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A B S T R A C T   

In regions with lack of hydrological and hydraulic data, a spatial flood modeling and mapping is an opportunity 
for the urban authorities to predict the spatial distribution and the intensity of the flooding. It helps decision- 
makers to develop effective flood prevention and management plans. In this study, flood inventory data were 
prepared based on the historical and field surveys data by Sari municipality and regional water company of 
Mazandaran, Iran. The collected flood data accompanied with different variables (digital elevation model and 
slope have been considered as topographic variables, land use/land cover, precipitation, curve number, distance 
to river, distance to channel and depth to groundwater as environmental variables) were applied to novel hy-
bridized model based on neural network and swarm intelligence-grey wolf algorithm (NN-SGW) to map flood- 
inundation. Several confusion matrix criteria were used for accuracy evaluation by cutoff-dependent and inde-
pendent metrics (e.g., efficiency (E), positive predictive value (PPV), negative predictive value (NPV), area under 
the receiver operating characteristic curve (AUC)). The accuracy of the flood inundation map produced by the 
NN-SGW model was compared with that of maps produced by four state-of-the-art benchmark models: random 
forest (RF), logistic model tree (LMT), classification and regression trees (CART), and J48 decision tree (J48DT). 
The NN-SGW model outperformed all benchmark models in both training (E = 90.5%, PPV = 93.7%, NPV =
87.3%, AUC = 96.3%) and validation (E = 79.4%, PPV = 85.3%, NPV = 73.5%, AUC = 88.2%). As the NN-SGW 
model produced the most accurate flood-inundation map, it can be employed for robust flood contingency 
planning. Based on the obtained results from NN-SGW model, distance from channel, distance from river, and 
depth to groundwater were identified as the most important variables for spatial prediction of urban flood 
inundation. This work can serve as a basis for future studies seeking to predict flood susceptibility in urban areas 
using hybridized machine learning (ML) models and can also be applied in other urban areas where flood 
inundation presents a pressing challenge, and there are some problems regarding required model and availability 
of input data.   

1. Introduction 

Floods occur due to a sudden rise in river water levels caused by 

snowmelt or intense precipitation (Peyravi et al., 2019), or to failure of a 
hydraulic structure (e.g., Ashley and Ashley, 2008). Catastrophic local 
flooding has been reported throughout the world, e.g. the Giofyros River 
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in Greece in 1994, the Aude River in France in 1999, and the Trisanna 
River in Austria in 2005 (Marchi et al., 2010). Previous studies have 
considered flooding as a natural hazard in fluvial systems and have 
examined flash floods along floodplains (Hosseini et al., 2020), but less 
attention has been paid to urban flooding (Chen et al., 2009). Urban 
areas are prone to flooding owing to their widespread use of impervious 
materials for rooftops, streets, and roads (Schubert and Sanders, 2012; 
Pirnia et al., 2019), which is known to increase the volume and rate of 
surface runoff (Shuster et al., 2005; Du et al., 2015). Climate change and 
its impact on the intensity of rainfall (Chang et al., 2010), sea level rise 
(Hallegatte et al., 2011), and inefficiency of old infrastructures can 
further increase the frequency of urban flood disasters (Schubert and 
Sanders, 2012). Moreover, increasing the population and urbanization 
are leading to expand urban areas in the flood-prone areas, which 
magnifies the scale of damage caused by urban flooding (Neumann 
et al., 2015). The most damaging consequences of urban flooding can be 
contamination with sewage water, traffic jams, disruption of water and 
power supply, damage to transportation systems, infrastructure failure, 
injury, and loss of life (Jonkman and Vrijling, 2008). 

Spatial modeling and mapping of the urban flood help the urban 
authorities to predict the spatial distribution of the flooding zones and 
its intensity. Therefore, decision-makers and authorities could develop 
effective flood prevention and management plans using a well- 
developed systematic framework and optimized models (Torres et al., 
2014). Recently, several attempts have been made to analyze the in-
teractions between urbanized areas and drainage infrastructures and the 
impact on surface runoff (Schmitt et al., 2004; Chen et al., 2009; Darabi 
et al., 2019). Progress in computational methods and availability of 
spatial data now permit more accurate modeling of the dynamic pro-
cesses of flooding and urban flood prediction, mitigation, and risk 
management (Fewtrell et al., 2008). 

Model optimization is vital when one ‘optimum’ solution needs to be 
identified among others (Marler and Arora, 2004) and it is especially 
important when analytical methods cannot solve the problem within the 
required time (Deb, 2012). For example, meta-heuristic algorithms can 
be combined to exploit their advantages and overcome their weak-
nesses, and thus obtain more accurate results (Yagiura and Ibaraki, 
2001). Several attempts have been made to construct hybrid optimized 
models by utilizing different existing models, e.g., genetic algorithm 
(GA) and ant colony optimization (ACO) (Liu et al., 2017); simulated 
annealing (SA) and particle swarm optimization (PSO) (Javidrad and 
Nazari, 2017); SA and whale optimization algorithm (WOA) (Mafarja 
and Mirjalili, 2017); or PSO and grey wolf optimizer (GWO) (Şenel et al., 
2019). These hybrid optimized models utilize the abilities of one algo-
rithm to neutralize the deficiencies of another, e.g., the inability of GA 
for local searches can be solved by combining it with the bee algorithm 
(BA) (Şenel et al., 2019). 

Artificial neural network (ANN) models have been utilized in 
different engineering fields due to the strength of neural networks in 
non-linearity and data-driven aspects. Beside of the well-documented 
advantages for using ANN (e.g. low cost of the model construction and 
flexible capability on input–output mapping for complex systems, which 
make it extensively used for prediction of dynamic variables such as 
geographical information), the main mentioned drawbacks of ANN are 
the large amounts of the training data required particularly for manners 
with many layers, extensive training time, high probability of over- 
fitting and difficulty of interpreting (Chen et al., 2020). Optimization 
of ANN is required to overcome its main shortcomings, which are lack of 
explanatory power in the trained networks due to their complex struc-
ture and over-fitting problems (Wen et al., 2019; Sessarego et al., 2020). 
Following the previous study (Darabi et al., 2019) and using data pro-
vided by Darabi et al., (2019), the aim of this study was to utilize and 
compare the four commonly used ML algorithms including random 
forest (RF), logistic model tree (LMT), classification, and regression trees 
(CART), J48 decision tree (J48DT) with new optimized ANN model for 
spatial prediction of urban flooding with the swarm intelligence-grey 

wolf (SGW) algorithm as a heuristic technique inspired by bird 
flocking, wolf pack hunting, and their social psychology (Le et al., 
2009). This can be led to reduce the number of inputs to the ANN and 
select the most effective conditioning variables. 

2. Study area 

The study area is Sari city, located in Northern Iran (extended be-
tween 35◦58′39′ ′ to 36◦50′12′ ′ North and 52◦56′42′ ′ to 53◦59′32′ ′ East) 
where is characterized as lowland with altitude ranges between 9 and 
82 m above sea level (a.s.l.)) (Fig. 1). The city occupies an area of 
approximately 42 km2 and it is the second major city in the Mazandaran 
province (it is the capital of Mazandaran province) with a population of 
296,417 according to the 2016 census. The city is characterized by built- 
up areas in the center, surrounded by agricultural land, small areas of 
orchards, and different types of natural environment. Mean annual 
precipitation in the region is 734 mm and mean annual temperature is 
13.6 ◦C (Darabi et al., 2019). The city is located in the outlet of the Tajan 
basin (the city of Sari receives most of the surface runoff, by the rainy 
streams due to its location and is bordered by high mountains to the 
south of the Tajan River, passing through the eastern part of the city. In 
the recent years, one of the main causes of the flooding over the Sari city 
were river floods (Sharifinia, 2019). During each year prolonged heavy 
precipitation importantly created large volumes of surface runoff, which 
triggered a significantly the urban flood over the Sari city. In addition, 
the city of Sari is characterized as lowland and it has few drainage 
networks and most of them have been constructed for several years ago, 
which are old and have low capacity. Therefore, the surface runoff flow 
cannot be discharged in time when heavy precipitation occurs, which 
leads to serious water accumulation and make inundated areas (Abdi 
et al., 2019). Hydro-climate data for the present study were used from 
the Iranian Meteorological Organization (IRIMO) for Sari synoptic 
station. 

3. Methodology 

3.1. Urban flood locations (in situ analyses and sampling) 

All available historical data on floods was used as auxiliary data 
(flood and non-flood locations during the several past flood events). 
Also, flood inventory data were obtained by historical and field surveys 
data which were conducted by Sari municipality and regional water 
company of Mazandaran to identify flooded areas and non-flooded areas 
during high-intensity precipitation. Table 1 shows the available histor-
ical database (2007–2016) and collected field survey databases 
(2017–2019) on floods. Two equal sets of points were identified 
randomly for both categories of flood and non-flood areas. Therefore, 
113 locations for each category were recorded using a global positioning 
system (GPS) device. Each set is divided into training (70% of data − 79 
points) and testing (30% of data – 34 points) groups. The flood locations 
were allocated by a value of 1 and non-flood locations were assigned by 
a value of 0. All historical database for flooded areas which were 
updated and employed in the current study, have been already used in 
the previous study by Darabi et al. (2019). 

3.2. Conditioning variables in flood inundation mapping 

Eight conditioning factors were tested in flood susceptibility map-
ping: elevation, slope, distance to channel, distance to river, land use/ 
land cover, precipitation, curve number (CN), and depth to ground-
water. All urban flood conditioning factors which used in this study, 
have been already applied in the previous study by Darabi et al. (2019). 

Precipitation: Data on daily precipitation from meteorological for 
16 stations in Mazandaran province (obtained from IRIMO for 
1989–2018 period) were applied to extract a spatial rainfall map by 
applying the Kriging interpolation method in ArcGIS GIS 10.5. The mean 
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annual precipitation varied from 722 mm in the east to 745 mm in the 
west and northwest of the study area (Fig. 2a). 

Land use/land cover: The land use/land cover map was obtained 
from Sari city authority (Darabi et al., 2019). Based on the land use data 
(Fig. 2b), seven categories of land cover were recognized: residential, 
road & street, open space, agricultural, bare land, orchard, and water 
body (river). 

Digital elevation model (DEM): A DEM with 5 m resolution was 
prepared in ArcGIS 10.5 by applying the Kriging interpolation method of 
interpolation points (Fig. 2c). The attitude of the Sari city ranges from 9 

m asl in the north and northeast to 82 m asl in the south. The database of 
the elevation was obtained from Sari municipality. 

Slope: Slope percent plays an important role in flood susceptibility, 
as it affects runoff velocity and intensity of flow. A slope percent map (5 
m) was prepared using the DEM in ArcGIS 10.5. Slope percent was 
divided into four classes: <2%, 2–4%, 4–6%, and > 6%, based on the 
classification used by Sari city authority (Fig. 2d). 

Curve number (CN): Curve number is a function based on hydro-
logical conditions and land use/land cover, soil type, and moisture, 
which was first developed by USCS or United States Soil Conservation 
Service. Land use/land cover and hydrological soil group (HSG) maps of 
the Sari city were used to prepare a CN map in ArcGIS 10.5 (Fig. 2e), by 
the ArcCN-runoff tool (Darabi et al., 2019). 

Distance to river: Distance to river has an important role in flood- 
prone areas in riversides. Distance to the Tajan River, which passes 
through the east of Sari city, was extracted using the Euclidean distance 
module in ArcGIS 10.5 (Fig. 2f). 

Distance to channel: Surface water is collected by urban channels, 
which should have sufficient capacity to drain all surface water from the 
city. The channels in Sari city do not have such capacity, so it is very 
important to consider distance to channels as a flood conditioning fac-
tor. Distance to channel was extracted using the Euclidean distance 
module in ArcGIS 10.5 (Fig. 2g). 

Depth to groundwater: In urban areas, depth to groundwater level 
significantly affects surface water runoff (Howard and Gerber, 2018). In 
this study, depth to groundwater data were obtained from the IRIMO 
and groundwater level map were extracted from 28 piezometric wells by 
the interpolation method by integrated distance weighting (IDW) in 
ArcGIS 10.5 (Fig. 2h). 

3.3. Machine learning (ML) algorithms 

Machine learning (ML) aims to develop methods and algorithms to 
learn and forecast data. ML algorithms are important for several reasons, 
e.g., they can i) handle complex systems with huge data, ii) solve 

Fig. 1. Maps showing the layout of Sari city, flood locations used in training and validation of the model, and the position of the city in Northern Iran.  

Table 1 
Available historical database and collected field survey databases on floods.   

Row Flood event Precipitation 
(mm) 

Data collected using available historical 
database on floods 

1 2007.10.18 56 
2 2007.11.04 56 
3 2008.10.10 63 
4 2009.03.31 55 
5 2009.11.22 64 
6 2011.01.10 60 
7 2012.09.28 57 
8 2012.10.11 39 
9 2013.09.26 85.4 
10 2013.10.21 72 
11 2013.12.04 65 
12 2014.06.04 51.2 
13 2014.10.20 51.2 
14 2015.07.20 83 
15 2015.10.09 55.2 
16 2016.02.29 57 
17 2016.09.08 58 

Data collected using field survey 18 2017.03.23 34.5 
19 2017.04.14 37 
20 2018.10.06 42.5 
21 2019.03.18 112.5 
22 2019.03.24 35  
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specialized problems by specialized ML methods, iii) be used for fore-
casting and classification purposes, and iv) be applied to describe the 
performance of the data input with respect to historical data records 
(Demolli et al., 2019). In this study, four commonly used ML algorithms 
including random forest (RF), logistic model tree (LMT), classification, 
and regression trees (CART), J48 decision tree (J48DT) were employed 
as standard or benchmark models for judging the performance of the 
novel hybridized model. 

3.3.1. Random forest (RF) 
The concept of random forest (RF) was first proposed by Ho (1998) 

and extended by Breiman (2001). RF as a powerful ensemble ML algo-
rithm was developed by the combination of regression and classification 
methods and statistical theory (Tan et al., 2020). It can be employed for 
many predicted trends and the average prediction of decision trees (Xing 
et al., 2019). The RF algorithm has been employed in different fields, 
such as land-cover classification using remote sensing data and flood risk 
and hazard mapping (Zhao et al., 2018). The algorithm has two main 

Fig. 2. Maps showing possible conditioning factors for urban flood inundation in Sari city: a) Rainfall, b) land use, c) elevation, d) slope, e) curve number (CN), f) 
distance to river, g) distance to channel, and h) depth to groundwater. 
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advantages that improve the accuracy of prediction: i) its ability to 
handle huge datasets with a nonparametric and robust method and 
correlated conditional variables; and ii) its capacity for variable 
importance assessments using a random arrangement of the variables, 
by comparison and evaluation of each variable in the prediction results 
for its importance (Zhao et al., 2018). 

3.3.2. J48 Decision tree (J48DT) 
J48 decision tree (J48DT) is a new classification tree-based tech-

nique that has been employed in only a few studies. Predictive ability of 
the algorithm has been assessed and validated in a previous study using 
statistical and receiver operating characteristic (ROC) curve methods 
(Pham et al., 2017). For binary classification variables (here flood or 
non-flood locations), J48DT creates a tree, which includes a root node 
and internal branch and leaf nodes. The root node consists of the input 
dataset, the internal branch nodes relate to the decision function, and 
the leaf nodes indicate the production of a specified contribution of the 
dataset. Compared with other decision tree models, J48DT is considered 
best in terms of classification accuracy, which is trained in two steps: i) 
building, and ii) pruning the classification tree (Zhao and Zhang, 2008). 

3.3.3. Classification and regression tree (CART) 
Classification and regression tree (CART) is a recursive partitioning 

algorithm that used to predict continuous dependent and categorical 
predictor conditioning factors (Zhao et al., 2016). CART, which was 
proposed for the first time by Breiman et al. (1984), has gained in 
popularity during recent years. However, because of overfitting and 
high sensitivity of CART to minor changes in all training input data, it is 
viewed as an unstable ML algorithm (Erdal and Karakurt, 2013). 

3.3.4. Logistic model tree (LMT) 
Logistic model tree (LMT), a ML algorithm suggested by Landwehr 

et al. (2003), is a hybrid classification model combining logistic 
regression (LR) with decision tree (DT) functions, which can boost the 
precision of prediction (Chen et al., 2017). In LMT, variable splitting is 
performed with the maximum information ratio obtained. For splitting 
categorical and numerical variables with c specific values, the node has c 
child nodes and two child nodes, respectively (Lee and Jun, 2018). For 
pruning the nodes of the tree, the LMT algorithm employs a Logit Boost 
function to set up the logistic regression method, and it uses cross- 
validation to discover multiple Logit Boost iterations to stop over-
fitting of all training input data (Arabameri et al., 2020). 

3.3.5. Artificial neural network (ANN) models 
Neural network models are a set of meta-heuristic population-based 

optimization algorithms. Computational NN models have been broadly 
employed in different scientific fields, for prediction purposes in most 
cases (Madsen et al., 2017; Zhang et al., 2020). The ANN model has 
strong self-learning, self-compatibility, fitness, error tolerance, and 
extension capabilities, inspired by biological nervous systems. It shows 
high performance in fitting multivariate analysis by better learning ef-
ficiency (Zhao et al., 2019). The purpose of ANN model optimization is 
to get an optimum solution (Shirwaikar et al., 2019). Within the data 
mining field, the ANN algorithm has been used to solve many practical 
problems. In this study, it was used for urban flood susceptibility 
mapping. 

3.3.6. Swarm intelligence algorithm 
The swarm intelligence algorithm is one of the major popular opti-

mization models applied by researchers in different subfields (Arani 
et al., 2013; Yang, 2014). During recent years, the swarm intelligence 
algorithm has been used to imitate behavior in nature (Şenel et al., 
2019), e.g., to understand crowd behavior in biological systems (Qasim, 
and Bhatti, 2019). It is one of a family of nature-inspired modeling ap-
proaches based on the collective behavior of social swarms in nature (e. 
g., honeybees, ant colonies, birds, fish). However, the swarm 

intelligence algorithm seeks to identify an optimal result from the social 
actions of many individuals (Mosa et al., 2019), according to the premise 
that individuals’ interactions lead to intelligent behaviors at group level 
(Zedadra et al., 2018). It comprises three steps: i) Initialize the swarm of 
predictor variables as dimensional space, ii) set parameters of the swarm 
algorithm (e.g., maximum iteration and population); and iii) predict a 
robustness value and randomly determine the primary best situation 
(Bui et al., 2019). 

3.3.7. Grey wolf optimizer (GWO) 
Grey wolf optimizer is a novel bionic, population-based, and heu-

ristic optimization algorithm that forms a pyramid with the most 
influential wolf at the remaining wolves in descendant importance in 
lower situations (Bui et al., 2019). GWO was developed by Mirjalili et al. 
(2014) according to the social hunting nature of grey wolves. It math-
ematically mimics the social leadership hierarchy and hunting behavior 
based on the grey wolves working together to detention prey with a clear 
cooperation. The GWO algorithm for predation is divided into three 
stages: encircling, hunting, and attacking (Long, 2016; Niu et al., 2019). 
GWO, with its low number of parameters and ease of implementation, 
has faster evolutionary programming and faster convergence than the 
swarm intelligence algorithm (Daniel et al., 2017). GWO was effectively 
applied in a forest fire research by Bui et al. (2019). Search agents 
(wolves) in GWO, as swarm-based algorithms, are arbitrarily situated in 
the d-dimensional space. After each iteration, the positioned and fitness 
values of wolves/search agents are updated. The optimal solution to the 
problem at hand is the final location of the top wolf (Bui et al., 2019). 

3.4. Designing and proposing a neural network model optimized by swarm 
intelligence and grey wolf algorithms (ANN-SGW) 

Optimization of models is important to achieve an optimum solution 
in a complicated d-dimensional space. When the problem-solving needs 
too much time, optimized approaches can help, however, an overall 
optimized algorithm is not guaranteed (Şenel et al., 2019). Optimization 
is also a crucial activity in model design, allowing programmers and 
planners to produce better designs, which can save time and costs. Many 
optimization problems in engineering are complex and difficult to solve 
with conventional optimization models, such as mathematical pro-
gramming. By hybridizing a model with different algorithms, it is 
possible to combine the advantages of the algorithms and produce a 
better-optimized model (Cui and Bai, 2019; Jia et al., 2019). In this 
study, an ANN model was optimized using novel optimizer algorithms 
(swarm intelligence and GWO) in a parallel computing approach, to 
improve spatial prediction of urban inundation susceptibility. The 
optimized model (ANN-SGW) was used to recognize the most flood- 
prone areas in the study city, compared with actual data. The pro-
posed ANN-SGW model has a simple construction, with a low number of 
factors and simulations, avoiding the complexity of large-scale net-
works, and combines the advantages of swarm intelligence and GWO 
with those of ANN. 

3.5. Loss function and optimization algorithm 

The ANN model was first generated for spatial prediction of urban 
flooding, and then optimized using the SGW algorithms. The purpose of 
optimization was to search and identify the best weights of the model, in 
which the difference between flood inventory data and predicted flood 
locations is minimized. The difference was determined using a loss 
function (LoF), designed as follows (Bui et al., 2019): 

LoF =
∑n

1

(Predi − Tagi)

n
(1)  

where Predi is predicted flood in the ANN model output; Tagi is the 
actual flood measured value; and n is the number of total flood locations 
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used. 
Parameters used in the SGW algorithm were G0 = 100, α = 20, ω =

0.5, c1 = 1, c2 = 3, and population size = 5 as suggested by Jayapra-
kasam et al. (2015). The training process was run for 200 iterations. 

3.6. Model assessment and benchmark model comparison 

In statistical analysis of data mining techniques, a known error ma-
trix is the confusion matrix, which allows the performance of supervised 
models to be assessed. Here we used nine different cutoff-dependent 
metrics from the confusion matrix, namely: true positive and negative 
(TP and TN), false positive and false negative (FP and FN), positive and 
negative predictive values (PPV and NPV), sensitivity, specificity, and 
efficiency. The four elements of the confusion matrix are TP, TN, FP and 
FN (Frattini et al., 2010). Sensitivity (true positive rate (TPR), see 
equation (2)), specificity (false positive rate (FPR), see equation (3)), 
and efficiency (E, equation (4)) determine the proportion of actual 
flooded locations that are accurately identified. The other cutoff- 
dependent metrics used, PPV and NPV, are the ratio of positive and 
negative results, respectively, in statistical analysis (equations (5) and 
(6)), and thus explain model performance by applying primary statisti-
cal criteria (TP and TN) in the confusion matrix (Fletcher et al., 2018). 
Using the PMT tool, all cutoff-dependent metrics used for model per-
formance assessment were applied (Rahmati et al., 2019). Area under 
the curve receiver operating characteristic curve (AUC-ROC), a cutoff- 
independent metric, was also used (equation (7)), as it is effective in 
organizing models and assessing their performance visually (Fawcett, 
2006). It is known as a decisive metric where values closer to 100% 
indicate better performance of a model (Pontius and Schneider, 2001). 

Sensitivity = (2)  

Specificity =
FP

FP + TN
(3)  

Efficiency =
TP + TN

TP + TN + FP + FN
(4)  

PPV =
TP

TP + FP
(5)  

NPV =
TN

TN + FN
(6)  

AUC =

∫ 1

0
f (FPR)dFPR = 1 −

∫ 1

0
f (TPR)dTPR (7)  

4. Results 

4.1. Training the ANN-SGW model and performance assessment 

The results for goodness-of-fit of the ANN-SGW model are shown in 
Table 2. Among the cutoff-dependent evaluation metrics, the value ob-
tained for PPV, NPV, sensitivity, specificity, and efficiency in the 
training step was 93.7%, 87.3%, 88.1%, 93.2%, and 90.5%, respec-
tively. The results of the confusion matrix criteria indicate a consider-
able arrangement between the trained model and observed dataset. 
AUC, a cutoff-independent metric, had a value of 96.3% in this step, 
reflecting high fitting skill of the ANN-SGW model. There was therefore 
agreement between the cutoff-dependent and -independent metrics as 
regards performance of the model. However, goodness-of-fit individu-
ally estimates how well the model fits the training dataset and cannot be 
used for determining the ability of the model in prediction (Tehrany 
et al., 2015). A testing step is needed to determine the predictive per-
formance. In the validation step, the ANN-SGW model showed consid-
erably maximum predictive performance based on both the cutoff- 
independent metrics (PPV = 85.3%, NPV = 73.5%, sensitivity =

76.3%, specificity = 83.3%, efficiency = 79.4%) and the cutoff- 
independent metric (AUC = 88.2%) and evaluation criteria (Table 2, 
Fig. 3). The validation results obviously demonstrated robust arrange-
ment between observed values (i.e., reference data) and predicted 
values by the ANN-SGW model. Following Rahmati et al. (2020), the 
predictive performance of ANN-SGW can be classified as very good 
(80% < AUC < 90%). 

4.2. Comparison of the ANN-SGW model with benchmark models 

To confirm the performance of the ANN-SGW model, its predictive 
ability was compared with that of four commonly used benchmark 
models (RF, LMT, CART, J48DT). Among these, RF showed the highest 
accuracy in the training step in terms of both the cutoff-dependent (PPV 
= 87.3%, NPV = 72.2%, sensitivity = 75.8%, specificity = 85.1%, ef-
ficiency = 79.7%) and cutoff-independent (AUC = 89.4%) evaluation 
metrics (Table 3). It was followed by LMT (PPV = 84.8%, NPV = 69.6%, 
sensitivity = 73.6%, specificity = 82.1%, efficiency = 77.2%, AUC =
80%), and then J48DT (PPV = 87.3%, NPV = 63.3%, sensitivity =
70.4%, specificity = 83.3%, efficiency = 75.3%, AUC = 72.9%), and 
CART (PPV = 77.2%, NPV = 67.1%, sensitivity = 70.1%, specificity =
74.6%, efficiency = 72.1%, AUC = 72.2%). Therefore, agreement was 
obtained between observed values and values predicted by the bench-
mark models in the training step. Importantly, comparison of all results 
indicated that the ANN-SGW model had the highest goodness-of-fit, 
followed by RF, LMT, J48DT, and CART. 

The validation results for the benchmark models are shown in 

Table 2 
Performance of the hybridized neural network-swarm intelligence-grey wolf 
algorithm (ANN-SGW) model in the training and validation steps  

Evaluation 
approach 

Evaluation metric Goodness- 
of-fit 

Predictive 
performance 

Cutoff- 
dependent 

True positive, TP 74 29 
True negative, TN 69 25 
False positive, FP 5 5 
False negative, FN 10 9 
Positive predictive value 
(PPV, %) 

93.7 85.3 

Negative predictive value 
(NPV, %) 

87.3 73.5 

Sensitivity (%) 88.1 76.3 
Specificity (%) 93.2 83.3 
Efficiency (%) 90.5 79.4 

Cutoff- 
independent 

Area under receiver 
operating curve (AUC, %) 

96.3 88.2  

Fig. 3. Receiver operating curve (ROC) and area under receiver operating 
curve (AUC) of the hybridized neural network-swarm intelligence-grey wolf 
algorithm (ANN-SGW) model with (left) the training dataset and (right) the 
validation dataset. 
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Table 4 and Fig. 4. Again, RF outperformed the other benchmark models 
based on cutoff-dependent (PPV = 94.12%, NPV = 58.82%, sensitivity 
= 69.57%, specificity = 90.91%, efficiency = 76.47%) and cutoff- 
independent (AUC = 88.1%) evaluation metrics. It was followed by 
LMT (PPV = 91.18%, NPV = 55.88%, sensitivity = 67.39%, specificity 
= 86.39%, efficiency = 73.53%, AUC = 75.6%), and then CART (AUC =
69.8%) and J48DT (AUC = 69.7%). Therefore, the proposed ANN-SGW 
model (AUC = 88.2%) had higher predictive performance than all 
benchmark models based on both cutoff-dependent and independent 
assessment metrics. 

4.3. Variable importance 

Since the ANN-SGW model showed the highest accuracy in both the 
training and testing dataset, importance of the variable has been 

calculated by the ANN-SGW model. Fig. 5 illustrates the relative 
importance (RI) of predictor variables in spatial modeling of urban flood 
susceptibility. Distance from channel, distance from river, and depth to 
groundwater had the greatest importance in urban inundation, with RI 
equal to 31%, 22%, and 19%, respectively. They were followed by 
precipitation (RI = 11%), land use (RI = 10%), and curve number (RI =
7%). 

4.4. Urban inundation susceptibility mapping 

The urban flood inundation maps were generated by the ANN-SGW 
and benchmark models are shown in Fig. 6 and Fig. 7. Upon pre-
liminary review, distribution of high flood susceptibility zones seemed 
to be clearly distinguished over the Sari city. Especially, all the proposed 
ANN-SGW and benchmark models revealed a comparatively similar 
pattern of flood susceptibility in the Sari city (Fig. 6 and Fig. 7). Central, 
northern, western, and southwestern parts of Sari city fell under highly 
flood-susceptible areas, while eastern, southern, and southeastern parts 
showed significantly fewer flood susceptibility zones. 

5. Discussion 

5.1. Urban flood mapping approaches 

Flood prediction in urban environments is important for urban 
planners and policymakers, in order to reduce susceptibility to future 
floods (Kim et al., 2015). Different methodologies for urban flood 
assessment were considered and discussed by previous researchers using 
probabilistic and deterministic approaches (Di Baldassarre et al., 2009), 
high resolution of topographic modeling (Abily et al., 2016), hydrody-
namic numerical modeling (Glenis et al., 2018; Costabile et al., 2020; 
Dong et al., 2021). Recently numerous works have been conducted to 
improve the predictive capacity of the one-dimensional urban flood 
modeling, but so far it is noticeable that these attempts are still far from 
a satisfactory application of these models in urban flood prediction. For 
example, Eini et al., (2020) assessed the hazard and vulnerability of 
urban flood using Maximum Entropy (MaxEnt) and Genetic Algorithm 
Rule-Set Production (GARP) algorithms that have been used by previous 
researchers (Darabi et al., 2019) without any optimization and hybrid-
ization. While Andaryani et al., (2021) evaluated the prediction ability 
of artificial neural network (ANN) algorithms as a one-dimensional flood 
modelling coupled with hard and soft supervised classification algo-
rithms using three multi-layer perceptron (MLP), fuzzy adaptive reso-
nance theory (FART), self-organizing map (SOM) algorithms with 

Table 3 
Goodness-of-fit of the benchmark models (random forest (RF), J48 decision tree 
(J48DT), classification and regression trees (CART), logistic model tree (LMT)) 
in the training step  

Evaluation metric RF J48DT CART LMT 

True positive, TP 69 69 61 67 
True negative, TN 57 50 53 55 
False positive, FP 10 10 18 12 
False negative, FN 22 29 26 24 
Positive predictive value (PPV, %) 87.3 87.3 77.2 84.8 
Negative predictive value (NPV, %) 72.2 63.3 67.1 69.6 
Sensitivity (%) 75.8 70.4 70.1 73.6 
Specificity (%) 85.1 83.3 74.6 82.1 
Efficiency (%) 79.7 75.3 72.1 77.2 
Area under receiver operating curve (AUC, %) 89.4 72.9 72.2 80.0  

Table 4 
Predictive performance of the benchmark models (random forest (RF), J48 de-
cision tree (J48DT), classification and regression trees (CART), logistic model 
tree (LMT)) in the validation step  

Evaluation metric RF J48DT CART LMT 

True positive, TP 32 32 29 31 
True negative, TN 20 16 20 19 
False positive, FP 2 2 5 3 
False negative, FN 14 18 14 15 
Positive predictive value (PPV, %) 94.12 94.12 85.29 91.18 
Negative predictive value (NPV, %) 58.82 47.06 58.82 55.88 
Sensitivity (%) 69.57 64.00 67.44 67.39 
Specificity (%) 90.91 88.89 80.00 86.36 
Efficiency (%) 76.47 70.59 72.06 73.53 
Area under receiver operating curve (AUC, 

%) 
88.1 69.7 69.8 75.6  

Fig. 4. Receiver operating curve (ROC) and area under receiver operating 
curve (AUC) of the four benchmark models (random forest (RF), J48 decision 
tree (J48DT), classification and regression trees (CART), logistic model tree 
(LMT)) in the validation step. 

Fig. 5. Relative variable importance of the six most important flood condi-
tioning factors tested, based on the hybridized neural network-swarm intelli-
gence-grey wolf algorithm (ANN-SGW) model. 
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different activation functions of sigmoidal, linear, commitment, typi-
cality. MLP-S and MLP-L had slightly higher accuracy and less time- 
consuming. Despite the contribution of these studies to the science of 
flood modelling, their main issue was to optimize the ML algorithms, 
which can be accompanied by urban flood modelling and highlight 
uncertainty of flood mapping in one dimension. In this study, ML 

techniques in the field of urban flood inundation modelling are applied 
to facilitate the critical discussion over Sari city. Specifically, different 
flood susceptibility maps were extracted for the study area. The flood 
susceptibility maps were derived by applying RF, J48DT, CART, and 
LMT models. The derived urban flood maps were then compared to the 
novel hybridized ANN-SGW (as fifth map) and the pros and cons of the 

Fig. 6. Urban flood susceptibility maps produced by a) the random forest; b) the J48 decision tree; c) the classification and regression trees (CART); and d) the 
logistic model tree LMT models. 

Fig. 7. Urban flood susceptibility maps produced by the hybridized neural network-swarm intelligence-grey wolf algorithm (ANN-SGW) model.  
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above-mentioned ML algorithms were discussed below. 

5.2. Comparing flood susceptibility maps 

A novel hybridized ANN-SGW model for spatial prediction of urban 
flooding was developed in this study, and the resulting map was 
compared, based on different statistical evaluation criteria, with maps 
produced by benchmark models. The results demonstrated that the 
ANN-SGW model had an excellent performance in flood-prone predic-
tion. Artificial ANN models have a powerful ability to predict flood 
susceptibility, as confirmed previously by Falah et al. (2019). Impor-
tantly, excellent performance of the RF and LMT models in flood sus-
ceptibility mapping has been demonstrated previously, resulting in 
strong recommendations for their use as best available models (Lee 
et al., 2017). Pourghasemi et al. (2020) demonstrated that, in addition to 
showing outstanding performance in predicting flood susceptibility, the 
RF model can also be used for multi-hazard modeling at a regional scale. 
However, the results obtained in the present study showed that our 
novel ANN-SGW model outperformed RF and other benchmark models. 
In general, the SGW meta-heuristic algorithm enhances the standalone 
ANN model by narrowing the deviation between predicted and actual 
values. According to the literature, the ANN model has some problems, 
such as poor generalization ability for unseen data, weaker scalability 
when using several variable types, and it needs training to operate and 
often requires numerous recalibrations (Piotrowski and Napiorkowski, 
2013; Ahmad et al., 2014). In this study, the SGW algorithm overcame 
these challenges and the ANN-SGW model revealed excellent perfor-
mance, computational and robustness speed, as found previously for the 
GWO algorithm by Komaki and Kayvanfar (2015). Guha et al. (2016) 
also found GWO to be useful in enhancing model performance. GWO is a 
novel nature-inspired metaheuristic swarm intelligent algorithm, and it 
needs low number of parameters and ease of implementation, faster 
evolutionary programming and quicker convergence than the other 
swarm intelligence algorithms such as Particle Swarm Optimization 
(PSO), Firefly Algorithm (FA), Bat Algorithm (BA), Cuckoo Search (CS), 
Ant Colony Optimization (ACO), Artificial Bee Colony (ABC) and many 
other algorithms, which are recently added to swarm intelligent algo-
rithms are Salp Swarm Algorithm (SSA), Moth-flame Optimization 
(MFO), Harris Hawks Optimization (HHO), Squirrel Search (SS), and 
Whale Optimization Algorithm (WOA) (Gupta and Deep, 2020). It has 
received lots of interest from the heuristic algorithm community for its 
superior optimization capacity. It is also easy to trap into the local op-
timum when solving complex and multimodal functions. GWO has 
shown potential to solve several real-life applications and it was effec-
tively applied in different research areas such as forest fire by Bui et al., 
(2019); water resource system over the irrigation areas (support vector 
machine model was optimized based on the GWO (GWO-SVM)) by Liu 
et al. (2020); for optimization of water resources allocation in trans-
boundary river basins by Yu and Lu, (2018). Also, it has been success-
fully applied into various global optimization requirements due to its 
advantage of few control parameters in economic studies (Jayabarathi 
et al., 2016), landslide susceptibility modeling (Panahi et al., 2020), 
feature selection (Hu et al., 2020), groundwater contamination and 
remediation (Majumder and Eldho, 2020), and streamflow prediction 
(Tikhamarine et al., 2020). Bui et al. (2019) developed a hybridized 
model based on swarm intelligence model for flood mapping and found 
that the swarm intelligence algorithm enhanced the predictive skill of 
the model. Our novel model can construct a valid flood susceptibility 
map for urban areas where a hydraulic dataset is lacking. It can thus 
assist in robust flood contingency planning for urban areas. Importantly, 
for urban areas where flooding presents a pressing challenge, the pro-
posed model can be utilized to protect main applied scopes of social and 
environmental. 

5.3. Variable importance 

Credible information of the relationship between target variables, i. 
e., urban flood events and predictor variables, can help decision-makers, 
but these relations are still rather complex and poorly evaluated (Feng 
et al., 2015). This study tried to bridge this research gap. The ANN-SGW 
model, which had the highest accuracy of all models tested in this study, 
demonstrated that distance from channel, distance from river, and depth 
to groundwater were the most important variables for spatial prediction 
of flood susceptibility in Sari city. This is useful information for urban 
planning studies and resolves the problematic of data scarcity by 
allowing the analyst to focus on important predictor variables (Ahma-
disharaf et al., 2016). The results are consistent with our previous 
finding, obtained using Genetic Algorithm Rule-Set Production (GARP), 
that distance from channel and distance from river had the highest 
importance in urban flood inundation (Darabi et al., 2019). Similarly, 
Fernández and Lutz (2010) found distance from channel had greatest 
importance in spatial modeling of flooding in urban areas, while Ouma 
and Tateishi (2014) found that distance to drainage system is the main 
factor in urban flooding. However, according to Bui et al. (2019), the 
relative importance of variables for a flood modelling is generally has 
been influenced by the model structure, such that predictor variables 
making a large influence in a model might provide less information for 
another, and vice versa. For instance, in the present study and in a 
previous study by Fernández and Lutz (2010), CN (determined by cover 
type) was the least important predictor variable, whereas in our previ-
ous study with the GARP model CN provided useful information for 
urban flood modeling (Darabi et al., 2019). It worth mentioning that the 
dynamic of the conditioning variables in flood inundation mapping 
leads to different results over time (e.g. precipitation and depth to 
groundwater). 

6. Conclusions 

Floods have great threats to communities and its property, specif-
ically in densely populated urban areas, where increasing the imper-
meable surfaces leads to intensify floods by increasing surface runoff. 
Since in developing countries hydraulic and hydrological data are not 
available over the urban environments and lack of required data is the 
main issue in urban flood modeling. This study set out to develop a 
robust hybridized model for spatial prediction of urban flood inundation 
as inspiration and insight for future studies and plans in next urban flood 
monitoring and mitigation strategies. Also, urban flood inundation 
identifies the most vulnerable areas based on physical characteristics 
that determine the propensity for flooding, it is an important element of 
flood mitigation and prevention strategies. A novel hybridized model 
(ANN-SGW) was developed and evaluated using statistical evaluation 
metrics and compared with several benchmark machine learning 
models. The degree of importance of topographic-environmental vari-
ables was evaluated using the ANN-SGW model. This work can serve as a 
basis for future studies seeking to predict flood susceptibility in urban 
areas using hybridized machine learning models and can also be applied 
in other urban areas where flood inundation presents a pressing chal-
lenge. Also, the results of this study can help decision-makers attendant 
investments out of dangerous zones (e.g. Riverian zone), save property 
and lives, as well as guarantee that investments consider flood events in 
urban environments with high-density population as well as multiple 
infrastructure (such as hospitals, schools and service networks). Our 
novel hybridized model is an important scientific contribution to 
development of a powerful model for spatial prediction of flooding in 
urban environments and the main conclusions of current study can be 
summarized as: 

• The ANN-SGW model achieved strong predictive capacities out-
performing all four benchmark models tested. 
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• The presented ANN-SGW model is recommended to use by local and 
regional municipality agencies to identify flood-prone areas and plan 
to mitigate future flood events.  

• The analysis presented in this study provides a valuable screening of 
urban areas and can easily be modified to incorporate other condi-
tions with other spatio-temporal resolutions.  

• Since the simplicity of flood models is a primary purpose, the 
employed approaches in the current study were not sophisticated 
with regard to required model and availability of input data, there-
fore it can effortlessly be employed in other areas. 
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Şenel, F.A., Gökçe, F., Yüksel, A.S., Yiğit, T., 2019. A novel hybrid PSO–GWO algorithm 
for optimization problems. Engineering with Computers 35 (4), 1359–1373. 

Sessarego, M., Feng, J.u., Ramos-García, N., Horcas, S.G., 2020. Design optimization of a 
curved wind turbine blade using neural networks and an aero-elastic vortex method 
under turbulent inflow. Renewable Energy 146, 1524–1535. 

Sharifinia, Z., 2019. Assessing the Social Resilience of Rural Areas against Flooding using 
FANP and WASPAS Models (Case Study: Chardange District of Sari County). 
Geography Environ. Hazards 8 (30), 1–26. 

Shirwaikar, R.D., Acharya, D., Makkithaya, K., Surulivelrajan, M., Srivastava, S., 2019. 
Optimizing neural networks for medical data sets: A case study on neonatal apnea 
prediction. Artif. Intell. Med. 98, 59–76. 

Shuster, W.D., Bonta, J., Thurston, H., Warnemuende, E., Smith, D.R., 2005. Impacts of 
impervious surface on watershed hydrology: A review. Urban Water J. 2 (4), 
263–275. 

Tan, K., Wang, H., Chen, L., Du, Q., Du, P., Pan, C., 2020. Estimation of the spatial 
distribution of heavy metal in agricultural soils using airborne hyperspectral imaging 
and random forest. J. Hazard. Mater. 382, 120987. https://doi.org/10.1016/j. 
jhazmat.2019.120987. 

Tehrany, M.S., Pradhan, B., Mansor, S., Ahmad, N., 2015. Flood susceptibility assessment 
using GIS-based support vector machine model with different kernel types. Catena 
125, 91–101. 

Tikhamarine, Y., Souag-Gamane, D., Ahmed, A.N., Kisi, O., El-Shafie, A., 2020. 
Improving artificial intelligence models accuracy for monthly streamflow forecasting 
using grey Wolf optimization (GWO) algorithm. J. Hydrol. 582, 124435. 

Torres, M.A., Jaimes, M.A., Reinoso, E., Ordaz, M., 2014. Event-based approach for 
probabilistic flood risk assessment. International Journal of River Basin Management 
12 (4), 377–389. 

Wen, H., Sang, S., Qiu, C., Du, X., Zhu, X., Shi, Q., 2019. A new optimization method of 
wind turbine airfoil performance based on Bessel equation and GABP artificial 
neural network. Energy 187, 116106. 

Xing, J., Luo, K., Wang, H., Fan, J., 2019. Estimating biomass major chemical 
constituents from ultimate analysis using a random forest model. Bioresour. Technol. 
288, 121541. 

Yagiura, M., Ibaraki, T., 2001. On metaheuristic algorithms for combinatorial 
optimization problems. Systems Computers Japan 32 (3), 33–55. 

Yang, X.S., 2014. Swarm intelligence-based algorithms: a critical analysis. Evol. Intel. 7 
(1), 17–28. 

Yu, S., Lu, H., 2018. An integrated model of water resources optimization allocation 
based on projection pursuit model–Grey wolf optimization method in a 
transboundary river basin. J. Hydrol. 559, 156–165. 

Zedadra, O., Guerrieri, A., Jouandeau, N., Spezzano, G., Seridi, H., Fortino, G., 2018. 
Swarm intelligence-based algorithms within IoT-based systems: A review. J. Parallel 
Distrib. Comput. 122, 173–187. 

Zhang, Y., Jin, Z., Chen, Y., 2020. Hybrid teaching–learning-based optimization and 
neural network algorithm for engineering design optimization problems. Knowl.- 
Based Syst. 187, 104836. 

Zhao, B., Ren, Y.i., Gao, D., Xu, L., Zhang, Y., 2019. Energy utilization efficiency 
evaluation model of refining unit Based on Contourlet neural network optimized by 
improved grey optimization algorithm. Energy 185, 1032–1044. 

Zhao, G., Pang, B., Xu, Z., Yue, J., Tu, T., 2018. Mapping flood susceptibility in 
mountainous areas on a national scale in China. Sci. Total Environ. 615, 1133–1142. 

Zhao, Y., Zhang, Y., 2008. Comparison of decision tree methods for finding active 
objects. Adv. Space Res. 41 (12), 1955–1959. 

Zhao, Y., Li, Y., Zhang, L., Wang, Q., 2016. Groundwater level prediction of landslide 
based on classification and regression tree. Geod. Geodyn. 7 (5), 348–355. 

H. Darabi et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0022-1694(21)00904-5/h0220
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0220
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0220
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0225
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0225
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0230
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0230
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0235
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0235
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0235
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0240
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0240
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0240
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0250
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0250
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0255
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0255
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0255
https://doi.org/10.1016/j.jhydrol.2020.125758
https://doi.org/10.1016/j.jhydrol.2020.125758
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0265
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0265
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0265
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0270
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0270
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0270
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0275
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0275
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0275
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0280
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0280
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0285
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0285
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0285
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0290
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0290
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0290
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0295
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0295
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0300
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0300
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0305
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0305
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0305
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0310
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0310
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0310
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0315
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0315
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0320
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0320
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0320
https://doi.org/10.1016/j.scitotenv.2020.139937
https://doi.org/10.1016/j.scitotenv.2020.139937
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0330
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0330
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0330
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0335
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0335
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0335
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0340
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0340
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0340
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0345
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0345
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0345
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0350
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0350
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0350
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0355
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0355
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0355
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0360
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0360
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0365
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0365
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0365
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0370
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0370
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0370
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0370
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0375
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0375
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0380
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0380
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0380
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0385
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0385
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0390
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0390
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0390
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0395
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0395
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0395
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0400
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0400
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0400
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0405
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0405
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0405
https://doi.org/10.1016/j.jhazmat.2019.120987
https://doi.org/10.1016/j.jhazmat.2019.120987
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0415
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0415
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0415
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0420
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0420
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0420
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0425
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0425
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0425
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0430
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0430
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0430
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0435
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0435
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0435
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0440
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0440
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0445
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0445
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0450
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0450
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0450
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0455
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0455
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0455
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0460
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0460
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0460
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0465
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0465
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0465
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0470
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0470
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0475
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0475
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0480
http://refhub.elsevier.com/S0022-1694(21)00904-5/h0480

	A hybridized model based on neural network and swarm intelligence-grey wolf algorithm for spatial prediction of urban flood ...
	1 Introduction
	2 Study area
	3 Methodology
	3.1 Urban flood locations (in situ analyses and sampling)
	3.2 Conditioning variables in flood inundation mapping
	3.3 Machine learning (ML) algorithms
	3.3.1 Random forest (RF)
	3.3.2 J48 Decision tree (J48DT)
	3.3.3 Classification and regression tree (CART)
	3.3.4 Logistic model tree (LMT)
	3.3.5 Artificial neural network (ANN) models
	3.3.6 Swarm intelligence algorithm
	3.3.7 Grey wolf optimizer (GWO)

	3.4 Designing and proposing a neural network model optimized by swarm intelligence and grey wolf algorithms (ANN-SGW)
	3.5 Loss function and optimization algorithm
	3.6 Model assessment and benchmark model comparison

	4 Results
	4.1 Training the ANN-SGW model and performance assessment
	4.2 Comparison of the ANN-SGW model with benchmark models
	4.3 Variable importance
	4.4 Urban inundation susceptibility mapping

	5 Discussion
	5.1 Urban flood mapping approaches
	5.2 Comparing flood susceptibility maps
	5.3 Variable importance

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References


