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Abstract 

Magnetic bearings use magnetic forces to support various machine components. Because 

of the non-contact nature of this type of suspension, magnetic bearing technology offers a 

number of significant advantages over conventional bearings such as rolling element and 

fluid film bearings. An active magnetic bearing basically consists of an electromagnetic 

actuator, position sensors, power amplifiers, and a feedback controller. All of these 

components are characterized by nonlinear behaviour and therefore the entire system is 

inherently nonlinear. However, in simulations of the dynamic behaviour of magnetic 

bearing systems, the nonlinearities are usually neglected to simplify the analysis and only 

linear models are used. Moreover, many control techniques currently used in magnetic 

bearing systems are generally designed by ignoring nonlinear effects. The main reason for 

simplification is the intractability of the complexity of the actual model. In fact, the 

inherent nonlinear properties of magnetic bearing systems can lead to dynamic behaviour 

of a magnetically suspended rotor that is distinctly different from that predicted using a 

simple linearized model. Therefore the nonlinearities should be taken into account. 
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This literature review is focussed on the nonlinear dynamics of magnetic bearing systems 

and it provides background information on analytical methods, nonlinear vibrations 

resulting from a rotor contacting auxiliary bearings, and other active topics of research 

involving the nonlinear properties of magnetic bearing systems such as nonlinear self-

sensing magnetic bearings and nonlinear control of magnetic bearings. The paper 

concludes with a brief discussion on current and possible future directions for research on 

the nonlinear dynamics of magnetic bearing systems. 

 

Keywords: magnetic bearing systems, nonlinear vibrations, stability, bifurcations, 

periodic motion, chaotic motion, time delays, nonlinear rotor-dynamics, nonlinear 

dynamic behaviour. 
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1 Introduction 
 

One of the most innovative developments in the turbomachinery field involves the use of 

active magnetic bearings for rotor support. Magnetic bearings use magnetic forces to 

support moving machinery without physical contact. Because of the non-contact nature of 

the suspension, this new bearing technology offers a number of significant advantages 

over conventional bearings such as rolling element and fluid film bearings. These 

advantages include elimination of the lubrication system, very low friction, no wear, high 

rotor speed, and adjustable dynamic properties. Magnetic bearings can offer a high load-

carrying capability by optimising system and material parameters including the bearing air 

gap, bearing material saturation flux, bearing surface area, number of bearing coil turns 

and amplifier power. Magnetic bearings can permit operation in extreme environments 

such as high temperatures, low temperatures and vacuums. An advanced monitoring 

system incorporated in a magnetic bearing system can not only monitor instantaneous 

system parameters such as rotor position, lateral and axial vibration, electrical current, 

temperature and rotational speed, but can also analyse the unbalance by calculating its 

location and magnitude. The electronic controllers can change bearing stiffness and 

damping properties, allowing for adjustments to system dynamics that affect resonance 

frequencies and reduce transmitted vibration. Magnetic bearings integrated into a rotor-

bearing system may be used for synchronous disturbance control and vibration control 

[Knospe, Hope, Fedigan and Williams, 1995; Matsushita, Imashima and Okubo, 2002; 

Cole, Keogh and Burrows, 2002; Kasarda, Mendoza, Kirk and Wicks, 2004; Shi, Zmood 

and Qin, 2004]; vibration suppression and attenuation [Knospe and Tamer, 1997; Cole, 

Keogh and Burrows, 1998; Keogh, Cole and Burrows, 2002; Johnson, Nascimento, 

Kasarda and Fuller, 2003]; for active health monitoring of rotordynamic systems [Mani, 
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Quinn and Kasarda, 2006]; and on-line identification and fault diagnosis [Aenis, Knopf 

and Nordmann, 2002; Quinn, Mani, Kasarda, Bash, Inman and Kirk, 2005]. 

 

The application of magnetic bearing technology has experienced substantial growth during 

the past two decades, since the First International Symposium on Magnetic Bearings was 

held in 1988 [Schweitzer, 1988]. Meanwhile, considerable research has been undertaken 

to cover all aspects of magnetic bearings including sensing and control technology, 

modelling and identification, components and materials, and self-sensing techniques 

[Higuchi, 1990; Allaire, 1992; Schweitzer, Siegwart and Herzog, 1994; Matsumura, 

Okada, Fujita and Namerikawa, 1996; Allaire and Trumper, 1998; Schweitzer, Siegwart, 

Loesch and Berksun, 2000; Okada and Nonami, 2002; Lyndon and Trumper, 2004; 

Bleuler and Genta, 2006]. Significant progress has been made in understanding key issues 

in designing reliable magnetic bearings. Magnetic bearings have now moved beyond 

promise into actual service in such applications as turbomachinery, centrifuges, vacuum 

machinery, machine tool spindles, medical devices, robotics, high-speed drives, spacecraft 

equipment, contactless actuators and vibration isolation [Kasarda, 2000]. Magnetic 

bearings are also used in high-precision instruments and to support equipment in a 

vacuum, for example in flywheel energy storage systems. A flywheel in a vacuum has 

very low windage losses, but conventional bearings usually fail quickly in a vacuum due 

to poor lubrication. This literature review will summarize the development of current 

research in understanding the nonlinear dynamics of magnetic bearings, with a focus on 

the effects of nonlinear properties and time delays on the nonlinear dynamics and dynamic 

stability of magnetic bearing systems. 

 

This section is organized into three subsections. Subsection 1.1 presents a brief 

introduction to magnetic bearings and active topics of current research relevant to 
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magnetic bearing technology. Section 1.2 discusses the nonlinear properties of magnetic 

bearings and gives reasons for the need to consider the nonlinear dynamic analysis of 

magnetic bearing systems. Section 1.3 outlines the organization of this literature review.  

 

1.1 Magnetic bearings and the active topics of research 

 

A bearing is a component used to reduce friction in a machine. Bearings may be classified 

broadly as radial bearings and thrust bearings according to the motions they allow. 

Alternatively, bearings may be grouped according to six common principles of operation: 

namely sliding bearings; rolling element bearings; fluid bearings; flexure bearings and 

magnetic bearings. 

 

[Insert Figure 1 here ] 

 

Magnetic bearings use magnetic forces to support moving machinery without physical 

contact. The stable operation of a magnetic bearing system can only be achieved by 

feedback control. Conceptually, a typical active magnetic bearing is composed of four 

basic components; position sensors, feedback controllers, power amplifiers, and 

electromagnetic actuators. Figure 1 shows a block diagram of a magnetic bearing system. 

The non-contact position sensor is used to measure the position of the shaft, and this 

signal is used by the controller to generate the control signals, which are fed into the 

power amplifier, which in turn supplies the required currents to each of the actuator coils. 

Finally, the electromagnets generate the suspension and operating forces. 

 

Figure 2 shows a single-degree-of-freedom magnetic system with a pair of opposed 

electromagnets in combination (commonly referred to as a two-pole magnetic bearing) to 
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provide magnetic attractive forces, where 1I  and 2I  represent the currents flowing in the 

coils, 0g  denotes the nominal air gap between the rotor and electromagnets, and x  

designates the displacement of the geometrical centre of the rotor from the centre of the 

magnetic bearing. This simple model, without unnecessary complexity, represents a 

fundamental structure for many more complicated magnetic bearing arrangements. Using 

this model, many researchers have designed control systems and self-sensing magnetic 

bearings as well as examined the stability and dynamics of simple rotor-bearing systems. 

 

[Insert Figure 2 here ] 

 

It should be mentioned that a rotating machine with active magnetic bearings is commonly 

equipped with conventional bearings as a backup support system in the event of failure of 

the magnetic bearings. The backup support system is usually referred to as auxiliary 

bearings or backup bearings in the literature. The auxiliary bearing system carries no load 

during normal system operation and is designed to provide machine protection in the 

unlikely event of an electronic failure or power failure, which would cause loss of 

magnetic support and subsequent rotor delevitation. The loss of the magnetic bearing 

function during operation may lead to either a transient or persistent contact event between 

the auxiliary bearings and the magnetically suspended rotor. Subsequent interactions of 

the rotor and auxiliary bearings may significantly influence the behaviour of the rotor 

through producing very large amplitude vibrations and high instantaneous loads. A deep 

understanding of the dynamics of the rotor contacting auxiliary bearings is essential to 

help design better auxiliary bearings. 

 

Research relevant to magnetic bearings has received considerable interest from research 

groups and industry engineers since the First International Symposium on Magnetic 
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Bearing Systems was held in Zurich, Switzerland in 1988 [Schweitzer, 1988]. The 

literature on magnetic bearings is huge and diverse, primarily due to a wide variety of both 

theoretical research and practical applications. Hundreds of papers appear every year in 

academic journals, conference proceedings and technical reports. The currently active 

topics of research on magnetic bearings as indicated by the topics of interest for past 

international symposiums on magnetic bearings can be classified by specific subjects 

covering all the aspects of research and applications including: active magnetic bearings; 

passive magnetic bearings; superconductor magnetic bearings; micro bearings; magnetic 

actuators; new sensing and control technology; industrialization, safety and reliability 

aspects; modelling and identification; field experiences and case studies; components and 

materials; self-bearing motors; self-sensing techniques; and application of magnetic 

bearings for vibration control and online diagnosis. 

 

Active magnetic bearings may be currently perceived as reaching a mature state. Their 

applications are steadily increasing in number while new application fields are emerging. 

It is expected that new fields of research will continue to appear to keep track with 

increasing numbers of applications. This paper presents a literature review of nonlinear 

dynamics and dynamic stability of magnetic bearing systems. 

 

1.2 Nonlinear properties of magnetic bearing systems 

 

As shown in Figure 1, a magnetic bearing system is basically composed of sensors, 

controllers, amplifiers and electromagnets. All of these components are characterized by 

nonlinear behaviour and therefore the entire system is inherently nonlinear. The most 

important nonlinearities are: 
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1). The nonlinear magnetic force to displacement and force to coil current relationships 

(or nonlinear force to magnetic flux relationship) of the electromagnets; 

2). The geometric coupling between the electromagnets, which results in coupling 

between different orthogonal coordinate directions;  

3). The saturation of the ferromagnetic core material, which results in a flattening of the 

magnetization curve; 

4). The hysteresis of the magnetic core material; 

5). The saturation of the power amplifier and the limitation of the control current, which 

are caused by physical limitations of the power amplifier; 

6). The unavoidable time delays in the controller and actuators, especially when the 

control algorithm is implemented on a digital signal processor; 

7). The nonlinearity and noise of the sensor system; 

8). The nonlinearity of the coil inductance; and 

9). The eddy current effect, the leakage and fringing effect, and the nonlinear 

magnetization B-H curve. 

 

When linear modelling is used to characterise magnetic bearings, the nonlinear 

electromagnetic forces are linearized about the operating point and considered to be a 

linear function of currents and air-gaps. The linearized magnetic forces may alternatively 

be expressed in terms of spring stiffness and damping, such as given by Tonoli and 

Bornemann [1998]; Kim and Lee [1999]; Peel, Bringham and Howe [2000]. However, the 

linear relationship holds only locally and the linear behaviour of rotor motion can be 

approximated only for small rotor deflections and small control currents. If the rotor 

deflections exceed half the gap, the net magnetic force of an opposite pair of 

electromagnets differs by more than 44% from its linear approximation [Skricka and 

Markert, 2002]. Consequently, the performance of magnetic bearings may suffer rapid 
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deterioration when the operation deviates from the equilibrium point. In practice, the 

nonlinear characteristics become quite significant for large control currents and small air-

gaps.  The nonlinear properties of magnetic bearings can lead to dynamic behaviour of 

rotor motion that is totally different from that predicted by a linear model. A nonlinear 

dynamic analysis of rotor-magnetic bearing systems is required in order to fully utilize the 

capacity of a magnetic bearing. Investigation of the effects of the nonlinearities on the 

stability and dynamics as well as on the performance of magnetic bearings has received 

significant attention of the international research community in the past decade. 

 

There is a strong need for the dynamic analysis of magnetic bearing systems to be 

nonlinear, at least for two main reasons. First, a fundamental scientific investigation of the 

effect of nonlinearities on the dynamic behaviour of magnetic bearings can provide 

valuable insights into system characteristics under various operating conditions, and 

predict the complicated dynamic behaviour of the system. Second, a precise parametric 

model of magnetic bearings is required for the optimal design to achieve reliable and 

stable operation to be realised. The success of any magnetic bearing is highly dependent 

on the design of the controller that is used to control it. In turn, the controller relies heavily 

on a priori knowledge of the system dynamics. If the system model is not precisely 

known, the controller, which is designed for a specific purpose or aimed at compensation 

of a specific component of the nonlinearities, may fail to meet the performance 

requirements for the practical system. 

 

As will be discussed in sections 3, 4 and 6, the primary objective of existing studies on the 

nonlinear dynamics of magnetic bearing systems has been to gain a deeper insight into the 

effects of the inherent nonlinearities of magnetic bearings and the influence of 

unavoidable time delays occurring in the feedback control path on the stability, dynamic 
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behaviour and performance of magnetic bearing systems. Emphasis has been on stability 

analysis and local bifurcation control as well as on all aspects of nonlinear dynamic 

behaviour including bifurcations, co-existence of multiple solutions and amplitude-

modulated motions. 

 

1.3 Organization of this literature review 

 

Since the First International Symposium on Magnetic Bearings was held in 1988 

[Schweitzer, 1988], considerable research has been conducted to study all the aspects of 

magnetic bearings and their potential applications. This review will not cover all the 

aspects of research and applications relevant to magnetic bearings, such as new 

developments in sensing and control system technology and new magnetic bearing system 

designs. This review will focus on summarising recent research on the nonlinear dynamics 

of magnetic bearings. Emphasis is given to the nonlinear dynamic behaviour and stability 

of a rotor supported by magnetic bearings in the presence of the single or multiple 

nonlinear components which inherently exist in magnetic bearing systems. 

 

The writing of this literature review has proved to be a difficult task in part because the 

literature on magnetic bearings is growing rapidly every year and across a large number of 

international journals and conference proceedings, and because the subject has an 

interdisciplinary nature covering mechanical engineering, electrical engineering and 

applied mathematics. Even in the context of the nonlinear dynamics of magnetic bearing 

systems, classification of published studies is a formidable task, as this classification is 

inevitably biased toward the areas with which the authors are most familiar and have 

conducted research in. Research topics addressed in the present review are categorized 

into five main groups: nonlinear vibrations of a rotor contacting auxiliary bearings; 
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nonlinear dynamics of one-degree-of-freedom (one-DOF) nonlinear rotor-bearing 

systems; nonlinear dynamics of two-DOF nonlinear rotor-bearing systems; stability and 

dynamics of rotor-bearing systems with time delays; and other issues relevant to nonlinear 

magnetic bearing systems. Note that all the papers cited in this review were written in 

English. Some non-English papers have been omitted because of their unavailability. 

 

The remaining parts of this literature review are organized as follows: Section 2 briefly 

describes the analytical methods that have been used in analysis of the nonlinear dynamics 

of magnetic bearing systems. Section 3 reviews the nonlinear dynamics of simple rotor-

magnetic bearing systems for which the equations of motion are mathematically modelled 

by one-DOF nonlinear systems. Section 4 reviews the nonlinear dynamics of magnetic 

bearing systems whose mathematical modelling is governed by a set of two-DOF 

nonlinear systems. Section 5 briefly reviews the nonlinear vibrations of a rotor contacting 

backup auxiliary bearings. The effect of time delays on the stability and dynamics of 

rotor-magnetic bearing systems is discussed in Section 6. Section 7 presents two emerging 

topics of research dealing with the nonlinear properties of magnetic bearings: nonlinear 

self-sensing magnetic bearings; and nonlinear control of magnetic bearings. Section 8 

concludes the review by briefly summarizing recent research and development on the 

nonlinear dynamics of magnetic bearing systems, and by discussing possible topics of 

future research in the area. 

 

2 Analytical methods  
 

Analysis of dynamic behaviour has always been an important aspect in the design and 

assessment of rotor-bearing systems. Nonlinear rotor motion in rotating machinery is 

commonly caused by the nonlinear characteristics of the supporting bearings. The 
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bearings could be either conventional mechanical bearings (such as ball, journal, or fluid-

film bearings) or magnetic bearings. In general, the forced response of rotor-bearing 

systems may exhibit periodic, sub-harmonic, super-harmonic and chaotic behaviour as 

well as saddle node and Hopf bifurcations. Here bifurcations (i.e., local bifurcations) refer 

to qualitative changes in the structure of the solutions of a system when certain system 

parameters are varied [Guckenheimer and Holmes, 1983].  Local bifurcations of the forced 

response of rotor-bearing systems can be analysed entirely through changes in the local 

stability properties of equilibria or periodic solutions.  The stability of steady state 

solutions can be examined by computing the eigenvalues of the coefficients matrix of the 

characteristic equations, which are derived from the averaged equations in terms of small 

disturbances to the steady state solutions. A saddle-node bifurcation corresponds to the 

real part of an eigenvalue passing through zero.  A pitchfork bifurcation associates with a 

real eigenvalue crossing the imaginary axis into the right-half of the complex plane along 

the real axis. A Hopf bifurcation is defined as the change in qualitative behaviour when a 

pair of complex conjugate eigenvalues passes through the imaginary axis.  Saddle-node 

bifurcations usually lead to the phenomenon of bistability, where in a certain interval of 

the control parameter, two stable attractors exist with an unstable one in-between. 

Bistability is responsible for hysteresis and jump phenomena. A co-existence of two stable 

motions may be possible after a pitchfork bifurcation occurs.  For a rotor-magnetic 

bearing system without external excitations, the trivial equilibrium may lose its stability 

through a Hopf bifurcation and bifurcate into a periodic solution [Ji, 2003; Ji and Hansen, 

2005]. Through Hopf bifurcations, the steady state response of an unbalanced rotor may 

result in amplitude- and phase-modulated motions [Ji and Hansen, 2001; Ji and Leung, 

2003]. 
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For a rotor supported by rolling bearings, the nonlinear behaviour of the resultant rotor-

bearing system results mainly from nonlinear Hertzian contact force, bearing clearances, 

and surface waviness [for example, Pavlovskaia, Karpenko and Wiercigroch, 2004; 

Harsha, 2006]. For a rotor supported by fluid film bearings, nonlinear hydrodynamic 

forces are a primary source of vibration and introduce the nonlinear dynamic behaviour of 

rotor motion [Ding, Cooper and Leung, 2002; Cveticanin, 2005]. 

 

For a rotor suspended by magnetic bearings, the nonlinear oscillations of rotor motion 

may result from either accidental contacts between the rotor and auxiliary bearings or the 

inherent nonlinearities of magnetic bearing systems. In the former case, the clearance 

between the rotor and the inner race of the auxiliary bearing introduces a nonlinear 

dynamic feature after the magnetic bearings fail. As discussed in Section 1.2, the inherent 

nonlinear properties of magnetic bearing systems are different from those of conventional 

bearings in terms of types and characteristics, partially because the nonlinear magnetic 

forces are dependent on control currents or voltages (i.e. magnetic flux). 

 

In comparison with the research on the nonlinear dynamic behaviour of a rotor supported 

by conventional mechanical bearings (which are either rolling element bearings or fluid-

film bearings), research on the nonlinear dynamic behaviour of a rotor supported by 

magnetic bearings is far from intensive, mainly because the application of this new 

bearing technology is less extensive than the application of conventional mechanical 

bearings, although the use of magnetic bearings for turbomachinery has experienced 

substantial growth since the First International Symposium on Magnetic Bearings was 

held in 1988 [Schweitzer, 1988]. 
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Fortunately, the growing engineering requirements for the nonlinear analysis of the 

dynamic behaviour of magnetic bearing systems have been paralleled by a notable 

advance in dynamical systems theory [Guckenheimer and Holmes, 1983; Wiggins, 1990], 

which permitted the exploration of several typical nonlinear phenomena. Phrases like 

nonlinear resonances, bifurcations and chaos are now well documented and understood. 

 

In modelling rotor-magnetic bearing systems in the presence of nonlinearity, the equations 

of motion governing the response of a magnetically suspended rotor are usually 

characterised by a set of either one- or two-DOF nonlinear differential equations with 

quadratic and cubic terms. The closed form of the solutions to these nonlinear differential 

equations cannot be found analytically, therefore either numerical integration solutions or 

approximate solutions obtained using a perturbation method have been sought to 

investigate the nonlinear response of magnetic bearing systems. 

 

In solving nonlinear differential equations, numerical integration schemes such as the 

Runge-Kutta algorithm are commonly used to find periodic, quasi-periodic and chaotic 

solutions, and numerical methods such as the continuation method [e.g., Parker and Chua, 

1989] may be used to obtain unstable solutions. 

 

There are currently many asymptotic perturbation methods available for finding 

approximate periodic solutions for nonlinear systems. These perturbation techniques 

include the averaging method [Hale, 1971], the method of multiple scales [Nayfeh and 

Mook, 1979], the harmonic balance method [Kim and Choi, 1997], the trigonometric 

collocation method [Chinta and Palazzolo, 1998], and an asymptotic perturbation method 

incorporating the harmonic balance method and the method of multiple scales [Maccari, 

1998]. A perturbation method is employed to obtain a set of two or four averaged 
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equations that determine the amplitudes and phases of the forced response of the rotor 

motion under primary resonances or secondary resonances. Floquet theory [Hayashi, 

1964; Rudiger, 1994] is utilized to study the local stability of periodic solutions. Usually, a 

perturbation analysis is carried out up to the first-order approximation if the nonlinear 

systems involve cubic nonlinear terms only, since the higher-order approximate terms do 

not influence the qualitative behaviour of the asymptotic solutions. On the other hand, if 

the nonlinear systems involve both quadratic and cubic nonlinearities, second-order 

approximate solutions are sought, because the quadratic nonlinearities cannot appear in 

the first-order approximate solutions. 

 

In studying the effect of time delays on the dynamics and stability of rotor motion, the 

dynamic response of the rotor is mathematically modelled by either one- or two-DOF 

nonlinear differential equations with time delays. Such systems are usually referred to as 

functional differential equations in the context of mathematics [Halanay, 1966; Hale, 

1977; Hale and Verduyn Lunel, 1983]. The decomposition theory and centre manifold 

theorem [Halanay, 1966; Hale, 1977; Hale and Verduyn Lunel, 1983; Troger and Steindl, 

1991] are used to perform a reduction of an infinite dimensional nonlinear system to a set 

of two- or four-dimensional ordinary differential equations. A perturbation method is then 

used to explore the bifurcating solutions and forced response of the system in the 

neighbourhood of Hopf bifurcations. 

 

3 One-DOF nonlinear rotor-bearing systems 
 

Active magnetic bearings use magnetic forces to support various machine components 

[Schwitzer, Bleuler and Traxler, 1994]. An active magnetic bearing consists of an 

electromagnetic actuator, position sensors, power amplifiers, and a feedback controller. 
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Each actuator is composed of a ferromagnetic component attached to the rotor and its 

counterpart of stationary electromagnets (known as the stator). In early simulations of the 

dynamic behaviour of magnetic bearing systems, nonlinearities were usually neglected for 

simplicity and the components of magnetic bearing systems were simplified to linear 

models. However, the nonlinear properties of magnetic bearings can lead to behaviour of 

the rotor-bearing system that is distinctly different from that predicted using a simple 

linear model. It has been shown that the standard linear magnetic bearing model which is 

obtained from linearization based on the bias current was imprecise for the control axes 

affected by gravity, and that special attention was paid to account for the nonlinear effects 

in the case of non-canonical choice of bias current [Loesch, 2001]. 

 

At an early stage of analysis, a two-pole, single-degree-of-freedom (single-DOF) magnetic 

bearing system was used to study the nonlinear dynamics and stability of the rotor motion. 

This simple model, as shown in Figure 2 of Section 1.1, without unnecessary complexity, 

represents a fundamental structure for the analysis of many more complicated magnetic 

bearings.  The equation of motion for a rigid rotor has the form 

    )cos(2 tmeFxm x  , (1) 

where x  is the displacement, m  is the mass of the rotor, xF  is the total magnetic force 

acting on the rotor in x  direction, e  is the mass imbalance eccentricity of the rotor,   is 

the rotational speed of the rotor, and a overdot denotes the differentiation with respect to 

time t .  The magnetic force can be written as ])/()/([ 2
0

2
1

2
0

2
2 xgIxgIkFx  , where 

1I  and 2I  are the currents flowing through the coils, 0g  is the nominal air gap between 

the stator and the shaft when 0x ,  and k is a constant consisting of the parameters of the 

electromagnets. The equations of motion governing the dynamics of a magnetically 

suspended rotor by a two-pole magnetic bearing are mathematically modelled by one-
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DOF nonlinear systems that are expressed in a similar form to equation (1). There are a 

number of studies in the literature that partially dealt with the problem of the nonlinear 

modelling and nonlinear dynamics of magnetic bearing systems by using one-DOF 

nonlinear systems and they are discussed in the following paragraphs. 

 

Mohamed and Emad [1993] used a numerical method to analyse the nonlinear oscillation 

of a rigid rotor in two radial active magnetic bearings. It was shown that the system 

undergoes Hopf bifurcation due to unstable periodic motion. However, only a nonlinear 

force to magnetic flux relationship was considered along with the rotor gyroscopic effects, 

while other nonlinearities such as geometric coupling, hysteresis and saturation of the 

magnetic material, and time delays of the feedback controller were neglected. Laier and 

Markert [1995] carried out a numerical simulation of the nonlinear effects on magnetically 

suspended rotors. Jump phenomena were found to occur in the system, as shown in Figure 

3, where the frequency-response curves show typical jumps from one stable branch to the 

other during running up or running down.  

 

[Insert Figure 3 here ] 

 

Springer, Schlager and Platter [1998] developed a nonlinear model including nonlinear 

magnetic force and magnetic saturation for radial magnetic bearing actuators. The 

transient vibration was analysed using a numerical integration procedure. However, they 

did not consider geometric coupling, time delays occurring in the control system and 

limitations of the power amplifier and control current. Steinschaden and Springer [1999a] 

developed a simple nonlinear model containing only the nonlinear force to displacement 

and force to coil current relationship to investigate the dynamic behaviour of a radial 

active magnetic bearing system. It was shown that their simple model could exhibit 
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symmetry breaking and period doubling bifurcations. However, the other important 

components of nonlinearity such as geometric coupling, hysteresis, saturation of the 

magnetic material, and time delays of the control system were neglected. Later, 

Steinschaden and Springer [1999b] studied the effects of saturation of the proportional-

integral-derivative (PID) controller output and nonlinear magnetic force on the dynamic 

characteristics of a single-mass rotor by using numerical simulation. It was found that 

symmetry breaking and quasi-periodic solutions might take place for specific parameter 

sets. However, they did not take the geometric coupling and time delays of the control 

system into account. Ji, Yu and Leung [2000] studied the bifurcation of rotor motion in the 

horizontal and vertical directions near the degenerate point of a double–zero eigenvalue by 

using the normal form method. The nonlinear magnetic force was expanded about the 

equilibrium point into a Taylor series of up to the third-order. It was shown that the 

vibratory behaviour in the vertical direction could be reduced on the centre manifold to the 

Bogdanov-Takens form [Guckenheimer and Holmes, 1983]. Saddle-node, Hopf and 

saddle-connection bifurcations were found in the reduced normal form equations. 

However, other nonlinearities such as geometric coupling, saturation of the power 

amplifier, hysteresis and saturation of the magnetic material, and time delays of the 

control system were neglected. 

 

Ji [2004] developed a periodically forced single-DOF piecewise linear system model 

subjected to a saturation constraint to study the dynamics of a rotor supported by a two-

pole magnetic bearing with proportional feedback control, in which the actuator is subject 

to saturation constraints. The magnetic force was simplified to be of a piecewise linear 

characteristic and the equations of motion in the non-dimensional form is given by 

     )cos(2 2
2 tfyyyy        for 1|| y , 
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     )cos()sgn(2 2
2 tfyyyy        for 1|| y , (2) 

where y is the dimensionless displacement,   is the damping coefficient, and )sgn(  

denotes the sign function. 

 

[Insert Figure 4 here ] 

 

A symmetric periodic solution with a double-entering saturation region per cycle, as 

shown in Figure 4, was analytically constructed to represent the motion of a rotor entering 

the saturation regime twice per cycle of the external force. The periodic solution consists 

of four distinct segments of the motion according to four time intervals; 0 1[ , ]t t , 1 2[ , ]t t , 

2 3[ , ]t t  and 3 4[ , ]t t , where 4 0t t T  , T is the period of the periodic motion and it  denotes 

the time instant that the motion crosses the boundaries of the saturation regions 1y   . 

Other kinds of solutions such as asymmetric, subharmonic and chaotic solutions as well as 

solutions involving a multiple-crossing saturation region per cycle periodic solutions, were 

found through numerical simulations to exist in the forced response of the system. Ji and 

Hansen [2004a] constructed an analytical approximate solution for the primary resonance 

response of a periodically excited piecewise nonlinear-linear oscillator which results from 

the dynamic modelling of a rotor supported by a magnetic bearing subjected to saturation 

constraints. The magnetic force of a two-pole magnetic bearing subjected to saturation 

constraints was modelled to be of linear-nonlinear characteristic. Without eliminating the 

secular terms, a valid asymptotic expansion solution for the weakly nonlinear equation 

was analytically determined for the case of primary resonances. A symmetric periodic 

solution for the overall system was then obtained by imposing continuity and matching 

conditions. The stability characteristic of the symmetric periodic solution was examined 

by investigating the asymptotic behaviour of perturbations to the steady state solution. 
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Later, Ji and Hansen [2004b] analytically constructed a global symmetric period-1 

approximate solution for the non-resonant periodic response of the nonlinear-linear 

oscillator. The period-1 solution was referred to as the large amplitude motion entering 

saturation regions twice per period of the external excitation. The approximate solutions 

were found to be in good agreement with the exact solutions that were obtained from the 

numerical integration of the original equations. In addition, the dynamic behaviour of the 

oscillator was numerically investigated with the help of bifurcation diagrams, Lyapunov 

exponents, Poincare maps, phase portraits and basins of attraction. The existence of sub-

harmonic and chaotic motions and the coexistence of four attractors were observed for 

some combinations of the system parameters. 

 

[Insert Figure 5 here ] 

 

Figures 5(a) and (b) show a bifurcation diagram and the maximum Lyapunov exponent 

(mLe) with an increase of the forcing frequency   in the region [0.37,0.49] , where 

  is defined as the forcing frequency. The Lyapunov exponents were calculated using the 

algorithm derived by Wolf, Swift, Swinney and Vastano [1985] and iterated over at least 

1000 forcing periods. There exist period-1, period-2 and period-4 motions as well as 

chaotic motions in the given interval of forcing frequency. At 0.4025  , the maximum 

Lyapunov exponent changes from a negative to a positive value. For 0.4025 0.466   , 

the maximum Lyapunov exponent is positive, thereby confirming the occurrence of 

chaotic motions. At 0.3975  , 0.4025, and 0.483, the maximum Lyapunov exponent is 

nearly zero, which corresponds to the occurrence of a bifurcation. A sequence of period 

doubling bifurcations leading to chaotic motion was observed in Figure 5(a) in the range 

[0.37,0.44] , which is a typical route to chaos observed in a large range of mechanical 
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systems. The chaotic motion disappears through reverse period doubling bifurcations, 

firstly bifurcating to a period-4 then to a period-2, and eventually settling to a period-1 

motion. 

 

[Insert Figure 6 here ] 

 

Figure 6 shows the phase portrait and Poincare map of a chaotic motion of the system for 

0.45  . The two Lyapunov exponents for the chaotic motion are approximately 

0.139363 and 0.386685, respectively.  Later, Ji and Hansen [2005a] applied a matching 

method and a modified averaging method to construct an approximate solution for the 

super-harmonic resonance response of the periodically excited nonlinear oscillator with a 

piecewise nonlinear-linear characteristic. The validity of the developed analysis was 

confirmed by comparing the approximate solutions with the results of direct numerical 

integration of the original equation. These studies have shown that the occurrence of 

nonlinear saturation resulting from the magnetic materials or limitation of power amplifier 

could lead to complicated dynamic behaviours including large-amplitude motions, quasi-

periodic motions and chaotic motions, which cause poor dynamic behaviour of the 

magnetic bearing and deteriorate the performance of control system. 

 

4 Two-DOF nonlinear rotor-bearing systems 
 

The aforementioned studies in Section 3 have greatly enhanced the understanding of the 

nonlinear dynamics of rotors supported by a two-pole magnetic bearing in the presence of 

single or double components of nonlinearities. However, from a practical perspective, an 

advanced model to account for the geometric coordinate coupling appears to provide more 

appropriate results for nonlinear analysis of more complicated magnetic bearing systems 
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such as four-pole pairs or eight-pole pairs of magnetic bearings. The nonlinear modelling 

of rotor-magnetic bearing systems will be a two-DOF nonlinear system when the 

geometric co-ordinate coupling is taken into account.  

 

Virgin, Walsh and Knight [1995] studied the effect of coordinate coupling due to the 

geometry of the pole arrangement on dynamic behaviour. Multiple coexisting solutions 

and fractal boundaries were obtained. However, they neglected all other important 

nonlinear components such as nonlinear magnetic force to displacement and force to coil 

current relationships, hysteresis and saturation of the magnetic material, time delays of the 

control system, and limitations of the power amplifiers and control current. The effect of 

cross-coupling and nonlinear force to displacement and force to coil current relationships 

on the dynamics of a single-mass rotor-magnetic bearing system was numerically 

investigated by Chinta, Palazzolo and Kascak [1996]. Stable quasi-periodic vibration and 

period-2 solutions were found. Unfortunately, they employed a very simple four-pole 

magnetic bearing model and neglected other important nonlinearities such as the 

saturation of magnetic material, time delays of the control system, and limitations of the 

power amplifier and control current. Later, Chinta and Palazzolo [1998] derived the 

equations of motion of a two-DOF mass in a magnetic bearing with geometric coupling 

between the horizontal and vertical components of rotor motion. The dimensionless 

equations of motion governing the unbalance response of a rotor are given by 

     )cos()( 2   Effxffx btlr , 

     GEffyffy lrbt  )sin()( 2  ,  (3) 

where x and y are the non-dimensional displacements of the rotor, f’s are the magnetic 

forces,   is the geometric coupling coefficient, E is the non-dimensional eccentricity,   



 23

and   are the dimensionless time and rotor speed, and G is the dimensionless rotor 

weight. 

Stable periodic motion of the forced response was obtained by numerical integration and 

the approximate method of trigonometric collocation, while the unstable motion was 

obtained by the collocation method. The local stability of periodic motions and bifurcation 

behaviour were obtained by Floquet theory. System parameters such as rotor speed, 

imbalance eccentricity, forcing amplitude, rotor weight and geometric coupling were 

investigated to find regimes of nonlinear behaviour such as jumps and sub-harmonic 

motion. It was found that the motion of a rotor in magnetic bearings may undergo cyclic-

fold bifurcation with an increase of the forcing amplitude and undergo period-doubling 

bifurcation with an increase of frequency. A cyclic-fold bifurcation causes jump and 

hysteresis phenomena in the forced response. The response increases continuously until it 

jumps up to a peak amplitude and then the amplitude decreases continuously. The 

response for decreasing frequency is not the same as the one for increasing frequency. The 

region enclosed between jump up and down is the hysteresis region. A small hysteresis 

region implies a weak non-linearity.  Stable period-2 motion takes place after the stable 

period-1 motion becomes unstable following a period-doubling bifurcation, as shown in 

Figure 7, where the middle branch after bifurcation of the period-1 motion is unstable. 

 

[Insert Figure 7 here ] 

 

Ji and Leung [2000] studied the primary resonance response of a rigid rotor-magnetic 

bearing system by using a perturbation method. It was shown that the steady state 

response became unstable either via saddle-node bifurcations or via Hopf bifurcations. Ji 

and Hansen [2001] investigated the nonlinear response of a rotor supported by active 

magnetic bearings under both primary and internal resonances. The equations of motion 



 24

governing the nonlinear response of the rotor were found to be of the following 

dimensionless form 
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where x and y are dimensionless displacement of the rotor,  ’s are the coefficients of the 

nonlinear terms obtained by using a Taylor series expansion of magnetic forces,   is the 

dimensionless rotating speed of the rotor.  

The method of multiple scales was used to obtain four averaged equations that describe 

the modulation of the amplitudes and phases of vibrations in the horizontal and vertical 

directions. It was shown that the steady state solutions may lose their stability by either 

saddle-node bifurcations or Hopf bifurcations. In the regime of multiple coexisting 

solutions, two stable solutions were found. However, they did not consider saturation and 

hysteresis of the magnetic material, time delays of the control system, and limitations of 

the power amplifier and control current. Later, based on the model that is given by 

equation (4), Ji and Leung [2003] studied the super-harmonic resonance response of the 

rigid rotor-magnetic bearing system. It was shown that the steady-state superharmonic 

periodic solutions may lose their stability by either saddle-node or Hopf bifurcations. The 

system may exhibit many typical characteristics of the behaviour of nonlinear dynamical 

systems such as multiple coexisting solutions, jump phenomena and sensitive dependence 

on initial conditions. The effects of the feedback gains and imbalance eccentricity on the 

nonlinear dynamic behaviour and stability of the system were also studied. Ho, Liu and 

Yu [2003] studied the effect of a thrust active magnetic bearing on the stability and 

bifurcation of a rotor-magnetic bearing rotor system using a component mode synthesis 

method. They focused on the influence of nonlinearities on the stability and bifurcation of 

periodic motion of the rotor-bearing system subjected to the influences of both journal and 
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thrust magnetic bearings and mass eccentricity. The periodic motions and their stability 

margins were obtained by using the shooting method and path-following technique. It was 

found that the thrust magnetic bearing and mass eccentricity of the rotor may cause the 

spillover of system nonlinear dynamics and degradation of the stability and bifurcation of 

periodic motion, resulting in the whirling motion of the first lateral mode. 

 

By using the asymptotic perturbation method, Zhang and Zhan [2005] investigated 

nonlinear oscillations and chaotic dynamics of a rotor-magnetic bearing system with eight-

pole pairs and time-varying stiffness. The stiffness of the magnetic bearings was assumed 

to be time varying in a periodic form. The resulting dimensionless equations of motion for 

the rotor-magnetic bearing system with time-varying stiffness in the horizontal and 

vertical directions were for a two-DOF nonlinear system with quadratic and cubic 

nonlinearities and parametric excitation. The asymptotic perturbation method was used to 

obtain the averaged equations for the case of primary parametric resonance and 

subharmonic resonance. It was found that there existed subharmonic period-3, period-4, 

period-6, period-7, period-8 motion, quasiperiodic and chaotic oscillations in the rotor-

magnetic bearing system with time-varying stiffness. The numerical results explored the 

phenomena of multiple solutions and the soft-spring type and hardening-spring type 

[Nayfeh and Mook, 1979] in the nonlinear frequency-response curves for the rotor-

magnetic bearing system. Zhang, Yao and Zhan [2006] then numerically investigated the 

Shinikov type multi-pulse chaotic dynamics for the rotor-magnetic bearing system, based 

on the same model developed in Zhang and Zhan [2005]. A new jumping phenomenon 

was shown to exist in the forced response of the rotor-magnetic bearing system with a 

time-varying stiffness. 
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Amer and Hegazy [2007] studied the nonlinear dynamic behaviour of a rigid rotor 

supported by active magnetic bearings without including gyroscopic effects in their 

model.  The vibration of the rotor was modelled by coupled second-order nonlinear 

ordinary differential equations with quadratic and cubic nonlinearities. The steady-state 

response and stability of the system were studied numerically by applying the method of 

multiple scales and the frequency response function method. Different shapes of chaotic 

motion were found to exist by using a phase-plane method. The system parameters were 

shown to have different effects on the nonlinear response of the rotor. Multiple-valued 

solutions, jump phenomena, hardening and softening nonlinearity were found to occur in 

the steady-state response. 

 

Inayat-Hussain [2007] numerically investigated the response of an imbalanced rigid rotor 

supported by active magnetic bearings.  Nonlinearities arising from electromagnetic force-

coil current and force-air gap relationships, and the effects of geometrical cross-coupling 

were incorporated in the mathematical model of the rotor-bearing system. The response of 

the rotor was observed to exhibit a rich variety of dynamic behaviour including 

synchronous, sub-synchronous, quasi-periodic and chaotic vibrations. It was shown that 

the transition from synchronous rotor response to chaos was via a torus breakdown route 

[Matsumoto, Chua and Tokunaga, 1987]. With an increase of the rotor imbalance 

magnitude, the synchronous rotor response was found to undergo a secondary Hopf 

bifurcation resulting in quasi-periodic vibration. 

 

5 Nonlinear vibrations of a rotor contacting auxiliary bearings 
 

Mechanical auxiliary bearings are usually incorporated into magnetic bearing systems to 

prevent physical interaction between the rotor and stator laminations of magnetic bearings 
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and to provide rotor support in the event of bearing failure or during an overload situation. 

These auxiliary bearings also allow the rotor to temporarily run or safely coast down to a 

stop for maintenance purposes. The auxiliary bearings are also called “safety touch-down 

bearings”, “back-up bearings” or “catcher bearings” in the literature. These bearings are 

usually ball bearings or carbon sleeves located on the stator. The clearance between the 

inner race of backup bearings and the rotor shaft is usually of the order of half the 

magnetic bearing clearance. 

 

The loss of the magnetic bearing function during operation may lead to either a transient 

or persistent contact event between the auxiliary bearings and the magnetically suspended 

rotor. Subsequent interactions of the rotor and auxiliary bearings may significantly 

influence the behaviour of the rotor through the generation of very large amplitude 

vibrations and high instantaneous loads, even if the contact duration is relatively short. In 

many applications such as space applications, safety is a major concern in the design of a 

rotor-magnetic bearing system. The rotor-bearing system is required to extend the 

operation of the rotor on auxiliary bearings by taking the maximum advantage of backup 

bearings and using backup bearings as true auxiliary bearings to provide support during 

critical situations in a safe manner.  A comprehensive understanding of the dynamics of 

the rotor drop phenomena is essential to help design better auxiliary bearings. 

 

There are a number of theoretical and experimental studies in the literature concerned with 

the dynamics of rotors when they are in contact with auxiliary bearings. These studies 

have been mainly focused on characterizing the transient response to determine the effects 

of the various bearing parameters, in particular friction and damping coefficients as well 

as stiffness. 
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Gelin et al. [1990] studied the transient dynamic behaviour of rotors landing on auxiliary 

bearings in an industrial centrifugal compressor. However, the Coulomb friction contact 

force was ignored in their numerical model. Ishii and Kirk [1991] and Kirk and Ishii 

[1993] developed a transient response technique for predicting the transient response 

during the rotor drop for a simple two-mass Jeffcott rotor system after the magnetic 

bearings became inactive. They showed that an optimum damping could be chosen to 

prevent destructive backward whirl.  Through experimental and theoretical investigation, 

Schmied and Pradetto [1992] reported on the vibration behaviour of a one-ton compressor 

rotor being dropped into the auxiliary bearings after the magnetic bearings fail. Fumagalli 

et al. [1994] classified the touchdown process into four distinct phases of motion—free 

fall, impact, sliding and rolling—and investigated the influences of such parameters as air 

gap, friction coefficients and damping on the impact dynamics. Schweitzer, Bleuler and 

Traxler [1994] presented a comprehensive discussion of issues related to the touch-down 

dynamics of rotors on auxiliary bearings. Feeny [1994] explored the stability of cylindrical 

and conical whirls in a perfectly balanced and rigid rotor on rigid retainer bearings. Xie 

and Flowers [1994] presented a study on the steady state behaviour of a rotor-auxiliary 

bearing system and reported on its complex dynamic behaviour. Kirk and his co-workers 

[1994a; 1994b] performed experimental rotor drop tests for balanced and unbalanced 

conditions, and developed a finite element code for the rotor and bearing system to 

perform stability analysis and unbalance response.  Swanson, Kirk and Wang [1995] 

discussed experimental data for the initial transient response of a magnetically supported 

rotor drop on ball and solid auxiliary bearings. Maslen and Barrett [1995] derived whirl 

conditions of a circularly isotropic rotor and catcher bearing support along with the test 

results of a commercial compressor rotor with bearings. Tessier [1997] described the 

development and delevitation tests of a flexible compressor rotor. Foiles and Allaire 

[1997] presented the nonlinear transient modelling of rotors during rotor drop on auxiliary 
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bearings for two types of rotors; generator or turbine rotor and a centrifugal compressor 

rotor. Chen, Walton and Heshmat [1997] introduced the zero clearance auxiliary bearing 

which is a specific bearing of planetary elements. The nominal clearance between the 

machine rotor and auxiliary bearings is zero when the auxiliary bearings are actuated to 

support the shaft. Experiments showed that the possibility of a backward whirl of a rotor 

could be reduced due to clearance elimination and damping. Ecker [1997] presented 

steady state numerical results for a rigid rotor with imbalance on a catcher bearing fixed to 

the bearing housing.  

 

Wang and Noah [1998] studied the dynamic response of a rotor landed on catcher 

bearings in a magnetically supported rotor, following loss of power or overload of active 

magnetic bearings. They constructed an analytical model involving a disk, a shaft and 

auxiliary bearings on damped flexible supports and developed appropriate equations for 

the nonlinear dynamic system. The equations included a switch function to indicate 

contact or non-contact events and determine the existence of contact normal forces and 

tangential friction forces between the shaft and bearings. The shooting method was used to 

obtain steady state periodic solutions of the unbalanced rotor for various parameters. It 

was observed that friction forces could cause both periodic and quasi-periodic large 

amplitude, full backward whirling. It was found that steady-state, periodic, quasi-periodic 

and chaotic co-existing solutions may occur for a given range of system parameters. The 

side forces tend to cause noncircular orbits and the rotor response becomes entangled 

displaying more complex patterns. Xie, Flowers, Feng and Lawrence [1999] used the 

harmonic balance method and direct numerical integration to study the steady-state 

responses of a rotor system supported by auxiliary bearings with a clearance.  They 

discussed the influence of rotor imbalance, clearance, support stiffness and damping on 

the steady-state behaviour of the rotor motion. Bifurcation diagrams were used as a tool to 
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examine the dynamic behaviour of the system as a function of the system parameters. 

They suggested that auxiliary bearings with low clearance, low support stiffness and high 

support damping tend to reject the development of multi-frequency and chaotic behaviour, 

and provide the most favourable rotordynamic behaviour. By summarizing a number of 

studies concerned with auxiliary bearings, Kirk [1999] reviewed analytical techniques to 

predict rotor transient response and presented results for the transient response evaluation 

of a full-size compressor rotor to illustrate some of the important parameters in the design 

for rotor drop. 

 

Ji and Yu [2000] investigated the transient nonlinear dynamics of a high-speed unbalanced 

rigid rotor dropping onto rigid sliding bearings. They numerically studied the dynamics of 

the rotor in different regimes of the touchdown process—free fall, impact, sliding and 

rolling—and examined the influences of system parameters such as unbalance, air gap, 

coefficient of friction, and coefficient of restitution on the drop dynamics of the rotor. It 

was shown that when the unbalance is small, the resulting motion is also small. As the 

level of unbalance increases, the motion of the rotor becomes larger, so there is potential 

for damage to the rotor and backup bearings. Zeng [2002; 2003] numerically and 

experimentally studied the transient response of the rotor motion during the rotor drop 

when the rotor is supported by backup bearings. It was shown that the nonlinear rotor-

backup bearing system would undergo irregular or chaotic motions at some rotating 

speeds. Under some conditions, the full clearance whirl motion of the rotor in backup 

bearings may occur, which may lead to damage to the magnetic bearing system. It was 

shown that optimisation of the parameters characterising the backup device could be used 

to regulate the nonlinear resonances and hence avoid full clearance whirl motion of the 

rotor. These parameters include support damping, support stiffness and support device 

mass. 
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Sun, Palazzolo, Provenza and Montague [2004] presented numerical simulations of a rotor 

drop on catcher bearings in a flywheel energy storage system. They developed a catcher 

bearing model which includes a Hertzian load-deflection relationship between mechanical 

contacts, speed-and-preload-dependent bearing stiffness due to centrifugal force, and a 

Palmgren’s drag friction torque.  The numerical results showed that friction coefficients, 

support damping and side loads are critical parameters to satisfy catcher bearing design 

objectives and prevent backward whirl. Later, Sun [2006a] presented a numerical analysis 

using detailed catcher bearing and damper models for a rotor drop on catcher bearings, 

and the resultant thermal growths arising from the subsequent mechanical rub. The catcher 

bearing model was determined based on the catcher bearing material, geometry, speed and 

preload, using the nonlinear Hertzian load-deflection formula. The thermal growths of 

bearing components during the rotor drop were approximated by using a one-dimensional 

thermal model. Sun [2006b] predicted an estimated fatigue life of a catcher bearing based 

on the Hertzian contact dynamic loads between bearing balls and races during touchdown. 

Numerical simulations for an energy-storage flywheel module revealed that a high-speed 

backward whirl significantly reduces the catcher bearing life and that an optimal damping 

lowers the catcher bearing temperature and increases the catcher bearing life. 

 

It has been shown that most of studies have been performed from the perspective that the 

rotor will be shut down if one or more of the magnetic bearings fail. As a result, most of 

the work to date has concentrated on the transient dynamic behaviour immediately 

following the failure of a magnetic bearing. However, rotor mass loss, base excited 

motions and other abnormal operating conditions may lead to transient rotor motion of 

large amplitude and rotor-auxiliary bearing contacts, even if the magnetic bearing system 

continues to function. To actively return the rotor to a non-contacting state it is essential to 
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determine the manner in which contact events affect the rotor vibration signals used for 

position control. Toward this aim, Keogh and Cole [2003a] developed an analytical 

procedure to assess the nature of rotor contact modes under idealized contacts for the case 

when a magnetic bearing still retains full control capability. Nonlinearities arising from 

contact and magnetic bearing forces were included in simulation studies involving rigid 

and flexible rotors to predict rotor response and evaluate rotor synchronous vibration 

components. It was shown that changes in the synchronous vibration amplitude and phase 

induced by contact events cause existing controllers to be ineffective in attenuating rotor 

displacements. The widely used family of synchronous vibration controllers were found to 

be ineffective when persistent auxiliary bearing contact occurs. The findings were then 

used as a foundation for the design of new controllers that are able to recover rotor 

position control under a range of contact cases. As such, Cole and Keogh [2003b] 

developed a method for robust control of synchronous vibration components that can 

maintain dynamic stability during interactions between the rotor and auxiliary bearings. 

The controllers were designed to minimize the severity and duration of contact and ensure 

that the rotor vibration returns to optimal levels, provided that sufficient control force 

capacity is available. 

 

6 Stability and dynamics associated with time delays 
 

A magnetic bearing system is inherently unstable and thus feedback control must be 

employed to stabilize the system.  Time delays occurring in the feedback control loop are 

unavoidable especially in digital control systems, even though the control decision process 

is carried out very quickly. Time delays may have a profound impact on the stability and 

dynamics of a rotor-magnetic bearing system. There are two sources of time delay in the 

digital controller loop. First, the A/D and D/A conversions take time. The sample and hold 
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devices introduce a delay of half a sampling period. The second source of delay is the 

controller computation. The amount of computation delay depends upon how the inputs 

and outputs are synchronized in the controller implementation algorithm. Another source 

of time delay is the reaction time of the electromagnetic actuators to the control decisions. 

 

Ji [2003a] investigated the effect of time delays occurring in a PID feedback controller on 

the linear stability of a balanced rotor supported by a two-pole magnetic bearing. It was 

found that the trivial fixed point of rotor motion might lose its stability through Hopf 

bifurcations when the time delay crosses certain critical values. Co-dimension two 

bifurcations of the equilibrium [i.e. bifurcations occurring on varying two control 

parameters] resulting from non-resonant and resonant Hopf-Hopf interactions were also 

found to exist in the system. Ji [2003b] also studied the effect of time delays occurring in 

the proportional-derivative (PD) feedback control loop on the linear stability of a simple 

magnetic bearing system by analysing the associated characteristic transcendental 

equation. It was found that a Hopf bifurcation may take place in the autonomous system 

when time delays pass certain values. The direction and stability of the Hopf bifurcation 

were determined by applying the normal form method and constructing a center manifold 

[Guckenhimer and Holmes, 1983; Troger and Steindl, 1991]. It was shown that a 

bifurcation of co-dimension two may occur through a Hopf and a steady state bifurcation 

interaction. Ji [2003c] also examined the effect of time delays present in a PD feedback 

controller on the nonlinear dynamic behaviour of a Jeffcott rotor with an additional 

magnetic bearing located at the central disc. For the corresponding autonomous system, 

linear stability analysis was performed by constructing a center manifold. It was found 

that the trivial solution may lose its stability through either a single or double Hopf 

bifurcation. For the non-autonomous system, the primary resonance response was studied 

for its small non-linear motions using the method of averaging. The effects of time delays 



 34

and control gains as well as excitation amplitude on the amplitude of the steady-state 

response were investigated both theoretically and experimentally. It was shown that the 

steady state response may exhibit saddle-node and Hopf bifurcations. Increasing the extent 

of time delays tends to increase the peak amplitude of the response and shift the 

frequency-response curve to higher frequencies. Large time delays may induce instability 

of the system. 

 

Based on the model developed by Ji [2003b], Wang and Liu [2005] further investigated 

the stability of a magnetic bearing system with time delays by analysing the distribution of 

the roots of the associated characteristic equation. It was found that Hopf bifurcation 

occurs when the delay passes through a sequence of critical values. The explicit algorithm 

for determining the direction of the Hopf bifurcations and the stability of bifurcating 

periodic solutions was derived using the theory of normal form and center manifold 

[Guckenhimer and Holmes, 1983; Troger and Steindl, 1991]. Later, Wang and Jiang 

[2006] reported on the multiple stabilities of the magnetic bearing system with time 

delays. They performed centre manifold reduction and normal form computation for a 

simple zero singularity and carried out a detailed bifurcation analysis. Some numerical 

simulations were also presented to illustrate the results found. 

 

Ji and Hansen [2005b] studied the influence of a time delay occurring in a PD feedback 

controller on the dynamic stability of a rotor suspended by magnetic bearings, by taking 

geometric coordinate coupling into account. The equations of motion governing the 

response of the rotor were derived as a set of two-DOF nonlinear differential equations 

with time delay coupling in the nonlinear terms. It was found that as the time delay 

increases beyond a critical value, the equilibrium position of the rotor motion becomes 

unstable and may bifurcate into two qualitatively different kinds of periodic motion. The 
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resultant Hopf bifurcation of multiplicity two was found to be associated with two 

coincident pairs of complex conjugate eigenvalues crossing the imaginary axis. Based on 

the reduction of the infinite dimensional problem to the flow on a four-dimensional centre 

manifold, the bifurcating periodic solutions were obtained using a perturbation method. Ji 

and Hansen [2005c] considered the forced dynamic behaviour of the corresponding 

nonlinear non-autonomous system in the neighbourhood of the Hopf bifurcation of 

multiplicity two with the aid of the decomposition theorem and centre manifold theorem. 

As a result of the interaction between the Hopf bifurcating periodic solutions and the 

external periodic excitation, primary resonances may occur in the forced response of the 

system when the forcing frequency is close to the Hopf bifurcating periodic frequency. 

The method of multiple scales was used to obtain four first-order ordinary differential 

equations that determine the amplitudes and phases of the phase-locked periodic solutions. 

The first-order approximations of the periodic solutions were found to be in excellent 

agreement with those obtained by direct numerical integration of the delay-differential 

equation. It was also found that the steady state solutions of the nonlinear non-autonomous 

system may lose their stability via either a pitchfork or Hopf bifurcation. It was shown that 

the primary resonance response may exhibit symmetric and asymmetric phase-locked 

periodic motions, quasi-periodic motions, chaotic motions and coexistence of two stable 

motions. Based on the behaviour of the solutions to the four-dimensional system of 

ordinary differential equations, Ji, Hansen and Li [2005] investigated the effect of external 

excitations resulting from unbalance on the dynamic behaviour of the corresponding non-

autonomous system following the Hopf bifurcation of the trivial equilibrium of the 

corresponding autonomous system. It was shown that the interaction between the Hopf 

bifurcating solutions and the high level excitations may induce a non-resonant or 

secondary resonance response, depending on the ratio of the frequency of bifurcating 

periodic motion to the frequency of external excitation. The first-order approximate 
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periodic solutions for the non-resonant and super-harmonic resonance response were 

observed to be in good agreement with those obtained by direct numerical integration of 

the delay differential equation. It was found that the non-resonant response may be either 

periodic or quasi-periodic. It was shown that the super-harmonic resonance response may 

exhibit periodic and quasi-periodic motions as well as a co-existence of two or three stable 

motions. From a physical point of view, the occurrence of periodic or quasi-periodic stable 

motions after Hopf bifurcations assures the dynamic stability of the magnetic bearing 

system.  The rotor motion does not diverge but converges to a stable motion after the 

trivial equilibrium loses its stability. As long as the motion is within the clearance of the 

auxiliary bearings, the rotor will not contact the backup bearings and the magnetic bearing 

system could still work well, thereby extending the operating region. 

 

7 Other issues relevant to nonlinear magnetic bearings 
 

This section provides an introduction to two merging topics of research in which the 

nonlinear properties of magnetic bearings are taken into account. These are nonlinear self-

sensing magnetic bearings and nonlinear control techniques. Consideration of nonlinearity 

in the dynamic model for self-sensing magnetic bearings can capture the full potential for 

nonlinearity to play an essential role in enhancing robustness. The linear feedback 

controllers designed on the basis of a linearized model cannot be effective across the entire 

operating region, because the highly nonlinear properties of magnetic bearings may 

diminish the performance of magnetic bearing systems when the operation departs from 

the equilibrium point.  Nonlinear control techniques are designed to account for the 

nonlinear properties of magnetic bearing systems and overcome this limitation. 
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7.1 Nonlinear self-sensing magnetic bearings 

 

The self-sensing (sensorless) magnetic bearing is a special kind of magnetic bearing which 

uses the same system as both an actuator and a sensor. Self-sensing magnetic bearings use 

the measurement of voltage and current in electromagnets to estimate the position of a 

magnetically levitated rotor [Bleuler, 1992; Vischer and Bleuler, 1993; Noh and Maslen, 

1997]. By estimating position in this manner, explicit proximity sensors are eliminated. 

The position information is deduced from the electromagnetic interaction between the 

stator and rotor. The main advantages of self-sensing magnetic bearings include a 

reduction in the manufacturing costs, elimination of hardware complexity, simplification 

of the assembly and maintenance of the magnetic bearing systems, and provision of a 

more compact design of the rotor-bearing system with higher natural frequencies. Self-

sensing magnetic bearings have attracted a lot of attention from the research community, 

since the problem was first reported in 1990 [Vischer and Bleuler, 1990]. For example, 

Mizuno and Bleuler [1995] developed a control system for disturbance cancellation of 

static load and sinusoidal disturbance in self-sensing magnetic bearings by using the 

geometric approach [Wonham, 1974]. Mizuno, Ishii and Araki [1998] analysed the 

dynamic characteristics of a hysteresis amplifier for designing new circuits. It was shown 

that the switching frequency of the amplifier changes linearly with the gap between the 

electromagnet and the suspended object. Stable suspension was obtained by feeding back 

the frequency-to-voltage converted switching signal of the hysteresis amplifiers. 

 

One of the obstacles confronting self-sensing technology is the nonlinearity associated 

with operation of the actuator in its magnetic saturation regime. This problem is especially 

important in high specific capacity magnetic bearings. Development of a nonlinear model 

will greatly extend the operating range of self-sensing bearings, as the linear behaviour of 
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magnetic bearings can only be achieved approximately locally in a small range of small 

rotor deflections and small control currents. 

 

Skricka and Markert [2001] explored the effects of cross-axis sensitivity and coordinate 

coupling on self-sensing by using nonlinear magnetic reluctance models. It was shown 

that a self-sensing method based on single magnet models might result in large errors in 

the estimated position. Thus, they suggested that a precise model including nonlinearities 

of geometric coupling and saturation of the magnetic material need to be developed to 

predict precisely the behaviour of active magnetic bearings. Later, Skricka and Markert 

[2002a; 2002b] studied two aspects of the integration of electromagnetic bearings by 

considering the nonlinearity of magnetic force. The nonlinear component of the magnetic 

force was compensated by software integrated in the digital controller. The rotor position 

was identified from the electric state variables directly at the power amplifiers. The 

realisation of linearized magnetic force was achieved by software using control methods 

instead of pre-magnetization currents, which reduce unwanted nonlinear effects and the 

power losses as well as unnecessary energy consumption in imposing the pre-

magnetization currents. 

 

Recently, Maslen, Montie and Iwasaki [2006] developed a linear periodic model of the 

magnetic bearing system to predict more acceptable levels of robustness than the 

predictions based on a linear time-invariant model. The essential features of the 

nonlinearity were retained in their model by linearization along a periodic trajectory. A 

linear time-invariant model, which is derived from the underlying nonlinear model by 

linearizing the system at a fixed equilibrium point, was found to be potentially inaccurate 

for general nonlinear self-sensing magnetic bearings in where nonlinearity may play a 

crucial role to enhance robustness. 
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7.2 Nonlinear control techniques 

 

One obstruction to more widespread industrial application of magnetic bearings is the high 

sensitivity of the control system to parametric uncertainties and bearing nonlinearities 

[Knospe, 2007; Hung, Albritton and Xia, 2003]. Due to the intractability of the complexity 

of the actual model, many of the control techniques currently used for active magnetic 

bearings were generally designed by ignoring the nonlinearity of the magnetic force and 

the nonlinear effects of the sensors and actuators. The feedback control systems were 

typically designed using a linearised model of the system, however highly nonlinear 

properties of the bearing can limit the performance of the overall system. The classical 

approach for magnetic bearing controller design was to perform a generalized Taylor 

series linearization about a nominal equilibrium point.  Because of the abundant literature 

available for linear control theory, linear controllers have been applied to magnetic 

bearing systems extensively. For example, Cho [1993] investigated the application of 

sliding mode control to stabilise an electromagnetic suspension system for use in vibration 

isolation platforms and magnetic bearings. Setiawan, Mukherjee and Maslen [2001; 2002] 

studied synchronous sensor runout and unbalance compensation for magnetic bearing 

systems. Thibeault and Smith [2002] derived bounds on functions of sensitivity and 

complementary sensitivity to deduce achievable robustness and performance limits for a 

single-degree-of-freedom magnetic bearing system in three measurement configurations: 

measurement of the rotor position for feedback; measurement of the coil currents; and 

measurement of both position and current. It was shown that the bounds changed with 

varying magnetic bearing physical dimensions and other parameter values as well as 

varying the bandwidth of a linear, time-invariant controller. Hu, Lin, Jiang and Allaire 
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[2005] developed a systematic control design approach for magnetic bearing systems that 

are subject to both input and state constraints. 

 

The linear feedback system designs based on linearizing the dynamic equations about the 

equilibrium point are not valid across the entire operating region, because the controller 

performance may suffer rapid deterioration when the operation deviates from the 

equilibrium point.  In order to maximize magnetic bearing capabilities where nonlinearity 

may play a crucial role, the control system needs to properly compensate for the nonlinear 

dynamics of magnetic bearing systems.  

 

Many nonlinear control techniques have thus been designed to account for the nonlinear 

magnetic bearing model [for example, De Queiroz, Dawson and Suri, 1998; Li, 1999; 

Hong and Langari, 2000]. Lei, Palazzolo, Na and Kascak [2000] developed a unique 

control approach for prescribed large motion control using magnetic bearings in a high-

speed compressor wheel. They employed nonlinear fuzzy logic control to the nonlinear 

magnetic bearing model, which incorporates a nonlinear B-H curve, Ampere’s law and a 

Maxwell stress tensor. Schroder, Green, Grum and Fleming [2001] demonstrated a 

convenient method for automating a tuning process to produce an optimal design. The 

magnetic circuit dynamics was included in the modelling of the nonlinear characteristics 

of the magnetic bearings. It was found that the optimised controllers removed a nonlinear 

high-to-low-frequency coupling effect.  Yeh, Chung and Wu [2001] proposed a sliding 

control scheme to deal with the nonlinear, uncertain dynamics of magnetic bearing 

systems. The model characterized both the main electromechanical interaction and the 

secondary electromagnetic effects such as flux leakage, fringing fluxes and finite core 

permeance. The controller consisted of two parts: the nominal control part that linearizes 
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the nonlinear dynamics, and the robust control part that provides robust performance 

against the uncertainties. 

 

Hung, Albritton and Xia [2003] designed a nonlinear control system for a magnetic 

journal bearing using a combination of feedback linearization and backstepping concepts. 

The derived equations of motion included flux linkage, electromagnetic dynamics, and 

magneto-mechanical dynamics, as well as a state variable model. Ji and Hansen [2003] 

developed a linear-plus-nonlinear feedback control strategy to stabilize an unstable Hopf 

bifurcation in a rotor-magnetic bearing system, for which the linearizied system possesses 

double zero eigenvalues. The addition of further nonlinear terms was used to modify the 

coefficients of the nonlinear terms in the reduced normal forms. It was found that 

feedback control incorporating certain quadratic terms renders the Hopf bifurcation 

supercritical, thereby extending the operational region of magnetic bearing systems. 

 

8. Conclusion and future work 
 

Nonlinear dynamic analysis of magnetic bearing systems is far from complete, though 

significant efforts have been made in understanding the stability and nonlinear dynamics 

of magnetic bearing systems. This review has attempted to summarise current research 

and development in the area of nonlinear dynamics of magnetic bearing systems. It has 

been shown that published work has highlighted the influences of the nonlinear properties 

of magnetic bearings and the effects of time delays in the feedback control loops on the 

dynamic behaviour and stability of rotor-bearing systems incorporating magnetic bearings. 

The results of existing studies have provided useful information for the design of magnetic 

bearings and the prediction of their nonlinear dynamic behaviour. The control methods 

developed have partially compensated certain nonlinear terms associated with magnetic 
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forces. This has improved the performance of magnetic bearings including increasing 

robustness against harmonic disturbances and parameter uncertainties and extending the 

operational region. 

 

8.1 Concluding remarks 

 

Many nonlinear models have been developed in studying the effects of one or more 

components of the nonlinear properties and the influences of time delays on the stability 

and nonlinear dynamic behaviour of magnetic bearing systems. Modern dynamical 

systems theory, perturbation methods, and numerical simulations have been applied to the 

nonlinear modelling of problems. Experiments have been conducted to validate the 

theoretical predictions. Current research has provided fundamental concepts of how the 

time delays, nonlinear magnetic forces, geometric coordinate coupling and saturation 

constraints can lead to instability and the complex dynamic behaviour of magnetic bearing 

systems. In particular, many analytical and experimental studies have led to insight on the 

effects of (1) geometric coupling and the nonlinear magnetic force to displacement and 

force to coil current relationships on the dynamic behaviour and performance of magnetic 

bearings; and (2) the nonlinear electromagnetic force incorporating time delays of the 

control system or saturation of the power amplifier on the dynamic behaviour and 

performance of magnetic bearings. These studies have been directed towards the 

exploration of the nonlinear resonant response, local and global bifurcations, and 

periodically- and chaotically-amplitude modulated responses of rotor-magnetic bearing 

systems. The studies have also led to a comprehensive understanding of the interaction of 

the external excitation and bifurcating solutions that immediately follow from Hopf 

bifurcation of the trivial equilibrium of the corresponding autonomous systems. Research 

findings provide valuable information for the prediction of bifurcations, instabilities and 
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complex responses as well as the online detection of malfunctions of magnetic bearing 

systems at an early stage of their development before they become catastrophic. 

 

8.2 Future work 

 

Although significant efforts have been made to gain a comprehensive understanding of the 

stability and nonlinear dynamics of magnetic bearing systems, there are many challenging 

problems that remain unsolved. The following discussion presents some of the key aspects 

that will drive future research on the nonlinear dynamics and nonlinear modelling of 

magnetic bearing systems. 

 

Nonlinear modelling of magnetic bearing systems is very challenging because of their 

highly individual nonlinear nature and complexity. It has been shown that an accurate 

rotor-magnetic bearing system model with suitable uncertainty descriptions is of critical 

importance in applying advanced control techniques [Li, Lin, Allaire and Luo, 2006]. An 

accurate model plays an important role in the dynamic analysis and control design of 

rotor-magnetic bearing systems due to the complexity involved. Published work has dealt 

with the most important nonlinearities dominant in magnetic bearing systems. It should be 

noted that magnetic bearing systems may encounter many less important nonlinearities, 

such as the nonlinearity of the coil inductance, the nonlinearity of the sensor system, the 

nonlinearities resulting from the eddy current effect, and the leakage and fringing effect, 

as discussed in Section 1.2. Useful future research could be directed towards the 

development of reliable and comprehensive models of complicated magnetic bearings 

with multiple groupings of nonlinearities, which would enable the treatment of 

nonlinearities in large groups including groups containing the less important 



 44

nonlinearities. A preferred system model should include a flexible rotor, magnetic 

bearings, sensors, amplifier dynamics and digital controllers. 

 

The development of a comprehensive model of magnetic bearings is a formidable task if 

all of the components of nonlinearities are to be included. Whether or not such a model is 

possible remains unknown, as some components of nonlinearities are still far from being 

fully understood and have not yet been accurately identified. Indeed, given the both strong 

and weak nonlinearities involved in magnetic bearings, such a model, if developed, may 

be either too hard to be analytically tractable or too complex to be useful. On the other 

hand, it is not too difficult to envisage improvements to existing models by an inclusion of 

one or two components of the less important nonlinearities. 

 

The nonlinear magnetic characteristics of high-Tc superconductors and the permanent 

magnet system are not fully understood either, although Hikihara, Adachi, Moon and 

Ueda [1999] reported on the dynamic behaviour of a flywheel rotor suspended by a HTSC 

magnetic bearing and showed a gyroscopic motion under a hysteretic suspension force 

between high-Tc superconductor and permanent magnets. 

 

In addition to studying the nonlinear dynamics of magnetic bearings using complex 

models, it is of interest to examine the dynamic behaviour of magnetic bearing systems 

after single or multiple poles fail. This issue has not been significantly pursued in the 

literature from the nonlinear dynamics point of view, although existing studies have 

addressed this issue from the control design point of view by developing fault-tolerant 

control schemes using linearised magnetic forces and linear system models [Maslen et al., 

1999; Chen, 1996; 1999; Sahinkaya, Cole, Keogh and Burrows, 2000; Cole and Burrows, 

2001; Na and Palazzolo, 2000; Na, Palazzolo and Provenza, 2002; Na, 2004]. 
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System faults can be broadly classified as either internal or external to the magnetic 

bearing control system [Cole, Keogh, Sahinkaya and Burrows, 2004]. The principal 

objective of fault-tolerant control is to provide uninterrupted control and high load 

capacity for continuous operation of the bearing.  Failure of a single system component 

can give rise to destructive rotor dynamic behaviour. In the case of the sudden failure of 

single or multiple coils, the other coils are required to produce the desired force necessary 

for suspension. Relatively large increases in current and flux densities would then be 

required to maintain the stability and similar dynamic properties before and after a failure 

occurs. However, nonlinearities become strongly significant for large currents and large 

magnetic forces as well as small air gaps, while linearization about the rotor equilibrium 

position and nominal perturbation current is valid only for small coil control current 

variations under constant bias current and small rotor displacements. An understanding of 

the transient response of a rotor supported by magnetic bearings with one or more failed 

poles would definitely provide useful information for the detection and control 

compensation needed to alleviate the effect of pole failures, thereby eliminating the 

possible occurrence of severe damage to the entire magnetic bearing system. The transient 

response from normal operation to fault-tolerant control with some coil failures is also of 

interest. It is anticipated that the transient response of the orbit of the rotor would become 

elliptic due to asymmetric position stiffness of the failed bearings, which would in turn 

increase AC power dissipation in the electromagnets and housing vibrations. 

 

Another promising direction for future research appears to be bifurcation control and anti-

control of magnetic bearing systems. Bifurcation control and anti-control deal with 

modification of system bifurcative characteristics by a designed control input [Chen, 

Moiola and Wang, 1999; 2000; Chen, Hill and Yu, 2003]. Typical objectives of 
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bifurcation control and anti-control include delaying the onset of an inherent bifurcation, 

stabilizing an unstable solution, introducing a new bifurcation at a preferable parameter 

value, and optimising the system performance near a bifurcation point.  It has been shown 

that even a simple magnetic bearing system is a rich source of bifurcation phenomena. 

Saddle-node bifurcations, pitchfork bifurcations and Hopf bifurcations have been found to 

exist in the nonlinear response of magnetic bearing systems. Unstable bifurcations are 

unlikely to be of use as they can lead magnetic bearing systems to harmful or even 

catastrophic situations. In these troublesome cases, unstable bifurcations should be either 

delayed in their occurrence or eliminated if possible. For example, saddle-node 

bifurcations may lead to jump and hysteresis phenomena and unstable bifurcations may 

lead to a divergent dynamic response. Control of such bifurcations not only can 

significantly improve the performance of magnetic bearing systems, but also can extend 

the operation regimes. Conventionally, a proportional-differential (PD) or proportional-

integral-differential (PID) feedback controller is used to stabilize the system. Magnetic 

bearing systems have a significant advantage over other physical systems, as nonlinear 

feedback strategies can be easily implemented on-line and incorporated into the feedback 

control system necessary for stable suspension. User-specified controller gains will allow 

for more flexibility in evaluating the transient and steady state response characteristics by 

monitoring the instantaneous peak values of all bearing currents, rotor positions, and the 

lateral velocity and rotational speed of the rotor. 

 

The idea of bifurcation control has been proposed by Ji and Hansen [2003] for stabilizing 

a sub-critical Hopf bifurcation in a simple magnetic bearing system, so that undesirable 

unstable behaviour of the system can be prevented. Some possible topics of future 

research could be directed towards the control of saddle-node bifurcation and pitchfork 
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bifurcation as well as Neimark bifurcation which commonly exist in the forced nonlinear 

response of magnetic bearing systems. 

 

One interesting application of the anti-control of bifurcation would be the creation of a 

stable Hopf bifurcation in a magnetic bearing system at some preferred parameter values. 

Creating stable Hopf bifurcations can be viewed as designing limit cycles with specified 

oscillatory behaviour into a system. A rotor-magnetic bearing system with a fault is 

generally a complicated nonlinear system, whose behaviour is complex, including quasi-

periodic and chaotic vibrations. Monitoring oscillatory behaviour will aid in effective fault 

diagnosis. The introduction of stable amplitude-modulated motion may serve as a warning 

signal of an impending failure for magnetic bearings. The controlled system will then 

exhibit quasi-periodic motions at some preferred values of the system parameters. Anti-

control of bifurcation can also be used to modify the phase-locked response of a magnetic 

bearing system for intelligent maintenance. The synchronized response may not only be 

used to extract dynamic features for intelligent maintenance, but would also be used to 

assess the equipment performance and to detect degradation. For example, measurement 

of the modified dynamics can be used for on-line monitoring of the response, which will 

provide useful information for fault diagnosis and maintenance of magnetic bearings. Pole 

failures, usually caused by a power amplifier failure or coil short circuit, can be 

catastrophic for magnetic bearings. The occurrence of these failures result in a significant 

change in the measured dynamics prior to catastrophic failure and measurement of this 

change can be used as a predictive tool. Due to the response synchronization, only a few 

sensors will be needed to measure the signals required for the identification of a failure. It 

is expected that control and anti-control of bifurcation would be valuable techniques for 

improving and optimising the performance of magnetic bearing systems. 
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Another topic of future research could focus on modelling and understanding the 

nonlinear dynamics of a rotor supported by self-sensing magnetic bearings. A self-sensing 

magnetic bearing is a special kind of magnetic bearing operating without external position 

sensors. The position information required by the controller is deduced from the air gap 

dependent properties of the electromagnets. The main advantage of self-sensing magnetic 

bearings is the reduction of manufacturing costs. Self-sensing bearings have a number of 

features that make them interesting. The absence of a position sensor simplifies the 

construction, the assembly and maintenance of the magnetic bearing system. The rotor 

position signal necessary for the control system can be generated from the coil currents or 

the coil impedance which is air gap dependent. 

 

One of the important obstacles confronting self-sensing technology is the nonlinearity 

associated with the operation of the actuator in its magnetic saturation regime. This 

problem is especially important for high specific capacity magnetic bearings having high 

load capacity to weight ratio. Topics of future research relevant to self-sensing magnetic 

bearings will include the development of a nonlinear theoretical model capable of 

accurately predicting magnet bearing performance and precisely deriving control signals, 

as well as a thorough understanding of the effect of nonlinearities on the estimation of the 

rotor position. 

 

The rapid development of sensing and control technology and further understanding of the 

nonlinear dynamic behaviour of magnetic bearing systems will definitely lead to the 

design of more reliable and efficient magnetic bearing systems for many new application 

fields. 
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Figure 1 Block diagram of a simple magnetic bearing system. 
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Figure 2 Schematic of a two-electromagnet magnetic bearing. 

xg 0
xg 0

x 

 rotorI1 I2 



 67

 
 
 

 
 
 

Figure 3: Influence of the limitation of currents on amplitude curves. From Laier and 

Markert [1995]. 
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Figure 4 The double-entering saturation region per cycle symmetric period-one solution. 

From Ji [2004]. 
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Figure 5. Bifurcation diagram and the maximum Lyapunov exponent (mLe) with an 

increase of the forcing frequency for 0.66f   in the region [0.37,  0.49] ; (a) 

bifurcation diagram, (b) the maximum Lyapunov exponent (mLe).  From Ji and Hansen 

[2004b]. 

 



 70

 

 

 
 
 
 

 

-0.8 -0.4 0 0.4 0.8

y

-0.8

-0.4

0

0.4

0.8

dy
/d

t

(a)

        
0 0.2 0.4 0.6

y

-0.35

-0.2

-0.05

dy
/d

t

(b)

 
 
 
Figure 6. Chaotic response of the system for 68.0f : (a) phase portrait, (b) Poincare 

map. From Ji and Hansen [2004b]. 
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Figure 7. Period-doubling bifurcation: Collocation method; P=1.1, D=0.03, G=0.03, 

1 , 16.0 .  From Chinta and Palazzolo [1998]. 

 


