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Abstract. Vegetation indices (VIs) are widely used in long-term measurement studies of
vegetation changes, including seasonal vegetation activity and interannual vegetation-climate
interactions. There is much interest in developing cross-sensor/multi-mission vegetation
products that can be extended to future sensors while maintaining continuity with present and
past sensors. In this study we investigated multi-sensor spectral bandpass dependencies of the
enhanced vegetation index (EVI), a 2-band EVI (EVI2), and the normalized difference
vegetation index (NDVI) using spectrally convolved Earth Observing-1 (EO-1) Hyperion
satellite images acquired over a range of vegetation conditions. Two types of analysis were
carried out, including (1) empirical relationships among sensor reflectances and VIs and (2)
decomposition of bandpass contributions to observed cross-sensor VI differences. VI
differences were a function of cross-sensor bandpass disparities and the integrative manner in
which bandpass differences in red, near-infrared (NIR), and blue reflectances combined to
influence a VI. Disparities in blue bandpasses were the primary cause of EVI differences
between the Moderate Resolution Imaging Spectroradiometer (MODIS) and other course
resolution sensors, including the upcoming Visible Infrared Imager / Radiometer Suite
(VIIRS). The highest compatibility was between VIIRS and MODIS EVI2 while AVHRR
NDVI and EVI2 were the least compatible to MODIS.

Keywords: vegetation index, normalized difference vegetation index, enhanced vegetation
index, two-band enhanced vegetation index, continuity, VIIRS, MODIS, band decomposition.

1 Introduction

A variety of satellite sensors routinely observe the Earth’s surface at daily, weekly, and
monthly time periods. Monitoring the Earth’s biosphere is very important for examining land
cover change, agricultural production, natural resource management, and climate change.
Consistent normalized difference vegetation index (NDVI) products, of 20+ years, have been
generated from the multiple series of NOAA Advanced Very High Resolution Radiometers
(AVHRR) at 1 — 8 km [1-2], enabling large scale global and regional studies of vegetation
photosynthetic activity and biophysical properties [3]. Many studies have related the NDVI to
biomass, leaf area index, agriculture and rangeland primary productivity, absorbed
photosynthetically-active radiation, phenology variability, and various meteorological and
ecological parameters [4-12].

In addition to the AVHRR series of instruments, the Moderate Resolution Imaging
Spectroradiometers (MODIS) onboard the Terra and Aqua satellite platforms have routinely
generated vegetation index (VI) products since 2000, at multiple resolutions from 250 m to ~5
km at 8-day, 16-day, and monthly intervals. The VEGETATION instrument of the System
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Pour I’Obervation de la Terre (SPOT-VGT) has provided an NDVI 10-day composite product
at ~ 1 km pixel resolution since 1998. Daily and composited, 1.1 km NDVI time series are
also generated from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS$) that has acquired
global data since 1997. The Visible/Infrared Imager/Radiometer Suite (VIIRS) sensor, to
reside on the future National Polar-orbiting Operational Environmental Satellite System
(NPOESS) satellite series, is tasked to generate VI products at 375 m spatial resolution with 1
day revisit time [13].

The usefulness of NDVI for quantitative long term studies is partly dependent upon the
extent to which various sources of noise associated with view angle differences, soil
background influences, clouds and cloud shadow, atmospheric influences, and topographic
effects may inhibit the detection of surface vegetation changes. In addition, saturation of the
vegetation index (VI) signal in high biomass conditions would also restrict quantitative
vegetation assessments [14-16]. As one of the MODIS biophysical products, the Enhanced
Vegetation Index (EVI) was developed to optimize the vegetation signal by reducing
atmospheric influences and canopy background noise and provide improved sensitivity in
high biomass regions [17]. The MODIS EVI has been found useful in phenology and gross
primary productivity studies over a complete range of biomes [5-7, 9, 18-20].

There have been many studies analyzing the compatibility of NDVI products from new
and advanced sensor systems with the existing long-term NDVI time series data [21-32].
Cross-sensor differences have been found to be dependent on spectral bandpass differences
and atmospheric condition [22-23, 29, 32-33]. Many of these studies have found empirical
cross-sensor linear relationships across sensor datasets, or translation equations, which enable
coupling of two or more NDVI datasets. Some studies have further involved cross-sensor
comparisons of the relationship between NDVI and biophysical variables [34]. Fensholt et al.
(2004) found the dynamic range of the MODIS NDVI was generally much larger than the
AVHRR NDVI, along with more serious saturation issues in MODIS NDVI [35].

By contrast, the compatibility of the EVI across different sensor systems has received
much less attention in cross-sensor continuity studies, despite the potential complementary
benefits of the EVI to the existing long-term NDVI time series, particularly in more densely
vegetated areas where NDVI is largely insensitive. Although MODIS EVI shows greater
sensitivity in high biomass areas, the scientific link between MODIS EVI and AVHRR NDVI
is not straightforward and has not been established. Xiao et al. (2004, 2005) found that EVI
values derived from MODIS and SPOT-VGT yielded similar and consistent phenology
profiles in three different forest biomes in North and South America [36, 37]. Miura et al.
(2008) investigated cross-sensor variations in surface reflectances and NDVI using Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and MODIS data and a
two-band version of EVI from ASTER to MODIS EVI [38]. They found the magnitude of
systematic differences between scene pairs to be largely independent of geographic location,
land cover, and temporal periods.

One important reason for the lower attention placed on EVI sensor continuity is that EVI
can only be applied to sensors with a blue band, and most studies have focused on cross-
sensor comparisons with the AVHRR, in which there is no blue band available for EVI
computation. To overcome this problem, Jiang et al. [39] developed a two-band EVI (EVI2)
exhibiting nearly identical behavior to the EVI when applied to good quality, atmospherically
corrected MODIS data. The EVI2 retains the soil-noise adjustment function as well as
improved sensitivity over high biomass regions, as found in the EVI. Although MODIS EVI
and EVI2 similarities have been tested and validated at local to global scales, cross-sensor
EVI2 studies have generally not been made.

The EVI may be more complex for continuity purposes due to the use of three bands,
compared with the two bands needed for NDVI. The EVI equation may thus require stricter
coherencies among three bands (blue, red, and NIR), rendering it more difficult to translate
across sensor systems [25, 40]. Since the EVI and NDVI are standard Environmental Data
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Records (EDR) to the future VIIRS sensor, it is of great interest to characterize the
compatibilities of the MODIS and VIIRS VIs and their associated blue, red, and NIR
bandpass reflectances.

An excellent method to spectrally characterize VIs across multiple sensors is the use of
hyperspectral data, such as EO-1 Hyperion data, in which sensor-specific bandpasses and VIs
are readily generated for specific scenes and land cover types. EO-1 Hyperion is a pushbroom
hyperspectral sensor with 220, 10-nm bands covering the spectrum from 400 to 2500 nm with
a nominal spatial resolution of 30 m (signal to noise: ~40) [41]. The Hyperion images are
readily convolved into sensor-specific imagery, enabling cross-sensor comparisons of VI
values for identical sensor acquisition, illumination and viewing geometries, atmospheric
condition, spatial resolution, and environmental surface conditions [22].

In this paper we analyzed cross-sensor EVI], EVI2, and NDVI relationships over a series
of course resolution sensor bandpasses, including MODIS, VIIRS, SPOT-VGT, SeaWiFS§,
and AVHRR, using sensor-specific reflectances convolved from EO-1 Hyperion data
acquired over a range of land cover types (grassland, savanna, wetland, riparian, and
rainforest).

2 Materials

- 2.4 Spectfal Response Functions

The normalized spectral response functions of the red, NIR, and blue bandpasses show wide
variations across the five sensors examined here (Fig. 1). The AVHRR has the largest
bandwidth in the 'red' (570 nm to 700 nm), followed by VIIRS, SPOT-VGT, and MODIS,
with the SeaWiFS 'red’ bandpass being the narrowest (Fig. 1a). Besides bandwidths, there are
also center wavelength differences, with SPOT-VGT and SeaWiFS having longer center
wavelengths (~645 nm and ~670 nm, respectively) relative to the others (Fig. 1a).

In the NIR spectral region, the AVHRR also has the widest bandwidth (710 nm to 980
nm) that partly encompasses the red-NIR transitional zone (680 - 780 nm) and a leaf water
absorption region at approximately 940 nm (Fig. 1b). The MODIS, VIIRS, and SeaWiFS
have very similar narrow NIR bands (~840 to 880 nm) that are positioned at slightly longer
center wavelengths. The SPOT-VGT NIR bandwidth is twice that of MODIS, VIIRS, and
SeaWiFS, but considerably smaller than the AVHRR-NIR bandpass (Fig. 1b).

The sensor bandpasses in the blue encompass two disparate wavelength ranges with
minimal overlap between them (Fig. 1c). MODIS and SPOT-VGT have their blue bands
centered at ~465 nm, whereas the VIIRS and SeaWiF$S have blue bands that are centered at
—495 nm. The SPOT-VGT blue band is also much wider than the MODIS counterpart (Fig.
1¢). Thus, the MODIS blue band is distinct from VIIRS, with a slight portion of overlap. It
should be noted that the AVHRR sensor series do not have a blue band.

2.2 Hyperion Image Processing

Three radiometrically-calibrated EO-1 Hyperion (Level 1A) images were used in this study to
represent a range of surface land cover characteristics (Table 1). The three images were
acquired during the 2001 dry season and included evergreen broadleaf Tropical rainforest at
Tapajés (TP); the cerrado biome in Brasilia National Park (BNP); and a transition biome
(rainforest, wetland, grassland, cerrado) within Araguaia National Park (ANP). All three sites
are primary core validation sites for the Large Scale Biosphere and Atmosphere in Amazon
(LBA) experiment. There were minor differences associated with sun/view angles and
atmospheric effects across the three scenes (2.85°5-15.65°S latitude and 48.03°W-56.43°W
longitude). Sensor view zenith angles varied slightly from 2.1° to 4.6°, while solar zenith
angles varied from 38.1° to 49.2°. Aircraft and ground surveys were conducted within 1 week
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of the scene acquisition dates, which found and identified a range of land cover types at .
various locations that corresponded to a total of 520 pixels across the three images used in the
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Fig. 1. Normalized spectral response functions of MODIS, VIIRS, AVHRR, SPOT-VGT, and SeaWiFS
sensors in (a) red, (b) NIR, and (c) blue bands.

analyses described below [22]. In all the three scenes, atmospheric corrections were
accomplished over clear, cloud-free, and low aerosol atmospheres. Pixel size and location
were consistent for all spectrally simulated sensors and their bandpasses, since the convolved
datasets utilized the same pixels at different bandpasses. Thus, in this study we assume all
data are good quality observations with negligible noise and contamination bias, and with VI
variations primarily resulting from cross-sensor spectral bandpass differences. We did not
consider differences in spatial resolutions and atmospheric correction schemes in this study,
which exist in the actual data products.

Top of atmosphere (TOA) radiances from Hyperion were first spectrally convolved into
the bandpasses of MODIS, NOAA-14 AVHRR, NPOESS VIIRS, SPOT-VGT, and SeaWiFS
using their respective spectral response functions. The convolved radiances were
atmospherically corrected with 6S to obtain top of the canopy (TOC) spectral reflectances
[42]. The 6S model corrections were constrained with site-specific atmospheric parameter
values retrieved from available data sources. Total ozone thickness and column water vapor
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contents were extracted from the MODIS daily atmosphere product (MODO08) for the three
study sites [43]. The Tropical atmosphere model was used for the TP and ANP scenes and the

Table 1. Site and Hyperion scene characteristics.

. . Mean Ann. . Sqlar/
Site name Site location Precip. Major Land cover (o jate Vlev.v
/mean elev. T types Zenith
emp.
Angle
Tapajés National 285 S, 2060 mm  Tropical Forest July 30, 381 °
Forest (TP), Brazil ~ 56.43 w 26" C Cultivated Pasture 2001
4.6
/100 m
Riparian Forest
1017 S Tropical Forest .
Araguaia National ’ > 1670 mm Cerrado Woodland July 18, 448 /
Park (ANP), Brazil 50.18 W 126" C Cerrado Grassland 2001 21
/210 m Cultivated Pastures )
Burned Cerrado
Brasilia National % S 1260 mm Iégra;‘;:\fv‘gj;;an g hly 20, 4927/
Park (BNP), Brazil ;1980.(())3mW n1°C Cerrado Grassland 2001 75

mid-latitude winter atmosphere model was used for the BNP scene. The continental aerosol
model with a 100 km visibility (0.1 optical thickness at 550 nm) was used in all three scenes,
as they were all acquired under very clear sky conditions [22]. Local ground elevations of the
three study areas were obtained from GTOPO30, a global digital elevation model (DEM) with
a horizontal grid spacing of 30 arc seconds (~ 1 km) [44].

3 Analysis Methods

We evaluated cross-sensor relationships among reflectances and VIs obtained from the
moderate resolution sensor bandpasses, including the compatibility of the EVI with EVI2.
The EVI and EVI2 have the forms,

EVI or EVI2 = GX Prir ~ Pred , )
L+ prr +C X Pred —C, X Ppie

where Oyg » Pred » 304 Ppie 3¢ the atmospherically or partially corrected surface

reflectances for the NIR, red, and blue bands, respectively, L is the canopy background
adjustment factor, and C,, C, are the coefficients for the aerosol resistance term. The values
of the coefficients are L=1, C;=6, C,=7.5, and G (gain factor) =2.5 for the EVI [17]. For the
EVI2, these are L=1, C;=2.4, C;=0, and G=2.5 [39]. ,

Agreements in reflectances across different sensor bandpasses were first examined using
Pearson's correlation coefficients. The coefficients were computed for all possible
combinations of the five sensors for each of the blue, red, and NIR bands. We further
examined agreements between reflectances as well as Vs across different sensor bandpasses
with regression analysis. A preliminary analysis indicated very strong linear relationships of
these variables and, thus, a simple linear model was used. For this analysis, agreement was
defined as the closeness of the derived slope and intercept values to 1.0 and zero,
respectively. ~Three sets of regression analyses were performed. First, we examined
agreements between VIIRS, SPOT-VGT, SeaWiFS, or AVHRR and MODIS for reflectances
and VIs:

Xg=aX yops +0+&> 2)
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where X is the reflectance or VI of a specific sensor, X viopis is the MODIS counterpart,

and € is the unexplained residual error. Second, agreements between the EVI2 and the EVI
were evaluated for MODIS, VIIRS, SPOT-VGT, and SeaWiFS:
EVI2; =aEVIg +b+e, 3)

where £ is the unexplained residual error.

Cross-sensor differences were also computed and evaluated by subtracting sensor-specific
values (reflectances and Vls) from the corresponding MODIS values. The mean absolute
difference (MAD) between these values from the two sensors was computed as a quantitative
measure of sensor differences;

n
z 'X I - X 2i|
MAD="2—, 4
N
where X1 = reflectances or VIs for sensor (1), X2 = MODIS reflectance or VI and N is the
number of total samples.

We used the empirical linear regression equations (Tables 2 and 3) to evaluate the
feasibility of modeling cross-sensor differences, and computed the Root Mean Square Error
(RMSE) to assess the modeling accuracies of cross-sensor reflectance and V1s. The RMSE is
calculated as:

— G 2
pas = 200 ©

where @ is the predicted value by applying the simple linear translation equation, @ is the
observed convolved value. We also computed the MAD between the predicted and the
observed values (MAD?) as a quantitative measure of the accuracy of using empirical linear
inter-sensor translation equations;

n

>

MAD* =

Xl,.—X2,.‘

(6)
N

where X1is the predicted reflectances or VIs by applying the simple linear translation
equation and X2 is MODIS reflectance or Vls.

The above analysis characterizes cross-sensor VI variations resulting from the combined
effect of differences in spectral response functions in two or three bands. To better
characterize the mechanisms of cross sensor VI differences, we assessed VI spectral
dependencies on the individual red, NIR, and blue bandpasses.

Due to relatively small reflectance deviations between MODIS bands with other sensor
bands (<0.06, see Fig. 2), VI deviations between sensors (AVI = VIsgnsor — Vivopis) can be
closely approximated by an error propagation equation. We employed the following equation
to investigate the contribution of each band to overall VI differences across sensors [45, 46].

V.
AVI: ﬂLApRed +—aﬂ—AleR +iI_ApBlue ’ (7)

ap Red ap NIR ap Blue
The negligible errors caused by the approximation in Eq. (7) are discussed later in section
4.4. Eq. (7) indicates that cross-sensor deviations in VI consist of three band components with
each band component as a product of the individual band deviations between the MODIS

sensor and the other sensor (e.g. A P, ) and the partial derivative of the VI at the average
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reflectance of MODIS and the other sensor (e.g. V7 /0Pgeq )- For a two band VI without a

blue band, the third term in the right hand side of Eq. (7) is zero since the partial derivative on
the blue reflectance is zero. The partial derivatives of EVI, EVI2 and NDVI on reflectances
are listed in Appendix A. The band component deviations were plotted against the overall
cross-sensor VI deviations in order to investigate which bands have the strongest sensitivity
for each VI and sensor bandpass combination. '

4 Results

4.1 Cross sensor reflectance relationships

The cross-sensor reflectance relationships between VIIRS, SeaWiFS, SPOT-VGT, and
AVHRR bandpasses and the respective MODIS band reflectances are summarized in Table 2.
Despite the large bandwidth differences in the red and NIR, and the disparate, non-
overlapping sets of blue bandpasses (Fig. 1), cross-sensor reflectance relationships among
VIIRS, SeaWiFS, MODIS, SPOT-VGT, and AVHRR bandpasses were all linear and highly
correlated over the wide range of vegetation conditions analyzed here (r* > 0.97) (not shown).
However, there were considerable differences in their slopes (0.85 to 1.20) with slight
variations in intercepts (+/-0.01) (Table 2). Slope deviations from the 1:1 line can result in
large differences in cross-sensor VI values, despite strong reflectance correlations.

Table 2. Cross-sensor reflectance translation equations with MODIS using simple linear regression
(n=520, over 3 scenes).

MODIS (x)
Red NIR Blue
Slope 0.981 | 0999 | 1.185
VIIRS Intercept | 0.001 | 0.001 | -0.010
2 0.999 | 0.999 | 0.978
Slope 1.010 | 0.965 | 1.005

Intercept | 0.002 | -0.005 0.004
POT-VGT

SPOT-VG P 0.999 | 0.999 | 0.994
Slope 1.0340 | 0.988 | 1.203
Intercept | -0.004 | 0.001 | -0.013

WiF

SeaWiF's 2 0.99 | 0999 | 0978
Slope 0.846 | 0902 | -

AVHRR Intercept | 0.008 | -0.002 | -

0971 | 0984 | -

" The relationship is Xsensor = aXwonis + b,

MODIS bandpass reflectance relationships in the red and NIR with the corresponding
bands of the other sensors mostly had slopes close to 1, except between MODIS and AVHRR
(slopes of 0.85 and 0.90, respectively). The only other large cross-sensor slope departure from
1, was between MODIS and SeaWiFsS in the red (slope = 1.04).

Cross-sensor NIR relationships were also weakest between MODIS and AVHRR (=
0.98; slope = 0.90), resulting in a 10% negative bias attributed to the very wide AVHRR NIR
bandpass (Fig. 1b). The NIR reflectance values from MODIS were typically greater than the
NIR reflectances from all other sensors with regression slopes generally lower than one, and
intercepts near zero (Table 2).

Blue bandpass reflectance relationships between MODIS and SPOT-VGT exhibited a
slope of one (1.005) and 2 = 0.994, as expected from their similar spectral response functions
(Fig. 1c). Blue bandpass relationships between MODIS with VIIRS and SeaWiFS were
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strongly correlated (r*=0.978), but exhibited strong slope deviations from the 1:1 line (slopes
of ~1.2), which may potentially impact on the three-band EVI values.

4.2 Cross-sensor reflectance deviations

To assess cross-sensor reflectance variations between MODIS with VIIRS, SPOT-VGT, and
SeaWiFS, we plotted cross-sensor differences (Xsensor - Xmopis) Over a range of MODIS
reflectance values (Fig. 2). Reflectance deviations between VIIRS and MODIS were strongest
in the blue and generally negligible in the red and NIR bands (Fig. 2a). VIIRS blue
reflectances were mostly negatively biased, relative to MODIS, and their differences ranged
between -0.01 to + 0.01, with a MAD of 0.004 (Table 4). Over a very narrow range of the
MODIS blue reflectances (0.02-0.03), there were strong MODIS-VIIRS blue deviations, as
shown by the steep slope in Fig. 2a. In contrast, the VIIRS red and NIR reflectance deviations
from MODIS were much lower with a range of variations between -0.003 and +0.004, and
MAD values near 0.001.

In contrast, MODIS and SPOT-VGT reflectance differences were dominant in the NIR
(Fig. 2b). SPOT- VGT red and blue reflectances were slightly higher, while NIR reflectances
were considerably lower than MODIS equivalent reflectances (~5% lower) (Fig. 2b). The
range of NIR deviations varied from near zero to -0.02 with an overall MAD value of 0.0129
(Table 4). The MAD in the blue was similar to that found with the VIIRS (MAD~0.004) (Fig.

2b, Table 4).
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Fig. 2. Sensor reflectance deviations from MODIS reflectance (TOC) using a set of spectrally-
convolved Hyperion images.

Reflectance deviations between the SeaWiFS and MODIS appeared very similar to those
shown between the VIIRS and MODIS with the dominant difference in the blue (Fig. 2c).
The SeaWiFs$ red reflectance deviations (-0.007 to +0.005) were scattered around zero values
(the zero line), with a higher MAD value of ~0.0027, while the SeaWiFS NIR reflectance
deviations were distributed similarly as with the VIIRS, but with mostly negative bias and
higher MAD value of 0.002 (Fig. 2c, Table 4). The blue reflectance deviations were mostly
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negative, with a range between -0.013 to + 0.013, and a larger MAD value (~0.0065) than
found with the VIIRS.

The AVHRR sensor reflectances had the largest deviations from MODIS reflectances in
both the red and NIR, with MAD values of 0.006 and 0.025, respectively. NIR deviations
were particularly pronounced and increasingly negatively biased with increasing NIR
reflectances (Fig. 2d). For a given MODIS NIR reflectance of 0.30, the AVHRR equivalent
NIR reflectance varied from less than 0.01 to as high as 0.05 (16% decrease). The AVHRR
red reflectances were mostly biased positively and showed the highest overall red reflectance
deviations from MODIS.

For average conditions, the accuracy of MODIS reflectances is 0.007 reflectance units or
79 relative errors, which result from errors in calibration and errors of the input parameters
of the atmospheric correction model (6S) including surface air pressure, ozone, water vapor,
aerosol optical depth and aerosol model [47]. The NIR MAD values were larger than the
average accuracy (0.007) except for the VIIRS sensor (Table 4). But the red and blue MAD
values were slightly smaller than the average accuracy (Table 4).

4.3 Cross-sensor VI analysis

All cross-sensor VI relationships (NDVI, EVI, EVI2) showed strong coefficients of
determination values (r* >0.99 in Table 3). Slopes of the cross-sensor relationships, however,
considerably varied and ranged from 0.92 (MODIS-AVHRR) to 1.05 (MODIS-SeaWiFS).
Variations in cross-sensor intercepts were also important and ranged from -0.05 (MODIS-
SeaWiFS) to +0.01 (MODIS-AVHRR).

VI deviations between VIIRS and MODIS were mostly within -0.04 to +0.02, and tended
to go from positive to negative with increasing vegetation (VI values) (Fig. 3a). The greatest
deviation was with the EVI (MAD = 0.012) and least with EVI2 (MAD = 0.003) (Table 4).
There was little bias in the 2-band VIs, while differences between sensor EVI values
increased negatively with increasing EV1. NDVI and EVI2 were better aligned between
MODIS and VIIRS sensors than the EVI (Fig. 3a).

SPOT-VGT VI values were lower than MODIS values for the three VIs, with the highest
differences at intermediate VI values (Fig. 3b). Overall, EVI, EVI2, and NDVI differences

Table 3. Cross-sensor VI translation equations with MODIS using linear regression
(n=520, over 3 scenes).

EVI2Z s,
MODIS (x) %VI).
NDVI | EVI EVI2
Slope 0.979 0.938 0.987 0.963
VIIRS Tntercept | 0.013__| 0.012__| 0.004__| 0.020
7 0999 10998 | 0.999 | 0.997

Slope 1.028 0.989 0.973 0.903
Intercept | -0.047 | -0.017 | -0.017 | 0.024
SPOT-VGT

e 0.999 0.999 0.999 0.994
Slope 1.052 0.972 1.020 0.955
Intercept | -0.023 0.001 -0.005 0.023

SeaWiF

caWiFs P 0.998 10998 | 0999 | 0.997
Slope 0.922 - 0.875 0.914"

AVHRR Intercept | 0.013 - 0.001 0.028"
r 0.996 - 0.997 0.995

The relationship is Xsensor = @Xmopis + b. "EV2spnsor = QEVIspnsor+ b (sensors: VIIRS, SPOT-VGT, and SeaWiFS).
" EVI2yomis = aEVIvoprs + b.
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images.

between SPOT-VGT and MODIS were greater than found between VIIRS and MODIS.
Sensor differences were highest with the NDVI, which exceeded 0.05 units (MAD = 0.030),
while in this case, the smallest differences were found in the 3-band EVI (MAD = 0.021)
(Table 4). This suggests that deviations from individual bands may counteract or buffer one
another.

VI deviations between SeaWiFS and MODIS resembled those between VIIRS and
MODIS for the EVI and EVI2, however, NDVI differences were much larger and biased
toward higher values with SeaWiFS bandpasses, particularly at high NDVI values (MAD =
0.015) (Fig. 3c, Table 4). SeaWiFS EVI deviations were negatively biased, similar to what
was found with VIIRS, an expected result given the similar blue bands of VIIRS and
SeaWiFS. The overall MAD values between SeaWiFS and MODIS were 0.011 (EVI), 0.005
(EVI2), and 0.014 (NDVI). In this case the SeaWiFS and MODIS EVI2 values were more
aligned than the 3-band EVL

VI deviations between AVHRR and MODIS were the largest among all sensors analyzed,
with an overall range of differences between -0.08 and +0.02 (Fig. 3d). Both AVHRR-NDVI
and AVHRR-EVI2 increasingly deviated from MODIS values with increasing vegetation
amounts, and with strong negative biases. Inter-sensor EVI2 deviations were higher than
NDVI, with MAD values of 0.041 (EVI2) and 0.036 (NDVI) (Table 4). The lower AVHRR-
VI values corresponded to the same pattern of lower NIR values between the two sensors
(Fig. 2d). The strong cross sensor differences between AVHRR and MODIS require
corrections for VI continuity purposes and applications, however, the scatter in AVHRR VI
values reveal at least two separate and divergent patterns due to lower vegetated pasture
pixels, suggesting that more than empirical adjustments would be needed to ensure continuity
between MODIS and AVHRR data.

Table 4 summarizes the MAD values, computed from the observed convolved values, and
MAD® values, derived from modeling cross-sensor differences with empirical translation
functions. The MAD? values between MODIS and modeled (predicted) VIIRS and SeaWiFS

Journal of Applied Remote Sensing, Vol. 4, 043520 (2010) Page 10

Downloaded from SPIE Digital Library on 16 Jul 2010 to 128.183.161.39. Terms of Use: hitp://spiedl.org/terms



blue reflectances were greatly reduced, by a factor of 2 (46%) and 4 (29%), relative to actual
MAD values. MAD? values between MODIS and modeled SPOT-VGT NIR reflectances
decreased by over a factor of 8 (12%) relative to actual MAD values. The MAD? values
between MODIS and modeled AVHRR red and NIR reflectances were reduced by 1/3 (67%)
and 2/3 (32%), respectively.

Table 4 Cross-sensor MAD and MAD? before and after the translation and RMSE analyses after the
translation (n=520, over 3 scenes).

MODIS for MAD/Converted sensor for MAD® and RMSE (EVI2 vs. EVD)"
Red NIR Blue NDVI EVI EVI2
MAD 0.0007 0.0010 0.0041 0.0048 0.0118 0.0027 0.0108
MAD* 0.0004 | 0.0009 0.0019 0.0022 | 0.0052 | 0.0018 0.0077
VAR 57 % 90 % 46 % 46 % 44 % 67 % 71%
RMSE 0.0005 | 0.0012 0.0023 0.003 0.0066 | 0.0023 0.0092
MAD 0.0022 0.0129 0.0041 0.0298 0.0207 0.0255 0.0236
MAD? 0.0007 | 0.0015 0.0008 0.0053 0.0042 0.0033 0.0154
SPOT-VGT VAR 32 % 12 % 20 % 18 % 20 % 13% 65%
RMSE 0.0010 0.0019 0.0011 0.0074 0.0054 0.0043 0.0189
MAD 0.0027 0.0020 0.0065 0.0145 0.0108 0.0048 0.0103
MAD* 0.0017 0.0011 0.0019 0.0070 0.0070 0.0033 0.0091

VIIRS

SeaWiFS VAR 63 % 55 % 29 % 48 % 65 % 69 % 88%
RMSE 0.0021 | 0.0014 | 0.0024 | 0.0087 | 0.0093 | 0.0041 0.0110
MAD 0.0055 | 0.0249 | - 0.0356 | - 0.0411 0.0193"
MAD* 0.0037 | 0.0079 | - 0.0097 | - 0.0059 0.0134"

AVHRR VAR 67 % 32% - 27 % - 14 % 69%
RMSE 0.0044 | 0.0094 | - 0.0114 | - 0.0078 0.0156"

MAD is calculated before translation. MAD® and RMSE are derived from the observed value and the predicted value
using the inter-sensor translation equation between a sensor and MODIS, or EVI and EVI2. 'EVI2gnsor =
aEVIsensor+b (sensors: VIIRS, SPOT-VGT, and SeaWiFS). “EVRuopis = aEVIvopis +b. VAR=MAD" /MAD.

We also found large improvements in VI compatibility and continuity between sensor
bandpasses through the empirical cross-sensor reflectance translation equations. Agreement in
VI values between MODIS and VIIRS were improved by ~50% for EVI and NDVI, and by
33% for EVI2. This reduction in VI differences was about the same between MODIS and
SeaWiFS. There were more dramatic reductions in VI differences between MODIS and
SPOT-VGT as well as between MODIS and AVHRR with the application ‘of sensor
translation functions, with NDVI and EVI2 differences reduced by factors of 8 (EVI2) and 4
(NDVI) (Table 4). In all sensor cases analyzed, the modeled EVI2 yielded the least cross-
sensor VI differences. In the case of continuity between EVI and EVI2, their compatibility
was also improved by 10 to 35% through modeled linear translations, with the lowest MAD?
value of 0.008 for MODIS and VIIRS (and lowest RMSE= 0.009) (Table 4).

4.4 Bandpass reflectance component factors

The above VI analyses show that continuity and differences across sensors are a combined
result of individual bandpass influences on the V1. To further assess the factors responsible
for the observed VI differences, we decomposed cross-sensor VI deviations, using Eq. N,
into their individual band component deviations. The sum of component deviations for each
VI and each sensor was first evaluated against the observed VI deviations in order to evaluate
the model error in Eq. (7). All relative errors were less than 0.26%, indicating that VI
deviations can be decomposed into their band components precisely with Eq. (7) (Fig. 4).

4.4.1 NDVI band component deviations (2-band)

The individual bandpass factors responsible for NDVI differences between MODIS and the
other sensors were first examined (Fig. 5). Overall differences in NDVI between VIIRS and
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Fig. 4. The average of percent errors (%) of the modeled VI deviations compared with the observed VI
deviations. Percent error = 100*((modeled VI deviation)-(observed VI deviation)) / (observed VI
deviation).

MODIS were relatively small, within a range of +/-0.010. As seen in Fig. 5a, these
differences were primarily associated with bandpass differences in the red, while NIR
bandpass differences contributed very little to observed NDVI differences. This was
particularly evident over the range where VIIRS NDVI was less than MODIS NDVI (NDVI
deviation<0), in which case red bandpass differences controlled all VI variations (Fig. 5a).

Red sensor bandpass differences also controlled NDVI differences between MODIS and
SeaWiFS, with cross-sensor NIR bandpass differences having a negligible effect (Fig. 5b).
The range of NDVI differences between SeaWiFS and MODIS (+/-0.03), however, was three
times that found between VIIRS and MODIS (+/-0.01), as a result of the more disparate
alignment of red bandpasses between MODIS and SeaWiFs$, relative to MODIS and VIIRS
(Fig. 1a). By contrast, the NIR bandpasses of VIIRS and SeaWiF$ were nearly identical with
each other and matched fairly with that from MODIS (Fig. 1b), hence its insignificant
contribution to observed NDVI differences.

NDVI differences between MODIS and SPOT-VGT ranged from -0.050 to -0.005,
equivalent to the range found between MODIS and SeaWiF$, but in this case, NIR bandpass
differences were primarily responsible for NDVI differences, and red bandpass differences
had only a secondary effect (Fig. 5¢). NDVI values from SPOT-VGT were lower than
MODIS NDVI with both red and NIR bandpass differences additively contributing to lower
SPOT-VGT NDVI values. As shown in Figs. la, b, NIR bandpass differences between
SPOT-VGT and MODIS are much larger than red bandpass differences.

The largest sensor differences in NDVI occurred between AVHRR and MODIS, with a
range of nearly 0.100 (-0.065 to +0.030). For a large range of resulting NDVI differences
(from -0.03 and +0.03), red and NIR bandpass differences showed counteracting influences,
with red bandpass deviations contributing a positive bias of ~0.050 to NDVI differences and
NIR bandpass deviations contributing an offsetting ~0.050 negative bias, thus the very strong
bandpass effects canceled one another (Fig. 5d). At the highest NDVI values, AVHRR-
MODIS NDVI differences became increasingly negative. Furthermore, at the maximum
NDVI difference between AVHRR and MODIS (-0.065), red bandpass deviations no longer
had a positive influence, and both red and NIR additively contributed to the negative bias.

4.4.2 EVI band component deviations (3-band)

The EVI is expected to exhibit more complex sensor bandpass behavior owing to the
differential influences of three bands. EVI differences between the VIIRS and MODIS sensor
bandpasses ranged from -0.035 to +0.015, and were primarily controlled by sensor bandpass
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differences in the blue, which increased with increasing amounts of vegetation (negative EVI
deviation in Fig. 6a). By contrast, NIR bandpass differences had a slight positive bias on
VIIRS EVI values while red bandpass differences resulted in a slight negative bias, with the
influence from both bands nearly constant through the range of vegetation amounts and
conditions analyzed here (Fig. 6a). Thus, the sensor EVI differences were almost totally
attributed to the lack of congruency between the VIIRS and MODIS blue spectral bandpasses
(Fig. 1c), accounting for over 90%, on average, of total observed EVI variations.

A similar pattern of EVI differences was found between SeaWiFS and MODIS, but with a
smaller overall range of differences (from -0.03 to +0.01) (Fig. 6b). Similar to the VIIRS-
MODIS deviations, differences in blue bandpasses between SeaWiFS and MODIS were
primarily responsible for cross sensor EVI differences and such differences became larger
with increasing amounts of vegetation (negative EVI deviation in Fig. 6b). The smaller
magnitudes of red and NIR bandpass deviations had a countering influence on overall EVI
differences, with the red bandpass influencing EVI positively and the NIR bandpass causing a
lower and negative bias on EVI across all vegetation amounts.

Differences in EVI values between SPOT-VGT and MODIS also exhibited a similar
pattern as found with SeaWiFS-MODIS and VIIRS-MODIS, but with an entirely negative
difference range from -0.035 to 0 (Fig. 6¢). With these two sensors, however, there was less
cross-sensor blue bandpass influence contributing to EVI differences, since SPOT-VGT and
MODIS blue bandpass alignments were more similar (Fig. 1c). EVI differences between
SPOT-VGT and MODIS were mostly associated with sensor NIR bandpass differences. Blue
bandpass differences had a positive bias on EVI values and red bandpass differences a
negative bias, thus red and blue bandpass differences countered one another, minimizing their
influence on EVI.

4.4.3 EVI2 band component deviations (2-band)

We found greatly reduced differences in EVI2 values between VIIRS- MODIS and SeaWiF S-
MODIS due to the removal of the blue bandpass in EV12, since it was the 'blue' band that
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accounted for most 3-band EVI cross-sensor differences (Figs. 7a, b). EVI2 differences
between VIIRS and MODIS were considerably reduced to a range of only 0.014, relative to

_ the range in EVI differences (0.050) (Fig. 7a). Both red and NIR bandpass differences,
between these two sensors, similarly influenced the resulting EVI2 values, with a slight
positive and a negative bias for both NIR and red bands. EVI2 differences between SeaWiFS
and MODIS were also reduced, from a range of 0.026, relative to EVI (0.044), however, red
bandpass differences were the primary determinant of EVI2 differences (Fig. 7b).

On the other hand, EVI2 variability between SPOT-VGT and MODIS was slightly
greater, relative to the three-band EVI (Fig. 7c). In this case, the removal of the blue band in
EVI2 did not improve cross-sensor variations, relative to EVI, since NIR bandpass deviations
were the dominant factor responsible for EVI deviations between these two sensors. The
removal of the blue band caused a slightly greater negative bias in EVI2 values, since the blue
band between SPOT-VGT and MODIS had a countering effect to the red band, which thus
helped reduce cross-sensor EVI differences (Figs. 6¢, 7c). We also computed EVI2
differences between AVHRR and MODIS bandpasses and found very large differences
ranging from -0.090 to O (Fig. 7d). This magnitude of differences was of the same order as
NDVI differences, however, in contrast to the red bandpass controls on NDVI variations at
higher vegetation amounts, EVI2 differences were more controlled by NIR bandpass
differences (Figs. 5d, 7d).

In summarizing the variable effect of bandpass differences on cross-sensor VI variations,
we averaged (arithmetic means) the effect of each bandpass deviation factor on observed VI
differences between each sensor and MODIS over the entire range of vegetation amounts
present in this study (Fig. 8). Overall, the differences between VIIRS and MODIS VIs were
the smallest of all sensor pairs analyzed here with negligible variations in NDVI and EVI2
and larger variations in EVI, attributed to the blue band disparities (Fig. 8a).

VI variations between SeaWiFS and MODIS were relatively higher than those between
VIIRS and MODIS, with EVI variations being the greatest due to the strong disparity
between the sensor blue bands (Fig. 8b). Red band differences between SeaWiFS and MODIS
resulted in a considerable positive bias in all of the three VIs, while NIR differences
contributed a smaller negative bias. This resulted in SeaWiFS VI values higher than those of
MODIS, except for EVI where the dominant negative effect of the blue band produced lower
overall SeaWiFS EVI values. Note that the negative blue band bias was partially offset was
the positive red band bias.

Bandpass differences between SPOT-VGT and MODIS resulted in an overall strong
negative bias in all 3 VIs (Fig. 8c). Both red and NIR bandpass differences contributed a
negative bias to SPOT-VGT VI values, with NIR bandpass differences being the most
dominant. Blue bandpass differences positively biased the EVI values, counteracting the
negative bias from the red and NIR bandpass differences, and resulting in lower overall EVI
variations than EVI2 and NDVI variations.

Lastly, observed VI variations between AVHRR and MODIS were the largest of all
sensors analyzed here, with strong negative biases observed in both NDVI and EVI2 (Fig.
8d). The resulting VI differences were almost entirely controlled by NIR bandpass
differences, when averaged across the vegetation conditions analyzed here (Fig. 8d).
Although red bandpass differences were negligible when averaged across the range of
vegetation amounts, they were quite strong over particular vegetation amounts, resulting in
their high standard deviations (e.g. the highest standard deviation occurred with red bandpass
deviations of ~0.035 in NDVI). The strongest overall deviation was found between AVHRR
and MODIS EVI2 values.
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5 Conclusions

In this study we conducted a spectral analysis of empirical cross-sensor relationships in
reflectances and VIs using a series of Hyperion-convolved sensor bandpasses. As expected,
there were strong linear empirical relationships found across corresponding sensor bandpass
reflectances. However, when the highly correlated bandpass reflectances were combined,
considerable cross-sensor VI differences were encountered that could potentially impede
continuity in long-term vegetation studies based on multiple satellite missions. The large
multiple sensor differences in EVI, EVI2, and NDVI were a result of cross- sensor reflectance
deviations in slope and intercept. The application of empirical linear regression translation
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models from one sensor to another would partly remove some of these differences and
improve VI compatibility across sensors by 50% or more. However, we found indications of
land cover and soil dependencies on linear translation equations that may complicate and
localize the use of empirical translation models. Further research on this topic is needed to
assess to what extent cross sensor VI continuity relationships can be generalized.

We also conducted a decomposition analysis of bandpass contributions to observed cross-
sensor VI differences and assessed their combined integrative manner in influencing VI
differences. Disparities in blue bandpasses were the primary cause of EVI differences
between the MODIS and other course resolution sensors, including the upcoming VIIRS. The
highest compatibility was between VIIRS and MODIS EVI2 while AVHRR NDVI and EVI2
were the least compatible to MODIS. We found complex interactions between bandpass
differences and VIs in which individual bandpass differences reinforced or canceled each
others influence on the resulting VI. Furthermore, these effects were VI equation dependent
in addition to their sensor-dependencies.

Even though the EVI provides improved sensitivity in high biomass regions while
minimizing soil and atmosphere influences, cross-sensor VI analysis shows increased
difficulties in constructing long-term multiple sensor EVI records involving three bands. As
found in this study, the EVI2 may achieve greater consistencies across sensors by minimizing
the number of bands from three to two. An AVHRR-based EVI2 product may also improve
upon the AVHRR-NDVT historical record by providing a greenness measure less reliant on
red bandpass differences. :

We conclude that the construction of long-term multiple sensor satellite products need to
consider more than continuity in reflectances, but also the manner in which bandpass
reflectances are combined in the generation of higher order products, including relatively
simplistic VI equations. VI properties should be more thoroughly characterized spectrally to
be better understand the influence of bandpass differences in order to achieve maximum
compatibility for each sensor pair. This becomes especially crucial in using Vs for detection
of climate signals.

APPENDIX A:

A.1 The partial derivatives of Enhanced Vegetation Index (EVI):

BEVI=25 7 Pred — 1-5Pse T1
9Pk (Prir +6Prea =T3P pue +1)°
oEVI =25 7Pnir =75 pie +1
9Prea (Prix +6Prea = T-5Ppue * 1y
oEVI =25 7-5(me - pRed)

9P e (Prir +6Prea = 7-3Ps1e + 1y

A.2 The partial derivatives of Enhanced Vegetation Index2 (EVI2):

EVI2 o 34Puat]
0P (Prtr +24Prea + 1)
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A.3 The partial derivatives of Normalized Difference Vegetation Index (NDVI):
ONDVI _ 2pg.,

ap NIR

(Onig + Prea)’

INDVI 2P

- 2
9Pred (PMR + Prea )
where the reflectance () is the average reflectance of MODIS and other sensors
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