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Abstract 18 

The accurate modelling of landslide risk is essential pre-requisite for the development of reliable landslide control 19 

and mitigation strategies. However, landslide risk depends on the poorly known environmental and socio-20 

economic factors for regional patterns of landslide occurrence probability and vulnerability, which constitute still 21 

a matter of research. Here, a hybrid model is described that couples data mining and multi-criteria decision-making 22 

methods for hazard and vulnerability mapping and presents its application to landslide risk assessment in Golestan 23 

Province, Northeastern Iran. To this end, landslide probability is mapped using three state-of-the-art machine 24 

learning (ML) algorithms – Maximum Entropy, Support Vector Machine and Genetic Algorithm for Rule Set 25 

Production – and combine the results with Fuzzy Analytical Hierarchy Process computations of vulnerability to 26 

obtain the landslide risk map. Based on obtained results, a discussion is presented on landslide probability as a 27 

function of the main relevant human-environmental conditioning factors in Golestan Province. In particular, from 28 

the response curves of the machine learning algorithms, it can be found that the probability 𝑝 of landslide 29 

occurrence decreases nearly exponentially with the distance 𝑥 to the next road, fault or river. Specifically, the 30 

results indicated that 𝑝 ≈ exp(−𝜆𝑥), where the length-scale 𝜆 is about 0.0797 km− for road, 0.108 km− for fault 31 

and 0.734 km− for river. Furthermore, according to the results, 𝑝 follows, approximately, a lognormal function 32 

of elevation, while the equation 𝑝 = 𝑝0 − 𝐾 ∙ (𝜃 − 𝜃0)2 fits well the dependence of landslide modeling on the 33 
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slope-angle 𝜃, with 𝑝0 ≈ 0.64, 𝜃0 ≈ 25.6° and |𝐾| ≈ 6.6 × 10−4. However, the highest predicted landslide risk 34 

levels in Golestan Province are located in the south and southwest areas surrounding Gorgan City, owing to the 35 

combined effect of dense local human occupation and strongly landslide-prone environmental conditions. 36 

Obtained results provide insights for quantitative modelling of landslide risk, as well as for priority planning in 37 

landslide risk management. 38 

Keywords: landslide; hazard; vulnerability; risk; GIS  39 

1   Introduction 40 

Landslides constitute one of the most hazardous natural phenomena, causing live losses and devastating impact 41 

on local infrastructure every year around the globe (e.g., Radbruch-Hall & Varnes 1976; Suzen and Doyuran, 42 

2004a; Suzen and Doyuran, 2004b; van Westen et al. 2005; Guzzetti et al. 2012; Wang et al. 2019; Lato et al. 43 

2019). The development of improved measures for landslide damage control and mitigation relies on the 44 

quantitative assessment of local landslide risk, i.e., the potential degree of personal and material loss due to the 45 

occurrence of damaging landslide events (Chacon et al. 2006; Glade and Crozier,2005a; Glade and Crozier,2005b; 46 

Glade et al. 2005; Guzzetti, 2005; Guzzetti et al. 2012; Varnes, 1984). However, this assessment is challenging 47 

due to the broad range of environmental and anthropogenic factors involved, and because the processes underlying 48 

landslide initiation and dynamics are still poorly understood (de Blasio, 2011; Shanmugam & Wang, 2015; 49 

Achour & Pourghasemi, 2020).  50 

The first step toward a modeling framework for landslide risk assessment consists in estimating landslide-prone 51 

zones based on the landslide occurrence in the area. Therefore, a landslide hazard map, which characterizes the 52 

probability of landslide occurrence in a certain area under consideration of the main local and regional factors that 53 

potentially trigger landslides, is required. To this end, the various potential causative factors must be statistically 54 

evaluated against the background of a local inventory map, which encodes information on the areas affected by 55 

damaging landslides (Brabb, 1985).  56 

 57 

The last decade has witnessed much progress in the modelling of landslide hazard maps, in particular owing to 58 

recent advances in artificial intelligence and its application to remote sensing and geoscientific research 59 

(Yesilnacar & Topal 2005; Pradhan et al. 2010; Erener & Düzgün 2012; Kornejady et al. 2017; Mirzaei et al. 60 

2018; Chen et al. 2017a; Pandey et al. 2020; Vakhshoori et al. 2019). For instance, GIS-based multi-criteria 61 

decision-making approaches, such as Fuzzy Analytic Hierarchy Process (FAHP), have been applied to 62 

identifying areas susceptible to damaging landslides (Ercanoglu & Gokceoglu 2002; Gorsevski et al. 2006; 63 

Gorsevski & Jankowski 2010; Vahidnia et al. 2010; Pourghasemi et al. 2012; Feizizadeh et al. 2013; Tazik et al. 64 
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2014; Roodposhti et al. 2014; Feizizadeh et al. 2014; Zhao et al. 2017; El Bcharia et al. 2019; Roy & Saha, 65 

2019).  Moreover, various machine learning algorithms, including support vector machine (SVM) (Pourghasemi 66 

& Kerle 2016; Youssef et al. 2016; Pandy et al. 2018), Maximum Entropy (MaxEnt) (Park, 2015; Kornejady et 67 

al. 2017; Pandy et al. 2018; Mokhtari & Abedian, 2019), Genetic Algorithm Rule-Set Production (GARP) 68 

(Stockwell, 1999; Rahmati et al. 2019; Adineh et al. 2018) and Random forest (RF) (Goetz et al. 2015; 69 

Pourghasemi & Kerle 2016; Sevgen et al. 2019; Pourghasemi et al. 2020), and also, deep learning techniques 70 

including recurrent neural network (RNN) and Convolution Neural Networks (CNN) (Xiao et al. 2018; 71 

assessing have been applied to  Ngo et al. 2021); Mohan et al. 2020; Bui et al. 2020et al. 2019;  Ghorbanzadeh72 

landslide hazard within a broad range of geographical locations and conditions of soil type, topography, land 73 

use/land cover, climate and anthropogenic influences (for a recent discussion, see Achour and Pourghasemi, 74 

2020). However, the performance of the different algorithms in the computation of spatial landslide probability 75 

distribution is still poorly known. More precisely, as shown in previous studies, the GARP algorithm has good 76 

performance in spatial modeling (Stockman et al. 2006; Sánchez-Flores, 2007; Wang et al. 2010; Adineh et al. 77 

2018). However, this model has been rarely used in landslide studies. Furthermore, the SVM and MAXENT 78 

models have performed very well in spatial prediction of landslides (Park, 2015; Kornejady et al. 2017; Chen et 79 

al. 2017a; Kalantar et al. 2018). Therefore, it is pertinent to evaluate the applicability of these models in the 80 

context of hazard and vulnerability maps. 81 

 82 

 83 

Furthermore, the landslide hazard map must be combined with information on the level of damage associated with 84 

a landslide of a certain type. Specifically, an additional map – the landslide vulnerability map – which describes 85 

the potential landslide damage on local population, property, infrastructure, and public services, is required. This 86 

vulnerability map constitutes the second step toward landslide risk assessment (Guillard-Gonçalves & Zêzere 87 

2018). By suitably combining the vulnerability map with the hazard map, a landslide risk map can be obtained, 88 

which provides a joint probabilistic assessment of damaging landslide occurrence and the concatenated socio-89 

economic impacts (Frigerio & Amicis, 2016; Murillo-García et al. 2017; Guillard-Gonçalves & Zêzere, 2018).  90 

 91 

However, landslide vulnerability mapping constitutes a challenging field of work given its intrinsic social, 92 

environmental, and economical facets. Specifically, both physical vulnerability (i.e., the potential degree of 93 
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damage caused to physical components such as buildings, infrastructure, etc.) and social vulnerability must be 94 

modeled. Indeed, the concept of social vulnerability refers, in a broad sense, to personal injuries and impact of a 95 

damaging landslide on different socio-economical groups, but still lacks common definition (Guillard-Gonçalves 96 

& Zêzere, 2018). Furthermore, various aspects of social vulnerability relate to potential material losses in the 97 

private and public sectors as well, and it is, thus, difficult to mathematically treating social vulnerability by 98 

excluding the physical aspect of vulnerability. 99 

 100 

In the present work, a new method is presented for landslide risk assessment and its application to Golestan 101 

Province in Iran (Fig. 1). This method integrates data mining and decision-making methods, which have received 102 

less attention in previous studies of landslide, to estimate the regional hazard and vulnerability maps, under 103 

consideration of the local landslide inventory, as well as all main relevant human-environmental factors, as 104 

described next. Subsequently, the landslide risk map is obtained by combining the hazard and vulnerability maps, 105 

which allows us to identify and characterize high-risk landslide areas in Golestan Province. Specifically,  106 

 107 

2   Factors for landslide hazard and vulnerability in the study area 108 

Golestan Province lies in Northeastern Iran, within latitude ranges from 36°27′48′′ N to 38°14´56´´ N, and 109 

longitude ranges from  53°40´29´´ E to 56°30´44´´ E (Fig. 1). It has an area of 20347 km2, which comprises 1.3% 110 

of Iran’s territory. Data on landslide positions (440 points) within Golestan Province are available from the 111 

Geological Survey and Mineral Explorations of Iran (GSI). These data were processed using Google Earth images 112 

and field surveys, which led to the spatial distribution of landslide events is shown in Fig. 1. Moreover, images of 113 

landslides within the study area have indicated in Fig. 2.  114 

We remark that one constraint in the type of spatial analysis performed in our work is that the maps associated 115 

with the different input factors are available at distinct scales. This constraint is indeed common to the type of 116 

study considered here, i.e., it is an inevitable constraint in environmental research and is related to limitations on 117 

data availability (Mosavi et al. 2020), as discussed thoroughly in preceding work (Pourghasemi et al. 2013; Hong 118 

et al. 2016; Mokhtari and Abedian, 2019; Mosavi et al. 2020). However, the solution to this constraint consists in 119 

resampling the input variables to the same spatial resolution, which is what we have done in the present work. By 120 

suitably rescaling the input data sets, the computation of the landslide hazard maps in developing countries can 121 

provide a helpful tool in land degradation research. 122 
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 126 
 127 

Fig. 1. Location of the study area, Golestan Province, Iran. The dots on the elevation map (right) denote 128 

landslide occurrence locations obtained from the Geological Survey and Mineral Explorations of Iran (GSI). 129 

 130 

 131 

  

Fig. 2. Images of landslides within the study area (retrieved from Mehrnews, 2020). 
 

Various factors compete to rendering the study area of the present work potentially prone to damaging landslide 132 

events. The average annual rainfall of Golestan Province ranges from 200 mm to 1000 mm. There is a significant 133 

relationship between elevation and rainfall (Dhurmea et al. 2009). Since the elevation of the study area ranges 134 

from -93 meters (below the average sea level) in coastal regions to 3840 meters asl (above the average sea level) 135 

in southern regions, as a result, rainfall changes in the study area are high. The local geology of the study area 136 
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consists of limestones of the Lar and Mozdoran Formation (upper Jurassic age), Quaternary sediment types (Qm 137 

and Qsw), shales of the Sanganeh Formation (Early Cretaceous) and shale and sandstone of the Shemshak 138 

Formation (Triassic-Jurassic). Furthermore, nonprincipled criteria for road construction and land use/land cover 139 

adopted in Golestan Province are some of the human influences affecting landslide hazard in the area. 140 

In particular, forest prevails in the southern and eastern regions, while agriculture and pasture represent the main 141 

types of land use/land cover elsewhere. However, the relevance of the various factors for the spatial distribution 142 

of landslides is poorly known. In the following subsection, the various landslide hazard factors are described based 143 

on GIS and statistical data sets available for Golestan Province. Subsequently, the social-economic factors 144 

controlling landslide vulnerability are specified and discussed. Figure. 3. indicates the methodological flowchart 145 

of this study.  146 

According to flowchart, the major steps of this study are: (1) comparing the machine learning methods of Genetic 147 

Algorithm for Rule Set Production (GARP), Support Vector Machine (SVM) and Maximum Entropy (MaxEnt) 148 

to predict landslide hazard maps, (2) assessing the landslide conditioning factors and the determination of the 149 

most important factors, (3) creating landslide vulnerability map based on the analytic hierarchy process (AHP) 150 

approach, (4) integrating the best machine learning method with MCDM approaches to create landslide risk map 151 

and to characterize the high landslide risk regions.  152 

 153 
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 154 

Fig. 3. The methodological flowchart of the present study 155 

2.1   Landslide hazard factors 156 

To calculate the landslide hazard map for Golestan Province, we follow Ashournejad et al. (2019) and consider 157 

the following main two-dimensional fields: Digital Elevation Model (DEM), soil type, slope-aspect, slope-angle, 158 

geology, distance to fault, land use/land cover (LULC), distance to road, distance to the river and precipitation. 159 

The characteristics of these factors in Golestan Province are described below. 160 

 161 

We note that the maps associated with the factors considered in the study area are not available all at the same 162 

scale. However, we have resampled all maps using the same cell size (30 meter) in ArcGIS, thus allowing us to 163 

overlay the various maps. This scenario resembles, indeed, the situation encountered in previous work, in which 164 

data sets associated with different spatial scales were considered for the computation of hazard maps associated 165 

with landslide and other environmental studies (Adineh et al. 2018; Pourgahsemi & Kerle, 2016). 166 
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 167 

2.1.1   Slope-aspect 168 

Slope-aspect affects local solar radiation and vegetation growth, and has been thus pointed out as important and 169 

effective factor for landslides (Sidle & Ochiai, 2006; Kumar & Anbalagan, 2015). Golestan Province hosts a 170 

mountainous terrain which leads to potentially relevant spatial variability in slope-aspect. Thus, slope-aspect 171 

was considered as potential factor for landslide hazard in Golestan Province. Figure. 4a displays the 172 

corresponding slope-aspect map, prepared and classified on DEM with a cell size of 30 m × 30 m in ArcGIS 173 

10.2.2. 174 

 175 

2.1.2   Slope-angle  176 

Moreover, the angle between the sloping side of a granular soil and the horizontal – i.e., the slope-angle – is one 177 

of the most important parameters for landslide initiation. Wherever this angle exceeds the soil’s angle of maximal 178 

stability against gravitational stresses, the surface relaxes through avalanches in the direction of steepest descent, 179 

thus triggering a landslide (see, e.g., Beakawi Al-Hashemi and Baghabra Al-Amoudi, 2018). However, this angle 180 

of maximal stability, also called angle of repose, depends on frictional and cohesive inter-particle forces that 181 

follow a still poorly known function of various factors, such as particle size distribution, degree of consolidation, 182 

moisture content, particle shape and material (Parteli et al., 2014; Schmidt et al., 2020). Moreover, the modeling 183 

of landslide initiation processes and the role of slope-angle must consider whether the soil is cohesive or not, and 184 

whether the soil is constituted of consolidated materials or rocks. The relationship between the probability of 185 

landslide occurrence and slope-angle is still uncertain (Neuhauser & Terhorst, 2007; Dymond et al. 2006; Demir 186 

et al., 2013). In the present work, the slope-angle map was generated for Golestan Province based on the DEM in 187 

ArcGIS 10.2.2. Figure. 4b shows that the slope-angle ranges from about 0° degrees in the north to approximately 188 71° degrees within the south and east areas of Golestan Province. 189 

 190 

2.1.3   Precipitation 191 

As shown in previous work, the local landslide occurrence probability is strongly correlated with rainfall 192 

(Kawagoe et al. 2010; Althuwaynee et al. 2015). Infiltration and runoff enhance soil instability and saturation 193 

levels, raindrop impacts on sloping granular surfaces constitute an important mechanism of downhill sediment 194 

transport, and rainfall-induced processes may increase landslide hazard over multiple time-scales, for instance by 195 
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affecting moisture content and increasing local slope instability (Hong et al. 2006). In the present work, the 196 

precipitation map of Golestan Province (Fig. 4c) has been calculated based on annual average precipitation data 197 

of 33 rain gauge stations from the Iran Meteorological Organization. According to Fig. 4c, the amount of 198 

precipitation ranges from 200 mm near the borders of coastal regions to 1000 mm near the central region of 199 

Golestan Province (Fig. 4c).  200 

It should be noted that the intensity and variation of rainfall are important aspects in the statistics, in addition to 201 

the mean rainfall. However, recording rain gauge stations and hourly rainfall data would be needed to estimate 202 

the intensity of rainfall. In the study area, the number of recording rain gauge stations (with hourly data) was 203 

limited, so that the analysis of the present work relies on the average rainfall data based on the statistics of rain 204 

gauge stations. Therefore, the present study can be compared to previous work, in which the conditioning factor 205 

associated with rainfall was based on average precipitation data (Aghdam et al., 2017).  206 

 207 

2.1.4   Distance to river 208 

There are three main and consistent rivers in Golestan Province, namely Gorgan River, Qarasu and Atrak rivers 209 

(they are not valleys or streams). Distance to the river may affect landslide hazard, as groundwater flow toward 210 

rivers and water rivers provides an effective mechanism for soil undercutting (Korup et al. 2007; Tang et al. 2011; 211 

Zaruba and Mencl 2014). Previous work has shown that landslides occur often along river sides, and that the 212 

proximity to rivers underwashes hillside slope foot by flood, thus further enhancing landslide hazard (Dai et al., 213 

2001). Figure 4d shows the spatial distribution of distance to the river for Golestan Province, obtained with 214 

ArcGIS 10.2.2. 215 

 216 

2.1.5   Land use/Land cover 217 

Land use/land cover has an impact on soil properties, geology and land cover dynamics, and represents one major 218 

factor for enhancing rainfall-driven landslide occurrence. Human activities of various types are well-known cause 219 

of vegetation cover reduction and increased soil instability, and favor gully and runoff erosion (Fell et al. 2008; 220 

Karsli et al. 2009). Moreover, forest, orchard, rangeland and agricultural lands stand for the land use/land cover 221 

practices with highest impact on landslide occurrence (Ercanoglu & Gokceoglu, 2004). For instance, agricultural 222 

and orchard land use/land cover affect soil mechanics through irrigation processes and alterations in natural 223 

vegetation cover, while forest practices further increase landslide hazard wherever land use/land cover is 224 
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inappropriate, especially near roads (see below). Landsat Operational Land Imager (OLI) images (Landsat 8) was 225 

used to extract the 2019 land use/land cover map for Golestan Province. The supervised classification method of 226 

Maximum Likelihood (ML) was used in ENVI 5.1 software to provide the land use/land cover maps. Finally, land 227 

use/land cover map of the study area was classified into six classes including: urban, bare land, rangeland, forest, 228 

orchard and agriculture (Fig. 4e). 229 

2.1.6   Elevation  230 

Elevation is another important factor for landslide occurrence, since at higher altitudes various phenomena 231 

compete to favor soil instability processes, such as snowmelt, sparse vegetation, enhanced rock weathering and 232 

rainfall (Pachauri, 1998; Dai & Lee, 2002; Catani et al., 2013). Figure. 4f shows the Digital Elevation Model 233 

(DEM 30 meter) of Golestan Province, which has been obtained from topographic maps in 1:25000 scale prepared 234 

by Department of Water Resources Management of Iran (DWRMI). The preparation of DEM map based on topography 235 

map was done in ArcGIS 10.2.2 using "Topo to raster" command. According to Fig. 4f, the elevation of the study 236 

area ranges from -93 meters (below the average sea level) in coastal regions to 3840 meters asl (above the average 237 

sea level) in southern regions. Specifically, negative values of elevation (Z) mean that the Z is below a reference 238 

value (Z= 0) associated with sea level. Persian Gulf is the base level for measuring elevation in Iran. Elevation in 239 

coastal region was -93 meters below the average sea level. 240 

2.1.7   Distance to fault 241 

Fault dynamics cause rock displacement, avalanches, seams and cracks on the soil, thus constituting one major 242 

cause for slope instability (Pham et al. 2018). Landslide occurrence in areas affected by tectonic processes and 243 

seismic activity tends, thus, to increase with proximity to fault. By means of field investigation and remote sensing, 244 

a negative exponential scaling was proposed to quantitatively predict the number of earthquake-triggered 245 

landslides per unit area as a function of the distance to the causative fault (Zhuang et al., 2010). However, this 246 

quantification is difficult because landslide hazard depends on the interplay between prevailing seismic modes, 247 

perturbation magnitude, fore- and aftershock dynamics and the other local environmental factors causative of 248 

landslides.  249 

The study area is placed in Northeast Iran, north of the Eastern Alborz Mountains and east of the South Caspian 250 

block and its lithology consists of limestone, Quaternary sediment types, shales and sandstones. The Khazar and 251 

North Alborz fault zones are the most important faults of the study area. One of the important active fault zones 252 

located in the Golestan province is the Khazar fault zone, including Minoodasht, Behshahr, Sari, and Amol faults 253 
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(Tourani et al. 2021). According to previous studies, the thrusting of the Alborz Mountains towards the south of 254 

the Southern Caspian block occurs along the Khazar fault zone (Axen et al. 2001 and Allen et al. 2003). The active 255 

Khazar fault zone indicates reverse/thrust fault properties and has created many significant earthquakes during 256 

the instrumental period (Tourani et al. 2021). 257 

Figure. 4g shows the two-dimensional field associated with local distance to the next fault within Golestan 258 

Province, which it has been obtained using ArcGIS 10.2.2. 259 

2.1.8   Lithology 260 

Lithology, i.e., the type of rock constituting the soil, affects landslide hazard because some types of rock are more 261 

affected by degradation resulting from water infiltration than others. However, the relationship between lithology, 262 

rock degradation and soil instability is poorly understood. Different geological formations in the Golestan 263 

Province, such as limestone, gypsum, shale and sandstone, which are particularly prone to infiltration-induced 264 

degradation, occur in areas of high density of landslides (Fig. 4h). Furthermore, there are Quaternary sediments 265 

including Qm and Qsw, along the margins of the Caspian Sea. Swamp deposits (Qsw) include gray to brown, 266 

silty, clayey, gravelly sand covered by organic rich, fine to coarse sand and silt. Swamp deposits are found in the 267 

upper reaches of the modern stream valleys, along the margins of the Caspian Sea, and in poorly-drained areas on 268 

the uplands. Along the margins of the Caspian Sea, swamp deposits are up to 15 ft thick and have several feet of 269 

organic silt near the land surface. March deposits (Qm) include light-gray to brown, organic-rich, clayey silt. 270 

These deposits are located along the margins of the Caspian Sea. In general, the thickness of marsh deposits is 271 

less than 10 ft. Table 1 lists the main classes of lithology in Golestan Province. 272 

 273 

 274 

Table 1. Lithology classes in the study area. 275 

Code Lithology Formation Geological age 

Qm Marsh deposits 
- Quaternary 

Ksn Grey to block shale and thin layers of siltstone 
and sandstone Sanganeh Early Cretaceous 

Qsw Swamp deposits - Quaternary 

DCkh Limestone, locally including gypsum Lar & Mozdoran Jurassic 

TRJs Dark grey shale and sandstone Shemshak Triassic-Jurassic 
 276 

2.1.9   Soil type 277 
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Soil type constitutes one main property for hillslope instability. Fine-grained soils, in particular, are less permeable 278 

and more prone to landslides than coarse-grain soils (Lepore et al. 2012; Alkhasawneh et al. 2014), while material 279 

properties and particle chemistry further affect inter-particle frictional forces and soil flowability. Following 280 

USDA soil taxonomy, soil types in Golestan Province can be classified into the following categories:  281 

▪ alfisol – rich in iron, aluminum, moisture and clay  282 

▪ aridisol – dry, poor in organic matter, characterized by slow formation rates   283 

▪ entisol – unconsolidated sediments, in particular sand, clay or volcanic ash 284 

▪ inceptisol – young soils with poorly developed vertical profile  285 

▪ mollisol – deep, fertile soils of soft texture characterizing grasslands 286 

The spatial distribution of the prevailing soil type in Golestan Province is shown in Fig. 4i. It should be noted that 287 

soil type and lithology constitute distinct environmental factors, and there is a significant relationship between 288 

these factors with landslide hazard based on Jackknif test, as shown later in this manuscript. There, it is necessary 289 

to use both factors. We refer to previous work (Van Den Eeckhaut et al. 2012 and Mohammady et al. 2012) which 290 

has used both factors for modeling landslide hazard, such as in the present study. 291 

 292 

2.1.10   Distance to road 293 

Regions within higher proximity to roads are more prone to landslide occurrence due to undercutting- and 294 

overloading-driven processes of mechanical hillslope destabilization (Duman et al. 2006, Lee, 2007, Yalcin, 295 

2008). The effect of roads on landslide hazard is tendentially stronger in developing countries owing to inadequate 296 

drainage system, which further contributes to enhance soil instability. As shown in previous work (Brenning et 297 

al., 2015), landslide hazard near highways may be increased by one order of magnitude, both owing to mechanical 298 

stresses on the base of hillslopes and to the contribution of further types of human interference in nearby areas, 299 

such as grazing.  Moreover, roads cause vertical cuts that increase the pressure on their lower part, thus further 300 

enhancing landslide hazard. Figure. 4j shows the spatial distribution of distance to the road in Golestan Province.  301 
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 302 

Fig. 4. Spatial distribution of the main landslide hazard factors in Golestan Province: a) slope-aspect, b) slope-303 

angle, c) precipitation, d) distance to river, e) land use/ land cover, f) elevation g) distance to fault, h) distance to 304 

road, i) soil type, and j) lithology. 305 

 306 

 307 

2.2   Landslide vulnerability factors  308 

Vulnerability refers to the potential level of devastation caused by a natural hazard of a certain type to society, 309 

infrastructure and properties (Tobin & Montz, 1997). However, vulnerability has no standard definition and must 310 

be characterized under consideration of the type of natural hazard and the various aspects associated with the 311 

human-environmental setting that are relevant for damage characterization. Following considerations of previous 312 
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work (Murillo-García et al. 2017; Guillard-Gonçalves & Zêzere, 2018), finally, the following landslide 313 

vulnerability factors within Golestan Province were identified: urban population density, urban building density 314 

and distance from urban areas to landslide locations (discussed below). 315 

Indeed, the maps associated with the landslide vulnerability factors in the study region are not available all at the 316 

same scale. We share, thus, the challenge met by different authors in previous work dealing with diverse maps, 317 

each with a distinct spatial resolution (Adineh et al. 2018; Pourgahsemi & Kerle, 2016). In the present work, we 318 

have resampled all maps based on the same cell size (30 meter) in ArcGIS, so that the analysis has been performed 319 

using this spatial resolution. 320 

2.2.1   Urban population density 321 

Urban population density is defined as the number of individuals per unit area residing in an urban region. The 322 

larger the population density, the larger the number of individuals subjected to a local damaging landslide, and 323 

the higher, thus, the social vulnerability (Cutter et al. 2003; Uzielli et al. 2008; Kjekstad & Highland; 2009, 324 

Murillo-García et al. 2015). We noted that additional social aspects, such as population distribution and social-325 

economic development, may further affect, to some extent, local landslide vulnerability. However, given that 326 

political and cultural influences do not vary much within Golestan Province, it is reasonable to regard population 327 

density as the main causative factor for social vulnerability in the study area. Population density in Golestan 328 

Province was classified as specified in Fig. 5a and table 2 (data from Iran Statistical Center Organization, 2016).  329 

Table2. Population density in different cities of Golestan Province 330 

City Population  Area(km2) 
Urban population 

density (person/km2) 
Gorgan 480541 1578 305 

Gonbad-e Qavus 348744 4996 70 

Aliabad-e Katul 140709 1100 128 

Aqqala 132733 1842 72 

Kalaleh 117319 1863 63 

Azadshahr 96803 848 114 

Ramian 86210 827 104 

Bandar-e Torkaman 79978 283 283 

Minudasht 75483 663 114 

Kordkuy 71270 856 83 

Gomishan 68773 1281 54 

Galikash 63173 868 73 

Maraveh Tappeh 60953 3097 20 

Bandar-e Gaz 46130 246 187 

Total 1868819 20347 92 
 331 
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2.2.2   Urban building density 332 

Urban building density – the number of buildings per unit area within an urban region – is one major factor for 333 

physical vulnerability. We noted that this vulnerability incorporates potential damage to any physical component 334 

of the private and public sectors, including building distribution. However, if we assume that public-infra structure 335 

and private property represent potential development indicators in Golestan Province, and that these indicators 336 

are correlated with each other to some extent, then it is plausible to adopt urban building density as one quantitative 337 

measure for socio-economic development – and vulnerability. Figure. 5b shows the building density map for the 338 

study area (data available from Iran Statistical Center Organization, 2016). 339 

 340 

2.2.3   Distance from urban area to next landslide location 341 

Because frictional forces cause energy dissipation thus counteracting the sediment transport processes, landslide 342 

vulnerability tends to decrease with distance to landslide areas. By contrast, the closer an urban area is to a 343 

landslide location, the higher the potential level of damage associated with an event of a certain type. Figure. 5c 344 

shows the two-dimensional field corresponding to the distance between the urban regions and landslide locations, 345 

obtained from the Digital Elevation Model of Golestan Province. We noted interurban infra-structure such as 346 

roads and railway could be also incorporated into Fig. 5c, but have not been included in this map given that they 347 

depend on the spatial distribution of urban areas and further reflect regional levels of socio-economic development 348 

that have been already considered in Sections 2.2.1. Therefore, vulnerability factors considered above incorporate 349 

all main aspects controlling potential socio-economic damage of landslides and are, thus, applied for landslide 350 

risk mapping as described next.  351 



16 

 

 

 352 

 353 

Fig. 5. Spatial distribution of the main landslide vulnerability factors: a) urban population density, b) urban 354 

landslide density, and c) distance from urban area to landslide location. 355 

  356 

3   Calculation of the landslide hazard, vulnerability and risk maps 357 

Machine learning algorithms were applied to calculate hazard, vulnerability and risk maps based on the data sets 358 

described in the previous section, as well as the landslide inventory map shown in Fig. 1. To this end, the positions 359 

in the inventory map associated with the 440 landslide events were divided into two groups: Training data, 360 

corresponding to randomly chosen 70% of the landslide positions, and test data, comprising 30% of the 361 

corresponding data set (Pourghasemi et al. 2013; Adineh et al. 2018). Specifically, the first group was employed 362 

in the search for correlation patterns between spatial distributions of landslide events, hazard factors and 363 

vulnerability factors, while the second group was used for testing the obtained relationships in the framework of 364 
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machine learning (Hastie et al., 2017). Based on these relationships, the maps for landslide hazard and 365 

vulnerability were computed, whereupon a landslide risk map for Golestan Province was obtained as described in 366 

the following subsections. 367 

 368 

 369 

3.1   Landslide hazard map using Support Vector Machine, Maximum Entropy and Genetic 370 

Algorithm for Rule Set Production 371 

To obtain the hazard map, we employed and compared the performance of three different machine learning 372 

algorithms for modelling landslide occurrence probability as a function of the conditioning factors specified in 373 

Section 2.1. These methods are described in Sections 3.1.1 – 3.1.3. 374 

 375 

3.1.1 Support Vector Machine (SVM) 376 

Support Vector Machine (SVM) stands for a learning-based data classification method (Vapnik, 1999; Yao et al., 377 

2008; Peng et al., 2014). In the present work, SVM was applied for the first time to compute the hazard map for 378 

the entire Golestan province area. The goal is to divide the study area in classes of landslide hazard (from low to 379 

very high) based on the landslide inventory map and conditioning variables. More precisely, SVM assigns to each 380 

observed landslide location within the training data set one vector in the two-dimensional space, which is then 381 

classified according to a local hazard level, which is determined by the values of all hazard factors at the 382 

corresponding landslide location. Subsequently, the hazard map is computed by subdividing the study area into 383 

classes (clusters) of landslide hazard, each indicating a specific hazard level on the map. The border lines that 384 

separate neighboring classes on the map, which are called hyperplanes. The optimal hyper-plane maximizes the 385 

margin to divide the two categories, e.g., landslide and non-landslide. SVM has this name because each hyperplane 386 

is modeled using linear fitting functions determined from the vectors that lie nearest to it – these vectors are known 387 

as support vectors in the algorithm (e.g., Vapnik, 1999). The optimal hyper-plane can be determined based on the 388 

solution of optimization problem as follows (Samui, 2008): 389 

 390 
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where x is a vector of input space which includes selected conditioning factors, y is a training vector, C and αi 392 

are the penalty factor and lagrange multipliers, respectively. 393 

The training vectors consist of two categories (landslide and non-landslide pixels) are specified by two classes -1 394 

and +1, respectively. The SVM method searches for an optimal hyper-plane which can recognize these two 395 

categories from these training vectors (Samui, 2008).  396 

However, due to non-linearity effects inherent to natural systems, prior to applying classification the domain is 397 

often linearized by means of (kernel) functions. Specifically, the training vectors are mapped into a higher-398 

dimensional space, in which computations can be performed using linear hyperplanes (Kecman, 2005; Hofmann 399 

et al. 2008; Marjanović et al. 2011; Ballabio & Sterlacchini, 2012; Chen et al. 2017a).  400 

In this case, to classify the new dataset based on the SVM approach, the following decision function can be applied 401 

(Samui, 2008): 402 

1
( ) ( ( ) )

n

i i i ji
g x sign y K x x b

=
= +                   (2) 403 

where g(x) is decision function, b is a scalar base, K(xixj) is the kernel function,  404 

Following previous work (Pourghasemi et al., 2013; Lee et al. 2017), we chose a Gaussian (bell-shaped) kernel 405 

function, which is also called Radial basis function (RBF) and has proven to deliver the best classification results 406 

in landslide hazard problems. This kernel function was determined using following equation (Vapnik, 1995): 407 

2( )( ) , 0i jx x

i j
K x x e

 − −=                                   (3) 408 

where γ is kernel width. The SVM model with RBF kernel available was run in openModeller Desktop 1.3.0 (de 409 

Souza Muñoz et al. 2011). 410 

 411 

3.1.2   MaxEnt (Maximum Entropy) 412 

MaxEnt is a data mining method to predict  the occurrence of one event based on maximum entropy (Elith et al, 413 

2011) that approximates the probability distribution of presence data based on environmental limitations (Phillips 414 

et al., 2006). In this model, the occurrence points (X1 to Xm) are used to obtain an unknown probability distribution 415 

( ) (Phillips et al. 2004; Phillips and Dudík, 2008; Kumar & Stohlgren, 2009) and the suitability of each pixel 416 

in the environment is expressed as a function of environmental variables. The maximum entropy model chooses 417 

a probability distribution that is near to reality and has entropy maximization (Phillips et al. 2006; Phillips et al. 418 

2009; Felicísimo et al. 2013). 419 
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In this study, ME model was selected to predict landslide hazard. This model determines landslide occurrence 420 

probability distribution (π) in the set of positions X. The MaxEnt method has shown acceptable accuracy in the 421 

spatial modeling (Convertino et al. 2013; Chen et al. 2017b; Azareh et al. 2019). The objective occurrence 422 

probability at position x is expressed as (Phillips, 2008): 423 

( 1) ( 1) ( 1) ( )
( 1 ) (4)

1( )
P y P x y P y x

P y x
P x

x

= = = 
= = =  424 

where the probability of landslide occurrence is P(y = 1), while |x| is the number of pixels over the study area. 425 

Implementation was accomplished using the software MaxEnt 3.3.3 (Phillips et al., 2006). 426 

 427 

3.1.3   Genetic Algorithm for Rule Set Production (GARP)  428 

GARP is a data mining method based on a genetic algorithm designed to perform ecological modeling (Stockwell 429 

& Noble, 1992; Stockwell, 1999; Townsend Peterson et al. 2007; Adineh et al. 2018; Darabi et al. 2019). The 430 

algorithm was employed in previous spatial modelling (Stockman et al. 2006; Sánchez-Flores, 2007; Wang et al. 431 

2010; Adineh et al. 2018), but its performance in regional landslide probability modelling is still uncertain.  432 

 433 

A genetic algorithm starts with a large set of randomly generated competing solutions to a certain problem, which 434 

are refined over time to converge toward an optimal solution. Indeed, each solution can be regarded as a set 435 

(“chromosome”) of models or parameter values (“genes”), which are iteratively refined by producing new sets of 436 

solutions. Moreover, in the framework of GARP, the solutions represent sets of environmental conditions, such 437 

as rainfall, elevation, climatic conditions, etc., which must be iteratively improved with regard to habitability by 438 

a given species on the basis of an inventory map for species occurrence (Stockwell, 1999; Townsend Peterson et 439 

al. 2007; Zhu et al. 2007; Wang et al. 2010; Boeckmann and Joyner, 2014; Adineh et al. 2018; Darabi et al. 2019).  440 

 441 

In the problem of landslides investigated here, the landslide events stand for the species of the GARP algorithm, 442 

while the landslide inventory map constitutes the set of local observations that are needed to initialize the 443 

computations. The GARP model was run in openModeller Desktop 1.3.0 (de Souza Muñoz et al. 2011) to estimate 444 

the relationship (optimal solution) between spatial distribution of landslide occurrence and hazard factors, thus 445 

leading to the landslide hazard map. 446 

  447 
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3.2   Landslide vulnerability map using Fuzzy Analytical Hierarchical Process 448 

A multi-criteria decision analysis technique was applied to evaluating local potential damage in Golestan 449 

Province, based on the landslide vulnerability factors identified in Section 2.2, i.e., urban population density, 450 

urban building density and distance to landslide location. Since the relative weights of these factors for the 451 

vulnerability map must be known, the method of Fuzzy Analytical Hierarchical Process (FAHP) was applied to 452 

estimate the combined effect of the respective spatial distributions.  453 

 454 

Specifically, the FAHP method, has been described in detail in the literature (Saaty 1977; Carver 1991; 455 

Malczewski 1999; Ohta et al. 2007; Chen et al. 2016; Abay et al. 2019), discretizes the normalized values of each 456 

vulnerability factor to generate fuzzy variables, each allowing for 3 possible “membership” values: 0 (the 457 

minimum), 1 (the maximum) and an intermediate value reflecting the shape of the distribution. Each fuzzified 458 

vulnerability factor can take, thus, one of these membership values at a given location. Thereafter, the fuzzified 459 

factors are combined according to a weight vector, which encodes the relative influences (weights) of the different 460 

factors on the potential level of damage. Thus, a survey of local experts in the geology of Golestan Province was 461 

conducted to estimate the relative influences of the vulnerability factors of Section 2.2. Based on this information, 462 

in the framework of GARP, a comparison matrix encoding the weight ratio of all vulnerability factors is obtained 463 

and combined with the aforementioned fuzzy maps, thus leading weighted fuzzy maps (also called layers) 464 

associated with the different environmental and socio-economical variables. The final vulnerability map is 465 

obtained by overlaying the weighted fuzzy layers, which was accomplished here in the ARCGIS 10.2.2 466 

environment. 467 

It should be emphasized that the AHP-FUZZY method is used in our study, and not the pure AHP method. The 468 

AHP method determines the importance of variables only. However, in our work, each pixel was weighed and 469 

valued based on the fuzzy method, which was applied to the purpose of our work as described in Section 3. 470 

Furthermore, the importance of variables is determined entirely by decision-making methods and experts, and 471 

does not rely on any other method. 472 

 473 

3.3   Landslide risk map 474 

Interpretation of risk in the present work follows Schneiderbauer & Ehrlich (2004). Risk is a function of 475 

vulnerability and hazard (Glade and Crozier, 2005a; Glade and Crozier,2005b; Dewan, 2013). Therefore, local 476 
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landslide risk is obtained here by combining the probability that a landslide occurs at a given location, under 477 

consideration of the conditioning factors (hazard), with the probability associated with a certain level of 478 

devastation caused by a damaging landslide (vulnerability). The landslide risk probability map for Golestan 479 

Province is obtained from the product of the landslide hazard and vulnerability maps, i.e., for every location, the 480 

local hazard is multiplied by the local vulnerability, which gives the local risk (Eq. 5) (Zezere et al. 2008; 481 

Remondo et al. 2008; Dewan, 2013).  482 𝑅𝑖𝑠𝑘 = 𝐻𝑎𝑧𝑎𝑟𝑑 × 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦                   (5)  483 
The obtained landslide risk map is a quantitative and probability map (Hervas & Bobrowsky, 2009 and Corominas 484 

et al., 2014). 485 

Therefore, the purpose of this study is to model landslide risk in Golestan Province. Risk encodes the 486 
information on both hazard and vulnerability. Hazard is more related to environmental factors (slope, aspect, 487 
elevation, etc.), while vulnerability is related to socio-economic factors, such as building density and population 488 
density. A region may have high landslide hazard while being not socio-economically vulnerable, or vice versa. 489 
Therefore, both vulnerability and hazard should be considered together for risk analysis. Therefore, the machine 490 
learning tools and environmental factors are used to prepare the landslide hazard map, but socio-economic 491 
factors and the decision-making method (FAHP) were applied to prepare a vulnerability map. Finally, our 492 
analysis leads to a hazard and vulnerability map, as discussed next. After predicting the Hazard map and 493 
preparing the Vulnerability map, the Risk map is calculated through the raster calculator tools in the ArcGIS 494 
environment based on Eq. (5) 495 
3.4   Model performance evaluation 496 

In this study three metrics, comprising: threshold-independent area under curve (AUC) of the receiver–operator 497 

characteristic curve (ROC), True Skill Statistic (TSS), and Accuracy (or efficiency), were used to evaluate the 498 

performance of landslide hazard models (Pontius & Schneider, 2001; Lee and Park, 2013; Shabani et al.2018; 499 

Rahmati et al. 2019; Dodangeh et al. 2020). These metrics have been broadly applied for the evaluation of machine 500 

learning models (Allouche et al., 2006; Wang, 2007; Rahmati et al. 2019). 501 

 502 

 Accuracy shows how well a test accurately identifies or excludes a condition and it is obtained by Eq. (6), where, 503 

FP is false positive, FN is false negative, TP is true positive, and TN is true negative. TP and TN are the number 504 

of pixels that are accurately classified while FP and FN are the numbers of pixels incorrectly classified (Beguería, 505 

2006; Manfreda et al., 2014; Bui et al., 2016). 506 

The True Skill Statistic (TSS) was calculated by Eq. (7) based on the sum of sensitivity (Eq. 8) and specificity 507 

minus 1 (Eq. 9). (Allouche et al., 2006 Shabani et al.2018; Dodangeh et al. 2020). TSS value varies from −1 to 508 

+1, where -1 demonstrates predictive capabilities of not better than a random model, 0 demonstrates an 509 

indiscriminate model and +1 a perfect model (Allouche et al., 2006).  510 
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The area under the receiver–operator characteristic curve (AUROC) provides a measure of model accuracy in 511 

predicting landslide occurrence (Gorsevski, 2006). The range of possible AUC values lies in the interval [0, 1], 512 

where values of AUC close to 1 indicate high model performance (Yesilnacar, 2005; Pearce & Ferrier, 2000; 513 

Fielding & Bell, 1997; Philips, 2004; Wang, 2007; Frattini et al. 2010). 514 

 515 
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4   Results  520 

4.1   Landslide hazard map  521 

Figure. 6 shows the landslide hazard maps obtained with the algorithms discussed in Section 3.1, i.e, MaxEnt, 522 

SVM and GARP, by classifying hazard levels as low, moderate, high and very high. Moreover, Figure. 7 displays 523 

the results from AUC ROC statistics (see Section 3.4) on the accuracy of the different algorithms. As can be seen 524 

from Fig. 7 and table 3, the MaxEnt model delivered the best performance (AUC = 92%, TSS=82.3%, 525 

Accuracy=87.5%), followed by SVM (AUC = 81%, TSS=73.6%, Accuracy=78.3%) and GARP (AUC = 74%, 526 

TSS=66.8%, Accuracy=71.6%). Therefore, the results of MaxEnt were used to prepare landslide risk. 527 

 528 
Table 3. Predictive performance of models using three evaluation statistics 529 

 530 

GARP SVM MaxEnt Statistics 
74 81 92 AUCROC (%) 

71.6 78.3 87.5 Accuracy (%) 

66.8 73.6 82.3 TSS (%) 
 531 

It is interesting to note that previous work also revealed slightly superior performance of MaxEnt for different 532 

applications, compared to other models (Phillips et al., 2006; Hong et al., 2016; Park, 2015; Kornejady et al., 533 

2017). Various reasons for this behavior have been suggested, in particular the fact that MaxEnt incorporates an 534 

explicit regularization mechanism to avoid overfitting while modeling the spatial distribution of event occurrence 535 

directly, without relying on assumption of absence locations (Phillips and Dudík, 2008). However, as can be seen 536 
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from the hazard maps in Fig. 6, despite the differences in model accuracy, all 3 algorithms (MaxEnt, SVM and 537 

GARP) associate the mountainous east, south and southwest areas of Golestan Province with the highest levels of 538 

landslide probability. This result is interesting, considering that these areas are characterized by complex 539 

topography, steep slopes and relatively high rainfall, and given the potential impact of local human interferences 540 

in the area (see Section 5.1). 541 

 542 

Fig. 6. Landslide hazard maps obtained for Golestan Province with the different machine learning algorithms 543 

considered in the present study: (a) Maximum Entropy (MaxEnt), (b) Support Vector Machine (SVM) and 544 

Genetic Algorithm for Rule Set Production (GARP). 545 

 546 
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 547 

 548 

Fig. 7. Receiver operating characteristic (ROC) curves of MaxEnt, SVM and GARP algorithms in the landslide 549 

hazard mapping for Golestan Province. 550 

 551 

 552 

4.2   Landslide vulnerability map 553 

The results showed that the factor urban population density is the most significant vulnerability factor for Golestan 554 

Province, followed by urban building density and distance to landslide location. The normalized weights of the 555 

different factors in the framework of FAHP are shown in Fig. 8. Moreover, the consistency of the comparison 556 

matrix associated with these weights is assessed by a FAHP index called consistency ratio (CR). The smallest the 557 

value of CR, the higher the consistency of the comparison matrix (Leung and Cao, 2000). As can be seen in Fig. 558 

8, the value of CR obtained here is significantly smaller than 10%, thus indicating acceptable consistency of the 559 

decision-making process applied.  560 

 561 

Fig. 8. Normalized weights of the vulnerability factors obtained in the framework of the FAHP computations. 562 
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 563 

 564 

Based on the results of Fig. 8 and the spatial distributions of the vulnerability factors (Fig. 5), the landslide 565 

vulnerability map was obtained. Finally, this map was categorized into four classes (Fig. 9), i.e., low, moderate, 566 

high, and very high vulnerability, which encompass 25.43%, 49.56%, 15.93%, 9.07% of the study area, 567 

respectively. According to Fig. 9, the areas of highest landslide vulnerability are located in the south and southwest 568 

of Golestan Province.  569 

 570 

Fig. 9. Landslide vulnerability map obtained with FAHP for Golestan Province. 571 

 572 

 573 

4.3   Landslide risk map 574 

The landslide risk probability map (Fig. 10a) obtained from the product of the vulnerability and hazard maps and 575 

then was classified into four classes: low, moderate, high, very-high risk, corresponding to 72.47%, 17.37%, 576 

7.85%, and 2.29% of the study area, respectively (Fig. 10b). According to this figure, the regions of highest 577 

landslide risk are the south and southwest regions of Golestan Province. We remark that our results are based on 578 

the landslide risk probability map (between 0 and 1), i.e., a quantitative map. Subsequently, we applied a 579 

classification to the results of this quantitative map to produce a new qualitative map. The landslide risk 580 
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probability map is shown in Fig 10a. We further note that the output of GARP model had the highest correlation 581 

with soil map compared to other two models. Based on GARP model, the most hazardous areas in terms of 582 

landslide were located in all soil types except aridisols. Therefore, the output of GARP model is more accordance 583 

with soil map. Moreover, the MaxEnt model had the best performance and therefore the results of ME were used 584 

to prepare landslide risk (risk=hazard *vulnerability). The respective roles of the various environmental factors 585 

are discussed in the next section in the light of our results. 586 

 587 

 588 
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 589 

Fig. 10. Predicted landslide risk map of Golestan Province. 590 

 591 

5   Discussion 592 

The goal of this study is to construct a landslide risk map for Golestan Province, which can be used by the local 593 

government to identify the regions of highest landslide risk. Since a region may have high landslide hazard but 594 

little vulnerability to landslide damage (and vice-versa), the risk map produced here incorporates both hazard and 595 

vulnerability maps (Schneiderbauer & Ehrlich, 2004; Dewan, 2013; Zezere et al. 2008; Remondo et al. 2008). In 596 

the following paragraphs Fig. 10 was analyzed by discussing the role of the various human-environmental factors 597 

on landslide hazard and vulnerability in Golestan Province. 598 

5.1   Relative influences of the landslide hazard factors in Golestan Province  599 

To shed light into the relative influences of the different hazard factors, it can be referred to the Jackknife test 600 

results from the MaxEnt model, which are displayed in Fig. 11. In the framework of this test, the model is run 601 

with only one hazard factor at a time (under exclusion of all other factors), thus leading to the ROC AUC values 602 

denoted by the blue bars in Fig. 11. Moreover, the green bars in Fig. 11 correspond to the ROC AUC values from 603 

the complementary model, i.e., in which one of the factors at a time has been excluded from the model.  604 

 605 
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According to Fig. 11, MaxEnt identified the factors elevation, precipitation, soil type, lithology, land use/land 606 

cover and distance to river as the most relevant ones for landslide hazard in Golestan Province – all these factors 607 

have been associated with AUC > 0.7, close to the total AUC = 0.89 (red bar in Fig. 11). Moreover, according to 608 

Fig. 11, the factor slope-aspect is closest to the worst possible AUC (0.52) and has, thus, the lowest relevance, 609 

while the factors slope-angle, distance to road and distance to fault have comparable, intermediate impact on 610 

landslide hazard in the study area. 611 

 612 

Furthermore, to better understand the functional dependence of landslide hazard on the conditional variables, it 613 

can be referred to the respective response curves displayed in Fig. 12. Each subplot in Fig. 12 shows the variations 614 

in the logistic prediction of landslide hazard as a function of the selected variable, under the constraint that the 615 

values of all other factors are considered constant and equal to their average. The response curves are briefly 616 

discussed in the next subsections.  617 

 618 

5.1.1   Elevation 619 

As shown in Fig. 12a, the response of landslide modeling to elevation displays two regimes, which are separated 620 

by an intermediate range of relatively constant susceptibility between 200 m and 1000 m. In regime I (𝐻 ≲ 200 621 

m), predicted landslide occurrence probability 𝑝 increases with elevation 𝐻, but in regime II (𝐻 ≳ 1000 m), a 622 

negative correlation is observed.  623 

 624 

We propose that decreased human presence and interferences at high altitudes contribute to the behavior observed 625 

in Fig. 12a. In particular, the sparse vegetation cover and the concatenated changes in land use/ land cover practice 626 

may contribute to reducing landslide probability at high altitudes. Furthermore, the lower infiltration rates 627 

associated with high elevation levels are associated with lower soil saturation (Salarian et al. 2014), thus 628 

contributing to decreasing landslide hazard. Moreover, snow precipitation may provide one further slope 629 

stabilizing agent at high elevations, although this process is still poorly understood.  630 

 631 

We find that a logarithmic function, i.e., 632 

𝑝 = 𝑎𝐻 ∙ exp {− 12 ∙ [ln(𝐻) − 𝑏𝑐 ]2} ,       (10) 633 
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describes reasonably well the response curve of landslide occurrence probability 𝑝 as a function of elevation 𝐻 634 

Golestan Province (see Fig. 13a). The best fit to the data using Eq. (10), with 𝐻 in km, yields 𝑎 ≈ 0.58 km, 𝑏 ≈635 0.18 and 𝑐 ≈ 0.83, with correlation coefficient 𝑅2 ≈ 0.96. We note that this logarithmic function describes well 636 

the rapid increase of the susceptibility 𝑝 with elevation in regime I, and the much slower decrease in regime II. 637 

Moreover, the value of 𝑎 ≈  0.58 km is well within the intermediate range (200 ≲  𝑥 ≲  1000) separating both 638 

regimes as estimated above. Future research is thus necessary to shed light on the values of 𝑎, 𝑏 and 𝑐 as a function 639 

of regional conditions. 640 

5.1.2   Precipitation 641 

Figure. 12b shows that landslide probability increases with increasing precipitation up to 850 mm, which suggests 642 

prevailing influence of streamflow-induced, downhill sediment transport processes in this regime. However, 643 

according to Fig. 12b that landslide probability decreases for precipitation levels higher than 850 mm. We interpret 644 

this behavior as result of increased saturation associated with such high precipitation levels, thus enhancing 645 

resistance of local lithology to water erosion and increasing soil stability in the corresponding areas.  646 

5.1.3   Slope 647 

Moreover, our results indicate the existence of an optimal slope of about 25° for landslide occurrence (Fig. 12c). 648 

Under high enough levels of gravitational stresses, the soil surface relaxes through landslides in the direction of 649 

steepest descent (Neuhauser & Terhorst, 2007; Dymond et al. 2006). As shown in Fig. 12c, this behavior dictates 650 

landslide probability trend in the regime of small slopes below the threshold of approximately 25° (denoted here 651 

regime I). However, the opposite trend is observed for larger slopes (regime II). We find that the dependence of 652 

response curve on slope-angle can be approximately described by the following equation: 653 

 654 𝑝 = 𝑝0 − 𝐾 ∙ (𝜃 − 𝜃0)2,        (11) 655 

 656 

where 𝑝 denotes the predicted probability of landslide occurrence, 𝜃 is the slope-angle in degrees, 𝑝0 is the value 657 

of 𝑝 at 𝜃 = 𝜃0, which separates regimes I and II above, and 𝐾 is constant that has units of degrees−. The best fit 658 

to the data using Eq. (10) gives 𝑝0 ≈ 0.64, 𝜃0 ≈ 25.6° and |𝐾| ≈ 6.6 × 10−4, with correlation coefficient 𝑅2 ≈659 0.96 (see Fig. 13b). 660 

 661 
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It is interesting to note that Demir et al. (2013) also found a peak in the landslide hazard for a slope-angle 𝜃0 of 662 

approximately 25° at North Anatolian Fault Zone at Kelkit Valley, Turkey. As discussed by Abedini et al. (2014), 663 

geological formations on higher slopes are often associated with harder materials, which are less permeable and 664 

more resistant to gravitational stresses. Moreover, we note that, since various types of loose sediment have angle 665 

of repose in range 20° – 35°, terrain slopes exceeding this range provide rather unfavorable conditions for long-666 

term deposition of deep granular layers, thus potentially contributing to decreasing levels of gravitational stress 667 

accumulation and landslide probability on slopes much steeper than 25°.  668 

 669 

5.1.4   Aspect  670 

The relationship between the slope-aspect and predicted landslide occurrence probability is shown in Fig. 12d. As 671 

can be seen from this figure, landslide hazard is highest in the north aspect (350°), which can be understood by 672 

increased heat absorption and higher humidity levels associated with this aspect (Fig. 12d). Enhanced landslide 673 

hazard for slopes facing north and northeast was also found by Demir et al (2013) in the North Anatolian Fault 674 

Zone at Kelkit Valley, Turkey. Indeed, soil response to atmospheric events depends on slope facing direction, 675 

which influences local precipitation, solar radiation and freeze-thaw processes and is thus an important component 676 

in the landslide hazard map (Demir et al. 2013). However, our results indicate that aspect has the smallest influence 677 

on landslide hazard in Golestan Province (see Fig. 11). 678 

 679 

5.1.5   Lithology 680 

As shown in Fig. 12e, the lowest values of landslide hazard as a function of lithology are associated with Qm 681 

(swamp and marsh) and Qsw (swamp) types, i.e., wetlands corresponding to saturated areas and relatively stable 682 

soil conditions with respect to landslide. Moreover, our results are consistent with previous observations that 683 

DCkh (limestone, locally including gypsum) and TRJs (dark grey shale and sandstone) formations are more prone 684 

to landslide occurrence (Ohlmacher, 2000), which is reflected in the high values of landslide hazard obtained from 685 

the model (Fig 12e). 686 

 687 

5.1.6   Land use/Land cover 688 

The results from the MaxEnt Jackknife test (Fig. 11) suggest land use/land cover as the main anthropogenic factor 689 

for landslide hazard in Golestan Province. Moreover, Fig. 12f shows that orchard and forest are the types of land 690 
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with highest influence on landslide hazard. We expect orchard to substantially affect soil conditions and stability 691 

through multiple human interferences, such as irrigation. Furthermore, from Fig. 4e and Fig. 6, we see that forest 692 

areas occur within the regions associated with the highest landslide hazard levels. Indeed, forest areas are 693 

associated with high infiltration levels and have been largely affected by unprincipled road construction, which 694 

further contributes to increasing soil instability (Reichenbach et al. 2014; Leventhal & Kotze, 2008). Figure. 12f 695 

shows that land use/land cover types agriculture, urban and rangeland lead to similar values of landslide 696 

probability, which are nearly twice as large as on rock areas. These results clearly indicate the substantial effect 697 

of land use/land cover on landslide hazard and provide a basis for future considerations on land use/land cover 698 

practices in Golestan Province with regard to landslide control and mitigation. 699 

 700 

5.1.7   Soil type 701 

As expected, Fig. 12g shows that aridisols, consisting of stony clays and silts of slow formation rates and low 702 

degree of erodibility, lead to the lowest values of landslide hazard. By contrast, alfisols, mollisols and inceptisols 703 

are associated with higher landslide hazard (Fig. 12g), owing to their fine texture and high permeability levels, 704 

and given their suitability for land use/land cover.   705 

 706 

5.1.8   Distance to the fault, distance to the river, distance to the road 707 

As can be seen from Figs. 12h, 12i and 12j, landslide hazard tends to be consistently smaller the larger the distance 708 

to the next fault, river or road. Indeed, it is well known that the amplitude of a given seismic event decreases non-709 

linearly with distance from the origin – this behavior is reflected by the dependence of landslide modeling on 710 

distance to fault in Golestan Province (Fig. 12h). Zhuang et al. (2010) found that the occurrence rate of earthquake-711 

triggered landslides in Beichuan County, China, decreases exponentially with distance to fault. From the data of 712 

Fig. 12h, we find that the exponential decay describes approximately the response curve of landslide modeling 713 

with distance to fault, as shown in Fig. 13c. Moreover, this figure further shows that the exponential law adjusts 714 

reasonably well predicted hazard as a function of distance to river and distance to road. Specifically, the equation 715 

used to fit the data in Fig. 13c reads, 716 

 717 𝑝 = exp(−𝜆𝑥),                         (12)  718 

 719 
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where 1/𝜆 denotes a characteristic length that dictates how fast the hazard decreases with distance 𝑥 from the 720 

road, river or fault. The best fits to the data in Fig. 13c using Eq. (12) yield 𝜆road ≈ 0.0797 km− for road (𝑅2 ≈721 0.83), 𝜆fault ≈ 0.108 km− for fault (𝑅2 ≈ 0.94) and 𝜆river ≈ 0.734 km− for river (𝑅2 ≈ 0.95). The 722 

characteristic decay lengths read, thus, 1 𝜆road⁄ ≈ 12.5 km, 1 𝜆fault⁄ ≈  9.3 km and 1 𝜆river⁄ ≈ 1.4 km, 723 

respectively. Therefore, our results suggest that landslide hazard decreases the slowest with distance to the next 724 

road, compared to distance to the next river or fault.  725 

 726 

 727 

Fig. 11. Results of Jackknife test to estimate the relative influence of the various hazard factors in MaxEnt. Blue 728 

bars denote the AUC-ROC obtained with only one factor at a time (under exclusion of all other factors), the 729 

green bars give the complementary information and the red bars indicate the total AUC-ROC for MaxEnt. 730 

 731 

 732 

 733 

 734 
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 735 

Fig. 12. Response curves of landslide modeling to the conditioning variables as predicted with MaxEnt 736 
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Fig. 12. continued 739 
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 771 

Fig. 13. Predicted landslide hazard 𝑝 as a function of (a) elevation, (b) slope-angle, and (c) distance to roads, 772 

faults and rivers. Dashed and dotted lines denote data from the hazard map, while continuous lines denote best 773 

fits using Eqs. (10), (11) and (12) for subplots (a), (b) and (c), respectively. The values of the parameters obtained 774 

from these fits read: (a) 𝑎 ≈ 0.58 km, 𝑏 ≈ 0.18 and 𝑐 ≈ 0.83 (𝑅2 ≈ 0.96); (b) 𝜃0 ≈ 25.6°, 𝑝0 ≈ 0.64 and |𝐾| ≈775 6.6 × 10−4 (𝑅2 ≈ 0.96), and (c) 𝜆road ≈ 0.0797 km-1 (𝑅2 ≈ 0.83), 𝜆fault ≈ 0.108 km-1 (𝑅2 ≈ 0.94) and 776 𝜆river ≈ 0.734 km-1 (𝑅2 ≈ 0.95). 777 

 778 

 779 

 780 

 781 

 782 

 783 
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5.2   Vulnerability and risk: implications for landslide control and mitigation strategies 784 

The results discussed in the previous section yield new insights about landslide hazard as a function of the 785 

anthropogenic and environmental conditioning variables. For instance, from the considerations above, 786 

recommendations can be derived for road construction with regard of the distance to populated areas, while 787 

optimization strategies for land use/land cover changes can be developed to decreasing the impact of 788 

anthropogenic influences on landslide initiation.  789 

 790 

However, because risk encodes both landslide probability and the associated level of damage, knowledge of the 791 

spatial distribution of vulnerability is required to improving risk management. By combining the hazard map (Fig. 792 

6) with the vulnerability map (Fig. 9), as described in Section 3.3, it is found that the south and southwest areas 793 

of Golestan Province are associated with the highest landslide risk levels. These regions encompass Gorgan city, 794 

the center of Golestan Province, and have, correspondingly, particularly high urban population and building 795 

density. Risk in Golestan Province has been assessed high throughout the entire region of very high landslide 796 

hazard, i.e., from southwest to the east (compare Figs. 6 and 10), but the area of highest risk level is located in the 797 

southwest – the location of Gorgan city. The risk level distribution in Fig. 10 provides governmental agencies and 798 

stakeholders, thus, with more appropriate information to guide priority plans for landslide mitigation in Golestan 799 

Province. 800 

5.3   Final remarks and outlook 801 

Summarizing, risk is function of vulnerability and hazard. Vulnerability is related to socio-economic factors, while 802 

hazard is related to environmental factors. In previous work (Mokhtari et al. 2020), risk was modeled by 803 

considering hazard only, thereby incorporating environmental factors, but ignoring vulnerability factors. By 804 

contrast, here we considered both vulnerability and hazard to compute the landslide risk map for Golestan 805 

Province. Firstly, we obtained the landslide hazard map based on the environmental factors (slope, elevation, etc.) 806 

and landslide occurrence observation points. Subsequently, we calculated the landslide vulnerability map based 807 

on socio-economic factors (population density, etc.), and obtained the landslide risk map from the combination of 808 

both landslide hazard and landslide vulnerability maps. 809 

 810 

It should be noted that including landslide size and duration in our statistics would greatly improve the assessment 811 

of landslide distribution. However, unfortunately, in the study area considered in our work, the statistics of the 812 
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extent of sliding and the time of the occurrence of the landslides is not available. Furthermore, our goal in this 813 

manuscript is to provide an estimate of landslide occurrence distribution without regard of the time of the duration 814 

and size of the individual landslide events. Therefore, the methods employed in our work employ the information 815 

on landslide locations to produce the landslide hazard maps. We further refer to previous work in which landslide 816 

hazard has been evaluated based solely on landslide occurrence points (Pourghasemi et al., 2013; Aghdam et al., 817 

2017; Adineh et al., 2018). 818 

 819 

We further note that we could not monitor the whole area of Golestan Province because it was not possible to 820 

access all parts of the map. In the machine learning modeling employed, the distribution of the samples does not 821 

affect the modeling process because the geographic locations are not used as input. Rather, the similarity of 822 

characteristics in each pixel with trained pixels affects the model output. We nevertheless believe that our analysis 823 

is providing a valuable contribution as it is paving the way toward a future quantitative modeling of hazard and 824 

vulnerability in Golestan Province, and because our discussion section is including yet unreported mathematical 825 

expressions relating landslide hazard and causative factors. These mathematical expressions are physically based 826 

and grounded on the dynamics of landslide occurrence that have been discussed extensively in previous work. 827 

Therefore, it is noticeable that our statistics, which unfortunately misses the information of duration and 828 

magnitude of the individual landslides (not available for Golestan Province), allows us to develop a mathematical 829 

model based on the machine learning computations and the observation map. We believe that this first step will 830 

motivate future modelers to go beyond the mere computation of a risk map, i.e., that future modelers will follow 831 

our work to elaborating mathematical expressions thus increasing both the predictive power and the physical 832 

understanding of their Machine Learning results – however by including event duration and magnitude. 833 

 834 

6   Conclusion 835 

In conclusion, the landslide risk map was computed for Golestan Province, Iran, from an explicit consideration of 836 

all main relevant local human-environmental landslide hazard and vulnerability factors. To this end, the spatial 837 

distributions of landslide location occurrences and conditioning variables have been combined using machine 838 

learning algorithms – specifically, GARP, SVM and MaxEnt – to obtain a regional landslide hazard model for 839 

Golestan Province. This model was then coupled with the information of local landslide vulnerability, by taking 840 

the local urban population and building densities, as well as the distance to landslide locations into account. 841 



38 

 

 

Moreover, to generate the landslide vulnerability map, the Fuzzy Analytical Hierarchical Process (FAHP) method 842 

was applied. FAHP has been developed for multi-criteria decision-making problems involving many variables 843 

and has proven here potentially useful to improving priority landslide control plans. 844 

 845 

Based on our results, empirical expressions were obtained for predicting landslide occurrence probability as a 846 

function of elevation, slope-angle, and distance to roads, faults and rivers. It would be interesting to verify the 847 

applicability of these equations to other regional settings, based on observations of landslide hazard, to shed light 848 

on the physical mechanisms underlying the values of the parameters associated. 849 

 850 

Our results show that, to accurately assessing landslide risk, event occurrence probability must be considered 851 

against the background of its potential damage level. Although a strongly landslide-prone region extending from 852 

southwest to east of Golestan Province is clearly visible in the hazard map, a subset of this area, which surrounds 853 

Gorgan City, is associated with the highest landslide risk level in the risk map. This result is explained by 854 

integration of the vulnerability map into the hazard evaluation. More precisely, Gorgan City represents the area 855 

of highest urban population density and is located within the regions associated with very high hazard. Moreover, 856 

we have found that landslide hazard decreases approximately exponentially with distance to faults, roads and 857 

rivers, and that there is an optimal slope for landslide hazard.  858 

 859 

We emphasize that the computation of risk performed here relies on knowledge about the distribution of the main 860 

conditioning variables, and that changes in the specific choice and relative weights of the vulnerability factors 861 

may lead to slight differences in the final risk map. Therefore, these weights must be estimated a priori, from 862 

reliable and comprehensive data on local socio-economic and environmental conditions. As shown here, FAHP 863 

indicated consistent estimates of the different vulnerability factor weights. Moreover, we have found similar 864 

results for landside hazard distribution without regard of the machine learning method considered – 865 

notwithstanding the observed differences in model accuracy – thus allowing us to discuss on the functional 866 

relationship between hazard and the different conditioning variables. Our findings provide insights for the 867 

assessment of landslide hazard, anthropogenic influences and risk, and are relevant to local governmental agencies 868 

and stakeholders with regard to optimizing regional landslide control, mitigation and management. 869 

 870 
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