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Abstract: This paper reviewed some salient features evolving through mathematical and numerical
modelling of ballasted track components incorporating recycled rubber products. Firstly, a constitu-
tive model based on the bounding surface concept was introduced to simulate the shear stress-strain
response of waste mixtures (i.e., recycled rubber crumbs, coal wash, and steel furnace slag) used
for the capping layer placed below the ballast medium, whereby the energy absorbing property
resulting from the inclusion of different amounts of rubber has been captured. Subsequently, key
research findings concerning the inclusion of recycled rubber mats on ballasted tracks for reduced
particle degradation under cyclic loading were examined and discussed. Discrete element modelling
(DEM) coupled with Finite element modelling (FEM) to micro-mechanically characterise ballast
behaviour with and without rubber mats offers invaluable insight into real-life track operations. In
particular, this coupled DEM-FEM model facilitates the exploration of micromechanical aspects of
particle breakage, contact force distributions within the granular assembly, and the orientation of
contacts during cyclic loading.

Keywords: rail transportation; ballast; recycled rubber; breakage; discrete element method; mathe-
matical modelling; waste mixtures; energy absorbing property; bounding surface

1. Introduction

Rail tracks contribute to the largest worldwide transportation network. The increasing
use of rail as one of the most sustainable and energy-efficient means of transport along with
the associated increases in axle loads and train speeds have led to a rapid deterioration
of track substructure components and exacerbated maintenance costs [1]. The need to
maintain a competitive advantage implies there is pressure on the rail industry to im-
prove its operational efficiency and passenger comfort, while minimising the maintenance
and construction expenses [2,3]. Despite recent advances in the field of rail geotechnics,
the rapid deterioration of track substructure (especially the ballast layer) is considered to
be the most pronounced factor contributing to increased track maintenance costs [4,5]. To
cope with this problem, there have been numerous studies into using artificial inclusions
(rubber mats, geosynthetics, geocells, granulated rubber, etc.) to enhance rail ballast per-
formance and reduce its degradation [6–12]. Field trials by Indraratna et al. [13] showed
that rubber mats could significantly minimise ballast deformations, apart from reducing
particle breakage. Previous laboratory studies using large-scale test facilities indicated that
plastic under sleeper pads placed beneath sleepers could minimise ballast breakage by
mitigating the transmission of impact loading effects [14].

In recent years, the Australian railway industry has trialled an innovation where waste
and marginal materials are used as a sustainable replacement for the traditional capping
layer. Energy absorbing recycled materials such as discarded rubber and ore wastes are
blended into a new ductile material that will stabilise heavy haul tracks built on problem-
atic terrain. The engineering properties of these new materials can be optimised such that
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they can be used during track construction instead of the traditional sub-ballast (capping)
materials. Steel furnace slag (SFS) and coal wash (CW) are granular byproducts derived
from steel manufacturing and coal mining, and since Australia is based on mining, it can
produce several hundred million tons of SFS and CW per year [15,16]. In order to recycle
these waste materials in civil engineering and curtail their adverse geotechnical properties
(i.e., the swelling potential of SFS and breakage susceptibility of CW), engineers usually
mix SFS with dredged materials, cement, fly ash, or asphalt for earthwork construction or
pavement applications [17–20], while CW blended with SFS has been used very successfully
for a Wollongong port reclamation project [21]. Not only are these recycled waste materials
environmentally friendly and economically beneficial, but they can also help to solve some
geotechnical problems. It has been found that adding rubber crumbs (RC) resulting from
waste-car tyres to SFS-CW mixtures can significantly improve their energy absorbing ca-
pacity, which is associated with the high damping ratio of rubber products [12,22–26]. This
means that SFS+CW mixtures may also be used in projects involving dynamic loading by
adding RC. Indraratna et al. [27] developed a selection system to optimise the SFS+CW+RC
matrix for railway sub-ballast and found that a waste matrix consisting of SFS:CW = 7:3 and
with the inclusion of 10% RC (by weight) is the optimal mixture for subballast materials.
Qi and Indraratna [28] further confirmed this outcome via large-scale physical modelling
and proved that using this optimal waste mixture (SFS+CW+RC) as subballast (or called
capping layer which is the layer directly below ballast and above the subgrade, with
a usual thickness of 150–200 mm) could efficiently absorb the energy and reduce ballast
breakage. However, further investigation is needed to look into the mechanism of energy
absorbing mixtures from a mathematical point of view.

Apart from traditional laboratory testing to understand the geotechnical properties of
ballast and capping materials, mathematical and computational models are increasingly
being demonstrated as alternative approaches with the possibility of implementing complex
loadings subjected to varying boundary conditions [29–32]. Numerical simulations for
real-scale track embankments subject to actual moving train loads (i.e., considering rest
periods) could be more complex and time-consuming with either finite element or discrete
element modelling approaches [33–37], so there is a need for co-simulations that can couple
several computational schemes together to utilise computational resources and further
advance railway research.

This paper described mathematical and numerical approaches to investigate the improved
performance of track substructure layers incorporating geo-inclusions (i.e., SFS+CW+RC
mixtures and recycled rubber mats). A constitutive model adopting the bounding sur-
face concept was developed for SFS+CW+RC mixtures, where the energy absorption
capacity resulting from the RC inclusion is captured through an empirical relationship
for the critical state parameter (Mcs) in relation to the total work input (Wtotal). Coupled
discrete-continuum modelling was then used to examine the cyclic loading behaviour
of a track specimen and the role of rubber mats in reducing ballast degradation. These
mathematical and numerical models were calibrated and validated based on extensive
laboratory testing.

2. Use of Waste Mixture for Subballast (Capping) Layer in Rail Tracks

Previous studies have examined the stress-strain behaviour of SFS+CW+RC blends
subjected to monotonic loading [38] and found that the inclusion of rubber crumbs (RC)
has a significant effect on the geotechnical properties of the mixture such that a higher
RC content (Rb) makes the waste matrix more ductile and contractive, but with reduced
shear strength. Qi et al. [39] found that with more than 20% RC, the SFS+CW+RC matrix
could not attain a critical state, albeit there was a trend towards reaching a critical state
with total axial strain over 25%, and thus extrapolation was adopted to estimate the critical
state parameters for Rb ≥ 20%.

In the following sections, the effect of the RC content on the critical state response
is investigated, and the total work input is considered to be related to the critical state
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parameters to capture the energy absorbing characteristics due to adding rubber. In this
context, a constitutive model following the bounding surface theory and the critical state
concept is then developed for the waste mixtures.

To calibrate the parameters of this constitutive model, the results of consolidated drained
triaxial tests of the SFS+CW+RC matrix (SFS:CW = 7:3, Rb = 0%, 10%, 20%, 30%, and 40%)
from Indraratna et al. [27] were adopted. The waste matrix specimens were compacted
to >95% of their maximum dry-unit weight, and before shearing they were saturated and
then consolidated under varying effective confining pressures (σ′3 = 10, 40, or 70 kPa).
The specimen and loading conditions for these tests were aimed at simulating the field
conditions of subballast along the Australian coastline. The proposed model was then
verified by comparing the prediction results with the laboratory data for SFS+CW+RC
blends [27], as well as SFS+CW blends tested by Tasalloti et al. [40] and sand-RC blends
examined by Youwai and Bergado [26].

2.1. Constitutive Modelling
2.1.1. Governing Equations

Conventional triaxial q− p′ notation was adopted in this study, where q = σ1 − σ3
denotes the deviator stress, p′ = (σ1 + 2σ3)/3 is the mean effective stress, and σ1 and σ3
are the axial and radial stresses, respectively. Following the theory of bounding surface
plasticity [41], the governing equation for the common stress-strain relationship can be
expressed as: [

dp′

dq

]
=

(
De − DemnTDe

H + nTDem

)[
dεv
dεq

]
(1)

where m is the unit vector of plastic flow, n is the unit normal loading vector, H is the hard-
ening modulus, εv and εq are the volumetric and deviator strains, respectively, and De

denotes the elastic compliance, which can be defined by:

De =

[
K 0
0 3G

]
, (2)

where K and G are the tangential bulk and shear modulus, respectively, as determined by:

K =
(1 + e0)p′

κ
(3)

G =
3(1− 2ν)

2(1 + ν)
K (4)

where κ refers to the gradient of the swelling line, e0 refers to the initial void ratio, and v is
the Poisson’s ratio.

2.1.2. The Critical State

The critical state refers to a condition of a material where there is no further change
in the mean effective stress and deviator stress with increasing axial strain, meanwhile,
the dilatancy dε

p
v/dε

q
v is also approaching zero, i.e.,

dp
dεq

=
dp′

dεq
=

dε
p
v

dε
q
v
= 0 (5)

Since rubber chips or tyre fibre continuously change shape towards the end of the tri-
axial test, it is difficult or even impossible to achieve a critical state. However, the rubber
crumbs are usually smaller, so they are hindered from deformation by the surrounding
stiff particles (e.g., SFS and CW). This implies that soil-RC mixtures can attain a critical
state, albeit with larger amounts of RC the axial strain ε1 can be higher than 25% [39]. Since
most laboratory conditions are limited, ε1 > 25% is difficult to achieve, and thus the pa-
rameters related to the critical state (e.g., the stress ratio at critical state Mcs = qcs/p′cs, and
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the critical void ratio ecs) were obtained by extrapolation following Carrera et al. [42]. More
details about the extrapolation for SFS+CW+RC mixtures can be found in Qi et al. [39].
The information associated with the critical state parameters for the materials investigated
in this study is summarised in Table 1.

Table 1. Parameters related to critical state for the waste mixtures and sand-RC mixtures (modified after [39]).

Data Source Mixtures
Effecive Confining

Pressure
σ ′3 (kPa)

Critical State Ratio
Mcs

Critical State
Void Ratio ecs

Total Work
InputWtotal (kPa)

Critical State
Parameters

Qi et al. [38]

SFS:CW = 7:3, Rb = 0% 70 1.739 0.281 10.79

Γ1 = 0.064
Γ2 = 0.01

M0 = 2.258
α = −0.117
λ1 = 0.069
λ2 = 0.003

SFS:CW = 7:3, Rb = 10% 70 1.548 0.235 31.18
SFS:CW = 7:3, Rb = 20% 70 1.51 0.198 33.82
SFS:CW = 7:3, Rb = 30% 70 1.48 0.162 38.58

SFS:CW = 7:3, Rb = 40%
10 1.8 0.390 5.81
40 1.5 0.216 23.28
70 1.43 0.148 42.74

Tasalloti et al. [40] SFS:CW = 75:25, Rb = 0%
30 1.65 0.601 10.0
60 1.52 0.580 18.0
120 1.5 0.546 31.8

Youwai and
Bergado [26] Sand:RC = 7:3

50 1.36 0.394 10.509 Γ1 = 0.418
Γ2 = 6.09× 10−3

λ1 = −1.64× 10−3

λ2 = 1.04× 10−3

M0 = 1.472
α = −0.035

100 1.3 0.374 37.408

200 1.29 0.353 56.59

The critical state line (CSL) for each SFS+CW+RC blend with certain Rb (%) in
the space of e − ln p′ is linear; this is identical to other granular materials and is rep-
resented by:

ecs = Γ− λ ln p′cs (6)

where Γ is the void ratio at p′cs = 1 kPa, and λ is the slope of the CSL in e− ln p′ space. By
changing the amount of Rb, the critical state parameters Γ and λ change with the amount
of RC accordingly, and this effect can be captured by a linear relationship (Figure 1a) as:

Γ(Rb) = Γ1 + Γ2Rb (7)

λ(Rb) = λ1 + λ2Rb (8)

where Γ2, λ1, and λ2 are the calibration parameters computed on the basis of laboratory
data for SFS+CW+RC mixtures (SFS:CW = 7:3 with different Rb) obtained by [39], and
the test data for SFS75+CW25 (SFS:CW ≈ 7 : 3, Rb = 0%) reported by Tasalloti et al. [40] is
also shown in Figure 1a for validation purposes. The slight divergence between the pro-
posed empirical relationship and the validation data may be due to the minor difference
in the SFS:CW ratio. Similarly, a linear relationship is also found for sand-RC mixtures
from [26], as shown in Figure 1b. This linear relationship is based on sand-RC mixtures that
can reach or almost reach a critical state under laboratory conditions (test data provided in
Table 1).

Substituting Equations (7) and (8) into Equation (6), the CSL for SFS+CW+RC blends
is now a function of p′cs and Rb, indicating a critical state surface can be formed in the space
of e− ln p′ − Rb, as illustrated in Figure 1c, that can be expressed by:

e∗cs = Γ1 + Γ2Rb − (λ1 + λ2Rb) ln p′cs (9)

where e∗cs is the modified critical void ratio related to the RC content (Rb).
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Figure 1. The relationship of Γ and λ related to Rb(%) for (a) SFS+CW+RC blends and (b) sand-RC blends; (c) Critical state
surface of SFS+CW+RC matrix in e− ln p′ − Rb space (adapted with permission from ref. [38]. Copyright 2021 American
Society of Civil Engineers Journal).

Mcs for each SFS+CW+RC blend with a certain amount of RC varies with σ′3 and Rb, as
seen in Table 1. It is also aware that the total work input Wtotal is also influenced by the σ′3
and Rb, which indicates that Wtotal is the potential parameter that will reflect the changes
of Mcs, and also help to incorporate the energy-absorbing property of the blends. This
is in agreement with Chavez and Alonso [43], who also proposed that the work input is
a good indicator to capture the variations of Mcs that are influenced by parameters such as
σ′3 and suction of rockfill. The increment of Wtotal is the total incremental work input by
the applied stress q and p′, as shown below:

dWtotal = p′dεv + qdεq (10)
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where dWtotal is the total incremental work input and dεv and dεq are the incremental
volumetric and deviator strains, respectively. Here, the total work input is calculated up to
failure, which is taken as the peak deviator stress introduced by Zornberg et al. [44].

By connecting Wtotal to Mcs in Figure 2, an empirical relationship is established:

M∗cs =
qcs

p′cs
= M0 ×

(
Wtotal

W0

)α

(11)

where M∗cs is the modified critical stress ratio by relating to the total work input, M0 is
the critical stress ratio when Wtotal = 1 kPa, α is a regression coefficient, and W0 = 1 kPa is
used to keep the same units on both sides of the equation.
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For validation purposes, data for SFS75+RC25 from Tasalloti et al. [40] are also shown
in Figure 2, as is the good correlation with the proposed empirical relationship. More-
over, in Figure 2 a similar power relationship is established between Mcs and Wtotal for
sand-RC mixtures based on test data for mixtures involving 0%, 20%, and 30% RC [26].
This empirical equation will help to estimate the critical state parameters for soil-RC mix-
tures with larger quantities of RC, which cannot reach a critical state due to the limited
laboratory conditions.

2.1.3. Bounding Surface and Loading Surface

This study used bounding surface plasticity theory because, unlike conventional
elastic-plasticity theory, it has a versatile formulation for the loading and bounding surfaces,
which eliminates the abrupt change between elastic and elastic-plastic response [45–47].

The shape of the bounding surface was selected experimentally based on the undrained
behaviour of granular materials. The bounding surface is shaped like a half water drop
which aims to cover the triaxial compaction behaviour [48,49]. To facilitate further analysis,
the same shape was adopted for the loading surface [45,50]; in this instance, the bounding
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surface F
(

p′, q, p′c
)
= 0 and the loading surface f (p′, q, p′C) = 0 for the waste matrix are

represented by [46]:

F
(

p′, q, p′c
)
=

q + M∗cs
(

p′
)[

N ln(
p′

p′C
)

]1/N
 = 0 (12)

f
(

p′, q, p′C
)
=

{
q + M∗cs

(
p′
)[

N ln
(

p′

p′C

)]1/N
}

= 0 (13)

where p′c and p′C refer to the interception points of the bounding surface and loading
surface with the q = 0 axis, respectively, and they are the key factors controlling the size of
the bounding surface and the loading surface (Figure 3). N ≥ 1 is a constant relating to

the material properties and it governs the curvature of the bounding surface. R = p′
p′C

= p′

p′C
is another material constant to express the ratio between p′ and p′C, and the ratio between
p′ and p′C. According to the radial mapping rule [51,52], the stress ratio η is expressed as
η = q

p′ =
q
p′

. By combining Equations (12) and (13), and then substituting the stress ratio η

function, the material constant R can be rewritten as

R∗ = exp

[
− 1

N

(
η

M∗cs

)N
]

(14)
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from ref. [38]. Copyright 2021 American Society of Civil Engineers Journal).

The value of p′c controls the size change of the bounding surface which is connected to
the change of the volumetric strain; therefore, to locate the position of p′c, the swelling line

e = eκ0 − κ ln p′ (15)
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is combined with Equations (6)–(8) and Equation (14), and then the position of p′c is obtained

p′c =
p′r
R∗

exp
(

Γ(Rb)− e− κ ln p′

λ(Rb)− κ

)
(16)

where eκ0 refers to the void ratio when p′ = 1 in Equation (15), p′r denotes the unit pressure,
and Γ(Rb) and λ(Rb) are critical state parameters modified by the amount of RC.

The unit normal loading vector n at the image point on the bounding surface is then
obtained through Equation (17):

n = ∂F/∂σ ′

‖∂F/∂σ ′‖ =
[
np, nq

]T

=


M∗cs

[
N ln p′

p′c

] 1
N
[

1+
(

N ln p′

p′c

)−1
]

√√√√√
M∗cs

[
N ln p′

p′c

] 1
N
[

1+
(

N ln p′

p′c

)−1
]

2

+1

, 1√√√√√
M∗cs

[
N ln p′

p′c

] 1
N
[

1+
(

N ln p′

p′c

)−1
]

2

+1


T

(17)

where σ′ represents the effective stress on the bounding surface, and np and nq are
the loading direction vectors.

2.1.4. Plastic Potential

The plastic potential, also regarded as the dilatancy relationship d = dε
p
v

dε
p
q
, is related

to the state of soil corresponding to its compaction status and the applied pressure. Been
and Jefferies [53] proposed a state parameter ψ after Worth and Bassett [54] to include
the influence of the soil density and applied pressure on the deformation behaviour of soil,
and ψ can be defined by Equation (18) as the difference between the current void ratio and
the critical void ratio under the same loading conditions:

ψ = e− ecs (18)

By substituting Equation (9), ψ can be re-written as:

ψ∗(Rb) = e−
(
Γ1 + Γ2Rb − (λ1 + λ2Rb) ln p′cs

)
(19)

According to Li and Dafalias [55], the dilatancy (d) is related to ψ, and may be repre-
sented by:

d =
dε

p
v

dε
p
q
=

∂g/∂p′

∂g/∂q
= d0

(
emψ∗(Rb) − η

M∗cs

)
(20)

where g denotes the plastic potential, and d0 and m are constants related to the mate-
rial properties.

The plastic potential g = 0 can then be obtained by integrating Equation (20). The unit
vector of plastic flow (m) at σ′ (the effective stress on the loading surface) can generally be
expressed as:

m =
∂g
∂σ′

‖ ∂g
∂σ′ ‖

=
[
mp, mq

]T
=

[
d√

1 + d2
,

1√
1 + d2

]T
(21)

where mp and mq refer to the plastic flow direction vectors.

2.1.5. Hardening Law

According to the bounding surface concept, H (the hardening modulus) is expressed
with two components:

H = Hb + Hδ (22)
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where Hb refers to the plastic modulus at
¯
σ
′
, and Hδ is the arbitrary modulus at σ′. Hb

is then attained by adopting an isotropic hardening rule associated with εv
p by using

the following equation:

Hb = − ∂F
p′c

p′c
∂εv

p
mp

‖∂F/
¯
σ
′
‖

=
M∗cs p′

[
N ln p′

p′C

] 1
N

p′c N ln p′

p′C

1+e
λ(Rb)−κ

d0

(
emψ∗Rb− η

M∗cs

)
√

1+
[
d0

(
emψ∗Rb− η

M∗cs

)]2
1√√√√√

M∗cs

[
N ln p′

p′c

] 1
N
[

1+
(

N ln p′

p′c

)−1
]

2

+1

(23)

Based on the bounding surface theory, Hδ represents a decreasing function related to

the distance between σ′ and
¯
σ
′

[56], and by taking an arbitrary form it can be expressed as:

Hδ = h0
δ

δmax − δ

1 + e
λ(Rb)− κ

p′

p′c
(24)

where h0 refers to a scaling parameter that controls the steepness of deformation behaviour
in the εv − εq space, so it may be considered as a material constant. δmax is the distance
between the stress origin and the image stress point, and δ is the distance between the cur-
rent stress point to the image stress point (Figure 3). Following the radial mapping rule,
δ/(δmax − δ) equals (p′c − p′C)/p′C. Since (1 + e)/[λ(Rb)− κ] remains positive, Hδ is al-
ways positive, and only when p′c = p′C, Hδ reaches zero, at which H = Hb, and in this case
the material is purely plastic. When δmax ≤ δ, Hδ = +∞, H tends to be very large and
the soil behaviour becomes purely elastic, but when H = −Hb, H = 0, the soil sample
changes from strain hardening to strain softening.

2.1.6. Parameters Calibration

This proposed constitutive model needs 12 parameters; here, there are two elastic
parameters, i.e., Poisson’s ratio v which is a constant related to materials properties, and κ
which can be attained by unloading and reloading in isotropic compression.

The parameters reflecting the critical state are M0, α, Γ1, Γ2, λ1 and λ2. α and M0
are attained based on the relationship between the work input and critical stress ratio
shown in Figure 2, and Γ1, Γ2, λ1, and λ2 are calculated by curve fitting (Figure 1a,b).
The parameter N is used to control the shape of the bounding surface and can be defined
using a normalised q ∼ p′ plot of the yield points from undrained shearing behaviour.
Due to the unavailability of the undrained test results for this study, N = 1 was set for
simplicity, in light of previous studies [46,57,58] for granular soils.

d0 and m are related to the soil dilatancy; m is obtained through Equation (20)
at the changing point where the material turns from contraction to dilation; therefore,

d = dε
p
v

dε
p
q
= 0, ψ∗ = ψ∗d, and η = ηd, so

m =
1

ψ∗d
ln
(

ηd
M∗cs

)
(25)

and the parameter d0 can be determined by Equation (20) at the failure point which achieves
the peak deviator stress [27], so d = dpeak, ψ∗ = ψ∗peak, and η = ηpeak. Therefore,

d0 =
dpeak(

emψ∗ peak − ηpeak
M∗cs

) (26)

h0 is the parameter associated with the hardening modulus and it is obtained by fitting
εv − εq curves. All the required parameters are listed in Tables 1 and 2.
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Table 2. Model parameters for the materials studied in this paper.

Data Source Mixtures h0 κ υ

Qi et al. [38]

SFS:RC = 7:3, Rb= 0% 4.0 0.0020 0.29
SFS:RC = 7:3, Rb= 10% 2.5 0.0035 0.3
SFS:RC = 7:3, Rb= 20% 0.77 0.0048 0.31
SFS:RC = 7:3, Rb= 30% 0.88 0.0059 0.35
SFS:RC = 7:3, Rb= 40% 0.68 0.0063 0.35

Tasalloti et al. [59] SFS:RC = 75:25, Rb= 0% 4.58 0.0018 0.25

Youwai & Bergado [26] Sand:RC = 7:3 0.6 0.0053 0.33

2.2. Model Validation

In order to validate the proposed constitutive model, a comparison was established
between the model predictions and the test results for the above-mentioned mixtures,
including SFS+CW+RC mixtures [38] (Figure 4), SFS75+CW25 mixtures [40] (Figure 5a),
and sand-RC mixtures [26] (Figure 5b). Note that the developed model captured the overall
stress-strain and volumetric responses of the mixtures with adequate accuracy. Figure 4
shows that by increasing Rb in the waste matrix, (i) the peak deviator stress decreases,
(ii) the specimen becomes more ductile, (iii) the volumetric response is more contractive,
and (iv) the behaviour changes from strain-softening to strain-hardening. Moreover, in view
of Figures 4b and 5, when σ′3 increases, (i) the peak deviator stress increases, (ii) the strain-
hardening response becomes more pronounced, and (iii) the specimen tends to exhibit
a more significant contractive behaviour.
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Without exception, the model developed for the waste matrix has some limitations. For
instance, the bounding surface is defined for q > 0, which means that this bounding surface
model can only predict compressive loading conditions, and the proposed relationship
for Mcs relating to Wtotal is specified for soil-RC mixtures with varying Mcs. It is not
appropriate for soil-rubber mixtures with larger particles of rubber, such as chips or tyre
fibre because they may not reach a critical state even after large axial strain (>25%) due
to the continuous deformation experienced by larger rubber particles towards the end of
the tests.

3. Discrete Element Modelling (DEM) of Ballasted Tracks Stabilised with
Rubber Mats

The DEM was firstly proposed by Cundall and Strack [60] and is now widely used
to explore the micromechanical response of ballast grains [5,34,61–63]. The pioneering
work in applying the DEM to simulate ballast was conducted by McDowell and Bolton [64]
at the Cambridge University; it then continued with researchers at Nottingham Univer-
sity [65], the University of Illinois [61], the University of Wollongong Australia [66], and
at the Southwest Jiaotong University [34], among others. It is noteworthy that the macro-
scopic strength and load-deformation responses of ballast are associated with the internal
arrangement of grains (i.e., the granular fabric). Yimsiri and Soga [67] found that this
granular fabric influences the shear behaviour of the granular assembly such that once
the material shears in the same direction as the major contact normals, it becomes stiffer,
stronger, and more dilative [64,68,69]; however, this material will not be as stiff or dilative
if it is sheared in an orthogonal direction. Cui and O’Sullivan [70] investigated the micro-
scale parameters of granular materials and confirmed there are significant stress and strain
non-uniformities within specimens subjected to shearing.
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3.1. Modelling of Ballast Grains in DEM

It is well known that the size, shape, and angularity of particles influence the me-
chanical properties and stress-strain responses of ballast grains [64,71–73]. In this study,
a 3D laser scanner was adopted to capture the actual shape, size and angularity of ballast.
A number of representative ballast particles were chosen and scanned through the laser
lights to form the polygonal-mesh, as shown in Figure 6a. Sub-routines were then pro-
grammed to build ballast particles in DEM by clumping many spheres together to fill up
the polygonal-mesh (i.e., clump), as illustrated in Figure 6b. The parameters adopted for
the DEM simulation of ballast were calibrated using the results obtained from laboratory
tests for similar types of ballast grains. The input parameters were modified accordingly
until the shear stress-strain behaviour predicted from the simulations agreed adequately
with the experimental results.
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3.2. Coupled Discrete-Continuum Modelling (DEM-FEM) for Ballasted Tracks with Rubber Mats

Numerical modelling via the coupled DEM-FEM approach enables an insightful
investigation of the mechanical response of ballast and how rubber mats reduce ballast
breakage under cyclic loading, as also observed from laboratory tests using a large-scale
cyclic triaxial equipment (Figure 7a) [74]. Ballast particles are modelled by bonding many
disks with predetermined sizes together (Figure 7b), and ballast breakage is assumed to
occur when those bonds are broken. Figure 7c illustrates a diagram of a combined DEM-
FEM model of the whole test specimen, where the discrete grains are modelled in DEM and
the layers of subgrade soil, capping, and rubber mat are modelled following the continuum
approach. The thickness of the ballast layer was 300mm, and is typically used in Australian
railway lines. The rubber mat was modelled as a linear-elastic material and the capping
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was simulated as an elastoplastic material adopting the Drucker-Prager model. The rubber
mat used in this study was locally made by an Australian recycling company that has
a thickness of 10mm. The performance of this recycled rubber mat was justified by previous
laboratory tests [10]. The dynamic bedding modulus of the rubber mat used in the test
was Cdyn = 0.107 (N/mm3). Material properties were determined from the laboratory
tests on materials sourced from a local quarry [75]. It is noted that there is only one type
of ballast (fresh basalt quarried in Bombo, NSW) following the Australian standard AS
2758.7-2015 [76] and was used in laboratory tests; therefore the effect of changes in ballast
type on the performance of rubber mat was not studied. A series of large-scale laboratory
tests were carried out under a stress-controlled mode where the maximum cyclic stress
applied on the ballast sample was 230 kPa, which is equivalent to 16.25 kN vertical force
applied by a dynamic actuator. It is noted that this force may not be exactly the same as
the wheel-rail-sleeper-ballast interaction, as it was determined to generate an equivalent
vertical stress in the model test. The laboratory test carried out in the laboratory was only
considered vertical forces where lateral forces that were caused by a wheel impact on
a locally bent rail and longitudinal force (e.g., braking force) have not been considered.
The subgrade is simulated by a conventional Mohr Coulomb model whose parameters
were predetermined in the laboratory. Note that the concept of coupled discrete-continuum
has been established earlier by many studies [30,36,77] and adopted in many engineering
problems, including stone columns, cellular geostructures, soil-structure interaction and
railway engineering. As the main aim of this section is to review recent research work
carried out by the authors in the context of ballasted track stabilisation using rubber mats,
only the associated results were considered herein.

Sustainability 2021, 13, x FOR PEER REVIEW 14 of 21 
 

large-scale laboratory tests were carried out under a stress-controlled mode where the 
maximum cyclic stress applied on the ballast sample was 230 kPa, which is equivalent to 
16.25 kN vertical force applied by a dynamic actuator. It is noted that this force may not 
be exactly the same as the wheel-rail-sleeper-ballast interaction, as it was determined to 
generate an equivalent vertical stress in the model test. The laboratory test carried out in 
the laboratory was only considered vertical forces where lateral forces that were caused 
by a wheel impact on a locally bent rail and longitudinal force (e.g., braking force) have 
not been considered. The subgrade is simulated by a conventional Mohr Coulomb model 
whose parameters were predetermined in the laboratory. Note that the concept of coupled 
discrete-continuum has been established earlier by many studies [30,36,77] and adopted 
in many engineering problems, including stone columns, cellular geostructures, soil-
structure interaction and railway engineering. As the main aim of this section is to review 
recent research work carried out by the authors in the context of ballasted track 
stabilisation using rubber mats, only the associated results were considered herein. 

 
Figure 7. (a) Large-scale cyclic triaxial apparatus; (b) Typical ballast modelled in DEM; (c) Dimensions of the DEM-FDM 
model (unit in mm); (d) Connection of a discrete grain with a continuum element; (e) Illustration of force and moment 
exchanges (adapted with permission from ref. [74]. Copyright 2021 American Society of Civil Engineers Journal). 

The coupled model was implemented by transferring the forces and displacements 
between the two domains. Figure 7d shows how this exchange of forces (Fn, Fs) and dis-
placements (𝑋 ) at their interfaces is facilitated. This figure shows that at a certain time 

Figure 7. (a) Large-scale cyclic triaxial apparatus; (b) Typical ballast modelled in DEM; (c) Dimensions of the DEM-FDM
model (unit in mm); (d) Connection of a discrete grain with a continuum element; (e) Illustration of force and moment
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The coupled model was implemented by transferring the forces and displacements
between the two domains. Figure 7d shows how this exchange of forces (Fn, Fs) and

displacements (
.

X
[E]
i ) at their interfaces is facilitated. This figure shows that at a certain time

∆t, contact forces in the DEM (Zone 1) were transferred to Zone 2 (continuum domain),
and the displacements were transferred back to the DEM. This exchange of force and
displacement can be performed using a mathematical framework and interface elements
to distribute the forces and moments to nodal points (Figure 7e and Appendix A). This
DEM-FEM model was adopted to simulate cyclic tests under different load frequencies
(f = 10–40 Hz) and throughout N = 10,000 loading cycles.

3.3. Particle Breakage

This coupled model can be used to predict the accumulated broken bonds (Br) as
the load cycles N increase under varying frequencies (f = 10–40 Hz), as shown in Figure 8a.
Here, Br increased as the frequency f increased; this trend agrees with the ballast breakage
measured in the laboratory [78]. Br increased remarkably in the initial N = 5000 cycles, and
remained nearly constant towards the end of the simulations. Placing a rubber mat under
the ballast layer led to a decrease in Br, an observation that reinforces the energy-absorbing
capacity of the rubber mat.

Sustainability 2021, 13, x FOR PEER REVIEW 15 of 21 
 

∆t, contact forces in the DEM (Zone 1) were transferred to Zone 2 (continuum domain), 
and the displacements were transferred back to the DEM. This exchange of force and dis-
placement can be performed using a mathematical framework and interface elements to 
distribute the forces and moments to nodal points (Figure 7e and Appendix A). This DEM-
FEM model was adopted to simulate cyclic tests under different load frequencies (f = 10–
40 Hz) and throughout N = 10,000 loading cycles. 

3.3. Particle Breakage 
This coupled model can be used to predict the accumulated broken bonds (Br) as the 

load cycles N increase under varying frequencies (f = 10–40 Hz), as shown in Figure 8a. 
Here, Br increased as the frequency f increased; this trend agrees with the ballast breakage 
measured in the laboratory [78]. Br increased remarkably in the initial N = 5000 cycles, and 
remained nearly constant towards the end of the simulations. Placing a rubber mat under 
the ballast layer led to a decrease in Br, an observation that reinforces the energy-absorbing 
capacity of the rubber mat. 

Figure 8b presents snapshots of broken bonds obtained at given numbers of load cy-
cles (N) for f = 20 Hz. The number of broken bonds increased with N, however it reduced 
when a rubber mat is provided. It is seen that many bonds break directly under the top 
loading plate within the first N = 1000 cycles. Zhang et al. [34] studied the dynamic re-
sponse of ballast and observed that ballast grains approximately 200 mm beneath the 
sleepers are more likely to experience higher stress levels and therefore undergo more 
pronounced breakage. 

 
Figure 8. (a) Contact bond broken with increased loading cycles; (b) Snapshots of broken bonds
simulated in the coupled model (adapted with permission from ref. [74]. Copyright 2021 American
Society of Civil Engineers Journal).

Figure 8b presents snapshots of broken bonds obtained at given numbers of load cycles



Sustainability 2021, 13, 9048 15 of 20

(N) for f = 20 Hz. The number of broken bonds increased with N, however it reduced when
a rubber mat is provided. It is seen that many bonds break directly under the top loading
plate within the first N = 1000 cycles. Zhang et al. [34] studied the dynamic response of bal-
last and observed that ballast grains approximately 200 mm beneath the sleepers are more
likely to experience higher stress levels and therefore undergo more pronounced breakage.

Figure 9 shows the changes of contact forces in ballast and the contours of predicted
stress in the subgrade and capping layers captured at N = 100–10,000 cycles, and for
f = 20 Hz. Note here that the imposed loads were transmitted to the ballast particles as
chains of contact forces whose thickness is proportional to their magnitude. High contact
forces were concentrated below the top-loading wall, and a large portion of the load was
transferred vertically to the underlying layer of the subgrade. Increasing the number of
load cycles N led to an increasing number of contacts, which may be related to the re-
arrangement and breakage of particles. The inclusion of recycled rubber mats increases
the contact area between the ballast and capping layer, reduces the maximum stresses,
and also helps to attenuate the load. This, in turn, attenuates excessive contact forces and
reduces the deformation and breakage of the ballast grains, which in practice would result
in extended track longevity with associated technical, financial, and environmental benefits.
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4. Conclusions

This paper presented salient outcomes based on recent mathematical and computa-
tional modelling of rail track foundation layers (i.e., subballast and ballast) incorporating
marginal and recycled products, such as steel furnace slag (SFS), coal wash (CW), recy-
cled rubber crumbs (RC) and rubber mats. A bounding surface constitutive model was
established to predict the stress-strain behaviour of a blended waste matrix (SFS+CW+RC)
expected to be adopted as an alternative sustainable capping layer. Computational mod-
elling was then implemented using the discrete element method (DEM) and the combined
discrete-continuum modelling approach (i.e., coupled DEM-FEM). The effect of recycled
rubber mats (energy absorbing layer) placed beneath a layer of ballast was simulated under
different cyclic loading frequencies (f = 10–20 Hz). The main conclusions from this study
are summarised below:

• A bounding surface model for SFS+CW+RC mixtures as a form of potential capping
layer was introduced and validated based on laboratory data. The energy-absorbing
characteristics of the mixture with different rubber contents were captured through
an empirical relationship between the critical stress ratio (Mcs) and the total work in-
put (Wtotal). The proposed model was also validated by considering other rubber-soil
mixtures tested during previous studies [26,40]. The predicted stress-strain behaviour
of the mixture was comparable with the laboratory observations. The observed proper-
ties of this compacted waste product could be considered favourable as an alternative
capping medium to be adopted in railways, in lieu of traditional (geologic) materials.

• The changes of broken bonds (representing ballast breakage) and the re-distribution
and re-orientation of contact forces to support the external loads were captured
via the coupled DEM-FEM modelling. The predicted results were in satisfactory
agreement with the large-scale laboratory data. The inclusion of rubber mats reduced
the broken bonds and the magnitude of maximum contact forces, hence reducing
ballast deformation and degradation.

• The constitutive and numerical modelling facilitated the analysis and investigation
of track performance incorporating resilient recycled rubber materials (i.e., rub-
ber crumbs and rubber shock mats). The proposed critical state surface capturing
the energy-absorbing characteristics of the waste blends including RC is suitable for
and can be extended to relevant studies on rubber-soil mixtures. The established
DEM-FEM modelling provides a novel approach for further studies to look into
the combined micro and macro-mechanical response of ballasted tracks considering
ballast degradation. From an environmental sustainability perspective, the use of
recycled waste products in track construction and rehabilitation will contribute not
only to reduce waste disposal volumes to landfills, but also to more effective use of
non-renewable natural resources, thereby reducing the carbon footprint of future rail
infrastructure projects.
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Appendix A

Interface elements only receive forces at their end nodes (FXB, FYB and FXA, FYA,).
Thus, it is required to transfer moments (M) and forces (FX, FY) from a grain to an element,
as illustrated earlier in Figure 7e. By taking the equilibrium of forces, we can derive:

Horizontal direction : FX = FXA + FXB (A1)

Vertical direction : FY = FYA + FYB (A2)

The equilibrium of moment is derived as:

M = FYA × (XA − XC) + FYB × (B− XC)− FXA × (YA −YC)− FXB × (YB −YC) (A3)

Equations (A1) and (A2) can be extended by:

FX = FXA + FXB = β× FX + (1− β)× FX (A4)

and FY = FYA + FYB = β× FY + (1− β)× FY (A5)

in which, the parameter β is given by:

FXA = β× FX and FYA = β× FY (A6)

FXB = (1− β)× FX and FYB = (1− β)× FY (A7)

Replacing the Equations (A6) and (A7) to Equation (A3) results in:

M = β× FY × (XA − XC) + (1− β)× FY × (XB − XC)− β× FX × (YA −YC)− (1− β)× FX × (YB −YC) (A8)

Rearranging Equation (A8) gives:

β =
M – FY × (XB − XC) + FX × (YB −YC)

FY × (XA − XB) – FX × (YA −YB)
(A9)

Equation (A9) can be used together with Equations (A6) and (A7) to exchange moment
and forces between the DEM and FDM via user-defined subroutines developed in FISH
language (ITASCA).
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