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Abstract: Coronary artery disease is a major cause of morbidity and mortality worldwide. Its un-
derlying histopathology is the atherosclerotic plaque, which comprises lipid, fibrous and—when
chronic—calcium components. Intravascular ultrasound (IVUS) and intravascular optical coherence
tomography (IVOCT) performed during invasive coronary angiography are reference standards for
characterizing the atherosclerotic plaque. Fine image spatial resolution attainable with contemporary
coronary computed tomographic angiography (CCTA) has enabled noninvasive plaque assessment,
including identifying features associated with vulnerable plaques known to presage acute coronary
events. Manual interpretation of IVUS, IVOCT and CCTA images demands scarce physician ex-
pertise and high time cost. This has motivated recent research into and development of artificial
intelligence (AI)-assisted methods for image processing, feature extraction, plaque identification and
characterization. We performed parallel searches of the medical and technical literature from 1995
to 2021 focusing respectively on human plaque characterization using various imaging modalities
and the use of AI-assisted computer aided diagnosis (CAD) to detect and classify atherosclerotic
plaques, including their composition and the presence of high-risk features denoting vulnerable
plaques. A total of 122 publications were selected for evaluation and the analysis was summarized in
terms of data sources, methods—machine versus deep learning—and performance metrics. Trends
in AI-assisted plaque characterization are detailed and prospective research challenges discussed.
Future directions for the development of accurate and efficient CAD systems to characterize plaque
noninvasively using CCTA are proposed.
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1. Introduction

Coronary artery disease is a major cause of morbidity and mortality worldwide. Its
underlying histopathology is the formation of atherosclerotic plaques within the wall
lining of the coronary artery tree [1]. Chronic morphological adaptation of the plaque is
characterized by progressive necrotic changes and calcification [2]. Initially, the plaque
is nonobstructive and the patient is asymptomatic. Accumulation of plaque components
increases the plaque atheroma volume, which encroaches on the coronary lumen [3,4].
As the coronary luminal area becomes reduced, blood flow delivery to heart muscles
becomes compromised at high-demand stress states, i.e., myocardial ischemia, which
manifests as angina [5]. Progressive arterial wall remodeling alters plaque composition
and surface, rendering it vulnerable to erosion and even rupture [6]. This incites chain
chemical reactions that precipitate acute thrombosis, which occludes the coronary lumen
causing myocardial infarct [7].

Atherosclerotic plaques comprise heterogeneous components such as extracellular
lipids, collagen fibers (fibrous tissue), loose collagen fibers with lipid accumulation (mixed
tissue) and—when chronic—compact calcium crystal deposits (calcified tissue) [8]. The
American Heart Association grades the atherosclerotic plaque into classes with incremental
histo-morphological complexity [9]: Type I, normal wall thickness or minimal intimal
thickening, some macrophages with little lipid deposits or foam cells; Type II, additional
smooth muscle cells with little lipid deposits, T-lymphocytes and rare mast cells; Type III
(pre-atheroma), increased extracellular lipid; Type IV, (atheroma), confluent lipid deposits
(lipid core) covered mainly by intima; Type V, increasing lipid deposits with well-defined
fibrous (collagen) cap (fibroatheroma, type Va) or predominant calcifications (calcific, types
V b and c); Type VI, complicated lesion with disruption of lesion surface, hematoma or
hemorrhage, and thrombotic deposits have developed [10].

Intravascular ultrasound (IVUS) and intravascular optical coherence tomography
(IVOCT) performed via catheter during invasive coronary angiography (CAG) possess
high spatial resolution and signal contrast, and are the reference standards for in vivo
near-field characterization of individual atherosclerotic plaques. Based on the constituents,
atheromatous plaques can be stratified as stable or vulnerable. The former is characterized
by heavy calcification, fibrotic tissue, and small lipid pools. In contrast, the latter contains
a large lipid pool (necrotic core) with or without spotty calcification, and is covered by a
thin fibrous cap that is soft in nature and prone to rupture—the thin-cap fibroatheroma
(TCFA). Post-processing techniques such as virtual histology intravascular ultrasound
(VH-IVUS) [11] can enhance visualization of early pathology, e.g., intimal thickening
(PIT), as well as high-risk lesions such as TCFA and calcified TCFA. Similarly, IVOCT can
characterize human atherosclerotic plaques into fibrous, fibrocalcific and lipid rich types
with histology-like accuracy [12]. Using IVOCT, TCFA was more frequently seen in patients
presenting with acute coronary syndrome than those with stable angina [13].

Noninvasive coronary computed tomographic angiography (CCTA) can also charac-
terize atherosclerotic plaques albeit with less fine spatial resolution than invasive IVUS
and IVOCT. Of advantage, CCTA can survey the entire coronary tree within a single
three-dimensional image dataset and possesses high sensitivity for calcium deposition.
Coronary plaques can thus be categorized as noncalcified, partially calcified and calcified,
and the severity of calcification quantitated. Using advanced analysis, lipid and fibrotic
components in noncalcified plaques can also be identified [14].

Manual identification and characterization of coronary plaques demands clinical
expertise and high time costs. It is also dependent on image quality, which is easily affected
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by speckle noise. These reasons motivate the development of computer aided diagnosis
(CAD) systems for automated image processing as well as coronary plaque identification
and characterization on both invasive [15] and noninvasive image readouts [16]. With the
help of CAD, image quality can be improved, which helps in the accurate interpretation
of results. Use of CAD by physicians can be considered as a countercheck to reduce
diagnostic error and physician workload. Algorithms can enhance physician performance
by increasing the ease and efficiency of decision-making. Given the importance of early
diagnosis and risk stratification, accurate, and efficient automated diagnostic tools for
coronary plaque characterization based on non-invasive imaging modalities like CCTA are
desirable. In this review, our aims were as follows:

• To compare manual grading systems for plaque characterization with various imaging
modalities;

• To analyze state-of-the-art artificial intelligence (AI) techniques to characterize plaque;
• To discuss the results and roles of different techniques for plaque characterization; and
• To highlight potential research gaps and future research directions related to plaque

characterization using CAD.

The remainder of the paper is structured as follows: description of article selection
process is in Section 2; review of commonly used imaging modalities for detecting and
grading coronary plaques appears in Section 3; overview of different machine learning
(ML) and deep learning (DL) techniques for coronary plaque detection and classification are
in Section 4; comparison of the performance of various CAD techniques when applied to
different imaging modalities as well as discussion of current challenges, potential research
gaps, and future directions are found in Section 5; and study conclusions are in Section 6.

2. Review Process

The review process was carried out based on the procedures and guidelines presented
in PRISMA [17]. We performed a search of the following databases, IEEEXplore, PubMed,
Springer, Scopus, and Google Scholar, for articles published between 1 January 1995 and
25 June 2021 using the keywords ‘deep learning AND plaque detection’, ‘machine learning
AND plaque detection’, ‘computer aided diagnostic tools’, ‘coronary plaque segmentation’,
‘computed tomography angiography’, ‘coronary plaque detection’, ‘intravascular ultra-
sound’, ‘intravascular optical coherence tomography’, ‘atherosclerotic plaque’, ‘plaque
morphology’, ‘support vector machine AND plaque classification’ and ‘convolutional
neural networks AND plaque detection’.

To identify the most suitable and eligible articles: These articles were further filtered
using inclusion/exclusion criteria. We included prospective studies that compared various
imaging modalities such as CCTA, IVOCT and IVUS in the diagnosis and characterization
of coronary atherosclerotic plaques. In addition, studies that employed various ML and
DL to segment plaque regions from the image dataset, as well as to detect and classify
coronary plaque type, were considered. We also considered clinical studies that focused on
coronary plaque detection, grading, and characterization including coronary calcification.
Studies related to image acquisition technique, non-coronary vascular assessment, coronary
anomalies, coronary artery stenosis severity, and only animals were excluded. The selected
articles comprised those with medical and technical contents (see Figure 1). The final
selection of 61 medical and 61 technical publications from 154 and 116 screened, respectively,
were all published in the last fifteen years.
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Figure 1. Workflow of study strategy and manuscript selection process.

3. Current Coronary Artery Disease Detection Modalities and Grading System

Several invasive and non-invasive modalities are employed in clinical practice for the
identification and assessment of coronary plaques [18], e.g., IVUS (including VH-IVUS),
IVOCT, CCTA (see Figure 2), positron emission tomography, magnetic resonance imaging,
and near-infrared spectroscopy.

Invasive CAG is the gold standard for coronary artery disease diagnosis based on
detection of coronary lumen stenosis but is of limited utility for plaque characteriza-
tion beyond outlining intracoronary thrombus associated with ruptured atherosclerotic
plaque. Nevertheless, invasive CAG is a prerequisite for plaque characterization with
IVUS and IVOCT. IVUS is the gold standard for assessment of the atherosclerotic coronary
plaque [19,20]. A miniaturized ultrasound probe is introduced intra-luminally via an
intravascular catheter to the coronary lesion to obtain near-field two-dimensional cross-
sectional high-resolution real-time images of the coronary lumen and atherosclerotic plaque
with high echogenic grey-scale signal contrast [21,22]. IVUS is able to distinguish the inti-
mal, medial, and adventitial layers of the arterial wall as well as various components of the
atherosclerotic plaque, including the presence of dense calcium (DC), necrotic core (NC),
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fibrotic tissue (FT), and fibrofatty tissue (FFT) [23,24]. It yields comprehensive quantita-
tive information on lumen size, plaque components and presence of vulnerable plaque
features or complications, e.g., TCFA or plaque surface rupture, which herald an imminent
acute coronary event [25]. VH-IVUS uses spectral analysis of the backscattered grey-scale
IVUS radiofrequency signals to augment tissue contrast among the various plaque com-
ponents [26]. The results are displayed in color codes, which enhances visualization of
pathology. Instead of sound waves, IVOCT exploits light waves to produce near-field
plaque images with superior spatial resolution (approximately 15 µm versus 150 µm for
IVUS) and tissue discrimination but less imaging depth (few millimeters versus five to
ten millimeters for IVUS), which may unveil surface details not appreciated on IVUS [27].
Calcified plaque identification as well as discrimination between fibrous and lipid tissues
are better with IVOCT than with IVUS.
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Figure 2. Sample images from invasive CAG, CT, and IVUS imaging techniques.

Multi-slice CCTA has evolved in the past two decades to become the dominant non-
invasive imaging technique for coronary artery disease diagnosis [28,29], which provides
information on coronary anatomy, calcification, location of stenosis and occlusion, as well
as plaque morphology [8–10,30,31]. While CCTA image acquisition relies on ionizing
radiation, the dose requirement has gradually been reduced by 30–50% through use of
prospective electrocardiography-gated dose-dependent acquisition protocols on contempo-
rary scanners [32]. While CCTA tends to overestimate coronary lesion severity compared
with invasive CAG and IVUS [33], major trials that compared CCTA against quantitative
coronary angiography with invasive CAG showed high sensitivity of 85–99% and fair
specificity of 64–90% [34–37] for prediction of coronary artery stenosis. The clinical utility
is highest in low-intermediate risk populations [38] rather than high-risk groups in which
CAG with the option of therapeutic intervention at the same setting confers advantage.
Calcified coronary plaques are readily visualized on computed tomography (CT) and the
burden of coronary calcium, i.e., coronary calcium score, is an independent predictor of
long-term outcome including incident death, myocardial infarction, and need for revascu-
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larization. However, the absence of coronary calcification does not imply the absence of
coronary artery disease. Non-calcified plaques, significant coronary stenoses (50%), and
>70% stenoses can be present in 11–13%, 0.9–3.7%, and 0.4–1.5% of patients with a coronary
calcium score of zero [39–41].

Using early four-detector CT scanners, Becker et al. [42] showed that CCTA could
effectively distinguish between histologically validated lipid-rich and fibrous-rich non-
calcified plaques, with significant CT attenuation differences between the two. Tech-
nological advances in CT hardware (e.g., 256 or more multi-slice scanners), acquisition
and post-processing have improved image resolution and the ability to detect plaques
as well as characterize their composition and features, including high-risk non-calcified
plaques [43–49]. CCTA has high positive predictive value (PPV) for identifying vulnerable
plaques that are at risk for rupture [34,50]. While IVUS offers superior resolution com-
pared with CCTA for quantitative plaque characterization [51–53], CCTA offers expedient
comprehensive assessment of the entire coronary artery tree in a single acquisition, and is
non-invasive. In a meta-analysis of 33 studies [54], CCTA demonstrated an excellent 90%
sensitivity and 92% specificity prediction rate for coronary artery disease when referenced
against IVUS.

4. Artificial Intelligence (AI): Characterization of Plaque

AI enables extraction and processing of quantitative information using human-like
intelligence systems [55–59]. In recent years, the increase in generation and availability
of medical imaging data has spawned research into clinical applications of AI [60–65].
Early detection of coronary plaque accumulation is important to avert complications, and
many ML and DL CAD algorithms have been proposed for the automatic detection and
classification of coronary plaques. CAD tools can improve clinical workflow efficiency
by increasing the accuracy and timeliness of image interpretation. Figure 3 shows typical
processes and techniques involved in ML and DL models for detection and classification of
coronary plaques, as well as the standard performance metrics.

4.1. ML and DL Techniques in CAD

As described above, IVUS, IVOCT, and CCTA are the imaging modalities that can
be used to characterize coronary atherosclerotic plaques. Research and development of
CAD tools for plaque characterization have relied on image datasets from private [66–68]
or public sources [69–73]. Some of the latter are available only upon request [25,72].

Machine Learning Techniques

ML uses various algorithms for the following key steps: preprocessing and segmen-
tation; feature extraction; dimensionality reduction or feature ranking; and classification.
Image preprocessing is a crucial preliminary step as it enhances the image quality or reso-
lution using appropriate filters [74–76]. Extraction of the correct region of interest (ROI)
is the necessary initial step for coronary plaque detection before further characterization.
In order to detect or characterize the plaque, suitable features are generated using feature
extraction algorithms and subsequently processed for dimensionality reduction. The ex-
tracted features may be ranked using feature ranking measures, which are then sent to a
classifier to categorize the plaque type.
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Deep Learning Techniques

Automated image recognition has improved tremendously since the widespread
implementation of DL techniques, especially those with a convolutional neural network
(CNN) architecture. CNN is composed of a series of layers, in which discriminative image
features are extracted from raw data automatically [77,78]. In general, DL recreates complex
patterns from the assembly of simple ones. The input image is fed into the deep CNNs at
initialization, and the data is propagated through layers generally consisting of convolution,
pooling, rectified linear unit, and fully connected layer [79].

4.1.1. Preprocessing/Segmentation

Images obtained from different modalities may not be carry sufficient information
for further processing or may be of low quality. Preprocessing helps to standardize image
quality and increase image contrast. Denoising techniques include the anisotropic diffusion
filter [80,81], Gaussian filter [82–84] and median filter. The adaptive histogram equalization
technique can also be used to improve the image contrast. In order to remove interference,
the Hough transform is used in [85]. The segmentation process is simplified by converting
images to polar coordinates [86]. High intensity calcified plaques may also be normalized.
Furthermore, Otsu’s thresholding method is applied [87]. In [88], the multilevel discrete
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wavelet frame decomposition is used for image segmentation. In [11], a hybrid fuzzy
C-means and k nearest neighbor (HFCM-kNN) model is used for image segmentation.
Other techniques include a region-growing method along with thresholding [89], and
deformable models used for ROI extraction. The border can be delineated using k-means
clustering and the Rayleigh mixture model [90]. Moreover, shadowed regions surrounding
the plaque can be detected and removed using dynamic programming [91].

4.1.2. Feature Extraction

To accurately detect the plaque, certain features are extracted from the image. Using
the widely used gray level co-occurrence matrix (GLCM), textural features can be extracted
based on the spatial relationship between pixels [92–94]. Haralick’s textural features
exhibited a good discrimination for arterial wall and lumen identification [70]. In [95], the
Gabor transform for different scales and angles along with six measurements of entropy
were explored. Likewise, first order statistics (FOS) can be used for texture analysis [96]. To
extract coronary lumen and plaque features, an adjacent pattern method was implemented.
In addition, features are obtained using color moments of the histogram followed by
statistical feature extraction [97]. Other authors have used an attenuation coefficient, which
extracts features by selecting a window for each pixel so as to mark the pixular labels
based on plaque type [84]. Different textural patterns exist in various coronary plaque
components. Textural analysis methods such as neighboring gray level (NGL), local binary
pattern (LBP) and modified run length (MRL) are suitable for distinguishing such plaque
patterns. In order to differentiate the dense calcium tissues more significantly, fractal
dimensions of the plaque components are computed using the box counting method. In
addition, gray level run length matrix (GLRLM) and Law’s texture energy (LTE) are used to
analyze the textural patterns in plaques. The various plaque components can be extracted
using a multiresolution decomposition method, i.e., fast wavelet transform (FWT), by
obtaining the frequency content of the images [98]. Generally, the plaque components are
characterized by different intensity levels. Specifically, dense calcium is associated with the
highest intensity components. Extracting intensity of the plaque components improves the
classification accuracy. Properties such as individual calcification levels, image brightness,
and contrast, are obtained using an intensity histogram (IH). The neighborhood gray tone
difference matrix (NGTDM), gray level difference statistics (GLDS), and invariant moment
(IM) are incorporated to extract plaque textural features [99]. In [73], a multi-class coronary
plaque detection framework random radius symmetry (RRS) containing contextual features
of plaque was proposed that supplemented the training data of coronary plaques. Likewise,
local indicators of spatial association (LISA) and run length (RL) are used to describe the
textural features by detection. Several other algorithms have also been proposed for feature
extraction, such as open lumen border tracing (OLBT), closed lumen border tracing (CLBT),
extracting confluent components (ECC), and plaque burden assessment (PBA) [11].

4.1.3. Feature Reduction/Selection/Ranking/Organization

Several factors influence the success of classification algorithms in any given task. For
instance, the degree of redundant information reduces the efficiency of plaque classifica-
tion. In [88], a fuzzy complementary criterion (FuzCoC) was used to select the features
for plaque component discrimination. To identify the best extracted features, the t-test
or wrapped feature selection (WRP) [83] can be used. In [69], among feature selection
techniques such as Relief-F, recursive feature elimination, and the Fisher method, the
latter achieved the highest accuracy for ranking feature discriminative power. Further,
principal component analysis (PCA) and genetic algorithms (GA) can be used to select the
optimal feature set from the original feature set for tissue characterization. Informative
features obtained using PCA often contain small values, which are normalized using the
Z-score function [100]. In [95], feature reduction was performed using locality sensitive
discriminant analysis (LSDA) and neighborhood preserving embedding (NPE), and the
results were compared with no feature reduction on the dataset. The latter test generated
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the most discriminant features. Thereafter, the generated features were selected using the
analysis of variance (ANOVA) statistic. The Wilcoxon signed-rank test can also be used for
feature organization [101].

4.1.4. Classification

Plaques can be effectively categorized as calcified and non-calcified plaques using the
Bayesian classifier [80]. In [92], an overall classification accuracy of 80.41% was achieved
using the random forest (RF) classifier, in which the plaque was categorized into four types,
namely calcium, lipid pool, fibrous tissue, and mixed plaques. Moreover, RF classifiers
can classify the plaque into three classes, namely dense calcium (DC), necrotic core (NC),
and fibrotic tissue (FT) and fibro-fatty tissue (FFT). Support vector machines (SVM) [73]
are effectively used for coronary plaque characterization in most studies that utilize dif-
ferent kernel functions. SVM with a second order polynomial kernel function produced
better performance parameters for carotid and coronary plaque characterization [99]. Error
correcting output codes (ECOC) are the preferred medium for multiclass plaque classifica-
tion [91]. For the discrimination of dense calcium tissue, the deep belief network model
offers improved plaque characterization performance. Further, the atheromatous plaque
can be characterized by a neuro fuzzy classifier. The FaIRLiC, hybrid ensemble classifier
(feed forward neural network (FFNN), RF, adaptive boosting) can classify coronary plaque
regions with high accuracy [94,98].

For plaque classification, deep learning models such as ResNet50-v2 and DenseNet-
121 from ImageNet are used for binary as well as multiclass plaque classifications [102].
Plaques may be of varying severity. Based on their severity, they may be categorized as mild,
moderate, or severe using a SVM-based CNN. Moreover, stenosis can be detected using
U-Net and V-net [103]. Table 1 summarizes these various classification methodologies.

In [112], calcified regions are identified by detecting the acoustic shadow and analyz-
ing the ROI extracted for the presence or absence of calcification in the IVUS images. The
results of the proposed algorithm showed high correlation with human expert measure-
ments. Likewise, a semiautomatic method for segmentation and quantification of calcified
plaques was applied on IVOCT images based on a level-set model approach [87]. Along
with quantified analysis of calcification, its boundary could be detected [113]. Detection
of calcified plaque in the presence of acoustic shadowing is quite challenging. A Markov
random field and graph searching algorithm was implemented in [90]. Along with calcified
plaque detection, the lumen was detected using the K-means algorithm [82]. The calcified
plaque could be determined based only on its 3D position, independent of the volume and
shape of the plaque, using a blob enhancing filter [89]. However, coronary plaque composi-
tion, plaque position, and length of the plaque in abnormal coronary segments were better
determined using the mean radial profile and SVM [69]. Soft and hard plaque detection
can be ascertained using Fuzzy C-means (FCM) clustering, morphological processing, and
a curve fitting function, which showed a high comparison coefficient compared with a
manual plaque detection system. In addition to plaque detection, plaque shape and size
can be quantitated [86]. Similarly, vulnerable plaques can be identified using a flexible
neural tree (FNT) [81].
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Table 1. Summary of various state-of-the-art techniques employed for plaque characterization using coronary artery scans.

Dataset Preprocessing/ROI
Segmentation

Feature
Extraction

Feature Reduc-
tion/Feature

Selection/
Feature Rank-

ing/Organization

Detection Classification Task Outcomes *

[11]

599 VH-
IVUS

images
of 10

patients

Thresholding +
HFCM-kNN model

CLBT +
OLBT

SVM
with

radial
basis

function
(RBF)

Multiclass
(PIT, TCFA

and
CaTCFA)

and binary
(TCFA and
non-TCFA)

For binary:
Pqacc.: 81.03
Pqsen.: 84.81
Pqspec.: 84.81

Precision: 84.81
For multiclass

Pqavg.acc.: 98.42 + 0.01
Kappa: 0.9198

[15] IVUS
images

Neuro
Fuzzy

Atheromatous
plaque

(fibrotic,
lipidic,

calcified, and
normal)

Pqavg.acc.: 98.9

[21]

300
IVUS

frames
of 10

patients

Deformable
models +

Estimation borders
by experts

Co-
occurrence

matrix +
LBP+ Mean

value +
Entropy +

Geometrical
features

t-test RF
Multiclass

(DC, NC, FT,
and FFT)

Pqacc.: 85.65

[22]

553
IVUS

frames
of eight
patients

ROI Extraction +
Otsu’s automatic

thresholding +
Pathological tissue

detection

CNN
Multiclass

(DC, NC, FT,
FFT, Media)

Overall accuracy:
93.5Pqacc.:DC:
98.5NC: 88.6FT:

91.1FFT: 90.0Media:
99.4

[25]

IVUS
images
from 11
patients

Manual
segmentation by

expert

LBP + FOS
+GLCM +

LEM +
Extended
GLRLM +
Intensity

PCA RF
Multiclass(DC,
NC, FT, and

FFT)

AUC: 0.845, 0.704,
0.783

Pqacc.: 85.1,71.9,77.2
Pqsen.: 82,81.2, 80.6
Pqspec.: 87.1, 59.6,

75.9
(Respectively for
Net1: FT/FFT or

NC/DC
Net2: FT or FFT
Net3: NC or DC)

[27]

1000
IVOCT
images
from 47
patients

Anisotropic
diffusion + Polar
Transformation+

Hough Transform

Intensity +
HOG + LBP

+ FV +
k-means

clustering

SVM

Multiclass
(normal,
fibrous

plaque, fibro-
atheroma,

plaque
rupture,

fibro-calcific
plaque)

Pqavg.acc.: 90
With standard

deviation of 0.02

[67]

770 OCT
images

of 5
patients

ROI Extraction LBP+GLCM CNN (U Net)

Multiclass
(lipid tissue,

fibrous
tissue,

background)

Pqacc.: 95.8

[70]
435

IVUS
images

Polar
Transformation +

Gaussian filter
+Median filter+

Anisotropic
Diffusion filter

Haralick’s
+Laws’
textural
feature

SVM

Two class
(fibrotic

plaque and
normal)

AUC: 0.97
Jaccard Index: 0.85

[72]

6556
OCT

images
from 49
patients

ROI+ Dynamic
programming +
Gaussian filter

CNN + Mor-
phological

features

Wilcoxon signed
rank test RF

Binary class:
(fibro-lipidic

and
fibrocalcific

plaque)

Fibro-lipidic plaque:
Pqsen.: 84.8
Pqspec.: 97.8

Fibro-calcific plaque:
Pqsen.: 91.4
Pqspec.: 95.7
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Table 1. Cont.

Dataset Preprocessing/ROI
Segmentation

Feature
Extraction

Feature Reduc-
tion/Feature

Selection/
Feature Rank-

ing/Organization

Detection Classification Task Outcomes *

[73]

18 CTA
images
Total:
1786
cross

sections
with
Non

calcified
plaque
(NCP):

729,
Calcified
plaque

(CP): 511,
Mixed

plaques:
546.

DRLSE RRS feature
vector

SVM
(Gaus-

sian
kernel)

Multiclass
(calcified, non
calcified and

mixed plaques)

Average precision:
92.6±1.9

Average recall:
94.3±2.1

[80]

60 IVUS
images

of 7
patients

Anisotropic
diffusion filter +

Thresholding

Deformable
models Bayesian

Two class
(calcified and
non-calcified

plaque)

AUC: 0.943
Pqspec.: 98.5
Pqsen.: 92.67

[83]

27 OCT
pull-

backs of
22

patients

Gaussian filter +
Thresholding +

k-means

LBP +
GLCM WRP RF

Multiclass
(calcium, lipid
pool, fibrous
tissue, and

mixed Tissue)

Pearson’s
correlation

coefficient: 0.97
(FT)

[84]

IVOCT
images

of 11
patients

Gaussian filter +
Otsu threshold

filtering

Attenuation
coefficient +

GLCM
SVM
(RBF)

Multiclass
(fibrous,

calcification
and lipid

tissue)

Pqacc.: 83

[88]

IVUS
images

of 7
patients

Multilevel discrete
wavelet frame
decomposition

FOS +
GLCM +

LBP + RL +
Wavelet
Intensity
values

FuzCoC SVM
(RBF)

Multiclass
(calcium,

necrotic core,
fibrous, and
fibro-fatty)

Pqavg.acc.: 81

[91]

In-vivo
dataset:

VH-
IVUS
2263

images
of 10

patients
Ex-vivo

dataset:64
images

Shadow detection
using threshold

NGL + LBP +
MRL

SVM
and

ECOC

Multiclass(calcium,
necrotic core,

and fibro fatty)

Kappa values:
0.639 (in-vivo) and

0.628 (ex-vivo)

[92]

50 OCT
images
from 3

patients

Co-
occurrence

matrix +
LBP+

Entropy +
Mean value

RF

Multiclass
(calcium, lipid
pool, fibrous
tissue, and

mixed plaque)

Pqacc.: 80.41

[93]

300
IVUS

images
of 7

patients

Multilevel discrete
wavelet frames
decomposition +

SOFM

FOS +
GLCM + RL

+ LBP +
wavelets +

LISA

FaIRLiC
Multiclass (DC,

NC, FT, and
FFT)

Testing accuracy:
76.16%

[94]

IVUS
images

of 7
patients

Border detection +
2-D Kohonen’s
self-organizing

feature map
(SOFM)

FOS +
GLCM + WF
+ RL + LBP

FaIRLiC

Multiclass
(calcium,

necrotic core,
fibrous and
fibro lipid)

Average
classification

Accuracy on each
frame: 73.67
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Table 1. Cont.

Dataset Preprocessing/ROI
Segmentation

Feature
Extraction

Feature Reduc-
tion/Feature

Selection/
Feature Rank-

ing/Organization

Detection Classification Task Outcomes *

[95]

2646
Coro-
nary

Tomog-
raphy

Angiog-
raphy
(CTA)

images
of 73

patients
(CP: 28,
NCP: 15,
Normal:

30)

Adaptive
Histogram

Equalization

Gabor
Transform +

Entropy
ANOVA

SVM (RBF
and poly-

nomial
kernel)

Multiclass
(normal, non
calcified and

calcified)

Pqacc.: 89.09
PqPPV: 91.70
Pqsen.: 91.83
Pqspec.: 83.70

[96]

316
IVUS

images
of 26

patients

Thresholding +
Polar

transformation +
Morphological

operations

FOS + FD
(Box

counting) +
GLCM +

GLRLM +
LTE

PCA
Deep
belief

network

Multiclass
(DC, NC, FT,

and FFT)

Pqsen.: 92.8 ± 0.1,
Pqspec.: 85.1 ± 0.1,
Pqacc.: 88.4 ± 0.1,
PqPPV: 86 ± 0.1

PqNPV: 91.2 ± 0.1
(p < 0.05).

[97]

IVUS
images

of 7
patients

Adjacent
pattern

algorithm +
Color

moments of
histogram +
Statistical
features

SVM based CNN
Multiclass

(mild,
moderate

and severe)

Pqacc.: 98.80, 98.80,
97.59

Pqsen.: 100, 100, 100
Pqspec.: 98.70, 98.70,

97.40
Precision: 85.71,

85.71, 75
Recall: 100, 100,

100
F-score: 0.92, 0.92,

0.99
(Respectively for
Mild, moderate

and severe)

[98]

IVUS
images
from 11
patients

Manual border
segmentation

FOS +
GLCM +

GLRLM +
LBP +

Intensity +
Discrete
wavelet
features

+LTE

Genetic
algorithm

Hybrid
ensemble

classi-
fier(FFNN+
RF+ Ada

boost)

Multiclass
(DC, NC, FT,

and FFT)

Pqacc.: 82.8, 71.6, 77
AUC: 0.832, 0.697,

0.787
Pqsen.: 84.4, 81.9,

74.9
Pqspec.: 81.9, 57.6,

82.4
PqPPV: 71.2, 72.4,

91.7
PqNPV: 90.8, 70.1,

55.9
(Respectively for
Net1: FT/FFT or

NC/DC
Net2: FT or FFT
Net3: NC or DC)

[99]

2685
IVUS

images
of 15

patients

ImgTracer software

GLCM +
GLRLM + IH

+ GLDS +
NGTDM +

IM +
Statistical

feature
matrix

SVM (poly-
nomial

kernel 2nd
order)

Coronary
and carotid

plaque

Pqacc.: 94.95
AUC: 0.95

Pqsen.: 92.88
Pqspec.: 96.61
PqPPV: 96.69

[100]

588 VH-
IVUS

images
of 10

patients

Fuzzy c means and
k means with

particle swarm
optimization

LBP +
GLCM +

MRL
PCA SVM (RBF) TCFA and

Non-TCFA Pqacc.: 98.61

[102]

4000
IVOCT
images
from 49
patients

Cartesian
Transformation

CNN from ImageNet
ResNet50-v2 and DenseNet-121

Binary class:
plaque

(calcified
plaque and

lipid/fibrous
plaque) and
no plaque

Pqacc.: 91.7
Pqsen.: 90.9
Pqspec.: 92.4
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Table 1. Cont.

Dataset Preprocessing/ROI
Segmentation

Feature
Extraction

Feature Reduc-
tion/Feature

Selection/
Feature Rank-

ing/Organization

Detection Classification Task Outcomes *

[103]
CCTA of

150
patients

CNN (U Net + V Net)

Stenosis
Detection

and
Plaque

classification
(calcified,
partially
calcified,

noncalcified
and no
plaque)

Stenosis
identification:

CCTA AI (p<0.001)
AUC: 0.870

Pqacc.: 86
Pqsen.: 88
Pqspec.: 85
PqPPV: 73
PqNPV: 94

Plaque
classification:
AUC: 0.750

[104]

12,325
IVUS

images
from 100
patients

IVUS and OCT
registration + ROI

segmentation
CNN

Binary (thin
cap fibro-

atherma and
normal)

AUC: 0.911
Pqspec.: 82.81
Pqsen.: 87.31

[105]

64
IVOCT
images
from 49
patients

Otsu’s method +
morphological

operation
Attenuation

+ Texture RF
Multiclass
(fibrotic,

calcified, and
lipid rich)

Pqacc.: 81.5

[106]

4469
IOCT

images
of 48

patients

Edge detection +
Gaussian filter t-test

CNN
followed
by post

processing
(Condi-
tional

Random
Field +

Morpho-
logical

process-
ing)

Multiclass
(fibrocalcific,
fibro-lipidic

and
other classes)

Pqacc.: 77.7 ± 4.1,
86.5 ± 2.3, 85.3 ±

2.5
Pqsen.: 80, 85, 84
Pqspec.: 95, 92, 92
(Respectively for

fibrocalcific,
fibro-lipidic, other

classes)
p-value: 0.00027

[107]

700 OCT
images

of 28
patients

CNN

Multiclass
(calcium,

lipid tissue,
fibrous

tissue, mixed
tissue, media

and no
visible
tissue)

Pqacc.: 96

[108]
CCTA

scans of
131

patients
3D Recurrent Convolutional Neural Network

Multiclass
(no plaque,

non-
calcified,
mixed,

calcified)
and stenosis
(no stenosis,

non-
significant,
significant)

Plaque analysis:
Pqacc.: 72, F1 score:

0.61
Cohen’s kappa:

0.60
Stenosis analysis:

Pqacc.: 81
F1 score: 0.78

Cohen’s kappa:
0.70

Pqsen.: 61
PqPPV: 83

[109]
CCTA

scans of
163

patients
Recurrent convolutional neural network

Multiclass
(calcified,

non-calcified
and mixed)

Plaque detection:
Pqacc.: 77

F1 score: 0.61
Cohen’s kappa:

0.61
Stenosis detection:

Accuracy: 80%
F1 score: 0.75

Cohen’s kappa:
0.68

Pqsen.: 61
PqPPV: 65
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Table 1. Cont.

Dataset Preprocessing/ROI
Segmentation

Feature
Extraction

Feature Reduc-
tion/Feature

Selection/
Feature Rank-

ing/Organization

Detection Classification Task Outcomes *

[110]
CTA
scans

from 25
patients

Multiplanar
reformation
technique

3D CNN U-Net
(Encoder-decoder)

Multiclass
(calcified
plaque,

non-calcified
plaque and

mixed
calcified
plaque)

Dice scores: 0.83,
0.73, 0.68

Pqsen.: 85, 76,72
PqPPV: 82, 69, 62
Respectively for

CAP, NCAP,
MCAP

[111]

2060
CTA

images
from 60
patients

Higher-
order spectra

cumulants

Multiple factor
analysis + t-test SVM(RBF)

Binary
(calcified,

noncalcified)

Pqacc.: 95.83
Pqsen.: 94.54
Pqspec.: 97.13
PqPPV: 97.05

* AUC: Area Under Curve, PqPPV (%): Plaque Positive Predictive Value, PqNPV (%): Plaque Negative Predictive Value, Pqsen. (%): Plaque
Sensitivity, Pqspec. (%): Plaque Specificity, Pqacc. (%): Plaque accuracy, Pqavg.acc. (%): Plaque average accuracy, Precision (%).

CNN-based DL techniques are commonly used for plaque classification or identifi-
cation. A distribution-preserving autoencoder-based neural network (DPAE–NN) imple-
mented on IVOCT images was found to be best suited for characterization of heterogeneous
plaques [114]. Images passed through the ResNet101 architecture with fc1000 as the output
layer and a naïve Bayesian (NB) classifier outperformed other methods for calcified plaque
detection [115]. In [116], high sensitivity was obtained for calcification detection using
Inception-ResNet-v2 along with a naïve Bayes classifier. Similarly, CNN architectures
ResNet-50, ResNet-101 and Inception-v3 using SVM and the discriminant analysis (DA)
classifier could characterize plaques more efficiently. In [101], the 3D CNN model, along
with a SegNet architecture, was utilized for calcified plaque segmentation. In addition
to plaque detection, the 3D U–Net CNN was used in challenging tasks such as coronary
artery lumen delineation and stenosis grading [79]. The DL technique termed recurrent
convolutional neural network (RCNN) detects coronary artery stenosis by extracting the
coronary artery centerline during a skeletonization process [108,109]. Lumen and artery
wall media detection, which is crucial in identifying plaque buildup in the walls of coronary
vessels, can be achieved with a CNN (U-Net + VGG16 encoder) [71]. Coronary calcium
assessment, or calcium score, is an important predictor of cardiovascular events. Calcium
scores are predicted using a CNN (U-Net) in [117,118]. Table 2 summarizes the various
detection methodologies described.

Table 2. Summary of various state-of-the-art techniques employed for plaque characterization using coronary artery scans.

Dataset Preprocessing/ROI
Segmentation

Feature
Extraction

Feature Reduc-
tion/Feature

Selection/
Feature Rank-

ing/Organization

Detection Classification Task Outcome *

[2]

2175 IVUS
images of

10 patients
530 images
with calcifi-

cation
1645

images
without
calcifica-

tion

Original image
resized and

converted to RGB
ResNet50, ResNet101, Inception-v3 SVM and

DA

Calcified
plaque

detection

Pqacc.: 100
Pqsen.: 100
Pqspec.: 100

[66]
CT images

of 56
patients

Thresholding CNN (ConvNet)
Calcification
identifica-

tion

Pqsen.: 91.24
Pqspec.: 95.37
PqPPV: 90.5

Pearson coefficient:
0.983

Cohen’s kappa:
0.879
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Table 2. Cont.

Dataset Preprocessing/ROI
Segmentation

Feature
Extraction

Feature Reduc-
tion/Feature

Selection/
Feature Rank-

ing/Organization

Detection Classification Task Outcome *

[68]
CCTA of

493
patients

Centerline
extraction +
Clamping
technique

3D CNN Atherosclerosis
detection

Pqavg.acc.: 90.9
PqPPV: 58.8
Pqsen.: 68.9
Pqspec.: 93.6
PqNPV: 96.1

Average AUC: 0.91

[69] 32 datasets
of CTA

Normalization of
high intensity

calcified plaque
Fisher method

Mean
radial
profile

SVM
Gaussian

RBF

Soft
plaque

detection

Pqacc.: 88.4
Pqsen.: 93.2
Pqspec.: 80.3

Dice coefficient:
0.832

[71]
435 IVUS

scan
images

CNN (U-Net + VGG16 encoder)
Detection
of lumen

and media

For media:
Avg Jaccard

measure: 0.8085
Avg Dice score:

0.8825
For Lumen:
Avg Jaccard

measure:0.7982
Avg Dice

score:.8846

[79]
78 CCTA
images of

18 patients
3D U-Net CNN

Coronary
artery

lumen seg-
mentation

(for
grading
stenosis)

Dice: 0.8291

[81] 1000 OCT
images

Polar
Transformation +

Anisotropic
diffusion

Flexible
neural tree

Vulnerable
plaque

detection
Pqacc.: 90.80

[82]

27 OCT
images
from 10
patients

Gaussian filter +
Thresholding

k-means
clustering

Calcified
plaque

detection

Pqsen.: 83
PqPPV: 74

Pearson correlation:
0.434

[85] 1000 OCT
images

Hough Transform +
Polar

transformation
CNN

Fibrous
plaque

detection

Pqacc.: 94.12
Recall: 94.12

[86]

60 IVUS
images
from 7

patients

Polar
Transformation

GLCM +
FCM +

ROI
selection +
Morpho-
logical

processing
+ Curve

fitting

Detection
(Hard

plaque and
soft

plaque)

Pqspec.: 83
Pqsen.: 91

[87]
106 IOCT
images of
8 patients

Otsu’s
thresholding +
Edge detection

Intensity +
level-set
model

Segmentation
of calcified

plaque
Pqacc.: 78 ± 9

[89] CCTA of 7
patients

Thresholding + 3D
region growing

Blob
enhancing

filter

Stenosis by
Calcified
plaque

Precision:94.4

[90]
996 in-vivo

IVUS
images of
8 patients

Rayleigh mixture
model

Markov
random
field and

Graph
searching
algorithm

Calcified
plaque

detection

Pqsen.: 94.68
Pqspec.: 95.82

[101]
8231 IOCT
images of

68 patients

Dynamic
programming +

semantic
segmentation

method + Gaussian
filter

Wilcoxon signed
rank test

3D CNN +
SegNet

Calcified
plaque seg-
mentation

Pqsen.: 86.2
Precision: 75.8
F1 score: 0.781
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Table 2. Cont.

Dataset Preprocessing/ROI
Segmentation

Feature
Extraction

Feature Reduc-
tion/Feature

Selection/
Feature Rank-

ing/Organization

Detection Classification Task Outcome *

[112] 20 IVUS
images

Adaptive
thresholding

Priori infor-
mation of

the
acoustic
Shadow

Calcification
detection

Pqspec.: 88
Pqsen.: 84
AUC: 0.87

[113]
2175 IVUS
images of

10 patients

Otsu thresholding +
Morphological

operation +
Empirical threshold

Detection
of calcifica-

tion
boundary

Pqacc.: 82
Pqsen.: 80
Pqspec.: 84
PqPPV: 83

[114] 30 OCT
images DPAE–NN

Binary
(detection
of plaque

and normal
tissues)

AUC: 0.9132
Pqacc.: 93.6

Kappa score: 0.62

[115]

2175 IVUS
image of 10

patients
with 530
calcified

images and
1645

without cal-
cification

Original image
resized and

converted into RGB
CNN architecture ResNet101 NB Calcification

detection

Pqacc.: 99.95
Pqsen.: 99.81
Pqspec.: 100
PqPPV: 100

PqNPV: 99.94

[116]

2175 IVUS
images of

10 patients
Calcified
images:

530
Noncalcified:

1645

Images resized and
converted to RGB

Inception-
ResNet-v2 NB Calcification

detection

Pqsen.: 100
Pqspec.: 95.87
PqPPV: 88.63
Pqacc.: 96.87
AUC: 0.9967

[117] 903 CT
scans ConvNet Calcium

scoring

Cohen’s kappa: 0.95
Precision:77

Recall: 85
Pqacc.: 99

Dice score: 0.81

[118]
CT scans of

20084
individuals

CNN (U-Net)
Assessment
of calcium

score
AUC: 0.74

[119]
8914 IVUS
images of

80 patients
CNN

Calcified
plaque

detection

Average F1 score:
0.67

Average precision:
77

Average recall: 83

[120]
105 IVUS
pullback
dataset

Polar
transformation SVM (RBF)

Calcified
plaque

detection

Pqacc. > 90
Precision: 96

Recall: 93

[121]

713
grayscale

IVUS
images of

18 patients

CNN U-Net architecture

Detection
(media

adventitia,
lumen and

calcium
regions)

Average precision:
73

Pqsen.: 72
Pqspec.: 99

Mean Dice score
function (DSC):
0.67Spearman’s
correlation: 0.92

[122] CTA of 12
patients

Thresholding +
Difference of

Gaussian filter
(DOG)

Fuzzy c
means +
Median

filter

Calcified
plaque

detection

Recall: 94
Precision: 94

[123]
2D axial

CTA
images of

50 patients
U-Net CNN-RNN

model CNN

Segmentation
of coronary

artery
(stenosis

detection)

Recall:95.9
Precision: 97.9

Pqacc.: 96.1

[124]
CTA

images of
30 patients

Hessian matrix+
Thresholding+
Morphological

operations

SVM Stenosis
detection

Average Recall:
94.08

Precision: 88.59

* AUC: Area Under Curve, PqPPV (%): Plaque Positive Predictive Value, PqNPV(%): Plaque Negative Predictive Value, Pqsen. (%): Plaque
Sensitivity, Pqspec. (%): Plaque Specificity, Pqacc. (%): Plaque accuracy, Pqavg.acc. (%): Plaque average accuracy, Precision (%).
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5. Discussion

In this study, we present a systematic catalogue of CAD using ML and DL techniques
for coronary atherosclerotic plaque characterization using various imaging modalities.

5.1. Role of Various Modalities in Coronary Artery Disease

When referenced to invasive CAG, CCTA has sensitivity of 73–99%, specificity of 54–94%,
positive predictive value of 64–92% and negative predictive value (NPV) of 83–100% for
coronary artery disease detection [36,125–131]. For detection of plaque in acute coronary
syndrome, CCTA has good sensitivity and NPV (100% and 100%, respectively) [129]. Two
meta-analyses, comprising 40 studies that compared CCTA with CAG and 41 diagnos-
tic accuracy studies along with five prognostic studies, respectively, showed excellent
pooled sensitivity of 99% and median NPV of 100% [132]. Similarly, a meta-analysis of
nine studies showed a high sensitivity of 96% (95% CI: 93% to 98%), specificity of 86%
(95% CI: 83% to 89%), positive likelihood ratio of 6.38 (95% CI: 5.18 to 7.87) and negative
likelihood ratio of 0.06 (95% CI: 0.03 to 0.10) for CCTA against the reference standard
CAG [28]. For detecting coronary artery disease in the low-to-intermediate risk group, the
diagnostic accuracy improved with more advanced CT scanner models as well as with use
of CT-based fractional flow reserve (FFR). CT FFR is derived using computational fluid
dynamics simulation of the 3D anatomic coronary artery tree model, and is able to inform
on the physiological significance of individual coronary artery stenoses. Using contrast
gradient attenuation along an arterial lesion, CCTA has high diagnostic accuracy (ROC
AUC of 0.88, 95% CI 0.81–0.96, p < 0.001) and sensitivity, specificity, PPV and NPV of 77%,
74%, 67% and 86%, respectively, when referenced against invasive FFR-assessed coronary
artery ischemia [133]. CT-based FFR showed a high specificity of 88% for coronary artery
disease detection in [134]. Two meta-analyses involving studies that compared CCTA with
invasive FFR showed good diagnostic accuracy of CCTA for the detection of functionally
significant stenoses with pooled sensitivity of 92% and 84.6%, and NPV of 84.6% and 87.3%,
respectively [135,136]. Detection of plaque characteristics through CCTA had a sensitivity
and specificity greater than 90% compared to IVUS according to two meta-analyses involv-
ing 75 studies in total [137]. Detection of plaques with a napkin ring sign, which denote
unstable plaque, by CCTA had a sensitivity of 93.8% and NPV of 66.7% when referenced
against invasive IVUS findings [129]. Overall, the literature supports the use of CCTA for
noninvasive diagnostic assessment of coronary artery disease.

5.2. Role of CAD in Coronary Artery Disease

Automatic coronary plaque detection has been studied in 61 manuscripts included in
this review report: 16 manuscripts are based on CCTA, 28 based on IVUS, 16 manuscripts
are based on IVOCT, and one is based on X-ray angiography.

Most studies have implemented classification techniques to categorize image data
sets as either containing plaque, no plaque, or mixed plaque. Different classifiers were
used and the performance metrics of the classifiers reported in terms of outcomes, such
as sensitivity, specificity, AUC, accuracy, PPV, and NPV. The majority of articles reported
sensitivity (30 manuscripts), specificity (24 manuscripts) and accuracy (38 manuscripts) as
performance metrics. Performance parameters such as AUC, PPV, and average precision
were also used to assess performance. Among the classifiers, SVM was found to outperform,
and was implemented in 14 articles [120,124]. The RF classifier [105] and FaIRLiC classifier
were used in some studies. A novel approach using a hybrid classifier containing FFNN,
RF, and AdaBoost was implemented by some authors. Some works focused on plaque
detection, i.e., to determine the presence or absence of plaque. CNN was the most preferred
model for plaque detection (implemented in 23 studies) [104,106,107,110,119,121,123].

In this review, performance outcomes for plaque detection and classification using
ML and DL were compared. In [90], the highest sensitivity of 94.68% was reported for
detection of calcified plaque with acoustic shadowing using a Markov random field and
graph searching algorithm, based on the evaluation of 996 in vivo IVUS images acquired
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from eight patients. Compared with IVOCT, CCTA showed a high sensitivity of 93.2%
when tested on 32 datasets [69]. A high specificity of 98.5% was achieved for automated
segmentation of calcified plaque using a Bayesian classifier for a dataset that comprised
60 IVUS images from seven patients [80]. IVUS outperformed other modalities with an
average accuracy of 98.9% for the classification of atheromatous plaque, which confirmed its
clinical utility in plaque characterization [15]. Furthermore, a PPV of 96.69% was achieved
in coronary and carotid plaque characterization using the SVM classifier implemented
on 2685 IVUS images obtained from 15 patients [99]. 100% sensitivity, specificity, and
accuracy were obtained using a DL approach for detecting calcification in IVUS images in a
dataset that comprised 2175 images acquired from ten patients. The results were obtained
using the ResNet-50, ResNet-101 and Inception-v3 CNN architecture with SVM classifier
and discriminant analysis classifier [2]. Based on the aforementioned findings, IVUS
outperforms the IVOCT and CCTA. CCTA demonstrated better results when compared
with IVOCT, with an accuracy of 99% using CNN [117]. Studies showed that, by using
the CNN ResNet101 architecture for feature extraction and a naïve Bayesian classifier, a
PPV of 100%, accuracy of 99.95%, sensitivity of 99.81%, and specificity 100% were achieved
in for detecting calcification for IVUS images acquired from ten patients [115]. ImageNet
using models ResNet50-v2 and DenseNet121 was used for binary and multiclass plaque
classification in the dataset comprising 4000 images acquired from 49 patients, in which
accuracy of 91.7%, specificity of 92.4% and sensitivity of 90.9% were reported [102].

Supervised learning and a DL algorithm were combined to form a hybrid method
SVM-based CNN algorithm, which effectively characterized the image pixels into plaque
and non-plaque regions. This hybrid model achieved an accuracy of 98.8%, sensitivity
of 100%, and specificity of 98.70% on IVUS images acquired from seven patients [97].
Similarly, CNN and RF were implemented on the IVOCT images of 49 patients for binary
plaque classification, yielding classification sensitivities of 84.8% and 91.4%, and speci-
ficities of 97.8% and 95.7%, respectively, for fibro-lipidic and fibrocalcific plaques [72]. A
hybrid novel image-based classification with an ensemble classifier consisting of FFNN,
RF and AdaBoost showed an increased accuracy of 82.8% compared with other single
classifiers [98]. Figure 4 depicts the performance of all the methods.
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5.3. Research Opportunities and Future Direction

It is observed that many studies in this field are based on IVUS. While invasive tech-
niques are the reference standards for identifying and grading plaques and are helpful for
understanding the underlying etiology of cerebrovascular disease, CCTA has emerged as
the dominant noninvasive modality for studying coronary atherosclerosis. With CCTA, the
identification of vulnerable plaques and their quantification relies on expert interpretation
and is dependent on the degree of the interobserver variability. In addition, CCTA cannot
supplant invasive techniques for more subtle plaque characteristics such as erosion and
neovascularization [31]. While 3D reconstruction of plaque using CT slices would alert the
physician to the presence of coronary artery disease at an early stage, it is advantageous
that the investigator concentrates on hybrid feature extraction techniques when character-
izing plaques using CAD based on CCTA images. There are challenges involved in the
development of efficient CAD to characterize plaque [138–140]. These are discussed in
detail below.

Availability of plaque datasets: Currently there is a lack of datasets that are publicly
available. Most of the CAD are developed based on private datasets with low sample
numbers. Hence, it is difficult to generalize from such analyses. Another challenge is
to develop a large dataset with annotated plaque severity. This process is tedious and
expensive, as it requires the input of expert radiologists. Data imbalance with various
imaging modalities and their levels of severity may cause overfit or underfit of the training
models. In order to handle skewed data, augmentation can be utilized in all modalities.
The collection of more data of the different modalities can be achieved with the help of
collaborative partner hospitals and clinics.

Comparative study on CAD using various modalities: There is a dearth of studies that
have compared different modalities for the development of CAD to characterize plaques.
Hence, a major challenge for researchers is to develop an efficient CAD to identify plaques
using various imaging modalities, such as CCTA and IVUS images of the same patient.
Investigators should concentrate on obtaining an automatic grading system using nonin-
vasive imaging technique such as CCTA. This should then be compared with the expert
grading system to produce a generalized CAD for plaque categorization. Finally, the CAD
should be fast, noninvasive, inexpensive, and accurate, so that it can be used anywhere to
obtain plaque deposition results without the need for expert involvement.

CAD in the assessment of prognosis: Though several CAD are developed to detect
and characterize plaques, none of the studies have reported on prognosis as well as
responsiveness to treatment. Hybrid methods, such as a combination of ML and DL
based approaches, can be further explored to develop CAD that correlates initial plaque
deposition before and after treatment, as well as with long-term clinical outcome.

Generally, physicians or radiologists assess plaque deposition and its grading by using
predefined image frames on IVUS, IVOCT and CCTA, and the results may vary from expert
to expert based on their expertise in the various modalities, hence delaying treatment.
Therefore, the diagnostic assessment of patients is typically performed by tertiary hospitals
that are equipped to obtain and interpret the required images. It is thus difficult for
geographically separated patients to obtain high-level diagnosis and treatment in a timely
manner. In the future, cloud-based wireless healthcare systems can provide improved
diagnostics (please refer to Figure 5). These consist of cloud-based methodologies, wherein
hybrid CAD are available online to process the data. The CT scanner to obtain heart CT
images noninvasively is connected to the cloud through a wireless network. Finally, CT
images are processed and results sent to doctors and patients via mobile phone. This
enables remote coordination of care by doctors of patients suspected of having coronary
artery disease. This will assist in obtaining an overall goal of providing inexpensive yet
high quality diagnostics in the rural areas of developing countries.
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5.4. Limitations of the Study

Some limitations of the study are given below:

1. The present review has been carried out based on manuscripts written in English.
Other language manuscripts were not included during the review process;

2. The current review process included a plaque grading system using various modali-
ties, and analysis of various AI algorithms to develop CAD for plaque categorization.
However, review on grading during plaque deposition and after treatment was not
given substantial consideration;

3. The specific reasons to select the algorithms based on AI were not mentioned. It was
also unclear whether the proposed CAD can improve the survival of patients.

6. Conclusions

This review summarizes both medical and technical manuscripts for plaque character-
ization. A total of 61 medical manuscripts were used to understand the manual plaque
grading schemes with various modalities and 61 technical papers were analyzed to under-
stand the application of AI algorithms in the prediction of plaque deposition, classification,
and detection. These methods were summarized and discussed along with various aspects
of research challenges. Experimental results show that AI algorithms using ML and DL
based methods have merits for identifying plaques, and can be used as a valuable resource
in the medical decision-making process. In the future, these AI methods can be exploited
to achieve better results by addressing future challenges and implementing the AI models
in real clinical trials.
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