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Abstract We study a message passing approach to power expectation propagation
for Bayesian model fitting and inference. Power expectation propagation is a class
of variational approximations based on the notion of α-divergence that extends two
notable approximations, namely mean field variational Bayes and expectation prop-
agation. An illustration on a simple model allows to grasp benefits and complexities
of this methodology and sets the basis for applications on more complex models.
Abstract Studiamo l’approccio message passing al power expectation propagation
per la stima e l’inferenza Bayesiana. Power expectation propagation è una classe di
approssimazioni variazionali basata sulla nozione di divergenza α che estende due
approssimazioni notevoli, mean field variational Bayes ed expectation propagation.
Un’illustrazione su un semplice modello consente di cogliere benefici e complessità
di questa metodologia, ponendo le basi per applicazioni su modelli più complessi.

Key words: α-divergence, approximate Bayesian inference, factor graph, message
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1 Introduction

Bayesian inference deals with updating a prior distribution p(θ) on a parameter
vector θ through the model likelihood p(y|θ) for the observed data y to obtain the
posterior distribution p(θ |y) = p(y|θ)p(θ)/p(y). Typically the marginal likelihood
p(y) =

∫
p(y|θ)p(θ)dθ cannot be evaluated explicitly and Markov chain Monte

Carlo (MCMC) methods have been the main toolkit to sample from the posterior

Emanuele Degani, Mauro Bernardi
Department of Statistical Sciences, University of Padua, Italy
e-mail: degani@stat.unipd.it, e-mail: mauro.bernardi@unipd.it,

Luca Maestrini
School of Mathematical and Physical Sciences, University of Technology Sydney, Australia
e-mail: luca.maestrini@uts.edu.au

1

1026

mailto:degani@stat.unipd.it
mailto:mauro.bernardi@unipd.it
mailto:luca.maestrini@uts.edu.au


2 Emanuele Degani, Luca Maestrini and Mauro Bernardi

density for decades. Nevertheless, MCMC algorithms may suffer of slow conver-
gence and poor mixing behaviors that can compromise inferential conclusions [4].

Variational inference methods [3, 11] take a different perspective on the problem.
Instead of sampling from p(θ |y), variational approaches are used to approximate
the posterior density with an approximating density q(θ) chosen from a suitable
family Q of distributions. The most common Bayesian variational methods find the
optimal approximating density by solving

q∗(θ) = argmin
q(θ)∈Q

KL(q(θ)∥p(θ |y)), (1)

with KL(q(θ)∥p(θ |y)) denoting the Kullback–Leibler divergence between q and
p(·|y). Practical solutions arise imposing a convenient partition {θ1, . . . ,θM} of θ
such that q(θ) = ∏M

i=1 q(θi) and employing a convex optimization scheme (see e.g.
Section 10.1.1. of [2]) known as mean field variational Bayes (MFVB).

Another variational inference technique, proposed in [8] and named expectation
propagation (EP), is built upon the optimization problem

q∗(θ) = argmin
q(θ)∈Q

KL(p(θ |y)∥q(θ)), (2)

where the arguments of the Kullback–Leibler divergence in (1) are reversed. This
leads to a different class of iterative optimization schemes that [10] recasts into
a message passing on a factor graph framework. The message passing paradigm
allows for distributed and scalable fitting of variational approximations. [5] exploit
the results of [10] and provide an explicit algorithm for performing EP on a simple
statistical model, studying issues and challenges related to its implementation.

In this article we study a generalization of both MFVB and EP known as power
expectation propagation (Power-EP) that was proposed by [9] to make (2) more
tractable. This method yields a class of appealing message passing algorithms and
we explore their use for statistical model fitting. Section 2 describes Power-EP and
introduces a message passing technique to solve the optimization problem on mod-
els with factor graph representations. Section 3 provides explicit illustration on a
simple model and Section 4 investigates the quality of the variational approximation
via a simulation study. Final considerations and further developments are described
in Section 5.

2 Power-EP and message passing

Power-EP solves the following optimization problem:

q∗α(θ) = argmin
qα (θ)∈Q

Dα(p(θ |y)∥qα(θ)), α ∈ (−∞,∞)\{0} ,

where Dα(p(θ |y)∥qα(θ))≡ (α(1−α))−1{1−
∫

Θ p(θ |y)α qα(θ)1−α dθ} is the α-
divergence of Amari [1]. It possesses two notable limiting cases:

Dα(p(θ |y)∥q(θ)) α→0
=⇒ KL(q(θ)∥p(θ |y)) and D1(p(θ |y) = KL(p(θ |y)∥q(θ)),
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meaning that Power-EP reduces to MFVB and EP for α → 0 and α = 1, respectively.
Hence, the quality of Power-EP approximations varies with α , and for certain α
values the approximations may outperform those obtained with MFVB and EP. We
restrict our attention to approximations arising from α ∈ (0,1], that is to the class of
approximations that has MFVB and EP as extreme and opposite cases.

[10] provides an approximate solution to the minimization in (2) based on mes-
sage passing on factor graphs, for a given α . We employ this strategy and describe
a message passing procedure for fitting models having a factor graph representation
via Power-EP (see e.g. [6, §2.3] for a primer on factor graphs).

Consider a model whose joint density function can be factorized into N different
factors p(θ ,y)=∏N

j=1 f j(θneigh(j)), with neigh(j)≡ {1≤ i≤M : θi is a neighbor of f j}.
Introduce an approximating density to the posterior distribution qα(θ) that can be
written as qα(θ) = ∏M

i=1 qα(θi). Using a Power-EP approach, each density qα(θi)
can be obtained as the product of messages reaching θi from the neighboring factors.
For each 1 ≤ i ≤ M and 1 ≤ j ≤ N, the Power-EP factor to stochastic node message
updates are given by

m(α)
f j→θi

(θi)←− proj
{

Z−1[m(α)
f j→θi

(θi)]1−α m(α)
θi→ f j

(θi)
∫
[ f j(θneigh( j))]

α

× ∏
i′∈neigh( j)/{i}

[m(α)
f j→θi′

(θi′ )]
1−α m(α)

θi′→ f j
(θi′ )dθneigh( j)/{i}

}/
m(α)

θi→ f j
(θi) ,

(3)

where the ←− symbol means that the function of θi on the left-hand side is up-
dated according to the expression on the right-hand side, proj{p} is the operator
that projects the density function p onto an appropriate exponential family (see [5,
§2.3]) and Z is the normalizing constant of p. For each 1 ≤ i ≤ M and 1 ≤ j ≤ N,
the Power-EP stochastic node to factor message updates have form

m(α)
θi→ f j

(θi)←− ∏
j′ ̸= j : i∈neigh( j′)

m(α)
f j′→θi

(θi) . (4)

Optimization can be performed by iteratively updating the factor graph messages
via (3) and (4) upon convergence. Convergence can be assessed by monitoring the
α-approximate marginal log-likelihood defined as

log p̃(y;qα )≡
M

∑
i=1

logs(α)
θi

+
1
α

N

∑
j=1

logs(α)
f j

, with s(α)
θi

≡
∫

∏
j:i∈neigh( j)

m(α)
f j→θi

(θi)dθi

and s(α)
f j

≡

∫ (
f j(θneigh( j))

)α ∏
i∈neigh( j)

m(α)
θi→ f j

(θi)
(

m(α)
f j→θi

(θi)
)1−α

dθneigh( j)

∫
∏

i∈neigh( j)
m(α)

θi→ f j
(θi)m(α)

f j→θi
(θi)dθneigh( j)

.

(5)

At convergence, the optimal approximating densities can be obtained from

q∗α (θi) ∝ ∏
j : i∈neigh( j)

m(α)
f j→θi

(θi) = m(α)
θi→ f j

(θi)m(α)
f j→θi

(θi) . (6)
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It is worth noting that when α = 1, the resulting q∗1(θ) approximation matches the
one from EP. Consequently, expressions (3.5)–(3.11) of [5], and results of [6] can
be immediately retrieved fixing α = 1 in expressions (3)–(6).

3 Simple illustrative example

The general expressions of Section 2 providing a message passing solution to
Power-EP are anything but intuitive and the computational steps behind (3)–(6) are
difficult to glean. Therefore, we make explicit illustration on the simple Bayesian
Normal random sample model studied in [5]. The model we consider is:

yi
i.i.d.∼ N(µ,σ2), µ ∼ N(µµ ,σ2

µ ), σ2|a ∼ Inv-Gamma
(1

2
,

1
a

)
, a ∼ Inv-Gamma

(1
2
,

1
A2

)
, (7)

for 1 ≤ i ≤ n, where µµ ∈ R, σµ > 0 and A > 0 are fixed hyperparameters, and the
hierarchical specification on σ2 is such that σ ∼ Half-Cauchy(A). The joint density
function then factorizes as p(y,µ,σ2,a) = p(y|µ,σ2)p(µ)p(σ2|a)p(a).

Consider the approximation qα(µ,σ2,a) = qα(µ)qα(σ2)qα(a) to the posterior
density. Application of (3) and enforcement of conjugacy constraints give rise to the
following expressions for the Power-EP factor to stochastic node messages:

m(α)
p(y|µ ,σ2)→µ (µ) ∝ exp

([
µ
µ2

]T

η(α)
p(y|µ ,σ2)→µ

)
, m(α)

p(σ2|a)→a(a) ∝ exp

([
loga
1/a

]T

η(α)
p(σ2|a)→a

)
,

m(α)
p(y|µ,σ2)→σ2 (σ2) ∝ exp

([
logσ2

1/σ2

]T

η(α)
p(y|µ,σ2)→σ2

)
, m(α)

p(µ)→µ (µ) ∝ exp

([
µ
µ2

]T

η(α)
p(µ)→µ

)
,

m(α)
p(σ2|a)→σ2 (σ2) ∝ exp

([
logσ2

1/σ2

]T

η(α)
p(σ2|a)→σ2

)
, m(α)

p(a)→a(a) ∝ exp

([
loga
1/a

]T

η(α)
p(a)→a

)
.

Here the symbol η denotes natural parameter vectors of exponential families.
Straightforward application of (4) leads to similar and conjugate expressions for
the Power-EP stochastic node to factor messages. Application of (6) leads to the
optimal approximating densities for the parameters of interest q∗α(µ) and q∗α(σ2):

q∗α (µ) ∝ exp

([
µ
µ2

]T

ηq∗α (µ)

)
and q∗α (σ2) ∝ exp

([
logσ2

1/σ2

]T

ηq∗α (σ2)

)
, (8)

which correspond to a N(−[ηq∗α (µ)]1/(2[ηq∗α (µ)]2),−1/(2[ηq∗α (µ)]2)) density func-
tion for µ and an Inv-Gamma(−[ηq∗α (σ2)]1 − 1,−[ηq∗α (σ2)]2) density function for
σ2, respectively, with ηq∗α (µ) and ηq∗α (σ2) vectors of length 2.

Given that the resulting Power-EP messages belong to exponential families, their
updates can be performed just by updating their η natural parameter vectors. Deriva-
tions of these updates and the explicit expression of log p̃(y;qα) from (5) are not
provided here for brevity, but follow steps similar to those in [5, §A.5].

Algorithm 1 lists the iterative natural parameter updates for fitting the Bayesian
random sample model via Power-EP message passing. Within the expressions of the
natural parameter updates, η(α)

f j↔θi
≡ (1−α)η(α)

f j→θi
+η(α)

θi→ f j
for meaningful com-
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binations of f j ∈ {p(µ), p(y|µ,σ2), p(σ2|a), p(a)} and θi ∈ {µ,σ2,a}. Functions
GN(·), GIG1(·) and GIG2(·) are defined in [5, §A.4] and involve quadrature methods
for evaluating non-analytic functions that are described in [5, §2.1].

Algorithm 1 Power-Expectation Propagation message passing algorithm for deter-
mining the parameter of the optimal density functions q∗α(µ) and q∗α(σ2) of interest
for approximate Bayesian inference on the Normal random sample model (7).

Input: y = (y1, . . . ,yn)T , µµ , σµ > 0 and A > 0. Create: c = (n,∑n
i=1 yi,∑n

i=1 y2
i )

T .
Select: Power-EP factor α ∈ (0,1].

Initialize: η(α)
p(µ)→µ ←

[
µµ/σ2

µ
−1/(2σ2

µ )

]
, η(α)

p(a)→a ←
[
−3/2
−1/A2

]
, η(α)

p(y|µ,σ2)→µ ←
[

0
−1/2

]
,

η(α)
p(y|µ,σ2)→σ2 ←

[
−2
−1

]
, η(α)

p(σ2|a)→σ2 ←
[
−2
−1

]
, η(α)

p(σ2|a)→a ←
[
−2
−1

]
,

η(α)
µ→p(y|µ ,σ2)

← η(α)
p(µ)→µ , η(α)

a→p(σ2|a) ← η(α)
p(a)→a .

Cycle until the relative change in log p̃(y;qα ) is negligible:

η(α)
σ2→p(y|µ,σ2)

← η(α)
p(σ2|a)→a ,

η(α)
p(y|µ,σ2)→µ ← GN

(
η(α)

p(y|µ,σ2)↔µ ,η
(α)
p(y|µ,σ2)↔σ2 ;αc

)
+(1−α)η(α)

p(y|µ,σ2)→µ ,

η(α)
p(y|µ,σ2)→σ2 ← GIG1

(
η(α)

p(y|µ,σ2)↔σ2 ,η
(α)
p(y|µ,σ2)↔µ ;αc

)
+(1−α)η(α)

p(y|µ ,σ2)→σ2 ,

η(α)
σ2→p(σ2|a) ← η(α)

p(y|µ,σ2)→σ2 ,

η(α)
p(σ2|a)→σ2 ← GIG2

⎛

⎝η(α)
p(σ2|a)↔σ2 ,

⎡

⎣ [η(α)
p(σ2|a)↔a]1 +2(1−α)

[η(α)
p(σ2|a)↔a]2/α

⎤

⎦ ;3α

⎞

⎠+(1−α)η(α)
p(σ2|a)→σ2 ,

η(α)
p(σ2|a)→a ← GIG2

⎛

⎝η(α)
p(σ2|a)↔a,

⎡

⎣ [η(α)
p(σ2|a)↔σ2 ]1 +2(1−α)

[η(α)
p(σ2|a)↔σ2 ]2/α

⎤

⎦ ;α

⎞

⎠+(1−α)η(α)
p(σ2|a)→a .

Output for (8): ηq∗α (µ) = η(α)
p(µ)→µ +η(α)

p(y|µ,σ2)→µ , ηq∗α (σ2) = η(α)
p(y|µ,σ2)→σ2 +η(α)

p(σ2|a)→σ2 .

4 Simulation study

We assess the performances of Power-EP for fitting model (7) through a simu-
lation study. For each sample size n ∈ {25,50,100,500,1000}, we generate 100
random samples from the N(0,1) distribution and obtain the optimal Power-EP
approximating densities of interest q∗α(µ) and q∗α(σ2) for α ∈ {0.25,0.5,0.75,1}
via Algorithm 1, and MFVB approximations using Algorithm 1 of [7]. We set
diffuse priors with hyperparameters µµ = 0 and σµ = A = 105. For each repli-
cate, we evaluate the quality of the approximation computing, for θ = µ,σ2,
accuracy{q∗α(θ)}≡ 100(1−0.5

∫
|q∗α(θ)− p(θ |y)|dθ). The ‘true’ marginal poste-

rior densities are obtained via kernel density estimation applied to MCMC samples
obtained with the rstan library [12], after excluding an appropriate burn-in sam-
ple. Figure 1 summarizes the results and compares the approximations. For small
sample sizes, Power-EP approximations with α = 0.25,0.5,0.75 overperform both
EP and MFVB in terms of accuracy for µ , whereas EP provides a better approxi-
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n: 25 n: 50 n: 100 n: 500 n: 1000

µ
!
2

98.5

99.0

99.5

97

98

99

Approximation
" = 0.25
" = 0.5
" = 0.75
" = 1  (EP)
MFVB

Fig. 1 Accuracy values of the approximating q∗’s for µ and σ2, at different sample sizes.

mation for σ2. As n increases, the accuracy of the approximations becomes more
uniform for both µ and σ2.

5 Conclusions and further developments

We studied Power-EP as a message passing approach for fitting models that have a
factor graph representation through the minimization of the α-divergence between
the posterior and an approximating density. Power-EP includes the more common
MFVB and EP approximations, which can be outperformed by approximations
based on appropriate choice of α , especially when the number of observations is
limited. Implementation of Power-EP for a wide set of α values comes with a higher
computational cost, that could be reduced applying optimization strategies based on
automatic differentiation. Further directions include the exploration of methods for
automatic selection of α values that produce better approximations and application
to more complex statistical models.
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