fig. 2(c), when the adversary
can no longer recognize any fake location for all time
stamps. After the PSA attack, CRti should satisfy the
following condition:

CRti ⊆
(
MRti−1 ∩ ARti+1

)
. (13)

Then the remaining valid locations in the AS at the
time stamp ti are denoted as

LPti = (lpti1 , lp
ti
2 , . . . , lp

ti
k
ti
v

), (14)

where 1 ≤ ktiv ≤ kti . Additonally, ktiv = 1 indicates
LPti only has the real location. The privacy disclosure
probability of the client will increase with a decrease
of the ktiv .

The PSA algorithm is given in Alg. 1. In lines 2-6,
the adversary searches all time stamps to find if there
exists unreasonable locations and excludes them. The
loop ends when no fake location is excluded from the
remaining locations.

B. Sequent Time Attack

After the PSA, the probability that a location in
LPti is the real location at the current time stamp is
only related to (9), and is independent of the locations
in LPti at the subsequent time stamps. Therefore, the
adversary can assume the movement of the client fol-
lows an HMM. Then the proposed algorithm focuses on
how to find the real trajectory from the the remaining
locations.

When the destination of the real trajectory is de-
termined, the adversary can choose a target trajectory
as the real trajectory with the maximum trajectory

1This assumption will not affect the generality of the derived
results.
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AS at t1 AS at t2 AS at t3
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(a) The first exploring in PSA.

dmax

dmax

Invalid dummy locations excluded by the second exploring

Invalid dummy locations excluded by the first exploring

AS at t1 AS at t2 AS at t3

(b) The second exploring in PSA.

dmax

Invalid dummy locations excluded by all explorings

AS at t1 AS at t2 AS at t3

(c) The third exploring in PSA.

Fig. 2. The example of the adversary use the PSA in continuous queries with a total time stamps of three.

Algorithm 1: PSA Algorithm

Input: Continuous queries ASs: Lti
Output: Remaining valid locations: LPti

1 while True do
2 if all dH(CRti ,CRti+1) <= dtimax then
3 break ;
4 else
5 LPti = Lti .remove(fake locations) ;
6 end
7 end
8 return LPti

probability in all possible trajectories. Nevertheless,
based on the available information, the adversary can-
not recognize the real destination at time stamp tc.
Therefore, we assume the real trajectory is among ktcv
retrospective trajectories, and the retrospective trajec-
tories are defined as follows:

Definition 6. (Retrospective trajectories) Searching
forward from each lptcj , a target trajectory with the
maximum trajectory probability can be found and is
called the retrospective trajectory, where tc represents
the last time stamp. Additionally, the β-th retrospective
trajectory is denoted as T′β , where T′β ⊂ Tα.

The proposed sequent time attack (STA) is to find ktcv
retroactive trajectories by comparing the probabilities
of the possible trajectories that do not consist of fake
locations in all time stamps. Then the algorithm selects
one of them as the real trajectory by the probability
selection method according to their normalized trajec-
tory probabilities. Since the trajectory probability is
a statistical analysis of clients, which cannot reflect
the movement pattern of a single client. When one
retrospective trajectory probability exceeds others by
a predefined threshold (δ), the STA will select it as

the result. When several retrospective trajectories have
similar probabilities, the STA will probably choose the
result from these N candidate trajectories. Additionally,
when T′β is in these candidate trajectories, the selection
probability for T′β as a result can be expressed as

Pr(T = T′β) =
Pr(T′β)∑
Φ Pr(T′ζ)

, (15)

where Φ represents the set of the N candidate trajec-
tories.

For example, as shown in Fig. 3, the gray points are
the fake locations excluded by the PSA. Since LPt5 has
four remaining locations, the adversary can get four
retrospective trajectories. For instance, retrospective
trajectory 1 has the highest trajectory probability in all
possible trajectories that will reach location E1 at time
stamp t5. Based on a predefined δ, the algorithm can
determine N and the corresponding set Φ. Then it can
select the one by the probability selection method from
the N retrospective trajectories and consider it as the
real trajectory.

In conclusion, we propose the Retrospect attack,
which contains two parts PSA and STA. Additionally,
the Retrospect attack algorithm is given in Alg. 2. In
line 2, the algorithm initializes the normalized query
probabilities of all lpt1j . Then starting from the time
stamp t2, u[i][j] stores the maximum trajectory proba-
bility through lptij from the time stamp t1 to ti in line
5, and ϕ[i][j] stores the coordinate of the trajectory
in u[i][j] at the previous time stamp in line 6. Note
that, u[i][j] only needs to consider the influence of
all u[i − 1][j]. When the algorithm gets all u[i][j], it
can calculate the retrospective trajectory probabilities
u[c][j] in line 10, and it can select all retrospective
trajectories T′β via ϕ[c][j] in lines 13-16. Finally, in
lines 18-19, the algorithm returns one trajectory as the
real trajectory with the probability selection.
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Fig. 3. The example of choosing retroactive trajectories that end
with different lpt5j at time stamp t5.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the
proposed Retorspect attack with/without the STA on
two real-life datasets. First, we compared the perfor-
mance of the proposed Retorspect attack without the
STA with the LDA [8] in terms of the time stamps
number (c) and privacy requirements (k), respectively,
against the traditional DLS defensive method [4]. Sec-
ond, we compare the proposed Retorspect attack with
the STA, and the Viterbi attacks [6] in the same way.
Additionally, we set the predefined threshold value (δ)
to 0.1 in the Retrospect attack.

A. Experiment Setup

• Datasets: In our experiment, we ues the the
Geolife project trajectory [12]–[14] and T-Drive
dataset [15], [16].
In the Geolife project trajectory dataset, the major-
ity of the data was created in Beijing, China, and
was collected by Microsoft Research Asia from
April 2007 to August 2012. It contains 17,621
trajectories with a total distance of 1,292,951
kilometers and a total duration of 50,176 hours.
Moreover, these trajectories were recorded a broad
range of users’ outdoor movements, including not
only life routines like daily work routine but also
some entertainments and sports activities, such as
shopping, sightseeing, dining, hiking and cycling
by different GPS loggers and GPS-phones, and
have a variety of sampling rates.

Algorithm 2: Retrospect Attack Algorithm

Input: Continuous queries ASs: Lti , the
normalized query probability q̂(et1j ),
matrix of transition probability Ati and the
threshold value δ

Output: The client’s most likely trajectory: T
1 LPti ←− Lti via the PSA ;
2 u[1][j] = q̂(lpt1j ) ;
3 for i in range(2, c+1) do
4 for y in range( kti+1

v ) do
5 u[i][y] = max

1≤x≤ktiv
u[i− 1][x] ∗Ati [x][y] ;

6 ϕ[i][y] = arg max
1≤x≤ktiv

u[i− 1][x] ∗Ati [x][y] ;

7 end
8 end
9 for β in range( ktcv ) do

10 protra[β] = u[c][β] ;
11 T ′[β][c] = lptcβ ;
12 j = β ;
13 for i in range(c− 1, 0,−1) do
14 T ′[β][i] = lptiϕ[i+1][j] ;
15 j = ϕ[i+ 1][j] ;
16 end
17 end
18 select one trajectory T ←− N candidate

trajectories from all T′β ←− the threshold value δ ;
19 return T

The T-Drive dataset contains the GPS trajectories
of 10,357 taxis from Feb. 2 to Feb. 8, 2008, within
Beijing. The total number of locations in this
dataset is about 15 million and the total distance
of the trajectories reaches 9 million kilometers.

• Experiment Parameters: We divide a 30 km×
30 km regional grid area in Beijing and divide
different numbers of grids in two datasets. The
length of each grid and the selection of sampling
frequency of each dataset are given in Table I.
Therefore, the client can across the same number
of grids with the same speed in both datasets in
the adjacent time stamps.

TABLE I
EXPERIMENT PARAMETERS ON TWO DATASETS

Geolife Project
Trajectory Dataset T-Drive Dataset

The Length of Each
Grid Cell (m) 10 100

Sampling Interval (min) 1 10



TABLE II
THE BASELINE OF THE LOCATION DISCLOSURE PROBABILITY OF

THE DLS ALGORITHM

Privacy Requirement (k) 5 10 15 20
Location Disclosure Probability 20% 10% 6.7% 5%

B. Evaluation Metrics

In this subsection, we introduce the evaluation metric
including the average location disclosure probability
and the average trajectory disclosure probability.
• Average Location Disclosure Probability: The av-

erage location disclosure probability measures the
probability that the adversary reveals the real
location at one time stamp. It will be used to
measure the performance of the proposed Ret-
rospect attack without the STA method and the
LDA, respectively.

• Average Trajectory Disclosure Probability: The
average trajectory disclosure probability measures
the accuracy that the adversary finds the real tra-
jectory. It will be used to compare the experimen-
tal results of the proposed complete Retrospect
attack, the LDA and the Viterbi attack algorithms.

C. Performance of The Attacking Algorithm

In this subsection, we evaluate the performance of
the proposed Retrospect attack method with/without the
STA against the DLS defensive algorithm, and compare
them with the results of the Viterbi attack and the LDA,
respectively. Table II lists the baseline of the location
disclosure probability in the DLS algorithm. It can be
observed that the location disclosure probability is 1

k .
1) The Retrospect Attack without the STA: Fig. 4

plots the experimental results of the location disclosure
probability of the proposed Retrospect attack method
without the STA (PSA), and the LDA methods against
the DLS algorithm. First, it shows that the proposed
PSA method has a higher average location disclosure
probability than the LDA in the case of the same time
stamps number (c) or privacy requirement (k). Second,
we can observe that the proposed PSA method has
an obvious growth trend on both datasets while the
LDA curve almost keeps stable. For example, when
k = 5, with c increases from 2 to 10, the result of
the proposed PSA enhances 1.5 times, while that of
the LDA enhances only 2%. This is because the PSA
takes into account that the reduced of CRti has a prop-
agation effect on the spatial relationship of locations.
When CRti is reduced due to the presence of fake
locations recognized by the adversary, it will decrease
the Hausdorff distance between the CRti and CRti+1 ,
and between the CRti and CRti−1 . Then, the reduced
Hausdorff distance may lead to more fake locations
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Fig. 4. The comparison of the average location disclosure probability
between the proposed Retorspect attack without the STA (PSA), and
the LDA against the DLS defensive algorithm with the different time
stamps number (c) and privacy requirements (k) on two datasets.

recognized at the time stamps ti−1 and ti+1, which
will change the Hausdorff distance at the adjacent time
stamps with them again to find more fake locaions until
all CRti remain the same.

2) The Retrospect Attack with the STA: Fig. 5 plots
the experimental results of the trajectory disclosure
probability of the proposed complete Retrospect attack
and the Viterbi attack against the DLS algorithm. It
shows that the performance of the proposed Retrospect
attack is better than that of the Viterbi attack in terms of
the trajectory disclosure probability. For example, when
c = 10 and k = 20 on Fig. 5(e), we can observe that
the result of the proposed Retrospect attack is about
30% higher than that of the Viterbi attack.
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(a) Geolife project trajectory
dataset: c = 2 and different k.
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(b) T-Drive dataset: c = 2 and
different k.
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(c) Geolife project trajectory
dataset: c = 6 and different k.
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(d) T-Drive dataset: c = 6 and
different k.
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(e) Geolife project trajectory
dataset: c = 10 and different k.
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(f) T-Drive dataset: c = 10 and
different k.

Fig. 5. The comparison of the average trajectory disclosure proba-
bility between the proposed Retorspect attack with the STA, and the
Viterbi attack against the DLS defensive algorithm with the different
time stamps number (c) and privacy requirements (k) on two datasets.

V. CONCLUSION

In this paper, we proposed a hybrid Retrospect attack
algorithm, which can discern the real location of the
user in one time stamp by the propagaing spatial
attack and then find the real trajectory throughout the
continuous queries by the sequent time attack. Finally,
the performance of the algorithms were validated via
extensive experiments on two real-life datasets with the
comparison of state-of-the-art algorithms.
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