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Abstract — Simultaneous localization and mapping (SLAM) 
is essential for unmanned aerial vehicle (UAV) applications 
since it allows the UAV to estimate not only its position and 
orientation but also the map of its working environment. We 
propose in this study a new SLAM system for UAVs named 
SupSLAM that works with a stereo camera and an inertial 
measurement unit (IMU). The system includes a front-end that 
provides an initial estimate of the UAV position and working 
environment and a back-end that compensates the drift caused 
by the initial estimate. To improve the accuracy and robustness 
of the system, we use a new feature extraction method named 
SuperPoint which includes a pretrained deep neural network to 
detect key points for estimation. This method is not only 
accurate in feature extraction but also efficient in computation 
so that it is relevant to implement on UAVs. We have conducted 
a number of experiments and comparisons to evaluate the 
performance of the proposed system. The results show that the 
system is feasible for UAV SLAM with the performance 
comparable to state-of-art methods in most scenarios and better 
in some challenging scenarios.  

Keywords— visual-inertial SLAM, superpoint, unmanned 
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I. INTRODUCTION  
 Unmanned aerial vehicles (UAVs) are expecting to 
provide efficient solutions for many applications from 
precision agriculture to smart construction due to their 
flexibility in operating environments and capability of 
carrying various types of sensors [1][2][3]. To carry out a task, 
UAVs typically rely on GPS to locate their position and 
navigate themselves in the environment. GPS signals however 
are not always stable due to the large distance from satellites 
to UAVs and the possibility of being blocked by structures 
such as plant canopies or buildings. In those scenarios, 
simultaneous localization and mapping (SLAM) provides an 
alternative solution by allowing the UAV to not only 
determine its location but also construct a map of the 
environment, which is beneficial for many tasks such as crop 
monitoring in agriculture. Modern visual SLAM algorithms 
can exploit advancements in computer vision and deep 
learning to deal with harsh flying conditions. By using only 
cameras and inertial measurement units (IMU), these 
approaches provide UAVs with better localization, safer 
operation, and higher quality data collection at an acceptable 
cost [4], [5]. 

 Methods of utilizing information from input images in 
visual SLAM can be classified into direct methods and 

feature-based methods [12]. The direct methods directly use a 
whole picture for tracking and mapping. Pixel intensities or 
depth values can be used as measurements [13], [14]. In 
contrast, feature-based methods extract geometric features 
such as interest points and edges to estimate the motion of the 
camera. Feature-based SLAM thus compresses an image to a 
set of geometric features that enables the construction of 
sparse maps. This approach is therefore more suitable for 
embedded computers on UAVs [15].  

 Traditional feature-based SLAM operates based on the 
detection and tracking of interest points and landmarks. A 
popular technique is the features from accelerated segment 
test (FAST) which is computationally efficient and suitable 
for camera localization in fast-moving conditions [16]. This 
technique is enhanced in [17] with a modified feature 
descriptor named binary robust independent elementary 
features (BRIEF) that can improve the overall performance.  

 In recent years, modern feature-based SLAM that uses 
machine learning techniques for feature extraction is receiving 
increasing interest and expecting to outperform the traditional 
approach in almost all robot working environments [18]–[20]. 
This approach takes advantage of trained networks to learn 
key points so that it enhances robustness in data association 
for visual SLAM. Modern feature-based SLAM is also 
expected to generate reliable perception graphs for real-time 
mapping since learning-based feature points are more 
repeatable and evenly distributed. Besides, these local features 
can be used as inputs of neural correspondence networks to 
remove outliers so that the pose estimation becomes more 
accurate [14], [15]. 

 On another note, SLAM on UAVs often poses constraints 
on computation due to their limited resource. In this case, 
feature-based SLAM is more relevant since the extracted 
interest points can be later used for tasks related to 
segmentation and object detection. Methods for extracting 
feature points thus play a key role in SLAM. 

 In this study, we introduce a visual inertial SLAM method 
named SupSLAM based on the use of a new feature point 
called SuperPoint. These feature points are extracted from 
input images of the SLAM front end through a deep neural 
network.  Our SLAM front end requires only a stereo camera 
with an IMU as inputs. Pose estimation is undertaken by a 
multi-state constraint Kalman filter (MSCKF) [22] whereas 
the trajectory reliability is maintained by a graph optimization 
process running at the back end. Our contributions are 



twofold: (i) leveraging MSCKF by using SuperPoint, and (ii) 
analyzing the influence of SuperPoint in SLAM by using not 
only standard datasets but also additional synthetic datasets 
generated by our toolset. 

II. PROPOSED METHOD 
This section describes our overall SLAM system and the 
rationale of using SuperPoint to enhance SLAM 
performance. 

A. System overview 
SLAM involves the estimate of a UAV position via 

maintaining a map of the environment. Mathematically, a 
complete SLAM system can be formulated as a maximum of 
posterior (MAP), considering the trajectory X, landmarks L 
and their data association D given measurements Z [23]:  

  𝛸𝛸�, ℒ̂,  𝐷𝐷� = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑎𝑎𝑚𝑚
𝑋𝑋, ℒ, 𝐷𝐷

𝑙𝑙𝑙𝑙𝑎𝑎 𝑝𝑝(𝑍𝑍|𝑋𝑋,ℒ,  𝐷𝐷)  (1) 

Data association establishing the relationship between 
information collected at different time instances is one of the 
most critical tasks in SLAM. Our approach uses two-step 
maximization described by equations (2a) and (2b) to solve 
equation (1).  

 𝐷𝐷𝑖𝑖+1 = 𝑎𝑎𝑎𝑎𝑎𝑎 max
𝐷𝐷

𝑝𝑝(𝐷𝐷�𝑋𝑋𝑖𝑖 ,ℒ𝑖𝑖 ,  𝑍𝑍)  (2a) 

 𝑋𝑋𝑖𝑖+1,ℒ𝑖𝑖+1 = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑋𝑋, ℒ

𝑙𝑙𝑙𝑙𝑎𝑎 𝑝𝑝(𝑍𝑍|𝑋𝑋,ℒ,  𝐷𝐷𝑖𝑖+1) (2b) 

The diagram representing our SLAM system is presented 
in Fig.1. The system uses a stereo camera as the input to 
extract features of the environment. This camera is 
accompanied by an IMU to measure linear acceleration and 
angular velocity. Data from input devices is then processed via 
front-end and back-end modules.  
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SuperPoint features extraction

Stereo matchingFeatures tracking

Filter-based State estimation
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3D pose

Optimal 
trajectory

Front-end

 
Fig. 1. SLAM algorithms overview 

The front-end extracts feature points from the input data 
and then matches them between the left and right cameras to 
obtain depth information. This information is then fed to a 
multi-state constraint Kalman filter (MSCKF) [22] to estimate 
the 3D pose of the UAV. The back-end on the other hand 
tracks features in keyframes to carry out a loop closure 
procedure for map consistency and trajectory estimation. The 
front-end thus behaves as a visual inertial odometry (VIO) to 
provide a real-time estimate of the UAV pose whereas the 
back-end tracks and adjusts the pose over time. In fact, the key 

for accurate SLAM lies in feature extraction since it provides 
measurements for other stages. In this work, we use 
SuperPoint to enhance the detection and distribution of visual 
features with details being described below. 

B. SuperPoint for data association in SLAM 
SuperPoint is a fully convolutional neural network that 

computes 2D feature point locations together with descriptors 
in a single forward pass and run [18]. In our work, we only 
consider feature points to reduce computation cost and 
maintain consistency in the matching results. The architecture 
of the SuperPoint used is shown in Fig.2. It includes an 
encoder that maps an input image 𝐼𝐼 ∈ 𝑅𝑅𝑊𝑊×𝐻𝐻 to a tensor 𝑇𝑇 ∈
𝑅𝑅𝑊𝑊𝑐𝑐×𝐻𝐻𝑐𝑐×65  with smaller width 𝑊𝑊𝑐𝑐 = 𝑊𝑊/8  and height 𝐻𝐻𝑐𝑐 =
𝐻𝐻/8, but greater channel depth. The tensor is then fed to a 
decoder to detect feature points 𝑋𝑋 . The decoder uses 
convolution layers to extract the response 𝑃𝑃 ∈ 𝑅𝑅𝑊𝑊𝑐𝑐×𝐻𝐻𝑐𝑐×65 for 
feature points which also includes a “no feature point” 
dustbin. The channel-wise softmax is then used to remove the 
dustbin dimension and the reshape function is applied to 
convert 𝑃𝑃 to the input dimension 𝑊𝑊 × 𝐻𝐻.  

The loss function 𝐿𝐿  for the feature point detector is a 
convolutional cross-entropy loss computed over the elements 
𝑚𝑚 ∈ 𝑋𝑋. Let 𝑦𝑦 ∈ 𝑌𝑌 be the ground-truth feature point, the loss 
function is computed as: 

𝐿𝐿(𝑋𝑋,𝑌𝑌) = 1
𝑊𝑊𝑐𝑐𝐻𝐻𝑐𝑐

∑ 𝑙𝑙(𝑚𝑚𝑤𝑤,ℎ,𝑦𝑦𝑤𝑤,ℎ)𝑊𝑊𝑐𝑐,𝐻𝐻𝑐𝑐
𝑤𝑤=1
ℎ=1

,  (3) 

where  

𝑙𝑙(𝑚𝑚,𝑦𝑦) = − log�
exp (𝑦𝑦)

∑ exp (𝑚𝑚𝑘𝑘)65
𝑘𝑘=1

�. 
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Fig. 2. The model architecture of SuperPoint 

C. SuperPoint-based SLAM implementation 
In our system, at time step t, a stereo camera with a built-

in IMU is used to collect data of the environment through 
measurement Zt = {ZLt, ZRt, ZIt}, where ZIt is the inertial 
measurement and ZLt and ZRt are the stereo pair images 
captured by the camera with resolution 𝑊𝑊 × 𝐻𝐻.  The 
SuperPoint model is then used to calculate a map of feature 
points of the left image ZLt. After that, we use the non-
maximum suppression (NMS) algorithm to select best feature 
points pLt from ZLt. The Kanade-Lucas-Tomasi (KLT) feature 
tracker [24] and random sample and consensus (RANSAC) 
[25] algorithms are then applied to find correspondent points 
pRt on the right image. 

In the tracking stage, the KLT and RANSAC matching 
methods are also used to track the feature points (pLt, pRt), 
which are being stored in the database, to update their latest 
positions. The tracking database saves locations of feature 
points in different viewpoints over time. It is the basis for 
getting high-quality depth using the 3D re-triangulation 
calculation, which is important for state estimation. In our 
implementation, the tracking stage is executed at every frame 



whereas the initialization stage is only executed when the 
number of tracking points goes below 80% of its maximum. 

Since the stereo camera model including the baseline, 
intrinsic, and extrinsic parameters is known, 3D poses can be 
estimated directly from the given stereo tracking data. 
However, measurement errors from the stereo camera in 
different poses may cause mismatches in the 3D transform. To 
overcome that problem, we use an extended version of 
MSCKF [26] as the 3D pose estimator. The filter propagates 
all sensor data and incorporates all tracking features in a 
sliding window time to improve the estimation.  

In addition, we adopt a loop fusion technique as in [27] to 
refine the MSCKF estimator so that it can compensate for pose 
drifts caused by the estimation errors accumulated over time. 
Initially, the loop fusion constructs a pose graph in which each 
node is current left image with the present 3D pose given by 
the MSCKF. After that, the loop fusion will add a new node if 
there has a significant change of the current pose (in 
translation and rotation) to the latest keyframe. When the 
UAV revisits a previously known location, the loop-closure 
detector will recognize similarities in its features to activate 
the pose-graph optimization procedure. The loop closure thus 
works in a loosely coupled manner with the front-end in the 
sense that it improves the final estimation result, but that result 
is not fed back to the MSCKF of the front-end. 

III. RESULTS 
To evaluate the performance of the proposed SLAM system, 
we have conducted experiments with details as follows.  

A. Experimental setup 
The data for experiments is collected from a quadcopter 

with the frame size of 40 cm x 40 cm. The IMU has an update 
rate of 200 Hz. The stereo camera has the baseline of 7 cm, 
resolution of 752x480, and speed of 20 frames per second. 

The SLAM system is implemented in C++ using the 
OpenVINS framework [26]. OpenCV and LibTorch libraries 
are used for image processing. The number of visual features 
being tracked is limited to 400 for real-time performance, and 
new feature points are added when the number of active points 
drops to under 300. A pretrained deep neural network is used 
to extract features from input images at the resolution of 
752x480. The time window in MSCKF is set to 3 seconds. In 
the back-end, a new keyframe is added to the pose graph every 
1.2 m. 

B. Data preparation 
Both real and synthetic data is used in experiments. The 

real data includes three most complex sequences named MH3, 
MH4, and MH5 of the EuRoC dataset in which the drone flies 
along a machine hall [29]. The synthetic data includes two 
scenarios representing a rural farm and an urban area 
generated by our toolset developed from AirSim [28] as 
shown in Fig. 3. The rural farm simulates a rural environment 
with uneven terrain, a variety of plants, and agricultural 
equipment. The urban area presents a flat area with different 
features from cars, trees, and living premises. The drone flies 
at the speed of 5 m/s and altitude of 5 m along a rectangular 
trajectory to form a dataset named LoopF. Similarly, it flies at 
the same speed and altitude along other trajectories above the 
urban area to form two datasets named Loop1 and Loop2. In 
these scenarios, we use the drone configuration similar to the 
system used for the EuRoC dataset, i.e., a 20 Hz stereo camera 

and a 200 Hz IMU. However, our datasets are more 
challenging since the drone travels longer distances at a higher 
speed in environments with less trackable landmarks. 

 
Fig. 3. The synthetic scenarios of a rural farm and an urban area used for 

experiments 

C. Evaluation metrics 
 We use two metrics for performance evaluation including 
the absolute trajectory error (ATE) and relative trajectory 
error (RTE) [30]. The ATE is computed by first aligning the 
estimated trajectory to the ground truth and then measuring 
the difference between them as illustrated in Fig.4a. The RTE 
is computed by dividing the estimated trajectory into segments 
dk and then aligning each segment to the ground truth 
trajectory to calculate the error as illustrated in Fig.4b. 

 
Fig. 4. Illustration of evaluation metrics. (a) Absolute trajectory error and 

(b) Relative trajectory error. 

If only the translational errors are considered, the calculation 
of RTE and ATE is given by:  

   𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇 = (1
𝑁𝑁
∑ ‖∆𝑝𝑝𝑖𝑖‖2𝑁𝑁−1
𝑖𝑖=0 )

1
2  (3a) 

   𝑅𝑅𝑇𝑇𝐴𝐴𝑇𝑇 = {𝛿𝛿𝑝𝑝𝑘𝑘}𝑘𝑘𝐾𝐾−1  (3b) 

where  

- N is the number of estimated poses in the trajectory. 

- ∆p is distance between full-aligned estimated pose 
and its correspondence ground truth. 

- ẟp is distance between segment-aligned estimated 
pose and its correspondence ground truth. 

Since the ATE is sensitive to the time the error occurs, it is 
suitable for evaluating the performance of full SLAM systems 
whereas the RTE is better in measuring the drift of VO 
systems. 

D. SLAM results 
Figure 5 shows the feature points detected by SuperPoint 

in three scenarios including the urban area, rural farm, and 
machine hall with two different setups, 100 and 400 feature 
points. It can be seen that features such as corners, edges, color 
changes, etc., are well detected. In addition, the detected 
features are spread across the images so that the algorithm is 
less dependent on certain objects.  

 



 
(a) Urban scenario with 100 

feature points 

 
(b) Urban scenario with 400 

feature points 

 
(c) Rural scenario with 100 

feature points 

 
(d) Rural scenario with 400 

feature points 

 
(e) Machine hall scenario with 

100 feature points 

 
(f) Machine hall scenario with 400 

feature points 

Fig. 5. Feature points detected by Superpoint. 

Figure 6 shows the correspondence of the detected feature 
points between the left and right images. It can be seen that 
most features points are properly matched implying the 
extracted depth information is reliable. 

 
Fig. 6. Feature points detected by Superpoint. 

The tracking of feature points between two image frames 
captured at different time ∆t = 0.3 s is shown in Fig.7a. Since 
the detected feature points are spread across the image, the 
number of common feature points between the frames are well 
maintained, which is important for stable SLAM.    

   
(a) (b) 

Fig. 7. The tracking results with (a) FAST and (b) SuperPoint in two 
frames captured with the time difference ∆t = 0.3 s. 

Figure 8 shows the SLAM result for the LoopF dataset in 
which the UAV flights two rounds above the rural farm. It can 
be seen that the final estimated trajectory (red line) tracks well 
the ground truth trajectory (yellow line) even over a long 
distance of nearly 500 m. In fact, the estimation errors 
decrease over time since more feature points are detected and 
the environment map is built as shown in Fig.9. 

 
Fig. 8. Trajectories of the UAV for the LoopF dataset including the 

ground truth trajectory (yellow line), front-end estimation (green 
line), and back-end estimation (red line). 

 

Fig. 9. Estimation errors with respect to the traveling distance for the 
LoopF dataset. 

E. Comparison results 
To further evaluate the performance of our method, we 

have conducted comparisons with OpenVINS [26], a state-of-
art SLAM system that uses FAST for feature extraction. 
Figure 10 shows the feature points detected by FAST. Unlike 
SuperPoint, these feature points are concentrated around 
certain objects such as plants, houses, or machines. 
Consequently, the number of common feature points is 
significantly decreased between the image frames taken at 
different time when objects are moving out of the scene as can 
be seen in Fig.7b.  That problem in turn would affect the 
SLAM results.  
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(a) Urban scenario with 100 
feature points 

 

(b) Urban scenario with 400 
feature points 
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Fig. 10. Feature points detected by FAST. 

Table I shows the SLAM performance of the front-end on 
EuRoC and the synthetic datasets. It shows that our method is 
better in EuRoC whereas OpenVINS is better in other 
datasets. However, if we look closer to the difference between 
the two methods, their performance is in fact similar since the 
differences are relatively small. Those differences are only 
significant for challenging datasets such as Loop1 and Loop2 
as shown in Table II where SupSLAM clearly outperforms 
OpenVINS. This result is further confirmed in Fig.11 that 
compares the SLAM performance in the front-end and back-
end of the two methods. 

TABLE I.  PERFORMANCE COMPARISON IN SLAM FRONT-END 

DATA 
OpenVINS (FAST) SupSLAM (SuperPoint) 

RTET (%) ATET (m) RTET (%) ATET (m) 

MH3 0.32 0.1 0.28 0.09 

MH4 0.96 0.25 0.68 0.23 

MH5 0.8 0.18 0.57 0.18 

LoopF 1.49 1.77 1.74 1.23 

Loop1 7.6 20.3 7.7 20.8 

Loop2 8.01 39.4 8.03 26.8 

TABLE II.  RTET  PERFORMANCE COMPARISON IN SLAM BACK-END 

 OpenVINS (FAST) SupSLAM (SuperPoint) 

Loop1 4.50% 2.45% 

Loop2 2.78% 1.54% 

 

 
Fig. 11. Comparison of RTET without and with SLAM back-end on the 

synthetic datasets 

 On another note, Table III shows the standard deviation 
of RTET during UAV movement in the rural farm. It shows 
that SupSLAM is more stable in most parts of the trajectories 
due to the even distribution of the feature points detected by 
SuperPoint. 

TABLE III.  STANDARD DEVIATION OF RTET ON THE SYNTHETIC DATA  

Trajectory in percent 20% 40% 60% 80% 100% 

Loop1 
OpenVINS 3.36 2.28 3.01 1.37 0.81 

SupSLAM 2.39 2.18 2.84 1.63 0.87 

Loop2 
OpenVINS 3.36 2.14 3.1 1.53 1.78 

SupSLAM 3.25 2.19 1.95 1.08 1.27 

IV. CONCLUSION 
 In this work, we have proposed a visual inertial SLAM 
system named SupSLAM for UAVs. The system features 
SuperPoint as the method to extract features from the images 
captured by a stereo camera. Compared to other feature 
extraction methods, SuperPoint provides a better distribution 
of feature points and thus enhances the tracking performance 
in fast-moving scenarios. Since SuperPoint is a pretrained 
network, it also requires less computational resources and thus 
is suitable for UAVs which are limited in their payload and 
battery capacity. To evaluate the performance of SupSLAM, 
we have conducted a number of experiments and comparisons 
with both real and synthetic datasets. The results confirm the 
effectiveness and validity of our proposed system for UAVs. 
In future work, we aim to leverage SuperPoint to define more 
efficient data association methods to further improve the 
accuracy and robustness of the current system.  
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