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Informative Planning for Worst-Case Error Minimisation in Sparse
Gaussian Process Regression

Jennifer Wakulicz, Ki Myung Brian Lee, Chanyeol Yoo, Teresa Vidal-Calleja and Robert Fitch

Abstract— We present a planning framework for min-
imising the deterministic worst-case error in sparse Gaus-
sian process (GP) regression. We first derive a univer-
sal worst-case error bound for sparse GP regression with
bounded noise using interpolation theory on reproducing kernel
Hilbert spaces (RKHSs). By exploiting the conditional inde-
pendence (CI) assumption central to sparse GP regression, we
show that the worst-case error minimisation can be achieved
by solving a posterior entropy minimisation problem. In turn,
the posterior entropy minimisation problem is solved using a
Gaussian belief space planning algorithm. We corroborate the
proposed worst-case error bound in a simple 1D example, and
test the planning framework in simulation for a 2D vehicle
in a complex flow field. Our results demonstrate that the
proposed posterior entropy minimisation approach is effective
in minimising deterministic error, and outperforms the conven-
tional measurement entropy maximisation formulation when
the inducing points are fixed.

I. INTRODUCTION

Reconstructing a spatial field from sparse, noisy mea-
surements is an important fundamental problem in robotics.
The problem naturally arises in many practical applications,
such as oceanography [1] and agriculture [2], and in general
tasks such as robot navigation [3, 4]. We are interested
in informative path planning that enables robots to collect
measurements for spatial field reconstruction with quality
guarantees, such as minimising worst-case error. We present
an approach using sparse Gaussian process (GP) regression
that is inspired by results in interpolation theory on repro-
ducing kernel Hilbert spaces (RKHS).

GP regression [5] is a powerful machine learning tech-
nique for modelling spatially correlated phenomena. It has
been widely used in the robotics community to estimate a
variety of spatial fields including obstacles [3, 4], infrastruc-
ture [6], and agricultural [2] or oceanographic data [1, 7].
A well-known challenge in robotics application is that the
computational complexity of GP regression scales cubically
with the size of the input data.

Sparse GP approaches mitigate this computational chal-
lenge by adopting simplifying approximations [8–10]. One
such approximation is the inducing points formulation [8],
where the target function is assumed to be conditionally in-
dependent given the function values at a fixed set of inducing
points. A recent advance in this direction is that incoming
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sensor measurements can be ‘fused’ via recursive Bayesian
estimation of a latent Gaussian state of fixed dimensionality,
reminiscent of Kalman filtering [2, 6, 11–14].

In this paper, we show that the belief maintained by a
recursive Bayesian estimator is sufficient for planning paths
that minimise the worst-case error in sparse GP regression
with bounded noise. This result arises from interpolation
theory on RKHSs, and thus assumes that the target function
resides in an RKHS. This approach can be viewed as
reducing the information gathering problem to a Gaussian
belief space planning problem.

We present our algorithm for active spatial field recon-
struction and initially demonstrate the error bound in an
abstract 1D example of sparse GP regression. Then, we
present results from a simulated example of path planning
for an underwater robot operating in a flow field and
collecting scalar-valued measurements. For comparison, we
demonstrate the behaviour of a typical measurement entropy
maximisation approach and note that the error bound is non-
decreasing over time. The significance of these results is
to illuminate the limitations of existing informative path
planning approaches in terms of solution quality, and to
contribute a new method that achieves a worst-case solution
quality guarantee for actively reconstructing spatial fields.

II. RELATED WORK

Path planning for optimal reconstruction of a GP is
typically posed as an information gain or marginal entropy
maximisation problem [15]. These classify as a submodular
maximisation problem, which is NP-hard [16]. When the
measurement locations are subject to a dynamics constraint, a
non-myopic search is necessary [17], which can be achieved
by, e.g., growing a search tree with an appropriate pruning
condition [4, 18, 19].

Instead of the abstract information-theoretic quantities, we
present an orthogonal approach that minimises the worst-
case error in a deterministic sense, inspired by the inter-
polation theory on RKHSs [20, 21]. Nonetheless, we show
that the worst-case error minimisation problem admits an
information-theoretic analogue that is an instance of the
Gaussian belief space planning [22–24]. Gaussian belief
space planning is a more restricted class of problems than
general submodular maximisation, and more solution algo-
rithms are available with stronger performance guarantees.
In particular, we adopt the approach of [23] without loss of
their guarantees.



III. PROBLEM FORMULATION

Suppose we have a mobile robot r that operates in D-
dimensional environment X ⊆ RD. The motion of robot r
is described by a discrete-time non-linear dynamic model

xt+1 = f(xt,ut), (1)

where xt ∈ X is the D-dimensional state of the robot in
the environment and ut ∈ U ⊆ RDu is the Du-dimensional
control input at time t. A sequence of robot states is denoted
as X = x0 . . .. Likewise, a sequence of N control actions is
denoted as U = u0 . . ..

Using an onboard sensor, robot r at xt can make a noisy
measurement yt ∈ R of a scalar spatial phenomenon of
interest. With measurement noise εt ∈ R,

yt = s(xt) + εt. (2)

Given a sequence of measurements from time 0 to t
denoted as yt, the estimate of spatial phenomenon s over X
is denoted as ŝ(x | yt). The deterministic error between
true spatial phenomenon s and estimate ŝ is the point-wise
absolute difference, defined as

E(x | yN ) = |s(x)− E[ŝ(x | yN )]|. (3)

The objective of this paper is to find a sequence of
control actions U over time horizon N that minimises overall
deterministic error E over entire domain X . The formal
problem statement is found below.

Problem 1. Given the dynamic model in (1) and the mea-
surement model in (2), find a sequence of control actions
U∗ = {u0 . . .uN−1} that minimises the total deterministic
error (3) after time-step N over the domain X :

U∗ = arg min
U=u0...uN−1

∫
X
E(x | yN )dx (4)

Difficulty arises in solving Problem 1 in realistic scenarios
as often full knowledge of the ground truth s(x) is not avail-
able. Deterministic error and thus the integral in Problem 1
cannot be evaluated directly in such cases.

IV. WORST-CASE ERROR MINIMISATION AND
INFORMATION GATHERING

The aforementioned difficulty in solving Problem 1 can
be side-stepped by bounding deterministic error (3) with an
expression independent of ground truth knowledge. Here we
leverage sparse GP estimators and kernel-based interpolation
theory to find such a bound, in turn reducing Problem 1 to
a new entropy-based minimisation problem that is tractable.

A. Sparse GP Regression

Given a sequence of noisy measurements yN , we generate
an estimate ŝ(x | yN ) of the spatial phenomenon s(x) using
GP regression with sparse approximation. GP is a generali-
sation of multivariate Gaussian random variables to random

functions. A GP s(x) ∼ GP (m(x), k(x,x′)) is characterised
by the mean and covariance, or kernel functions [5]:

E[s(x)] = m(x),

Cov[s(x), s(x′)] = k(x,x′).
(5)

We impose a zero-mean GP prior on the scalar field
of interest s(x) ∼ GP (0, k(x,x′)). Let yN be a vector
containing noisy measurements up to time-step N as per
measurement model (2), i.e. [yN ]i = yi. With the zero-mean
prior, the estimate ŝ(x | yN ) given the measurements yN is
given by another GP [25]:

ŝ(x | yN ) ∼ GP (µ(x | yN ), σ2(x,x′ | yN )),

µ(x | yN ) = kT
X(x)K−1X yN ,

σ2(x,x′ | yN ) = k(x,x′)− kT
X(x)K−1X kX(x′),

(6)

where [kX(x)]i = k(x,xi), and [KX]i,j = k(xi,xj). We
use the same notation for other sets throughout the paper.

We use the inducing point-based approximation of the
regression (6) introduced in [8]. Intuitively, this formulation
assumes that there is a set of inducing points Z = {zi}Mi=1

whose function values [yZ]i = s(zi) ‘summarise’ the entire
set of measurements yN . We refer to these function values
yZ as inducing measurements. One way to assert this is
to impose that yN are conditionally independent given yZ.
This means correlation between any two measurements is
indirect and is limited by their correlation to the inducing
measurements.

A GP satisfies the CI property if the kernel function
satisfies:

k(x,x′) = kTZ(x)K−1Z kZ(x′) ∀x 6= x′, (7)

which follows from asserting that the conditional cross-
covariance vanishes given inducing measurements yZ, i.e.
σ2(x,x′ | yZ) = 0.

We consider two inducing point-based approximations that
satisfy CI: the subset of regressors (SoR) and fully indepen-
dent conditional (FIC) approximations. As noted in [8], the
SoR and FIC approximations are equivalent to replacing the
kernel k(x,x′) with approximate ones as follows:

k̂SoR(x,x′) = kT
Z(x)K−1Z kZ(x′),

k̂FIC(x,x′) = k̂SoR(x,x′) + δ(x,x′)(k(x,x′)− k̂SoR(x,x′)).
(8)

Here, δ(·) is the Kronecker delta function.

B. Kernel-based Interpolation and GP Regression

To derive bounds on the deterministic error (3) using a
sparse GP estimator, we leverage kernel-based interpolation
theory [21] and its connections to GP regression [25]. Kernel-
based interpolation and GP regression are built on the theory
of reproducing kernel Hilbert spaces (RKHSs) alike. We
therefore provide a brief introduction to RKHSs.

Any positive-definite kernel k : X × X → R uniquely
induces an RKHS Hk. An RKHS is a linear space of real-
valued functions on the set X equipped with an inner product
〈·, ·〉Hk

and a unique kernel function k(·,x) such that: 1)



k(·,x) ∈ Hk ∀x ∈ X , and 2) 〈f, k(·,x)〉Hk
= f(x). That is,

the kernel function k(·,x) is a linear function that evaluates
all other functions in Hk at x. The inner product induces a
norm ||g||Hk

=
√
〈g, g〉Hk

.
With the RKHS framework at hand, one may draw

connections between kernel-based interpolation and GP re-
gression. In particular, the equivalence of the minimum-
norm kernel-based interpolant and the predictive mean of
a GP regressor [26] is of interest here. It can be shown
that the predictive mean of GP regression (6) is equiva-
lent to RKHS interpolation with noise-free observations in
the form ming∈Hk

||g||Hk
such that ∀xi ∈ X, g(xi) =

s(xi) [25]. Note that Gaussian noise in GP regression can
be included in the kernel.

C. Worst-Case Error Bounds
The equivalence described above gives a kernel-based

framework to bound the deterministic error of a full GP
regressor. The following is an extension of the results
of [21, 25] to the case of bounded measurement error.

Theorem 1. Suppose s ∈ Hk with arbitrary positive definite
kernel k. With bounded measurement noise ε2 < σ2

ε ,

E(x | yN ) ≤ ||s||Hk
PX(x) +

√
σ2
εNΛ2

k(x), (9)

where PX(x) =
√
σ2(x,x | yN ) is called the power func-

tion of X and Λk(x) = ||K−1X kX(x)||.

From Theorem 1, it is clear that Problem 1 can be
solved by choosing a set of measurement points {xt} that
minimise PX(x) for all possible x. A common approach in
interpolation theory is to use the relationship [21]:

PX(x) =

√
detKX∪{x}

detKX
, (10)

and reduce PX(x) by maximising the denominator detKX,
which is independent of query point x. Because Theorem 1
holds for an arbitrary kernel k, the same approach should
hold true for SoR and FIC approximations by using the
approximate kernels (8). In fact, maximising detKX is
equivalent to measurement entropy maximisation from the
informative path planning literature, e.g., [15]. However, this
is still an unsatisfying answer, because 1) the numerator
detKX∪{x} still varies with the choice of measurements,
and 2) the choice of inducing points also affects KX.

To mitigate this issue, we exploit the CI property of
sparse approximations (7). Because CI kernels can be viewed
as interpolants to the true kernel [9], the interpolation of
s(x) given yN can be decomposed into two stages: 1) the
interpolation of inducing measurements yZ given yN , and 2)
the interpolation of s(x) given yZ. Then, it is natural to ask if
the deterministic error (9) or the power function (10) admits a
similar decomposition. The following theorem confirms that
there is such a decomposition.

Theorem 2. Suppose a kernel k satisfies the CI assump-
tion (7). Then, the power function PX(x) satisfies:

PZ(x) ≤ PX(x) ≤ PZ(x) expH(yZ | yN ), (11)

where PZ(x) is the power function of Z as per (10) and
H(yZ | yN ) is the posterior entropy of yZ given yN :

H(yZ | yN ) =
1

2
log

(
(2πe)M

detKZ∪X

detKX

)
. (12)

Moreover, assuming s ∈ Hk, the deterministic error (3)
can be further bounded as:

E(x|yN ) ≤ ||s||Hk
PZ(x) expH(yZ | yN ) +

√
σ2
εNΛ2

k(x)
(13)

Note that, in the upper bound of (11), PZ(x) is indepen-
dent of the robot’s actions, and H(yZ | yN ) is independent
of the query point x. Therefore, we can minimise PX(x) for
all x by solving the following surrogate problem:

Problem 2. Given the dynamic model (1) and the mea-
surement model (2), find a sequence of control actions
u1...uN that minimises the posterior entropy of inducing
measurements:

min
u1,...,uN

H(yZ | yN ). (14)

It is worth noting that Problem 2 becomes equivalent to
Problem 1 as H(yZ | yN )→ 0 assuming the noise-free case.
This is because the upper bound on power function (11)
is ‘tight’ in the sense that PX(x) → PZ(x) as H(yZ |
yN )→ 0, and PZ(x) is independent of the control actions.
Another interesting observation is that the power function
PX(x) can only be reduced down to PZ(x). This enforces
the importance of selecting good inducing points Z with low
PZ(x).

V. PLANNING FRAMEWORK

A. Recursive Sparse GP Regression

To minimise the posterior entropy as per Problem 2, we
perform recursive estimation to maintain a belief over yZ,
instead of direct computation using (12). The belief can
be used not only for computing the posterior entropy, but
also to fully recover the posterior GP (6) as long as the
conditional independence assumption (7) holds. Note that a
similar algorithm was already presented in [11], and was
proven to be equivalent to sparse GP regression. Thus, we
simply state the process without derivation.

The recursive estimation algorithm tracks the mean and
covariance of yZ given measurements up to time t:

µt = E[yZ | yt], Σt = Cov[yZ | yt]. (15)

Given the belief µt and Σt, we can recover the posterior
GP (6) under the SoR and FIC approximations by a simple
linear transform. With q(x) = K−1Z kZ(x),

µ(x | yt) = qT (x)µ,

σ2
SoR(x,x′ | yt) = qT (x)Σtq(x′),

σ2
FIC(x,x′ | yt) = σ2

SoR(x,x′ | yt),
+ δ(x,x′)(k(x,x′)− k̂SoR(x,x′)),

. (16)

Because the of the linear relationship between the query
points µ(x | yt) and the inducing measurements in (16), the



belief is updated analogously to a Kalman filter for linear
time-varying systems. Initially, the belief is set to µ0 = 0 and
Σ0 = KZ. Given measurement yt+1 at xt+1, we generate
the predictive mean, variance and cross-covariance of the
measurement to perform the Kalman update:

ŷt+1 = µ(xt | yt),
Σyyt+1 = σ2

∗(xt,xt) + σ2
ε ,

ΣyZt+1 = q(xt)Σt.

(17)

Using the predictions (17), we perform a Kalman update:

µt+1 = µt + ΣyZt+1(Σyyt+1)−1(yt+1 − ŷt+1),

Σt+1 = Σt − ΣyZt+1(Σyyt+1)−1(ΣyZt+1)T .
(18)

B. Receding Horizon Planning

Given the belief maintained by recursive GP, we plan a
path that minimises the cost function c(Σt) = log det Σt
using an adapted version of the RVI algorithm [23]. The RVI
algorithm maintains a search tree T over possible trajectories
and belief. Each node v ∈ T is associated with a candidate
robot position and predicted posterior covariance (xvt ,Σ

v
t ).

An overview of a robot under operation is shown in
Alg. 1. The tree is initialised with the robot’s initial position
and belief (x0,Σ0) (line 1). We perform an initial, offline
search over the search horizon N by iterating the RVI algo-
rithm (Alg. 2) N times (line 2). Each RVI iteration (Alg. 2)
expands the search tree by one timestep and adds the
corresponding layer of leaves.

During the online stage, the robot first extracts the control
by searching over the set of leaves L(T ) for a node l∗ ∈
L(T ) with the lowest cost c(Σl). The corresponding control
action u∗ is executed, and the robot reaches a new state
xt+1 and obtains a new measurement yt+1 (lines 7- 8).
The belief (µt+1,Σt+1) is updated using the recursive GP
equation (18) (line 9). To generate a new plan, we re-use
the subtree Tl∗ rooted at the chosen node l∗ and perform the
RVI iteration (line 10). Because the RVI iteration adds a new
layer of leaves, the depth of the tree is always equal to time
horizon N .

The RVI iteration proceeds as follows. First, a new layer of
leaves are expanded from the current leaves L(T ) in lines 1-
5 by sampling the control space U and propagating the state
xN−1 and posterior covariance ΣN−1 forward. Note that the
propagation of posterior covariance ΣN−1 only depends on
xN−1, and does not require the measurement yN−1.

Next, we iterate over the newly added leaves and extract
the set of nodes Q whose state are within δ-distance of each
other (line 8). If such nodes exist, we check for ε-algebraic
redundancy (ε-alg. red.) (line 9). A node l is ε-alg. red. iff
there exists a set of coefficients {αq}|Q|i=1 such that

∑
αq = 1

and ΣT + εI �
∑|Q|
i=1 αiΣi. A candidate node is pruned if

it is within δ-distance of other leaf nodes, and is also ε-alg.
red. with respect to those nodes (line 10).

The benefit of RVI is the strong suboptimality bound that
accompanies it. The cost c(ΣRV IN ) returned by RVI and the
optimal cost c(Σ∗N ) satisfy 0 < c(Σ∗N )−c(ΣRV IN ) < C(ε, δ),
where C is a problem-specific function. In particular, with

Algorithm 1 Receding horizon planning for worst-case error
minimisation

1: T ← {(x0,Σ0)}
2: for t = 1, ..., N
3: T ← RVI(T )

4: while robot is operational
5: l∗ ← arg minl∈L(T ) c(Σ

l)
6: u∗ ← backtrace(l∗)
7: xt+1 ← execute control u∗

8: yt+1 ← sample measurement at xt+1

9: Update µt+1,Σt+1 with yt+1 using (18)
10: T ← RVI(Tl∗)

Algorithm 2 Reduced value iteration
1: for ∀l ∈ L(T )
2: for ∀uN−1 ∈ U
3: xuN ← f(xlN−1,uN−1)
4: ΣuN ← update ΣlN−1 with (18)
5: N ← T ∪ {(xuN ,ΣuN )}
6: Smin ← {l ∈ L(T ) | ΣlN = arg min c(ΣN )}
7: for l ∈ L(T ) \ Smin in ascending order of c(ΣN )
8: Q← {ΣuN | u ∈ L(T ), d(xlN ,x

u
N ) ≤ δ}

9: if Q is not empty and ΣN is ε-alg. red. w.r.t. Q
10: T ← T \ l
11: Return T

Fig. 1. a) One-dimensional sparse Gaussian process regression of target
function in the RKHS. Measurement locations are indicated with black
crosses. The proposed bound on deterministic error is shown in the green
shaded area. The area enclosed by the grey dotted lines is the standard 1σ-
confidence interval. b) Demonstration of the upper bound on deterministic
error point-wise over the domain.

ε, δ = 0 the result is optimal [23]. Note that the same bound
holds for Problem 2, because it is of the same form as in [23].

As noted in [27], the ε-alg. red. check is an instance of
LMI feasibility problem, and poses computational challenge
as the number of inducing points grows. The challenge can
be circumvented by setting ε = ∞. In this case, the RVI
iteration (Alg. 2) only adds the lowest cost nodes that are
not within δ distance of each other, owing to the ascending
order of iteration (line 7). While there are no bounds in this
case, it produces practically viable solutions.



VI. EXPERIMENTAL RESULTS

A. Characterisation of the Error Bound

To corroborate the error bound proposed in Theorem 1
we study a sparse GP regression problem with a CI ker-
nel. As the RKHS norm required for computing the error
bound may be typically hard to compute, particularly in
higher dimensional settings, we consider a one-dimensional
regression problem where the target function is designed to
take simplified form s(x) =

∑m
i=1 αik(x, xi). This way we

ensure s ∈ HK , and the RKHS norm is easily reduced to the
Euclidean norm. Such simplifications are enough to illustrate
the tightness and behaviour of the proposed bound.

Figure 1a) depicts the outcome of regression with such
a target function. With sparse and noisy measurements, the
GP regressor is able to reconstruct the target function well.
Importantly, the proposed bounds on deterministic error are
reasonably tight on the predicted mean and follow the in-
tuitive behaviour of decreasing near measurement locations.
When compared to the 1σ-confidence interval obtained from
the posterior covariance, the proposed bounds have overall
higher value. However, in certain regions of sparse or no
measurement the target function is greater than the 1σ-
confidence interval and yet remains within our error bound.
This demonstrates that while confidence intervals may be
broken, the error bound may not.

In Fig. 1b), we show the deterministic error (3) against
the proposed upper bound, confirming the deterministic error
lies below the bound for all x in the domain. This result
corroborates that our bound does indeed give a reasonably
tight upper bound on deterministic error.

B. Flow Field Case Study

To demonstrate capability of the proposed algorithm and
problem formulation in information-theoretic path planning,
we consider a simplified underwater glider operating in a
double-gyre flow field. The dynamics are given by:[
xt+1

yt+1

]
=

[
xt
yt

]
+∆t(Vg

[
− sin(πx) cos(πy)
cos(πx) sin(πy)

]
+V

[
cosut
sinut

]
).

(19)
The robot aims to solve Problem 2 equipped with the
planning algorithm given in Alg. 1 in order to reconstruct
a scalar field of interest (such as level of salinity) over the
flow field. The scalar field is shown in Fig. 2 as a colour
map superimposed on the flow field.

To evaluate the performance with respect to the determin-
istic error minimisation Problem 1, we evaluate the average
absolute error 1

NS

∑
E(xi | yt) sampled over a 30×30 grid.

We vary the horizon N between {1, 5, 10} and examine
the behaviour of average absolute error over time. Figure 4
shows the result over 20 randomised initial starting locations
in the same environment (Fig. 2). It can be seen that for
all choices of search horizon, the average absolute error
decreases over time. The rate of reduction is greater with
larger search horizon.

To better understand this behaviour, we show example
trajectories after 100 time steps in Fig. 3. For the myopic

Fig. 2. The ground truth environment: brighter colour indicates higher
value, inducing points used for sparse GP regression are shown in red.

(a) N = 1 (b) N = 1

(c) N = 5 (d) N = 5

(e) N = 10 (f) N = 10

Fig. 3. Example trajectories after 100 steps with varying search horizon.
Green: executed trajectory. Left column: mean (µ(x | yN )). Right column:
variance, or square of power function (σ2(x | yN ) = P 2

X(x)). Red: current
plan. Black: search tree. Brighter colour means higher value. Non-myopy
leads to better coverage and reconstruction of the function of interest.
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Fig. 4. Average absolute reconstruction error with varying search horizon.
Shaded areas represent 95% confidence interval over 20 trials.

greedy horizon case in Fig. 3a, 3b we observe poor coverage
of the spatial domain. Additionally, the myopic nature of
this planner results in trajectories that often get “stuck” in
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Fig. 5. Average absolute reconstruction error with varying search hori-
zon for the measurement entropy maximisation formulation. Shaded areas
represent 95% confidence interval over 20 trials.

(a) (b)

Fig. 6. An example trajectory from measurement entropy maximisation.
(a): mean (µ(x | yN )). (b): variance, or square of power function
(σ2(x | yN ) = P 2

X(x)) Green: executed trajectory. Red: current plan.
Black: search tree. Measurement entropy maximisation compels the robot
to always explore outward. However, further away from the inducing points,
the variance never decrease regardless of measurements.

an attracting region of a gyre. The robot is unable to use
the flow field dynamics to its advantage to best explore, and
reconstruction of the spatial field is thus poor.

With longer planning horizons the robot is able to success-
fully manoeuvre through the flow field to increase coverage
of the domain, giving improved estimation of the spatial
field as seen in Fig. 3c and 3e, with best estimation and
coverage given by the longest horizon N = 10. Figure 3
further demonstrates the influence of the objective (2) on
trajectories. For all horizon lengths, the robot preferentially
takes measurements near inducing points over exploring
regions further away, such that variance is minimised at
inducing points. This is exemplified in Fig. 3 where with
increasing horizon, broader coverage of the region around
inducing points and greater minimisation of variance is
achieved.

C. Comparison to Measurement Entropy Maximisation

Under the same experimental scenario (Fig. 2), we exam-
ine the behaviour of the solution of entropy maximisation,
which is the usual approach to information gathering in
GPs [15]. This was implemented by setting the cost in Alg. 2
as − log detKX with ε =∞.

Fig. 5 shows the average absolute error over the environ-
ment with 20 random initial positions and varying search
horizon. Surprisingly, the error does not decrease over time,
and actually increases with larger search horizons (N = 10).

To understand the finding, we examine an example trajec-
tory after 40 time-steps in Fig. 5, where the robot expands
outwards making use of the ambient flow field. This is ex-
pected because the measurement entropy maximisation for-

mulation demands the robot to simply move as far away from
its previous trajectory as possible. However, the expansive
behaviour is problematic when using inducing point-based
GPs. As the robot gets further from the inducing points,
the measurements do not make a significant contribution.
Estimates further away from inducing points remain to be
of poor quality regardless of measurements taken, as seen
near the end of the green trajectory in Fig. 6b. Coupled
with measurement entropy maximisation, the robot expands
outwards in a positive feedback loop. A possible solution
is to re-adjust the inducing points in an online manner via
gradient updates [7]. We defer online update of inducing
points to future work.

VII. CONCLUSION

We derived an upper bound to worst-case determinis-
tic error for sparse GP regression with bounded noise.
We proved this upper bound naturally gives way to an
information-theoretic analogue to minimisation of determin-
istic error. Thus, one may minimise deterministic error
via an information-theoretic proxy. Our results demonstrate
the proposed approach outperforms conventional methods
in reducing deterministic error. Results illuminated clear
limitations involving placement of sparse GP inducing points
which will be addressed in future work via online updates to
inducing point locations. Further work also lies in extensions
for reconstruction of time-varying spatial fields.

APPENDIX

Proof of Theorem 1. Letting [s(xN )]i = s(xi, i = 1, . . . , N
be the vector of function evaluations at xN , and similarly
[εN ]i = εi, we have:

E(x | yN ) = |s(x)− µ(x | yN )|
≤ |s(x)− kT

X(x)K−1X s(xN )|+
|kT

X(x)K−1X s(xN )− kT
X(x)K−1X [s(xN ) + εN ]|

= |〈s, k(·,x)− kT
X(x)K−1X kX(·)〉Hk

|+ |kT
X(x)K−1X εN |

≤ ||s||Hk
||k(·,x)− kT

X(x)K−1X kX(·)||Hk
+ |kT

X(x)K−1X εN |
≤ ||s||Hk

PX(x) +
√
σ2
εN ||kT

X(x)K−1X ||

where the final inequality follows from | · | =
√
〈·, ·〉,

Cauchy-Schwarz inequality and the assumption ε2i < σ2
ε

∀i = 1, . . . , N .

Proof of Theorem 2. We exploit the fact that the power
function PN (x) can be linked to conditional entropy as:

H(s(x)|yN ) =
1

2
(logPN (x) + log(2πe)).

Using the CI assumption, it can be shown that:

H(s(x)|yN ) = H(s(x)|yZ) + I(yZ; s(x)|yN ). (20)

It then follows that:

H(s(x)|yZ) ≤ H(s(x)|yN ) ≤ H(s(x)|yZ) +H(yZ|yN ),
(21)

and the claimed bound is recovered by taking the exponential
of (21).
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