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Abstract—The purpose for wireless sensor networks is
to deploy low cost sensors with sufficient computing and
communication capabilities to support networked sensing
applications. Even when the sensors are properly calibrated
at the time of their deployment, they develop drift in their
readings leading to biased sensor measurements. Noting
that a physical phenomenon in a certain area follows some
spatio-temporal correlation, we assume that the sensors
readings in that area are correlated. We also assume that
the instantiations of drifts are uncorrelated. Based on these
assumptions, and inspired by the resemblance of registration
problem in radar target tracking with the bias error problem
in wireless sensor networks, we follow a Bayesian framework
to solve the Drift/Bias problem in wireless sensor networks.
We present two methods for solving the drift problem in
a densely deployed sensor network, one for smooth drifts
and the other for unsmooth drifts. We also show that both
methods successfully detect and correct sensor errors and
extend the effective life time of the sensor network.

Index Terms—Wireless Sensor Networks, sensor calibra-
tion, drift and bias, error detection and correction.

I. I NTRODUCTION

Recently, wireless sensor networks (WSN) have
emerged as an important research area [1]. This devel-
opment has been encouraged by the dramatic advances in
sensor technology, wireless communications, digital elec-
tronics and computer networks, enabling the development
of low cost, low power, multi-functional sensor nodes that
are small in size and can communicate at short distances
[2]. When they work as a group, they can accomplish far
more complex tasks and inferences than individual super
nodes. This led to a wide spectrum of possible military
and civilian applications.

On the down side, these wireless sensors are usually
left unattended for long periods of time in the field, which
makes them prone to failures either due to running out of
energy or the harsh environmental conditions surrounding
them in the deployment area. Sensor nodes also tend to
develop drift in their measurements as they age. The drift
we consider in this context is unidirectional long-term
change in the sensor measurement. In addition to drift,
sensor nodes suffer from bias in their measurements [3].

This poses a major problem for the end application, as
the data from the network becomes progressively useless.

Traditionally such errors are accounted for by calibrat-
ing the erroneous sensors against accurately calibrated
standard sensors. This process is manually intensive and
is only effective when the number of sensors deployed is
small and the calibration is infrequent. In a large scale
sensor network, constituted of cheap sensors, frequent
manual calibration is impractical and cost prohibitive.
Hence, there is a significant need for auto-calibration [4]
in sensor networks.

In this paper, we address the sensor measurement
drift/bias problem using the fact that neighbouring sensors
in a network, observe correlated data, i.e., the measure-
ments of one sensor are related to the measurements of
its neighbours. Furthermore, the physical phenomenon
that these sensors observe also follows some spatial
correlation. Hence, in principle, it is possible to predict
the data of one sensor using the data from other closely
situated sensors [5], [4]. This predicted data provides a
suitable basis to correct anomalies in a sensor’s reported
information. The early detection of anomalous data en-
ables us not only to detect drift in sensor readings, but
also to correct it.

The sensor bias and drift problems and their effects
on sensor inferences have not been addressed thoroughly
in the sensor networks literature. On the other extreme,
the bias correction problem has been well studied in
the context of multi-radar tracking problem. In target
tacking literature the problem is usually referred to as
the Registration problem [6], [7]. When the same target
is observed by two sensors (radars) from two different
angles, the data from those two sensors can be fused
to estimate the bias in both sensors. In the context
of image processing of moving objects, the problem is
referred to asImage Registration, which is the process of
overlaying two or more images of the same scene taken
at different times, from different viewpoints, and/or by
different cameras. It geometrically aligns two images, the
reference and sensed images [8]. Image registration is a
crucial step in all image analysis tasks in which the final
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information is gained from the combination of various
data sources like in image fusion [9].

A straightforward approach to calibration is to apply a
known stimulus to the sensor network and measure the
response [10]. Then comparing the ground truth input to
the response will result in finding the gain and offset for
the linear drifts case [11]. The calibration problem of the
sensor network was also tackled by [10] in a different
way. They stated that after sensors are calibrated to the
factory settings when deployed, their measurements will
differ linearly from the ground truth by certain gains
and offsets for each sensor. They presented a method
for estimating these gains and offsets using subspace
matching. The method only required routine measure-
ments to be collected by the sensors and did not require
ground truth measurements for comparison. The estimated
gains and offsets (which they assumed to be constant for
each sensor) were used for calibrating the future sensor
readings to the true values. The method worked well in
a controlled environment but not with noise and other
disturbances.

An earlier work on blind calibration of sensor nodes
in a sensor network was presented in [3]. They as-
sumed that the sensors of the network under consideration
were densely deployed that they observed the same phe-
nomenon. They used the temporal correlation of signals
received by neighbouring sensors when the signals were
highly correlated to derive a function relating the bias
in their amplitudes. Another method for calibration was
considered by [12]. They used geometrical and physical
constraints on the behaviour of a point light source to
calibrate light sensors without the need of comparing
the measurement with an accurate sensor (ground truth).
They assumed that light sensors under consideration
suffered form a constant bias with time. The author
in [13] described a method for in-situ blind calibration
of moisture sensors in a sensor network. She used the
Ensemble Kalman Filter to correct the values measured
by the sensors or in other words to estimate the true
moisture at each sensor. The state equation was governed
by a physical model of moisture used in environmental
and civil engineering and the measurement was assumed
to be related to the real state by a certain offset and
gain. The state (moisture) vector was augmented with the
calibration parameters (gain and offset) and then the gains
and offsets were estimated to recover the correct state
from the measurements.

The idea of drift aware wireless sensor networks was
first introduced by Maen et al. [4]. We showed there that
detecting drifting sensors and correcting their measure-
ments would increase the effective life of the network.
In [14], we introduced a formal statistical procedure
for tracking and detecting smooth sensors drifts using
Kalman filters. We also introduced in [15], an algorithm
for tracking and detecting unsmooth sensors drifts using
the Interacting Multiple Model algorithm (IMM). The
sensors of the network were close enough to have similar
temperature readings and the average of their measure-

ments was taken as a sensible estimation to be used by
each sensor to self-assess. No assumptions regarding the
linearity of the drifts were made as in [10]. In this paper
we elaborate on the work of [15] by providing more
illustrations and evaluations for the IMM based unsmooth
drift detection and correction algorithm. We also give
a formal derivation of the smooth drift detection and
correction algorithm which was introduced in [14] using
Bayesian reasoning. In addition to that, we show that
both algorithms not only detect and correct drifts, but
also they detect and correct sensors biases. A comparison
between the algorithms is made to show that the IMM
based detection and correction algorithm performs better
but at the cost of increased computational complexity.

The rest of the paper is organised as follows. We
present our network structure and the problem statement
in section II. Section III presents a Bayesian approach for
solving the smooth drift/bias problem in wireless sensor
networks. Section IV formulates our IMM framework as
an upgrade of the last approach to solve the unsmooth
drift problem. The evaluation of the proposed algorithm
is given in section V. Section VI concludes with future
work.

II. N ETWORK STRUCTURE AND PROBLEM

STATEMENT

Consider a WSN with a large number of sensors
distributed randomly in a certain area of deployment such
as the one shown in Figure 1. The sensors are grouped in
clusters (sub-networks) according to their spatial proxim-
ity. Each sensor measures a phenomenon such as ambient
temperature, chemical concentration, noise or atmospheric
pressure. The measurement is considered to be a function
of time. An example of a cluster is shown using a circle
in Figure 1. The sensors within the cluster are considered
to be capable of communicating their readings among
themselves.

As time progresses, some nodes will start experiencing
drift in their readings. If these readings are collected as
such at these nodes, it would cause the network to accept
erroneous conclusions. After some level of unreliability,
the network inferences become non trustworthy. At this
point, the network becomes useless as it is impractical and
infeasible to manually recalibrate the sensors. In order
to mitigate the drift problem, each sensor node in the
network has to detect and correct it’s own drift using
the feedback obtained from its neighbour nodes. This is
based on the fact that the data from all the nodes within a
cluster are correlated and the faults or drifts instantiations
are likely to be uncorrelated. The ability of the sensor
nodes to auto-detect and correct their drifts helps to extend
the effective (useful) lifetime of the network. In addition
to the drift problem, we also consider the inherent bias
that may exist within some sensor nodes. There exists a
distinct difference between these two errors. The former
changes with time and often becomes accentuated, while
the latter, is considered to be a constant error from the

824 JOURNAL OF NETWORKS, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER



0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

90

100

110

Length(m)

W
id

th
 (m

)

Figure 1. Wireless sensor area with encircled sub-network

beginning of the operation. This error is usually due to a
possible manufacturing defect or a faulty calibration.

The sensor drift that we consider in this work is of
two types. The first is slow smooth drift that we model
as linear and/or exponential function of time. The second
type is smooth drift with jumps. It is similar to the first;
however, it suffers from sudden changes, surges or sharp
peaks. Both of them are dependent on the environmental
conditions, and strongly related to the manufacturing
process of the sensor. This is what makes the instan-
tiation of drift different from one sensor to another. It
is highly unlikely that two electronic components fail
in a correlated manner unless they are from the same
integrated circuit (IC). Figures 2 and 3 show examples of
the theoretical drift models for smooth drift and smooth
drift with jumps, respectively.

Consider a sensor sub-network that consists ofn sen-
sors deployed randomly in a certain area of interest.
Without loss of generality, we choose a sensor network
for measuring temperature, even though this is generally
applicable to all other types of sensors that suffer from
drift and bias problems. LetT be the ground truth temper-
ature. In this workT is considered to vary only with time
inside the sub-network or the cluster. Therefore we denote
the temperature at a certain time instance and sensor
location asTi,k wherei is the sensor number andk is the
time index. Since the temperature in the cluster is space
invariant, we denote it asTk whereTi,k=Tj,k=Tk. At each
time instantk, a nodei in the sub-network measures a
readingri,k of Tk. It then reports adrift correctedvalue
xi,k to its neighbours. The corrected valuexi,k should
ideally be equal to the ground truth temperatureTk. If all
nodes are perfect,ri,k will be equal to theTk, and the
reported values will ideally be equal to the readings, i.e.,
xi,k = ri,k.
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Figure 2. Examples of smooth drifts

During this process, each nodei finds a predicted
value x̂i,k as a function of corrected measurements
collected from its neighbour sensors usinĝxi,k =
f(neighbourdata). Similar to our previous work in [14],
x̂i,k is taken to be equal to the average of the neighbour
sensors’ reported valueŝxi,k = xk =

∑n

i=1 xi,k/n. In
an ideal situation,̂xi,k = Tk. In practice, each sensor
reading comes with an associated reading error, and drift
di,k. This drift may be null or insignificant during the
initial period of deployment, depending on the nature of
the sensor and the deployment environment. The problem
we address here is how to account for the drift in each
sensor nodei, using the predicted valuêxi,k, which is
obtained using information gathered from neighbouring
nodes, so that the readingri,k is corrected and reported
asxi,k.

In the following section we introduce a Bayesian for-
mulation for the drift problem in wireless sensor network.
This will lead us to derivation of our smooth drift cor-
rection algorithm using Kalman Filter (KF) given in [14].
We then upgrade that algorithm to become capable of
dealing with drift with sudden jumps by utilising the IMM
algorithm.

III. E STIMATION AND CORRECTION OF SMOOTH

DRIFTS

In this section we introduce a Bayesian approach to
solve the sensor measurement errors problem in WSN,
assuming that the drifts are smooth (see figure 2) and
that sensor nodes are densely deployed. Under the dense
deployment assumption, all the sensors nodes in a cluster
are assumed to measure the same value. Therefore, the av-
erage of corrected sensor measurementsxk is considered
as a good estimate for the expectation of the ground truth
valueE{Tk} in the cluster. It is also considered as a good
basis for the sensors to self-assess their measurements.

Let us assume that at time instantk, a measurement
or a readingri,k is made by nodei. Rather than sending
that value to its neighbours, the node is aware of its drift,
and has a predicted valuẽdi,k for it at this time instant.
It is taken to be equal to the estimate of the drift made
at the previous time instant,̃di,k = d̂i,k−1|k−1, as the
drift is assumed to be slow. Using this estimate of the
drift, the nodei computes its corrected measurementxi,k

and sends it to its neighbouring nodes. This applies to all
the nodes in the neighbourhood. Each node then collects
all the neighbourhood sensors corrected measurements
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Figure 3. Examples of drifts with jumps and sudden changes
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{xi,k}
n
i=1, and computes the averagexk =

∑n

i=1 xi,k/n.
At this point each sensor computes the drift measurement.
We define the drift measurement as the difference between
the sensor measurement and the average value computed
by that sensor. We denote the drift measurement of node
i at time instantk by yi,k. The drift measurement is used
by a KF to estimate the drift. The problem is formulated
mathematically as follows:

Assuming that the drift is slow and smooth, it is
modelled by:

di,k = di,k−1 + vi,k vi,k ∼ N(0, Qi,k) (1)

where di,k is the drift/bias on sensor nodei at time
instant k, vi,k is the process noise and is taken to be
a Gaussian noise with zero mean and variance equal to
Qi,k.

Since the sensor measurementri,k usually suffers from
random errorwi,k and systematic error (drift/bias)di,k,
the reading or measurement of sensori is given by:

ri,k = Tk + di,k + wi,k wi,k ∼ N(µi,k, Ri,k)

where Tk is the actual (ground truth) value of the
measured variable at sensori andwi,k is the measurement
noise and is taken here to be a Gaussian noise with zero
mean (µi,k = 0) and varianceRi,k.

We also definexi,k, the corrected measurement of sen-
sor i at time instantk. xi,k is never sensed but calculated.
It is the difference between the sensor reading and the
estimated drift and is calculated byxi,k = ri,k − di,k to
result inxi,k = Tk + wi,k.

Since the sensors are densely deployed and the instan-
tiations of drifts in the sensors are random, we use the
average of corrected sensors’ measurements close to node
i as an approximate estimate for the expectation of actual
(ground truth) valuexk = E{Tk} + 1

n

∑n
j=1 wj,k. We

also defineyi,k in equation (2) as the difference between
the measurementri,k and the average of corrected sensors
measurementsxk and refer toyi,k as the drift measure-
ment of nodei at time instantk.

yi,k = ri,k − xk (2)

At early stages of deployment of the sensor network
when very few sensors have started to develop drift, and
given that the instantiations of drifts in all the sensors are
random, we assume thatE{Tk} = Tk. Substitutingri,k
into equation (2) results in:

yi,k = Tk + di,k + wi,k − E{Tk} −
1

n

n∑

j=1

wj,k

= di,k + wi,k −
1

n

n∑

j=1

wj,k

= di,k + ψi,k ψi,k ∼ N(0, δi,k) (3)

whereψi,k = wi,k −
1
n

∑n

j=1 wj,k is the drift measure-
ment noise and is actually a mixture of Gaussians. It is
well known in literature [16], [17] that a Gaussian mixture
can be approximated by a Gaussianψi,k ∼ N(πi,k, δi,k)

with the mean found by the weighted sum of the means
of the orignal Gaussians:

πi,k = µi,k −
1

n

n∑

j=1

µj,k = 0

and the variance found by:

δi,k = [Ri,k + (µi,k − πi,k)(µi,k − πi,k)T ]

−
1

n

n∑

j=1

[Rj,k + (µj,k − πi,k)(µj,k − πi,k)T ]

= Ri,k −
1

n

n∑

j=1

Rj,k

Assuming that all sensors are neighbours in the cluster
and that they can report to each other, then equation (1)
and equation (3) can be written in vector form for all the
sensors of the cluster as follows:

Dk = FDk−1 + Vk Vk ∼ N(0, Qk) (4)

Yk = HDk + Ψk Ψk ∼ N(0,∆k) (5)

where Qk and ∆k are the process noise and
measurement noise covariances, respectively.Dk =[
d1,k . . . di,k . . . dn,k

]T
is the vector of drifts of

all sensors in the cluster at time instantk. Similarly, Yk,
Vk, Ψk are the vectors of drift measurements, process
noise and drift measurement noise of all sensors in the
cluster at time instantk, respectively.F andH are the
state transition model matrix and the observation model
matrix, respectively. Both matrices,H andF , are taken
in this scenario to be equal to the identity matrix.

We also defineY k = {Y1, Y2 · · ·Yk} as the set of all
drift measurements made up to timek. Accordingly, the
problem can be stated as follows: given the set of drift
measurements up until the current timek, what is the
best estimate of the current driftDk. Probabilistically, the
conditional density relating the state and the measurement
vectors is expressed asp(Dk|Y

k) and the estimate would
be the expected value

∫
Dkp(Dk|Y

k)dDk. This estimate
is denoted byD̂k|k. D̂k|k−1 denotes the estimate ofDk

given the measurements up until timek − 1. p(Dk|Y
k)

can be expanded by Bayes rule as follows:

p (Dk|Y
k) = p (Dk|Yk, Y

k−1)

=
p (Yk|Dk, Y

k−1) · p (Dk|Y
k−1)

p (Yk|Y k−1)
(6)

Assuming the measurement noise is white Gaussian;
i.e. not correlated in time, then the current measurements
do not depend on the previous measurements and (6)
reduces to:

p (Dk|Y
k) =

likelihood︷ ︸︸ ︷
p (Yk|Dk) ·

predicted density︷ ︸︸ ︷
p (Dk|Y

k−1)

p (Yk|Y
k−1)︸ ︷︷ ︸

normalisation

(7)

The Likelihoodp(Yk|Dk) for sensori can be obtained
from the measurement equation (5) whereΨk is a noise
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vector, assumed to be Gaussian with zero means and
covariance∆k. Given Dk, the probability of obtaining
a drift measurement vectorYk should be equal to the
probability of the noise with meanHDk:

p (Yk|Dk) = N(HDk,∆k) (8)

The predicted density predicts the current stateDk of
the sensors based on the old measurements. We expand it
here by Chapman-Kolmogorov identity (an approach used
by [18]) as follows:

p (Dk|Y
k−1) =

∫
p(Dk|Dk−1, Y

k−1)p(Dk−1|Y
k−1) dDk−1

Assuming the system obeys markov evolution, which
implies that its current state directly depends on the
previous state, with any dependence on old measurements
encapsulated in that previous state, then the transition
density can be simplified by neglecting the measurement
term as follows:

p (Dk|Y
k−1) =

∫
p(Dk|Dk−1)p(Dk−1|Y

k−1) dDk−1

(9)
To evaluate the predicted densityp (Dk|Y

k−1) we have
to evaluatep(Dk|Dk−1) and p(Dk−1|Y

k−1) and then
substitute them into (9). From (4) and similar to the
likelihood:

p (Dk|Dk−1) = N(FDk−1, Qk) (10)

p(Dk−1|Y
k−1) is the prior and is also assumed to be

Gaussian with a known mean and covariance from the
last iteration:

p (Dk−1|Y
k−1) = N(D̂k−1|k−1, Pk−1|k−1) (11)

Substituting into (9) and evaluating the integral as given
in [18] we get:

p (Dk|Y
k−1) =

∫
N(D̂k−1|k−1, Pk−1|k−1) ×

N(FDk−1, Qk) dDk−1

= N(D̂k|k−1, Pk|k−1) (12)

where

D̂k|k−1 = FD̂k−1|k−1 (13)

Pk|k−1 = FPk−1|k−1 F
T +Qk (14)

Using total probability lemma and assuming that mea-
surement noise is white Gaussian, the normalisation term
can then be expanded as follows:

p (Yk|Y
k−1) =

∫
p(Yk|Dk, Y

k−1)p(Dk|Y
k−1)dDk

=

∫
p(Yk|Dk)p(Dk|Y

k−1)dDk (15)

Substituting the likelihood and the predicted density in
the integral of (15) results in:

p (Yk|Y
k−1) =

∫
N(HDk,∆k)N(D̂k|k−1, Pk|k−1)dDk

= N(HD̂k|k−1, Sk) (16)

where
Sk = HPk|k−1H

T + ∆k (17)

Putting all the terms together in (7) and evaluating
using an identity given in the appendix of [18] results
in:

p (Dk|Yk) =
N(HDk,∆k)N(D̂k|k−1, Pk|k−1)

N(HD̂k|k−1, Sk)

= N(DDk, Pk|k) (18)

where

K = Pk|k−1H
T (HPk|k−1H

T + ∆k)−1 (19)

D̂k|k = D̂k|k−1 +K(Yk −HD̂k|k−1) (20)

Pk|k = (1 −KH)Pk|k−1 (21)

Equations sets (13-14) and (19-21) represent a KF
framework [19], [20] forn sensor nodes in the cluster.
SinceF andH are identity matrices, the system above
can be solved as ann-dimensional KF (by a central node
and requires high computational capability) or asn 1-
dimensional KFs solved by each sensor in the cluster. The
first solution is centralised, whereas the latter is decen-
tralised and requires no special processing power by the
sensor nodes. We adopt the decentralised solution in this
work.F andH are taken to be equal to one. This leads to
the probabilistic solution for driftdi,k ∼ N(d̂i,k|k, Pi,k|k)
with mean and variance:

d̂i,k|k = d̂i,k−1|k−1 +K(yi,k − d̃i,k) (22)

Pi,k|k = (Pi,k−1|k−1 +Qi,k)(1 −K) (23)

K =
Pi,k−1|k−1 +Qi,k

Pi,k−1|k−1 +Qi,k + δi,k
(24)

The above equations are obtained by substituting the
prediction equations of the KF (13-14) into the up-
date equations (19-21).̃di,k is the predicted drift at
the beginning of stagek, before the correction. In this
case, d̃i,k = F d̂i,k−1|k−1 = d̂i,k−1|k−1, a straightfor-
ward prediction given by the KF solution. The variances
Qi,k, δi,k, Pi,k−1|k−1 andPi,k|k are numbers, and there-
fore the solution is easy to compute. Onced̂i,k|k is ob-
tained, it is used as the predicted driftd̃i,k+1 for the next
stage. This allows for the correction of readingri,k+1.
The solution is implemented in a decentralised iterative
procedure i.e. it is run in each node and at each time step
to estimate its driftdi,k. Using this estimation;ri,k+1 is
corrected toxi,k+1 and the driftdi,k+1 is estimated again
and so on. The block diagram shown in figure 4, with KF
as the last sub-block, describes the smooth drift detection
and correction algorithm. The algorithm is summarised as
follows:

Decentralised error correction algorithm for smooth drifts

For each nodei

• At stepk, the predicted driftd̃i,k = d̂i,k−1|k−1 and
the previous time step process variancePi,k−1|k−1

are available.
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Figure 4. A block diagram for the drift detection and correction
algorithms

• Each nodei obtains its readingri,k
• The corrected reading is calculated,xi,k = ri,k−d̃i,k

and then transmitted to the neighbouring nodes.
• Each node computes the averagexk.
• The Drift measurementyi,k = ri,k−xk is computed.
• Substituting into (22-24) results in the current time

step estimateŝdi,k|k andPi,k|k.
• The projected driftd̃i,k+1 = d̂i,k|k is obtained and

the algorithm iterates.

IV. ESTIMATION AND CORRECTION OF UNSMOOTH

DRIFTS

In this section we present a probabilistic approach that
accounts for errors in sensors measurements and instantly
captures drifts that have surges and sudden escalations.
Such drift behaviour is not followed well by the KF
algorithm given in the previous section. The standard KF
with single drift model is limited in performance since it
does not efficiently respond to changes in the dynamics
as the drift changes abruptly at some points. Therefore,
we make use of the Interacting Multiple Model (IMM)
in our solution since it is designed to deal with abrupt
changes in the estimated states. The IMM approach is
originally used in target tracking to track manoeuvring
objects that show sudden changes in their dynamics [16],
[17], [21], [22]. In accordance with the IMM algorithm,
each sensor is assigned anM number of modes to account
for the possible jumps in the drift. Our solution for
the sudden step drift problem (also works for smooth
drift) consists of the following iterative steps: As for the
case of smooth drift, at time stepk, a readingri,k is
made by nodei. Rather than sending the reading as it
is to it’s neighbours, the node is aware of its driftdi,k,
and has a predicted valuẽdi,k for it at this stage. It is
taken to be equal to the estimate of the drift made at
the previous time instant̃di,k = d̂i,k−1|k−1. Using this
estimate of the drift, the node computes the corrected
sensor readingxi,k and sends it to it’s neighbours. Each
sensor computes the averagexk =

∑n

i=1 xi,k/n to self-
assess it’s measurements. To account for the possible
jumps, the drift with abrupt changes is modelled as a jump
markovian linear system. It is a system whose parameters
evolve according to the realisation of a finite state markov
chain [23]. Mathematically, we model the driftdi,k to

belong to the set of models defined by (25):

{di,k = di,k−1 +uθ
i +vθ

i,k}
M
θ=1 vθ

i,k ∼ N(0, Qθ
i,k) (25)

whereθ = 1, 2, . . .M , uθ
i is the input or jump correspond-

ing to θth model for sensori. vθ
i,k is the process noise for

each model. It is taken to be Gaussian with zero mean
and varianceQθ

i,k. We assume that all models have the
same variance. Therefore, we denote the process variance
for all the modes asQi,k.

Equation (25) represents anM number of possible drift
models for each node. Each model differs from the others
in the size of the jumpsuθ

i . The resultant estimated drift
for nodei at time instantk, d̂i,k|k, would be a weighted
combination of the estimated drift of each modeld̂θ

i,k|k.

The resultant estimated drift for each noded̂i,k|k is found
as will be shown later in this section by:

d̂i,k|k =

M∑

θ=1

µθ
i,k|k d̂

θ
i,k|k

whereµθ
i,k|k is the model probability. It is the probabil-

ity that the estimated drift̂di,k|k follows the drift model
d̂θ

i,k|k given the measured values until the time stepk.
A source of information is needed to provide input to

a statistical model such as equation (25). Since the sen-
sor measurementri,k usually suffers from random error
wi,k and systematic error (drift/bias)di,k, the reading or
measurement of sensori is given by:

ri,k = Tk + di,k + wi,k wi,k ∼ N(µi,k, Ri,k)

where Tk is the actual (ground truth) value of the
measured variable at sensori andwi,k is the measurement
noise and is taken here to be a Gaussian noise with zero
mean (µi,k = 0) and varianceRi,k.

Similar to the previous section, we denote the corrected
measurement of sensori at time instantk asxi,k. xi,k is
never sensed but calculated. It is the difference between
the sensor reading and the estimated drift and is calculated
by xi,k = ri,k − di,k to result inxi,k = Tk + wi,k.

We also defineyi,k in (2) as the difference between the
measurementri,k and the average of corrected sensors
measurementsxk and refer toyi,k as the drift measure-
ment of nodei at time instantk.

yi,k = ri,k − xk (26)

Since the sensors are densely deployed and the instan-
tiations of drifts in the sensors are random, we use the
average of corrected sensors’ measurements close to node
i as an approximate estimate for the expectation of actual
(ground truth) valuexk = E{Tk} + 1

n

∑n

j=1 wj,k.
Following the same reasoning given in the case of

smooth drift in the previous chapter,yi,k is also expressed
by:

yi,k = di,k + ψi,k ψi,k ∼ N(0, δi,k) (27)

whereψi,k = wi,k −
1
n

∑n
j=1 wj,k is the drift measure-

ment noise and is actually a mixture of Gaussians that can

828 JOURNAL OF NETWORKS, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER



Figure 5. The IMM step

be approximated by a Gaussianψi,k ∼ N(πi,k, δi,k) with
meanπi,k = 0 and varianceδi,k = Ri,k − 1

n

∑n

j=1Rj,k.
Referring to equations (25) and (27) we notice that

they represent anM number of kalman filter equations
corresponding toM number of drift models (jumps). This
leads according to the IMM algorithm toM number of
Kalman filters working in parallel to result inM number
of estimations for drift and covariance. Each model has
a probability µθ

i,k|k = p (modeli,k = θ|yk
i ) depending

on the measured values until that time step. Switching
between models is governed by a pre-defined Markov
transition matrixΓ of dimensionM ×M for M models.

Γ =




γ11 . . . γ1M

... · · ·
...

γM1 . . . γMM



 (28)

whereγαθ = p (modeli,k = θ|modeli,k−1 = α) which is
the probability of switching from modelα to modelθ in
single time step.

The IMM step of our drift tracking algorithm is ex-
plained as follows: At time stepk each node is sup-
posed to know the previous time step models probabil-
ities {µθ

i,k−1|k−1}
M
θ=1, estimated drifts{d̂θ

i,k−1|k−1}
M
θ=1

and associated covariances{P θ
i,k−1|k−1}

M
θ=1. Unlike our

standard Kalman Filter drift tracking algorithm, the
previous estimates are not used as priors for theM
Kalman Filters. Instead, the predicted models probabilities
{µ θ

i,k =
∑M

α=1 γαθ µ
α
i,k−1|k−1}

M
θ=1 are calculated. Then

the previous estimates together with{µ θ
i,k−1}

M
θ=1 are

used in the mixing stage to calculate{d θ
i,k−1|k−1}

M
θ=1

and {P θ
i,k−1|k−1}

M
θ=1. The mixing stage drift estimates

and the associated covariances are then fed as pri-
ors to the correspondingM filters (substituted in KF
equations(22-24)) to result in the posterior models esti-
mates{d̂θ

i,k|k}
M
θ=1,{P θ

i,k|k}
M
θ=1.

The output of the IMM algorithm is then found by first
updating the models probabilities{µθ

i,k|k}
M
θ=1, which are

used then together with the outputs of theM Kalman
filters to find d̂i,k|k and Pi,k|k. The algorithm then re-
iterates taking the predicted drift at time stepk + 1 to
be equal to the estimated drift at the previous time step
d̃i,k+1 = d̂i,k|k.

The block diagram shown in figure 4, with IMM as
the last sub-block, describes the unsmooth drift detection
and correction algorithm. The IMM block in figure 4 is
further explained in figure 5. The full derivation of the
IMM algorithm can be found in [16], [17].The steps of
our unsmooth drift tracking algorithm are stated below:

Decentralised Unsmooth Drift Correction Algorithm

For each nodei

• At step k, a predicted driftd̃i,k = d̂i,k−1|k−1 is
available.

• The prior model probabilitiesµθ
k−1|k−1 are available.

• Each nodei obtains its readingri,k.
• The corrected reading is calculated,xi,k = ri,k−d̃i,k

and then transmitted to the neighbouring nodes.
• Each node computes the averagexi,k.
• The drift measurementyi,k = ri,k − xk is obtained.
• The predicted model probabilities are calculated

µ θ
i,k =

M∑

α=1

γαθ µ
α
i,k−1|k−1

• Mixing stage

d θ
i,k−1|k−1 =

M∑

α=1

γθα µ
α
i,k−1|k−1

µ θ
i,k

d̂α
i,k−1|k−1

P θ
i,k−1|k−1 =

M∑

α=1

γθα µ
α
i,k−1|k−1

µ θ
i,k

(Pα
i,k−1|k−1

+[d̂α
i,k−1|k−1 − d θ

i,k−1|k−1]
2)

• Kalman Filter update stage

d̂θ
i,k|k = d θ

i,k−1|k−1 + uθ
i +K(yi,k − d θ

i,k−1|k−1)

P θ
i,k|k = (P θ

i,k−1|k−1 +Qi,k)(1 −K)

K =
P θ

i,k−1|k−1 +Qi,k

P θ
i,k−1|k−1 +Qi,k + δi,k

• IMM output stage
The Model probabilities are updated

µθ
i,k|k =

µ θ
i,k e

−
(yi,k−d θ

i,k−1|k−1
−uθ

i
)2

2A

∑M
θ=1 µ

θ
i,k e

−
(yi,k−d θ

i,k−1|k−1
−uθ

i
)2

2A

where A = P θ
i,k−1 + Qi,k + δi,k. The resultant

estimated drift and its associated covariance are
updated as follows:

d̂i,k|k =

M∑

α=1

µα
i,k|k d̂

α
i,k|k

Pi,k|k =

M∑

α=1

µα
i,k|k d̂

α
i,k|k(Pα

i,k|k + [d̂α
i,k|k − d̂i,k|k]2)

• The projected driftd̃i,k+1 = d̂i,k|k is obtained and
the algorithm reiterates.

The systems described in this section and the previous
section are completely observable at the deployment stage
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of the sensor network, when no sensors are drifting.
However, as the sensors start to develop drift the sys-
tem becomes partially observable. When employing our
algorithm, the drifts are detected and consequently the
readings of the sensors are corrected to become close to
the ground truth. This together with that the probability of
many sensors start drifting simultaneously is low, enhance
our ability to extend the period of observability of the
system. Hence, extending the useful time of the sensor
network. Thus, giving us the opportunity for making the
most use of the network.

V. EVALUATION

Our aim is to evaluate the ability of our proposed
framework to correct the drift experienced in a sensor
node using the information gathered from the nearest
neighbouring nodes. We simulate a small sub-network
of 10 densely deployed sensor nodes measuring the
temperature in a certain area. We assume that 2 sensors
are developing smooth drifts with jumps of the forms
shown in figure 3. We compare the IMM drift tracking
algorithm with the plain KF drift tracking algorithm under
the same drift and random error (noise) scenarios. The
drift measurement varianceδi,k for each node is chosen
from [0.005-0.01] and the state varianceQi,k is taken
to be 0.001. The number of models we consider in our
evaluation of IMM algorithm isM = 11.

The results of the KF drift tracking algorithm are
shown in figures 6 and 7, whereas, the results of the
IMM drift tracking algorithm are shown in figures 8
and 9. Comparing figures 9 and 7, it is clear that both
algorithms follow the drift in node 1. However, the IMM
drift algorithm performs considerably better. It follows
the drift with jumps instantly with minimal errors and
more efficiently than the plain KF drift tracking algorithm.
Hence, the IMM drift tracking algorithm outperforms the
KF drift tracking algorithm in terms of speed and accuracy
of following the drift.

Looking at figures 8 and 6, It is clear that both the IMM
and the KF drift tracking algorithms extend the effective
operational life time for node 1. If we assume that for
our application that the maximum tolerable temperature
error in node’s 1 reading is 1Co, then the life of node
1 is extended from 20 time units when there is no drift
correction (Reading of node 1 curve) to at least 100 time
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Figure 6. The reading of node 1, the actual temperature and theKF
estimated (corrected) reading.
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Figure 7. Actual and estimated drifts in nodes 1 and 2 for KF

units when the IMM or the KF algorithms is applied
(Corrected reading curve). This applies to all of the
network’s sensors that develop drift. Hence, the life of the
network will be extended by applying the drift detection
and correction algorithms. It is also worth noting from
figures 8 and 6 that the difference between the actual and
corrected reading curves tend to be on average smaller
for the IMM algorithm results. This indicates that the
error accumulation in the case of IMM is less and so
it is expected to give longer life for the network.

In addition to the drift, we consider the bias problem.
As we mentioned earlier, the bias is the starting reading
error or in other words, the drift at time zero. We
assume that the sensor nodes are factory calibrated before
deployment and so it is unlikely that a high percentage of
the sensors will suffer from bias. In a sensible situation,
if most of the sensors are without bias at time 0, then
such a bias can be captured by both of the proposed
solutions as a constant drift of a certain amplitude. Figures
10 and 11 show the KF and IMM algorithms results
when both sensors 1 and 2 suffer from bias and drift.
It is obvious from both figures that the two algorithms
efficiently capture and correct the bias. However, the
IMM algorithm catches and corrects the bias faster. It
is important to note here that if many sensors suffer from
the bias, then both solutions will not be accurate. Having
many sensors with initial bias, highly contradicts with
one of our main assumptions that one sensor will start
drifting at a time. Furthermore, it is unrealistic to have
many sensors with initial bias as the sensors have to be
factory calibrated before deployment.

Other comparisons between the two algorithms can be
made by looking at figure 12 and figure 13 which show
the RMS error for both algorithms when 2 sensors in the
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Figure 8. The reading of node 1, the actual temperature and theIMM
estimated (corrected) reading.
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Figure 9. Actual and estimated drifts in nodes 1 and 2 for IMM

sub-network are subject to smooth drifts and unsmooth
drifts, respectively. It is clear, in both scenarios, that
the IMM drift tracking algorithm performs better than
simple KF drift tracking algorithm in terms of speed of
following the drift and in terms of the RMS error between
the estimated and actual drifts. However, the improved
performance of IMM is at the cost of the increased
computational complexity. We use the processing time
required by each algorithm as a measure of its compu-
tational complexity. Table I shows the average processing
time required by the KF based algorithm and the IMM
based algorithm (for different number of models) as
reported by our MatLab simulations. TheRatio column
clearly shows that the IMM based algorithm requires
approximately2M the time required by the KF based
algorithm. Obviously, the computational complexity can
be reduced by reducing the number of modelsM used
in the IMM algorithm. Figure 14 shows the RMS error
in the estimated drift for the KF based algorithm and the
IMM based algorithm for different number of models.
We notice that the RMS error reduces withM . However,
the rate of change in the RMS error also decreases with
M ; the difference between the RMS errors forM = 7
andM = 11 is very small. In fact, it is well known in
target tracking literature that using more models does not
necessarily lead to better estimation, whereas it definitely
increases the computational complexity [24]. Therefore,
M should be chosen carefully. Alternatively, a model such
as the variable structure IMM (VSIMM) which adaptively
determines the minimal number models for estimating the
state may be used [25].

It is important here to note that the speed of following
the drift for the KF based algorithm can be increased
by increasingQi,k. However, this will lead to more
oscillatory response and will result in increasing the RMS
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Figure 10. Actual and estimated bias/drift in nodes 1 and 2 forKF
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Figure 11. Actual and estimated bias/drift in nodes 1 and 2 forIMM

error. Adding another component to the state vector,
namely, the speed of the drift while maintaining the same
value ofQi,k, will result in faster tracking of the drift
with less RMS error. Unfortunately, this will increase the
mathematical complexity, as the problem of estimating
the drift will then involve matrix multiplications and
inversions, which is undesirable in a wireless sensor with
limited computational capability.

We conducted several simulation scenarios and ob-
served that the method worked as long as not all sensor
start drifting at the same instant of time. Generally speak-
ing, we noticed that the performance of both algorithms
is dependent on the number of drifting sensors, the
amplitude of drifts or biases and the instantiations of
drifts. If all the sensors suffer from considerable biases at
time zero the method will not work accurately.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper we have proposed a formal Bayesian
framework for estimating sensor errors in a WSN based
on the assumption that neighbouring sensors have corre-
lated measurements and that the instantiation of drift in a
sensor is uncorrelated with other sensors. The sensors in
the neighbourhood are assumed to be densely deployed.
Hence, the average of their corrected readings is taken as
a basis for each sensor to self assess it measurements. We
have introduced two probabilistic procedures that capture
drifts; the first captures smooth drifts, whereas the other,
captures both smooth drifts and unsmooth drifts (drifts
with jumps). The solutions are computationally simple
and scalable as they are decentralised dealing with one
state KF in the case of smooth drifts and one state IMM
in the case of unsmooth drifts. The IMM based algorithm
performs better in both the smooth and unsmooth cases
but at the cost of increased computational complexity.
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Figure 12. RMS error for both algorithms under smooth drift scenario
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Table I
PROCESSING TIMES REQUIRED BYKF BASED AND IMM BASED DRIFT ESTIMATION AND CORRECTION ALGORITHMS.

Drift estimation and correction algorithm Processing time/iteration (PT ) Ratio =
PT (Any)
PT (KF )

KF 1.4 ms 1
IMM ( M = 3) 8.51 ms 6.079
IMM ( M = 7) 19.83 ms 14.16
IMM ( M = 11) 32.49 ms 23.21

In future, we will address the drift/bias problem in
sparsely deployed WSNs. In this case, the temperature
(or any other measured phenomenon) is considered to
vary with distance and time. Therefore, the average of
the neighbours’ readings cannot be used by any sensor
to self asses its own measurements. Alternatively, we
will use machine learning and regression techniques to
predict the measurement of a sensor in terms of its
neighbours readings as a first step for detecting the drift
and correcting the readings. Moreover, we are planning
to implement and test our solutions in WSNs deployed in
outdoor environment.
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