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Abstract

Odds ratio, relative risk (risk ratio) and absolute risk reduction (risk difference) are

biostatistics measurements that are widely used for identifying significant risk factors in

dichotomous groups of subjects. In the past, they are often used to assess simple risk factors.

In this paper, we introduce the concept of compound-risk factors to broaden the applicability

of these statistical tests for assessing factor interplays. We observe that compound-risk

factors with a high risk ratio or a big risk difference have an one-to-one correspondence

to strong emerging patterns or strong contrast sets—two types of patterns which have

been extensively studied in the data mining field. Such a relationship has been unknown

to researchers in the past, and efficient algorithms for discovering strong compound-risk

factors have been lacking. In this paper, we propose a theoretical framework and a new

algorithm that unify the discovery of compound-risk factors that have a strong odds ratio,

risk ratio or a risk differences. Our method guarantees that all patterns meeting a certain

test threshold can be efficiently discovered. Our contribution thus represents the first of its

kind in linking the risk and odds ratios to pattern mining algorithms, making it possible

to find compound-risk factors in large scale data sets. In addition, we show that using

compound factors can improve classification accuracy in probabilistic learning algorithms

on several disease data sets, because these compound factors capture the inter-dependency

between important data attributes.
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1 Introduction

Odds ratio and risk ratio (relative risk) are two most often used ratios in the evidence-based

biomedical research and epidemiological areas for comparative studies between two dichotomous

groups of subjects [35, 37]. Risk is the chance, or probability, that a specific event occurs. Odds is

an alternative measure for describing how likely an event is to happen—it is the risk of observing

an event divided by the risk of not observing it. Therefore, both odds ratio and relative risks can

be described as a likelihood change of an event between two dichotomous groups. In addition to

comparing risks in relative terms, absolute risk reduction (risk difference) is used to capture the

absolute risk difference of the factors between the two groups of subjects under comparison.

The conventional use of the above statistical measures is usually focused on simple risk

factors. However, risk factors are seldom found in isolation. In this paper, complex interplays

between different factors are conceptualized as compound risk factors. This idea is similar to

many those that have been increasingly recognized as important issues in multivariate data

analysis [16]. Identification of compound factors is also akin to feature-subset selection in the

field of supervised machine learning [17] in the sense that both of them target on the dependence

and interaction of a group of factors. In medical data analysis, how to find compound factors

efficiently from large data sets is an open issue. In this paper, we present a data mining approach

to solving this problem.

To highlight the importance of compound factors, consider the following two examples. The

health state of adolescents was found 1 to be affected by the complex interplay of factors between

a young person and his social environment that involves his family, peers, media and social norms,

among others. One finding is that around 70% of the adolescent deaths and illness were caused by

six categories of risk behaviors including alcohol use and drug abuse, tobacco use and unhealthy

dietary behaviors, which in turn were the result of numerous factors within a young person’s

life—no single factor alone causes or explains a risk behavior [27]. Thus, the health state of a

young person is determined by multiple factors that are inter-dependent together.

1In a study conducted by Minnesota Department of Health. See more details at http://www.health.state.

mn.us/divs/fh/mch/adolescent/actionplan/sect1/section1-6.html.
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The following example further strengthens this point, where if only individual factors are

considered, some contradictory results may be derived. A survey [26] studied the relationships

between satisfaction perceptions of care for dental patients and various variables (risk factors)

including socio-demographic factors such as age, gender and economic status. The survey points

out that findings by different authors are contradictory: If the age factor is considered alone, one

study [33] observed that patients over 60 years old tended to be more satisfied with their dental

care than younger patients. However, by another study [18], it was found that older patients

were less satisfied. When combined with other factors, this contradiction disappears.

In this paper, these multiple interacting factors are referred to as compound-risk factors.

By exploring the use of compound-risk factors, we can not only discover the outstanding single

risk factors, but also the strong and subtle interplays of such factors even when they are weak

individually. We define three types of compound-risk factors. One is defined in the context of

relative risk, a second is defined in the context of risk difference and the third is defined in the

context of odds ratio. We call the compound-risk factors with a high relative risk, a large risk

difference, or a high odds ratio, the relative risk patterns, risk difference patterns, or odds ratio

patterns, respectively.

Given the importance of compound factors, an open question is how to find such factors

from a large data set efficiently. In this paper, we answer this question by presenting two linked

contributions. First, we show that relative risk patterns are actually emerging patterns [13, 22],

a data mining concept that captures sharp frequency growth change of patterns from one class

to another class. Similarly, a counterpart of the extension for the absolute risk factors is the

so-called contrast sets, which is another data-mining pattern concept [3, 4, 36] emphasizing on

large frequency differences of patterns between the two classes of subjects. This correspondence

makes it possible for efficiently discovering strong compound-risk factors from a database by

exploiting data mining algorithms for strong contrast sets and emerging patterns.

A second contribution of our work is a new algorithm. As combinations of risk factors are

considered here, identifying strong interplays is a computationally difficult problem because such

combinations are many. In the past, the problem of discovering contrast sets and emerging

patterns have been explored separately in [3, 4, 36] and in [24, 13, 14, 22, 21, 23, 5]. In this
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paper, we introduce a unified approach to the discovery of the three types of compound-risk

patterns. This unified approach integrates the two groups of subjects into one data set and

then discover frequent closed patterns [28] and generators [2] from the combined data set. Then,

strong compound-risk factors can be derived based on the support information of the discovered

closed patterns and generators.

An additional contribution of the paper is that we provide a 2-D risk plane to visually plot

the two risk information of an event in a given pair of dichotomous groups. In the long-standing

debate, some researchers are not in favor of odds ratio [1, 6, 10, 11, 31, 39] while others favor

odds ratio as a gold standard [8, 32]. Our 2-D risk plane can help reconcile these two views,

by explaining this discrepancy. This 2-D risk plane is also helpful to explain the computational

difficulties in mining all compound-risk factors that have a wide range of values.

An added contribution of our work is showing that using strong compound-risk factors can

be useful for improving the performance of Naive Bayes (NB) classifiers [19, 12], which operates

under the independence assumption, particularly in applications where risk factors are strongly

interacted. We take a leukemia disease diagnosis problem as an example to demonstrate that the

classification accuracy can be indeed improved if in Naive Bayes, we replace the individual risk

factors from single genes with compound-risk factors in gene groups. This increase in accuracy

are also observed in some UCI machine learning data sets where traditional NB suffers dramatic

accuracy loss, compared to other popular classifiers such as C4.5, SVM, and k-nearest neighbor.

However, by using compound-risk factors, we can effectively overcome these problems.

The rest of the paper is organized as follows: In Sections 2 and 3, we give definitions for odds,

risk, odds ratio, relative risk, and absolute risk reduction, and explain discrepancies between odds

ratio and relative risk using our 2-D risk plane. In Section 4, we define compound-risk factors,

and relate them to contrast sets and emerging patterns in the context of relative risk and absolute

risk reduction. Then we present a unified approach to the discovery of compound-risk factors that

have a strong odds ratio, risk ratio and absolute risk reduction. Section 5 reports classification

performance of our method in comparison to NB and other classic learning algorithms on a

cancer diagnosis problem and some UCI data sets. Section 6 concludes this paper.
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2 Background: Odds Ratio, Relative Risk, and Absolute

Risk Reduction

The odds of an event happening is the probability that the event of interest occurs divided by

the probability that the event does not happen. This is usually estimated by the ratio of the

occurrence number of the event to the number of times the event does not happen. Moreover,

the risk of an event happening is simply the number of occurrence the event happens divided

by the total number of cases at risk of having the event. It is often expressed as a percentage or

frequency.

As an example, consider the following data on the survival of the passengers on the Titanic

tragedy.

dead alive total

Female 154 308 462

Male 709 142 851

The death odds of the female is 1 to 2 (154/308 = 0.5); The death risk of the female is 33%

(154/462 = 0.33)—This is exactly the probability of death in the female group. Similarly,

the death odds of the male is 5 to 1 (709/142 = 4.99); The death risk of the male is 83%

(709/851 = 0.83). In general, the value range for odds is from zero (event will never happen) to

infinity (event is certain to happen). While for risk it is between 0 and 1.

Odds ratio (OR), relative risk (RR), and absolute risk reduction (ARR) are defined through

risk or odds comparison between the two groups of subjects.

Definition 1 An OR is calculated by dividing the odds of an event in one group by the odds in

the other group; A RR is the ratio of the risk of the event in one group to the risk in the other

group; An ARR is the risk difference between the two groups.

Odds ratio, relative risk, and absolute risk reduction are most used in clinical trials [37]

where treatment/drug effects are compared between patients receiving the new treatment/drug
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and those not, and in epidemiological studies [35] where the risk of a disease are compared

between people who had been exposed to some risk factor and people who not exposed to. As

an example, we re-use data from a 11-year cohort follow-up study of 9510 male physicians [25]

where the aim is to examine the association between baldness and coronary heart disease—

whether there exists big risk difference of this disease between male physicians with normal hair

and those balding. In that study, data show that 548 of those doctors with normal hair developed

coronary heart disease during the 11 follow-up years, and 127 of those doctors with severe vertex

balding developed the same disease. More detailed data are in the following table:

heart disease healthy total

Balding 127 1224 1351

Hairy 548 7611 8159

The OR for the balding doctors to develop coronary heart disease over those hairy is

127/1224

548/7611
= 1.44

The RR for the balding doctors to develop coronary heart disease over those hairy is

127/1351

548/8159
=

9.4%

6.7%
= 1.40

The ARR is
127

1351
−

548

8159
= (9.4 − 6.7)% = 2.7%

Therefore, a conclusion has been made in [25] that people with severe vertex balding are more

likely to develop coronary heart disease than people with normal hair.

Observe that the above OR value is larger than the RR value. In fact, it is always true

that OR is larger than RR when RR is larger than 1. In the Titanic example, the OR of death

between male and female is 9.99—There is a ten fold greater odds of death for male than for

female. But the RR of death is only 2.5—There is a 2.5 times greater probability of death for

male than female. As OR is always larger than RR for the same level of risk, if the odds ratio is

misunderstood as a relative risk, then the risk is overstated very much. Previous work [10, 39]

have observed and discussed this discrepancy—when odds ratios can mislead. We discuss it
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again, in the next section, under a new framework: our 2-D risk planes. The insight into these

discussions can also help understand the computational challenges in the mining of all strong

compound-risk factors.

3 A 2-D Risk Plane

A 2-D risk plane co-ordinates the risk information of an event happening between two groups.

Let D1 and D2 be two classes of subjects (e.g., smokers vs non-smokers), and E be an event (e.g.,

lung cancer), the x-axis of the risk plane measures the risk of E in D1, and the y-axis measures

the risk of E in D2. So, a point (x, y) in the risk plane plots the risk information of an event

in the two classes as shown in Figure 1. Note that different events may share a same point in

the risk plane. That is, two different events can have the same level of risk in D1 and in D2.

However, some points in the risk plane do not have a corresponding event.

10

y: risk in D2

x: risk in D1
(r1, r2).

1

Figure 1: A 2-D risk plane for showing risk information of an event between two groups D1 and

D2.

Given a point (r1, r2) in the risk plane, we can easily calculate the corresponding OR, RR,

and ARR as follows:

OR = (r1/(1 − r1)) /(r2/(1 − r2))

RR = r1/r2

and

ARR = r1 − r2
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OR = (r1/(1 − r1))/(r2/(1 − r2)) can be re-written as r1

r2

1−r2

1−r1
= RR ∗ 1−r2

1−r1
. Thus, if RR =

r1

r2
> 1, we have 1−r2

1−r1
> 1. Therefore OR > RR if RR > 1. Similarly, we can see that OR is

always less than RR if RR < 1. Furthermore, OR ≈ RR if both r1 and r2 are small (close to 0).
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(c) ARR exceeding a thresh.
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OR versus RR
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Figure 2: Regions (up-bounded by the different lines) in a 2-D risk plane where events have an

OR, RR, or ARR exceeding some thresholds.

Figure 2 plots areas (all points below a solid, dashed, or a dotted line) in a 2-D risk plane

where the event points have an OR, RR, or ARR value larger than a threshold. We note that:

• An event (e.g. developing coronary heart disease) may have a very large odds ratio and a

very large relative risk even when the risk in the two groups are both small (close to 0).

See the left bottom corner of Figure 2(a) and Figure 2(b).

• If the risk of the event in the two groups are very large (close to 1), its odds ratio can

still be large. For example, let r1 = 0.99 and r2 = 0.90, then OR = 11.0. However in this

situation, the relative risk is only 1.1—a value which is rarely significant. Thus, the OR

information is not sufficient to infer whether the risk themselves in the two groups or the

relative risk is high or low.

• Unlike the case of OR, a pair of small risks or a pair of large risks cannot produce a big

ARR. Only the points in the right bottom corner of a 2-D risk plane are possible to produce

a big ARR. See Figure 2(c).

• For the same threshold, events for which the corresponding OR values exceed this threshold

are a superset of events that have a RR value that exceed this threshold (see Figure 2(d)).
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These observations suggest that to discover a complete set of compound-risk factors with a

strong OR or RR test value, small events (those with a pair of small risks in D1 and D2) have to

be examined. Otherwise, some strong compound-risk factors will be missed. Our algorithms will

carefully examine small events, usually comprising of many single factors, by using efficient data

structures and search strategies. Actually, this is the most computationally challenging part in

this problem as possible combinations of simple risk factors are exponentially large.

As shown in the top righthand corner of Figure 2(a), odds ratio is prone to misunderstanding.

However, odds ratio is a gold standard for risk comparison in case-control (retrospective) studies

and also in cohort studies [8, 32]. This is because both disease odds ratio and exposure odds

ratio can be calculated based on data in a case-control study or in a cohort study. But, only

disease relative risk or exposure relative risk (not both) can be calculated unless the sampling of

the patients follows the distribution of the population. (Our explanation is provided later in this

section.) However, such a sampling is not commonly used in practice due to high financial cost.

Let us explain these points using a case-control study as an example. The research design

of a case-control study is to select patients on the basis of an outcome variable. The cases are

a group of patients with a specific outcomes (e.g. lung cancer or coronary heart disease) and

controls are those without that outcome. The goal of this type of study is to look backwards in

time and to figure out what risk factors (e.g. smoking or balding) are more likely to cause the

outcome. A synthetic data set of a case-control study is shown in the following table.

Exposure to a risk factor Diseased cases Controls Total

Yes (+) D+ C+ Y

No (–) D
−

C
−

N

Total D C T

The exposure OR is defined as the ratio of the odds of exposure for the cases’ group to the odds

of exposure in the control’s group. That is

exposureOR =
(D+/D)/(D−/D)

(C+/C)/(C−/C)
=

D+/D−

C+/C−

(1)

The exposure RR is defined as

exposureRR =
D+/D

C+/C
(2)
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The above two definitions are meaningful because D+/D and C+/C are indeed the probability

(risk) of exposure for the diseased patients and controls respectively.

However, D+/Y (or D−/N) is not the probability of suffering a disease for people who had

been exposed to some risk factors unless D+ : C+ (or D− : C−) is proportional to the whole

population. Let z be a real number such that D+ : (C+ ∗ z) is the distribution of cases and

controls of the population. Then D+/(D+ + C+ ∗ z) is a risk, meaning that the probability of

suffering a disease for people who had been exposed to some risk factor. Then

diseaseRR =
D+/(D+ + C+ ∗ z)

D−/(D− + C− ∗ z)
(3)

is a true RR (called disease RR). Without the knowledge of z, the disease RR cannot be calculated

in a case-control study.

The disease OR is defined as

diseaseOR =
D+/(C+ ∗ z)

D−/(C− ∗ z)
=

D+/C+

D−/C−

(4)

which is always equal to the exposure OR as shown in (1). Thus, an OR can be always calculated

in a case-control study or in a cohort study regardless of the distribution of the subject numbers in

the two groups, and it is also invariant with regard to the arbitrary decision of deciding whether

we concentrate on the relative odds of dying (disease OR) or the relative odds of exposure

(exposure OR). This gold standard was also observed by [8, 32], where no mathematical details

were given though.

4 Risk-Factor Discovery by Mining the Contrast Sets and

Emerging Patterns

In this section, we explain the one-to-one correspondence between emerging patterns [13, 22]

and compound-risk factors in the context of relative risks, and explaining the one-to-one cor-

respondence between contrast sets [3, 4] and compound-risk factors in the context of absolute

risk reduction. As previous algorithms for mining contrast sets [3, 4] and emerging patterns

11



[24, 13, 14, 22, 21, 23, 5] are disparate and computationally costly, we provide an efficient, uni-

fied method to discover compound-risk factors that have strong odds ratio, risk ratio and risk

differences.

We first review the definition for contrast sets and a definition for emerging patterns. A data

set is a set of tuples. A tuple is also called a transaction or a subject. Let I = {I1, I2, · · · , Ik} be

a set of distinct items or risk factors. A tuple is defined as a non-empty set of items. A pattern,

or called an itemset, is a set of items. A pattern P is said to occur or be contained in a tuple T if

P ⊆ T . The support of a pattern P in a data set D, denoted sup(P,D), is the number of tuples

in D that contain P divided by the total number of tuples in D. The negated support of P in

D, denoted sup(P,D), is defined as sup(P,D) = 1 − sup(P,D).

Definition 2 Let D be a data set consisting of a set Dp of positive tuples and a set Dn of negative

tuples. Given a real number δ(> 0), a pattern X is called a δ-strong contrast set if

CSD

X = sup(X,Dp) − sup(X,Dn) ≥ δ

where δ is called a difference threshold.

Definition 3 Let D be a data set consisting of a set Dp of positive tuples and a set Dn of negative

tuples. Given a real number ρ(> 1), a pattern X is defined as a ρ-strong emerging pattern if

EPD

X =
sup(X,Dp)

sup(X,Dn)
≥ ρ

where ρ is called a growth ratio threshold.

Contrast sets and emerging patterns defined above are patterns characterizing the positive

class. Conversely, we can define patterns for characterizing the negative class by swapping Dp

and Dn in the above definitions.

Consider why contrast sets are compound-risk factors in the context of absolute risk reduction,

and why emerging patterns correspond to relative risks. We translate the concepts as follows.
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positive class (Dp) → cases’ group

negative class (Dn) → controls group

single risk factor → an item

compound-risk factor → an itemset

exposure risk to a risk factor → support of an itemset

then the risk difference of a compound-risk factor between the two groups can be exactly said

to be the support difference of an itemset between the positive and negative classes. In the same

way, the risk ratio (the relative risk) can be said to be the support growth ratio between the two

classes. Thus, δ-strong contrast sets are exactly compound-risk factors with a strong ARR test

value, and ρ-strong emerging patterns are compound-risk factors with a strong RR test value.

The statistical test by odds ratio can be similarly applied to compound-risk factors, and thus

we define a new type of pattern:

Definition 4 Let D be a data set consisting of a set Dp of positive tuples and a set Dn of negative

tuples. Given a real number β(> 1), a pattern X is a β-strong odds ratio pattern if

ORD

X =
sup(X,Dp)/sup(X,Dp)

sup(X,Dn)/sup(X,Dn)
≥ β

where β is called an odds ratio threshold.

As mentioned earlier, our computational problem is to find all compound-risk factors that

have a strong odds ratio, relative risk, or/and absolute risk reduction test value from a data set D

containing two classes of tuples. This problem is equivalent to finding all δ-strong contrast sets,

ρ-strong emerging patterns, and β-strong odds ratio patterns from D. The discovery of contrast

sets is easy if the threshold δ is high, because mining frequent patterns of D1 with large support

is an easy task (See Figure 2(c)). However, mining emerging patterns or odds ratio patterns is

difficult no matter how large the thresholds ρ and β are. This is because a pattern with a small

support value (i.e., risk) in both classes can be still a strong emerging pattern or a strong odds

ratio pattern (see Figure 2 (a) and (b)). This represents a main contribution of this paper.

In fact, the discovery of emerging patterns is computationally difficult even for a subtype

of emerging patterns called boundary-jumping emerging patterns [22]. A boundary jumping
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Trans. id items

a b c d e

1 1 1 1 0 1

2 0 0 1 1 0

3 1 1 0 0 1

4 1 1 0 1 1

Table 1: A data set D consisting of 4 transactions.

emerging pattern X is a pattern satisfying sup(X,Dp) > 0, sup(X,Dn) = 0 but sup(X ′,Dn) > 0

where X ′ is any proper subset of X. These emerging patterns (events) are located only in the

x-axis of Figure 2 (b). The complexity of mining boundary jumping emerging patterns is MAX

NP-hard [34].

Here, we present a unified approach to the discovery of the three types of patterns. This

approach is based on the concepts of equivalence classes [2], closed patterns [28], and generators

[2].

Definition 5 Let D be a data set, then an equivalence class in D is a set of those itemsets

that always occur together in the same subset transactions of D.

In other words, for any two itemsets X and Y , they are in the same equivalence class iff fD(X) =

fD(Y ) where fD(Z) = {T ∈ D | Z ⊆ T}.

Example 1 Table 1 shows a small data set D. The following itemsets constitute an equivalence

class: a, b, e, ab, ae, be, abe. This is because all of these itemsets occur in all and only transac-

tions of 1, 3 and 4. Itemset cd is not in this equivalence class, as it occurs only in transaction

2.

Proposition 1 Let π be a support threshold, and D be a data set. Then the frequent patterns of

D can be partitioned into frequent equivalence classes without any overlapping.

Proof: Let EC1 and EC2 be two π-frequent equivalent classes. Assume P ∈ EC1 ∩ EC2.

Then fD(P ) = fD(X), for all X ∈ EC1, and fD(P ) = fD(Y ), for all Y ∈ EC2. Therefore
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fD(X) = fD(Y ), for all X ∈ EC1, and all Y ∈ EC2. This is a contradiction. Thus, we can see

that the frequent patterns of D can be partitioned into frequent equivalence classes without any

overlapping. ut

Definition 6 Let EC be an equivalence class in a data set D. The maximal pattern of EC is

defined as the closed pattern of D, the minimal ones are defined as the generators (also called

key patterns) of D.

Proposition 2 An equivalence class EC can be concisely represented in the form [GEC , CEC ]

where GEC is the multi-set of generators of EC, CEC is the closed pattern of EC, and [G, C] =

{X | X ⊆ C, X ⊇ Y, Y ∈ G}.

This property is known as convexity [28]. That is, the generators, which are the lower bound,

and the closed patterns, which are the upper bound, can cover the whole EC in a lossless way.

Example 2 Following Example 1, we can see that the closed pattern is abe, while the generators

are a, b, and e. The equivalence class can be represented as [{a, b, e}, abe]. It is concise as it uses

only 4 itemsets to represent 7 itemsets in this equivalence class.

Proposition 3 Let EC be an equivalence class in a data set D consisting of two classes of

tuples Dp and Dn. Let X and Y be two patterns in EC, then CSD
X = CSD

Y , EPD
X = EPD

Y , and

ORD
X = ORD

Y . That is, all patterns in EC are at the same level of significance in terms of risk

reduction, growth ratio, or odds ratio.

Proof: It is straightforward to prove this proposition by definition, as only the support informa-

tion are needed to calculate the ratio or difference values. ut

By Propositions 1, 2, and 3, we only need to discover closed patterns and generators from a

data set. Then we can find out which patterns are strong by ranking the risk reduction, growth

ratio, or odds ratio values of these closed patterns. The pseudo code of our algorithm, called

CRF, is described by Figure 3.
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Algorithm 1 CRF: Mining strong compound-risk factors

Input: D = Dp ∪ Dn, π, δ, ρ, and β.

Output: The complete set of δ-strong CS, ρ-strong EP, and β-strong OR.

Method:

1: Discover π-frequent closed patterns C and generators from D;

2: for each c in C do

3: xc = sup(c,Dp) − sup(c,Dn);

4: if xc ≥ δ then

5: output c and its corresponding generators;

6: end if

7: yc = sup(c,Dp)/sup(c,Dn);

8: if yc ≥ δ then

9: output c and its corresponding generators;

10: end if

11: zc = sup(c,Dp)/sup(c,Dp)
sup(c,Dn)/sup(c,Dn)

;

12: if zc ≥ δ then

13: output c and its corresponding generators;

14: end if

15: end for

Figure 3: Our algorithm (CRF) for discovering three types of strong compound-risk factors.
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Subject id Risk factors Class

a b c d e f g pos./neg.

1 1 1 1 1 1 0 0 p

2 1 1 1 1 1 0 0 p

3 1 1 1 1 0 1 0 p

4 1 1 1 1 0 0 1 p

5 1 0 0 0 1 1 1 n

6 0 1 0 0 1 1 1 n

7 0 0 1 0 1 1 1 n

8 0 0 0 1 1 1 1 n

Table 2: A data set containing strong compound-risk factors but no strong single risk factors.

We have implemented this algorithm using a depth-first search strategy on the set-enumeration

tree [30] for mining both generators and closed patterns. However, by the minimum description

length (MDL) principle, generators are preferable to closed patterns [20]. Thus, in the imple-

mentation, we change the codes (in lines 5, 9, 13) of the algorithm in Figure 3 to output only

frequent generators. The performance is often 10-100 times faster [20] than a previous algorithm

[28]. The implementation and data structure details for mining frequent generators can be found

in our earlier work [20].

We have also observed that top-ranked patterns usually are itemsets having a risk ratio of

infinity. That is, the support of these itemsets is non-zero (sometimes very big) in one class but

zero in the other class. Of course, these itemsets have an odds ratio of infinity as well. We denote

them by P∞
D

. For two patterns X, Y ∈ P∞
D

satisfying X ⊆ Y , then fD(X) ⊇ fD(Y ). Thus, Y

is a redundant pattern in P∞
D . Therefore, only minimal patterns of P∞

D are non-redundant. To

rank these non-redundant patterns, we refer to their non-zero support levels. These ideas can be

implemented as we adopt a depth-first search strategy. In the following section, for classification

applications, we only used these non-redundant patterns that have a strong relative risk. The

efficiency of our this implementation is usually two orders of magnitude faster than previous

emerging pattern mining algorithms [24, 13, 14, 22] for this same mining task. See appendix for

the details.

Next, we show an example to illustrate how equivalence classes are used in mining strong

compound-risk factors that are also non-redundant.
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Table 2 shows a simple data set D consisting of two classes (p/n) of 8 subjects, where 1s in

a subject mean the subject was exposed to the risk factors, otherwise 0s mean the subject was

not.

Let the support threshold π be 2, then the following equivalence classes are frequent. The

singleton equivalence classes (followed by their support in D) are: e:6, a:5, b:5, c:5, d:5, f:5, g:5,

ae:3, be:3, ce:3, de:3, af:2, bf:2, cf:2, df:2, ag:2, bg:2, cg:2, and dg:2. The other 3 multi-member

equivalence classes are:

[{ab, ac, ad, bc, bd, cd}, abcd] : 4

[{ef, eg, fg}, efg] : 4

and

[{abe, ace, ade, bce, bde, cde}, abcde] : 2

The risk ratio (p/n) of the risk factor a is 100%/25% = 4.0; its odds ratio is 4/0
1/3

= +∞; and

its risk reduction is 100% − 25% = 75%. The other single risk factors such as b, c, and d have

the same level of risk ratio, odds ratio, and risk reduction as a’s.

The risk ratio (p/n) of the compound risk factor abcd is 100%/0% = +∞; its odds ratio is
4/0
0/4

= +∞; and its risk reduction is 100% − 0% = 100%. In the equivalence class of abcd, the

generators (ab, ac, ad, bc, bd, cd) have the same level of risk ratio, odds ratio, and risk reduction

as abcd. Observe that all of these compound-risk factors have stronger test values than the single

risk factors.

The test values of risk factors characterizing the negative class such as efg, can be similarly

calculated.

As discussed above, our algorithm outputs only minimal patterns of P∞
D

(that are also non-

redundant). So in this example, our algorithm outputs only ab, ac, ad, bc, bd, and cd—the

generators of the equivalence class of abcd. However, the generators of the equivalence class of

abcde are not in the output as they are redundant.
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5 Case Study: Compound-risk Factors for Accurate Di-

agnosis in Leukemia Disease

The Naive Bayes (NB) classifier [19, 12] assumes that all risk factors (the attributes) are indepen-

dent. According to Bayes Rule, the probability of a subject E = (rf 1 = a1, rf2 = a2, · · · , rfn =

an) being class c is

p(c|E) =
p(E|c)p(c)

p(E)

where rf i, i = 1, · · · , n, are the n attributes. As NB assumes the independence among all the

attributes, p(E|c) can be rewritten as:

p(E|c) =
∏

i

p(rf i = ai|c)

Then a class label g(E) predicted by NB is:

g(E) = argmaxc∈C p(c) ×
∏

i

p(ai|c)

where C is the set of class labels.

The concept of compound-risk factors does not assume the independence among the individual

risk factors, instead it emphasizes on their interplays. A class label g ′(E) predicted by using k

compound-risk factors is:

g′(E) = argmaxc∈C p(c) ×
k∏

i

p(crf i = bi|c)

where crf i, i = 1, · · · , k, are k top-ranked compound-risk factors. Suppose crf i consists of three

attributes, say, rf 1, rf2 and rf3, then bi = (a1, a2, a3). We term this modified NB as crf-NB. In

this paper, we set k as 10. We also tried other choices such as k = 20, 30. There were no much

difference in the classification performance.

We now discuss how compound-risk factors are concerned in a real-life application. One of

important problems in in-silico cancer diagnosis is the subtype classification of childhood leukemia

and identification of gene groups that are responsible for this disease [38]. Actually, this problem

can be stated as finding out which compound-risk factors (gene groups) that cause those specific
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Number of Subtypes of the disease Total

subjects T-ALL E2A-PBX1 TEL-AML1 BCR-ABL MLL Hyperdip> 50 misc.

Training 28 18 52 9 14 42 52 215

Test 15 9 27 6 6 22 27 112

Table 3: Numbers of training and test subjects for each subtype of the disease.

subtypes of this disease, and which of them have strong prediction power for diagnosis. In that

study [38], the whole data consists of gene expression profiles of 327 patients samples. These

profiles were obtained by hybridization on the Affymetrix U95A GeneChip containing probes for

12558 genes. Table 3 shows the number of training subjects and the number of test subjects [38]

for each of the subtypes of the disease. All the training data are discretized and only top 20 χ2

ranked genes are selected for the discovery of strong compound-risk factors.

For this diagnosis classification problem, we examine which of the two methods, NB or our

crf-NB method, can make a clear distinction between anyone specific subtype against all other

subtypes. Table 4 shows that our method reduces the test errors of NB by half. (By the test

errors of a classifier, we mean the number of mistakes made by the classifier in the test subjects.)

Our performance is also comparable to those achieved by the classic non-linear classifiers such

as SVM [9] and 3-nearest neighbor (3-NN). We note that the two non-linear classifiers cannot

produce any compound-risk factors explicitly. The performance by C4.5 [29], Bagging [7] and

Boosting [15] are much worse than our method in this application. (The main software package

used in the experiments is Weka version 3.2, its Java-written open source are available at http:

//www.cs.waikato.ac.nz/ml/weka/ under the GNU General Public Licence.)

Our compound-risk factors responsible for the BCR-ABL subtype are found to contain 3 or

4 genes. For example, one group contains 3 genes corresponding to probe numbers 40698 at,

39730 at, and 1211 s at in the Affymetrix microarry gene chips. This compound-risk factor

has a support of 89% in the BCR-ABL class, but no occurrence in other subtypes. Thus, this

compound-risk factor has an OR or RR value of infinity and an ARR of 0.89. Note that when

we decompose this compound-risk factor, then the three single genes do not have good OR, RR,

or ARR values. Perhaps this is a direct reason why NB made 5 more mistakes than our method

for separating BCR-ABL from other subtypes. More importantly for biological use, the three
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Datasets Numbers of Test Errors

Our crf-NB NB C4.5 Bagging Boosting SVM 3-NN

BCR-ABL 1:0 0:6 1:4 2:0 1:4 1:1 1:0

E2A-PBX1 0:0 0:0 0:0 0:0 0:0 0:0 0:0

HyperL50 2:2 0:5 4:5 4:2 1:4 0:3 1:4

MLL 0:0 0:1 1:1 0:0 1:1 0:0 0:0

T-ALL 0:0 0:0 0:1 0:1 0:1 0:0 0:0

TEL-AML1 2:0 0:3 3:1 1:0 1:0 1:1 2:0

Total 7 15 21 10 14 7 8

Table 4: Error numbers of 7 classifiers on the test data for the subtype classification of childhood

leukemia. Here, the symbol x : y means x number of errors made in the subtype specified in the

first column, and y number of errors made in all other subtypes, by a classifier.

genes should be investigated in an interactive way, not in a separate way.

For some UCI data sets 2 such as the tic-tac-toe, sick and mushroom data sets, we have

observed an interesting thing. We found that NB suffers from a dramatic accuracy loss: 95%

as opposed to 100% obtained by other classifiers including SVM, Bagging and Boosting on the

mushroom data set, 93% as opposed to 98% by the other three classifiers on the sick data set,

and 70% as opposed to 98% by the three on tic-tac-toe (see detailed comparison in Table 5).

However, our method crf-NB did not suffer from this problem—It matches the performance of

SVM, Bagging, or Boosting on these data sets. Note that for the tic-tac-toe data set, strong

compound-risk factors consist at least 3 attributes. However, none of the 9 single attributes have

a good relative risk. This indicates that strong compound-risk factors have to be used, since

otherwise the probability independence rule, as exploited by NB, may not work well. We also

note that NB and our crf-NB have comparable performance on some other UCI data sets such

as breast cancer, cleve, heart, hepatitis, hiv, hypo, and lymph, where SVM and Boosting did not

achieve high classification accuracy.

As discussed above, by replacing single risk factors with compound-risk factors, the Naive

Bayesian classifier can improve its accuracy in most cases. However, there are several problems

that require further investigation. For example, a problem is how to deal with data sets having

more than two decision classes. Another problem is how to handle missing/noise data, and how

2http://www.cs.uci.edu/∼mlearn/MLRepository.html
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Table 5: Performance comparison between our method, NB and other classifiers by 10-fold cross

validation.

Data sets Accuracy (%)

Our crf-NB NB SVM C4.5 Bagging Boosting

mushroom 100 95.5 100 100 100 100

sick 98.4 92.9 93.9 98.6 98.9 99.2

tic-tac-toe 98.8 69.5 98.3 85.8 92.6 96.1

to evaluate the robustness of the approach. Although addressing these future issues is not the

main purpose of this paper, readers are still referred to [14] for partial answers.

6 Conclusion

In this paper, we have introduced three types of compound-risk factors to broaden the appli-

cability of the statistical ideas behind odds ratio, relative risk, and absolute risk reduction. To

efficiently discover the three types of strong and subtle interplays of the risk factors, we have

presented a unified method that make use of the closed patterns and generators of the data sets

from the dichotomous classes. Our algorithm can be easily adapted to output non-redundant

compound-risk factors from P∞
D that have good potential in classification. Our algorithm is

found to be two orders of magnitude faster than previous algorithms for this mining task. We

have also observed that classification by using compound-risk factors can be more accurate than

Naive Bayesian when attributes are not independent. In our case study, compound-risk factors

have been shown to be useful for leukemia cancer diagnosis and for the identification of gene

groups responsible for the disease. The same idea can be extended to analyzing other types of

cancer data. As future work, we believe that much room is still there for new methods to combine

compound-risk factors for classification. We also plan to explore the relationships between odds

ratio patterns, emerging patterns, and other statistical patterns such as chi-squared patterns.
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Appendix

A recent work epMiner [24] is designed for mining emerging patterns. Given two classes of

data Dpos and Dneg, the epMiner algorithm mines those minimal emerging patterns occurring

frequently (> α%) in the positive class and infrequently (< β%) in the negative class. This algo-

rithm has been shown to outperform another recent algorithm proposed by [14]. Our experiment

here is to study the efficiency of our algorithm, in comparison to the epMiner algorithm [24]. For

a fair comparison, our algorithm takes the option of mining non-redundant minimal emerging

patterns by setting π = (|Dpos| · α%)/(|Dpos| + |Dneg|), and δ = |Dneg| · β%. Figure 4 shows

the running time of the two algorithms. From this figure, we can see that our algorithm is con-

stantly faster than epMiner with multiple orders of magnitudes on the two high-dimensional gene

expression data sets when varying α and β. (The experiments on the ALL-AML data set was

terminated when the time reached 50000 seconds; on the LungCancer data set was terminated

when reached 10000 seconds; our running time included that of mining closed patterns.)

The ALL-AML and LungCancer data sets (available at http://research.i2r.a-star.edu.

sg/rp/) contain gene expression levels of some leukemia and lung cancer patients. They are

challenging, as seen in [24], because every transaction contains hundreds (865 in ALL-AML) or

even thousands (2172 in LungCancer) of items. The experiments were conducted on a 3.60Ghz

Pentium IV with 2GB memory running Fedora core. All codes were compiled using g++.
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