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AbstractThanks to the unique magnetic properties, 

soft magnetic composite (SMC) materials and their 
application in electromagnetic devices have achieved 
significant development. The typical application 
example of SMC is the electrical machine with complex 
structure, such as claw pole and transverse flux 
machines, in which the magnetic field is basically rotary. 
To design and analyze such a device, vector magnetic 
properties of the core material should be properly 
determined, modeled and applied. This paper presents 
the modeling of vector magnetic hysteresis of SMC 
based on a Stoner-Wohlfarh (S-W) elemental operator. A 
phenomenological mean-field approximation is used to 
consider the interaction between particles. With the 
presented model, the magnetization processes of SMC 
under both alternating and rotating fluxes are 
numerically simulated. The simulations have been 
verified by experimental measurements. 
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1. Introduction 
Thanks to their many unique properties such as 3-D 

magnetic isotropy, very low eddy current loss, great design 
flexibility, and great potential for low cost mass production 
of electromagnetic devices, SMC (soft magnetic composite) 
materials and their applications have undergone significant 
development in the past decade [1]. Typical application 
examples include claw pole and transverse flux machines in 
which the flux flows substantially in 3-D space [2,3]. The 
conventional laminated electrical steel is not suitable for 
constructing the core of such machines because the flux 
component perpendicular to the steel plane may cause 
excessive eddy current loss. The SMC material seems to be 
an ideal substitute. 

The relationship between the magnetic flux density (B) 
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and the magnetic field strength (H) is among the basic 
properties of magnetic materials. When B and H are 
restrained in the same direction, their relation is reduced to 
the well-known scalar B-H loop. However, in the 3-D flux 
machines, B and H are not aligned. Furthermore, both B 
and H are rotating and B lags H by an angle. In other words, 
both the magnitudes and directions of the B and H may 
vary, as well as the directional angle difference between the 
two vectors. Therefore, the vector magnetic properties, such 
as the vector B-H relation and core loss, under different 
vector magnetizations, should also be investigated [3-7]. 
Owing to the very complex mechanism of the magnetic 
hysteresis, particularly the vector hysteresis, which is not 
yet fully understood so far, the development of 
mathematical models of magnetization process has not been 
successful, in particular for the engineering practice. 

A huge amount of work has been conducted by various 
researchers for modeling the vector magnetic hysteresis. 
Among the noticeable work are: (a) the Stoner and 
Wohlfarth (S-W) model that was postulated based on the 
rotation of magnetic moments of single domain particles 
with respect to their easy axes [8]; (b) the vector Presaich 
model constructed by the superposition of scalar Presaich 
models [9]; and (c) the combined model that incorporates 
the vector elemental operator of the S-W model into the 
Preisach diagram such that the new model has the vector 
nature of the S-W model while retaining the efficiency of 
the Preisach model [6,10]. However, the phenomenological 
modeling of vector hysteresis has long been centered on the 
classical S-W model [6,7] because of the vector nature of 
the model. 

This paper presents the modeling of vector magnetic 
hysteresis of SMC based on a Stoner-Wohlfarh (S-W) 
elemental operator [11]. A phenomenological mean-field 
approximation is used to consider the interaction between 
particles [12]. With the presented model, the magnetization 
processes of SMC under both alternating and rotating 
fluxes are numerically simulated. The simulations have 
been verified by experimental measurements. 

2. Vector Hysteresis Modeling 
Based on S-W Model 

Vector hysteresis can be defined as vector nonlinearity 
with the property that past extremum values of input 
projections along all possible directions may affect future 
values of the output [9]. Therefore, the mathematical model 
of vector hysteresis should be able to detect and store past 
extremes of input projection along all possible directions 
and choose the appropriate value of the vector output 
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according to the accumulated history. 
The S-W model assumes that a magnetic material 

consists of a collection of small particles, each with 
anisotropy due to stress, crystal structure, or particle shape. 
Each particle is uniformly magnetized to saturation in the 
direction of the easy axis, giving a single magnetic domain 
with moment ms which is free to rotate in any direction. 
Such a particle is called the S-W particle. The particle 
interaction, either due to quantum exchange forces or to 
magnetic dipole-dipole forces, is not considered. 

When a magnetic field H is applied, the magnetic 
moment of an S-W particle rotates to the orientation which 
results in a minimum energy, as shown in Fig. 1. 

The total energy of a single domain with moment ms 
can be expressed as 

HmH s •−= 0
2sin),( µθθ KE       (1) 

where K is the domain crystal anisotropy constant, and θ 
the angle between ms and the easy axis. 
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Fig. 1.  Rotation of ms due to an applied field H. 

The positions of minimum energy can be found by 
solving 0/),( =∂θθ∂ HE  for ∂ θ ∂θ2 2 0E( , ) /H > . It 

can be shown that there are two energy minima if a small 
field is applied. As the field strength increases, the 
positions of these minima change. Initially, these changes 
are reversible. When the applied field strength exceeds a 
certain critical value Hc, however, one of the energy 
minima becomes unstable, and the domain magnetization 
jumps to the other minimum, which is the global energy 
minimum. This critical point at which the irreversible 
domain rotation occurs is the point of minimum energy for 
which 0/),( 22 =∂θθ∂ HE . Finally we have 

3/23/23/2
kpe HHH =+            (2) 

where He = Hx (taking the x axis as the easy axis) and Hp = 
Hysinφ + Hzcosφ are the components of H on the easy axis 
of the particle and on the axis perpendicular to the easy axis 
respectively, and )/(2 0 sk mKH µ= . 

Fig. 2 plots the rotation of a single S-W particle, where 
the asteroid boundary, determined by (2), separates the 
reversible and irreversible domain rotation. 

It can be shown that the equilibrium position of ms is 
on one of the lines tangent to the asteroid and passing 
through the tip of H. When H is outside the asteroid, two 
such tangent lines can be drawn, and the equilibrium 
magnetization is parallel to that making a smaller angle 
with the easy axis, as shown by m1

+ . When H is inside the 

asteroid, four tangent lines can be drawn, and two possible 
equilibrium magnetic moment are parallel to the two lines 
making smaller angles with the easy axis, as shown by 
m2

+ and m2
− . Such a response of a single S-W particle can 

be viewed as a vector elemental hysteresis operator. 
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Fig. 2.  Asteroid vector elemental hysteresis operator. 

The magnetization in a bulk material is the vector sum 
of the contributions of all of the constituent domains, i.e. 

∫ ∫=
π π

ξψψψξρψξ
2

0 0
)sin(),(),,(

1
dd

V s HmM   (3) 

where 

∫ ∫ =
π π

ξψψψξρ
2

0 0
1)sin(),( dd          (4) 

V is the sample volume, and ρ(ξ,ψ) the distribution of the 
S-W particles in terms of the spherical coordinates (ξ,ψ). 

In the assumptions of the S-W model, the interaction 
between S-W particles and the pinning effects of domain 
walls are ignored. In real magnetic materials, however, 
these effects are important, and should not be neglected. To 
account for the interaction between domains, a modified 
S-W model was proposed in Ref. [7] by adding a mean 
field term, Heff = H+αM, where α is a constant feedback 
coefficient. This modifies the energy of an arbitrary particle, 
and (3) becomes 

2

0 0

1
( , , ) ( , )sin( )d d

V

π π
ξ ψ α ρ ξ ψ ψ ψ ξ= +∫ ∫ sM m H M  (5) 

This macroscopic mean field interaction is qualitatively 
correct, but requires further adjustments, in particular, to 
the easy axis distribution. 

3. Numerical Implementation 
In numerical implementation, the magnetization is 

obtained by the vector sum of the magnetic moments ms of 
an assembly of Np magnetic particles, as expressed below 

1

( )
pN

i

α
=

= +∑ siM m H M             (6) 

3.1 1D Alternating Hysteresis 
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In the simulation, 1800 S-W pseudo-particles are 
uniformly distributed in a plane. The vector magnetization 
is computed under an alternating magnetic field excitation. 
Fig. 3 illustrates the hysteresis loop of Msh-H, where Msh is 
the component of magnetization aligned with the external 
field. It can be seen that the hysteresis loops can be 
modified by adjusting the dimensionless parameter α in the 
interaction mean field. Although these loops are not 
identical, they are very similar in character. 

 

Multiparticle Pn=1800
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Fig. 3.  Hysteresis loops under 1D alternating excitation. 

 

Since the particles are uniformly distributed, all other 
components of M are zero, and the vector magnetization M 
is equal to Msh, in this symmetrical case. This means that H 
and M are collinear and the components may be treated as 
scalars. Fig. 4 shows the angular positions of the applied 
field H and the resultant magnetization M in the Cartesian 
coordinates. 
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Fig. 4.  Angular positions of alternating H and M. 

In a magnetically anisotropic material, the S-W 
particles are not uniformly distributed, and M will not be 
aligned with the applied H. The position of M is then 
determined by both H and the particle distribution function. 

3.2 2D Rotational Hysteresis 
When a rotating field H is applied, the magnetization 

M can also be calculated by adding the magnetic moments 

ms of all particles. The simulation results corresponding to 
various magnitudes of H are shown in Fig. 5. 

In an isotropic magnetic material, because of the 
uniform particle distribution, M lags the applied H vector a 
constant angle for a given magnitude of H. The lag angle of 
the M versus the H magnitude is illustrated in Fig. 6. As 
expected, the lag angle of M is nearly zero in the low field 
region where all the changes of magnetic momentum of 
single domain particles are reversible, and the lag angle 
increases when H increases. When H reaches about half of 
the anisotropy field HK the lag angle increases very quickly 
to the maximum, which is nearly 24°, and then decreases 
with the increase of H magnitude. It can also be seen in Fig. 
6 that the lag angle approaches zero when the H magnitude 
is larger than the anisotropy field HK. 
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Vector Magnetisation with Interaction Field ( αααα=0.1)
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Fig. 5.  Loci of (a) rotating magnetic field H, and (b) 
magnetization M. 
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M lags H angle without interaction field by S-W model
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Fig. 6.  Lag angle versus field magnitude. 

 

3.3 3D Rotational Hysteresis 
When a specified rotating excitation field is applied in 

3D space, the magnetization M in the magnetic material 
will also rotate in space. The computing algorithm of 
magnetization for a bulk magnetic material is also based on 
the model of an S-W particle. 

Fig. 7 illustrates the loci of the rotating H (marked by +) 
and the magnetization M (marked by *) of the isotropic 
material. A circular rotating field is applied in the plane that 
is inclined 30° from the horizontal plane. According to the 
calculation, the M component perpendicular to the circular 
rotating field plane is cancelled due to the uniform 
distribution of the particles. Thus, the magnetic 
magnetization M is in the same plane with the field strength 
H. The calculation shows that for a normalized field H of 
0.6, the magnitude of the normalized M is 0.82, and it lags 
the excitation field for about 10°. 
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Fig. 7.  Loci of a circular rotating field H and magnetization M in 
3D space.     

 

4. Conclusions 
In this paper, the vector magnetization of soft magnetic 

composite material under either an alternating excitation 
field or a rotating excitation field is evaluated by using a 
modified S-W model which incorporates a mean interaction 
field into the classical S-W model. The analysis results 
would be helpful for deep understanding and modeling of 
the vector magnetization process of soft magnetic 
composite material. 
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