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Abstract: Landslide susceptibility mapping has significantly progressed with improvements in
machine learning techniques. However, the inventory/data imbalance (DI) problem remains one
of the challenges in this domain. This problem exists as a good quality landslide inventory map,
including a complete record of historical data, is difficult or expensive to collect. As such, this can
considerably affect one’s ability to obtain a sufficient inventory or representative samples. This
research developed a new approach based on generative adversarial networks (GAN) to correct
imbalanced landslide datasets. The proposed method was tested at Chukha Dzongkhag, Bhutan, one
of the most frequent landslide prone areas in the Himalayan region. The proposed approach was
then compared with the standard methods such as the synthetic minority oversampling technique
(SMOTE), dense imbalanced sampling, and sparse sampling (i.e., producing non-landslide samples as
many as landslide samples). The comparisons were based on five machine learning models, including
artificial neural networks (ANN), random forests (RF), decision trees (DT), k-nearest neighbours
(kNN), and the support vector machine (SVM). The model evaluation was carried out based on
overall accuracy (OA), Kappa Index, F1-score, and area under receiver operating characteristic curves
(AUROC). The spatial database was established with a total of 269 landslides and 10 conditioning
factors, including altitude, slope, aspect, total curvature, slope length, lithology, distance from the
road, distance from the stream, topographic wetness index (TWI), and sediment transport index
(STI). The findings of this study have shown that both GAN and SMOTE data balancing approaches
have helped to improve the accuracy of machine learning models. According to AUROC, the GAN
method was able to boost the models by reaching the maximum accuracy of ANN (0.918), RF
(0.933), DT (0.927), kNN (0.878), and SVM (0.907) when default parameters used. With the optimum
parameters, all models performed best with GAN at their highest accuracy of ANN (0.927), RF (0.943),
DT (0.923) and kNN (0.889), except SVM obtained the highest accuracy of (0.906) with SMOTE.
Our finding suggests that RF balanced with GAN can provide the most reasonable criterion for
landslide prediction. This research indicates that landslide data balancing may substantially affect
the predictive capabilities of machine learning models. Therefore, the issue of DI in the spatial
prediction of landslides should not be ignored. Future studies could explore other generative models
for landslide data balancing. By using state-of-the-art GAN, the proposed model can be considered
in the areas where the data are limited or imbalanced.

Keywords: landslide susceptibility; imbalanced dataset; machine learning; generative adversarial
network; GIS; remote sensing; Bhutan
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1. Introduction

Landslides are a form of natural hazard that pose significant threats to the environment
and society [1]. In many parts of the world, landslides frequently occur due to single,
high-intensity (e.g., shallow, fast-moving landslides) or prolonged (days or weeks, e.g.,
slow-moving deep-seated landslides) rainfall events, earthquakes, or human activity [2].
Landslides also occur due to other mechanisms, such as volcanic eruptions, rapid snowmelt,
and elevated water levels [3]. Landslides occur in mountainous areas at high frequencies
relative to areas with low terrain. The higher the angle of inclination, the more dominant
the gravity, which leading to “pulling” material down the slope. Landslides begin to
occur when the resisting force exceeds the certain limit depending upon the strength of the
material, the frictional properties between the slide material and the rock, or both.

The Himalayan region suffers excessive precipitations which contribute more than
70% of the world’s disastrous landslides [4]. Himalayan landslides are often caused by
seasonal rains, spawning substantial economic losses and occasionally human lives [5]. A
compilation of a fatal landslide database by Froude and Petley [4] recorded 64 fatalities in
Bhutan from 2004 to 2017. Still, the real figure of casualties is estimated to be higher. The
threat is projected to accelerate as hills are cut and deforested, emphasizing infrastructure
development linked to population growth [6].

The spatial prediction of landslides is an essential step in the preparation of risk
maps for landslide [7]. In this step, statistical or machine learning models are developed
and assessed, taking into consideration a number of landslide conditioning factors (slope,
lithology, land use, distance to road, etc.), as well as landslide inventories that generate a
spatial probability map of landslide events [8].

Landslide spatial prediction studies have used several types of statistical and machine
learning models. The studies are varied and focused on several aspects, such as optimising
conditioning factors [9,10], factor normalization methods [11], sampling strategies [12–14]
generating training and test samples methods [15], model ensembling [16,17], fine-tuning
model’s hyperparameters [18], modelling with limited data [7], data imbalance (DI) [19,20],
and model assessment [21].

The current study focuses on the DI problem in the spatial prediction of landslides [19].
DI is one of the understudied problems in the spatial prediction of landslides. Landslide
dataset contains two classes (positive class or landslide presence and negative class or
landslide absence). In most cases, the negative class dominates or overpowers the positive
class. In other words, the distribution of observations in the negative and positive classes
is unbalanced. The problem is that most typical machine learning models assume/expect
balanced class distributions and suffer DI [22]. This leads to the classifier being more
biased towards the dominating class; so the algorithms are not able to classify the landslide
pixels properly. Thus, it is essential to decrease the imbalance effect in the landslide
dataset. The two main approaches for reducing imbalance are oversampling of a minority
class and under-sampling of the majority class [23]. Various methods utilised by several
scientists to control DI include random oversampling and undersampling [24,25], informed
under-sampling [20], and synthetic sampling with data generation [23,26–28].

This study aims to develop and test a new method to correct the class imbalance in
landslide datasets using generative adversarial networks (GAN) [29]. The method is based
on oversampling landslide presence class with data generation. The method was then
compared to other standard methods such as synthetic minority oversampling technique
(SMOTE) [30] and tested with several machine learning models, including neural networks
(ANN), random forest (RF), decision trees (DT), k-nearest neighbour (kNN), and support
vector machine (SVM).

2. Previous Works

DI is a common problem in machine learning with real-world datasets, and spatial
prediction of landslides is no exception. Landslide databases are often imbalanced as
landslides are described in a network/grid raster spatial data and comprised of a small
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number of pixels [31]. This problem affects the prediction performance of the machine
learning models by making the model biased towards the dominating class. It can be
overcome by dataset balancing [32].

In the oversampling of the minority class, the number of landslide records is artificially
increased through sample repetition or data generation [23]. However, in under-sampling
the majority class method, it aims to reduce the samples of the majority class by randomly
(or synthetically) sampling a smaller subset from the original dataset [8]. Random over-
sampling works by selecting a minority class instance randomly and replicating it until the
desired balance between classes is reached [26]. Beyond random sampling, synthesised
oversampling generates new artificial minority class examples by interpolating among
several existing minority class examples that are similar to each other.

Several researchers have investigated the impacts of DI on machine learning models’
performance for the spatial prediction of landslides [20,33]. The most common and usual
practice is randomly under-sampling of non-landslide data in the training samples. By
doing so, the landslide samples will have approximately the same order of magnitude
as the non-landslide samples. This method leads to poor prediction ability of the model
since the non-landslide sample data are often wasted [34]. Agrawal et al. [33] compared
random oversampling and synthesised oversampling (SMOTE, SMOTE-IPF) for landslide
prediction. Based on an analysis performed using different machine learning models, such
as logistic regression (LR), DT, RF, SVM, and neural networks (NN), they suggested that
the synthesised oversampling performed better than that of random oversampling. Braun
et al. [35] studied the impacts of data balancing on the performance of machine learning
models for spatial prediction of landslides. Their results suggested that data balancing
(i.e., by increasing the data density of the positive class) had almost no effect on the
overall performance of the DT model using the training data. However, the performance
of the model was affected when the test data was used. This indicates that the model
had a poor ability to generalise the learned parameters for unknown areas. A hybrid
method for spatial prediction of landslides using a solitary landslide-occurring data was
proposed by Mutlu and Goz [36]. They used several performance metrics of imbalanced
data to evaluate their proposed solution and showed that clustering significantly improved
the performance of the models. This was interpreted as landslides occurring in large
areas may have different geographical and morphological properties. In another research,
Gupta et al. [20] employed two methods for balancing landslide data, EasyEnsemble and
BalanceCascade. They showed that models such as NN had significantly been impacted
by data balancing. However, the LR model was ill-affected by data balancing and the
fisher discriminant analysis (FDA) did not show considerable influence between balanced
and imbalanced data. Zhang and Yu [37] also showed that combining adaptive synthetic
(ADASYN) sample method and linear discriminant analysis (LDA) for seismic spatial
prediction of landslides helps to improve the modelling results affected by the sample
imbalance. Other studies have addressed the DI problem at the algorithm level. For
example, Song et al. [38] considered landslides’ spatial prediction as a DI learning problem.
They used an approach that solves the DI problem at the algorithm level using a cost matrix
designed to make the negative samples’ misclassification cost more considerable than that
of the positive samples.

The studies above showed that the DI has a great effect on machine learning models’
prediction ability for spatial prediction of landslides. Most of the studies have shown
that synthetic sampling (e.g., SMOTE) outperforms the random methods. However, some
models gain fewer benefits from data balancing techniques [20]. To the best of the authors’
knowledge, generative techniques such as GAN have not been employed in this particular
domain. As a result, this paper introduces a new approach to data balancing based on GAN.
We think that the new approach would be able to outperform the other techniques due to
GAN models’ ability to learn abstract representations of the dataset and generate more
useful samples compared to random or synthesised samples as other methods generate.
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This paper compares SMOTE and GAN for landslide data balancing based on several
common/standard machine learning models, such as ANN, RF, DT, kNN, and SVM.

3. Materials and Methods
3.1. Study Area

The case study of this research is Chukha Dzongkhag area (longitudes 89◦15′–89◦49′

and latitudes 26◦44′–27◦18′) located in the southwest of Bhutan (Figure 1). The area
approximately covers 1879.5 km2. The area contains steep slope terrain, which makes it
highly at risk of slope failures brought by rainfall and associated disasters due to several
road cuttings [39].

Figure 1. Location of the study area (Chukha Dzongkhag, Bhutan).

Chukha Dzongkhag is located in a region with a subtropical and temperate climate.
The area is highly prone to rainfall-induced landslides, exposed to an annual high level
of rainfall (maximum of 4000–6000 mm), typically by 80% throughout the southwestern
monsoon (from June to September). It records up to 800 mm·day−1 as the most frequent
heavy rainfall in the region. Landslides in the study area mostly occur due to intense
monsoon rainfall, weak geology, and human-induced activities. The majority of land-
slides occur along the Phuentsholing–Thimphu highway, a lifeline link that connects the
capital Thimphu with neighbouring country India, by road as shown in Figure 1 [40,41].
Landslides often block the roads, thereby causing substantial damage to the economy and
infrastructures. The geology of the area is characterised by Himalayan Crystalline Com-
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posite [42]. The most disposed zones to slope failures are deeply cracked and weathered
rocks of phyllite, slate, and schist that comprise a large quantity of clay [41,43,44].

3.2. Datasets
3.2.1. Geodatabase of Conditioning Factors

In this work, ten landslide conditioning factors were used based on previous works
suggestions [8–10] (Figure 2). These include seven geo-morphological factors, such as
altitude, slope, aspect, total curvature, slope length, topographic wetness index (TWI), and
sediment transport index (STI). It also included three geo-environmental factors such as
lithology, distance from the road, and distance from the stream. The details of these factors,
including the calculation method, rationale, and the data range within the study area, are
provided in Table 1.

Table 1. List of landslide conditioning factors used in this research.

Factor Calculation Method Rationale Data Range (Study Area)

Altitude

Extracted from digital elevation
model (DEM) data with 10 m

spatial resolution (DEM data from
ALOS PALSAR satellite) prepared

based on topographical maps.

Areas with high altitude impact
loading on the slope, increasing

the possibility of landslides.
0–4413 (m)

Slope

arctan0.5
(

f 2
x + f 2

y

)
,

fx =
z3−z5+2(z2−z6)+z1−z7

8×∆x ,

fy =
z7−z5+2(z8−z4)+z1−z3

8×∆y

Slope is commonly used in
landslide studies. It is an

important topographical factor
that positively contributes to
landslides. In other words,

landslides frequency is often high
on steep slopes.

0–89 (Degree)

Aspect 180− arctan
(

fy
fx

)
+ 90

(
fx
| fx |

)
Aspect is an important factor for

landslide studies as it affects
daylight, wind, and precipitation

exposure. As a result, it also
impacts vegetation cover, soil

thickness, and water content in
the soil.

−1–360 (Degree)

Total curvature
Calculated using the formula for
the calculation of total curvature

as [45].

Curvature has a critical role in
altering the characteristics of

landforms. Thus, it is an important
factor for landslide modelling. The

convex surface instantly drains
wetness, while for an extended
duration, the concave surface

keeps humidity.

−10416–0 (Convex)
0 (Flat)

0–3720 (Concave)

Slope length

Based on the DEM raster, for each
cell, the upstream or downstream

distance, or weighted distance,
along the flow path was calculated.

Slope length is a factor that
contributes to the increase of

erosive capacity to displace and
transport materials downslope.

0–1220 (m)

Lithology

The various lithological units were
extracted and mapped from the
geology map of the study area
based on the Bhutan geological

map revised after [46].

Lithological units have different
impacts on landslides. For

example, weathered and fine rocks
are more exposed to slope failure

than strong
separate/disjointed ones.

[Baxa Formation, Jaishidanda,
Tethyan Sedimentary Series,

Paro Metasediments,
Chhukha, Daling Shumar Gp,

Greater Himalayan Series]
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Table 1. Cont.

Factor Calculation Method Rationale Data Range (Study Area)

Distance from road

The Euclidean distance was
calculated from each pixel within

the raster data to the nearest
source point (road data).

Shallow to deep excavations,
external loads application, and
vegetative cover removal are
general activities throughout
construction alongside main

roads/highways.

0–17,377 (m)

Distance from stream

The Euclidean distance was
calculated from each pixel within

the raster data to the nearest
source point (stream data).

The irregular movement system of
a hydrological circle and valleys
involves eroding and saturating

progressions. Consequently,
causing slope failure due to a

surge in pore water pressure level
in zones that neighboring

drainage networks.

0–3356 (m)

TWI ln
(

α
tanβ

)
A hydrology factor that combines

upslope contributing area and
slope which impacts on landslide
occurrence. Higher TWI values

indicate a low probability of
landslide occurrence.

−14–19.5

STI
(

As
22.13

)0.6
.
(

sinβ
0.0896

)1.3

The amount of sediment
transportation through the on-land

streams is mainly based on the
eroding of catchment evolution

concepts and carrying ability
limiting deposit flux.

0–2399

Figure 2. Cont.
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Figure 2. Cont.
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Figure 2. Landslide conditioning factors.

3.2.2. Landslide Inventory Dataset

Data-driven models always require landslide inventories for training. As a result, the
first step in the spatial prediction of landslides with such models is to prepare a landslide
inventory database for the investigated area. The database should contain the location
and landslide attributes (i.e., type, size, impact) of past events. Nevertheless, in landslide
studies, usually obtaining a complete dataset is difficult and expensive. In this research,
the database, including 269 landslide inventories, was collected based on the Border Roads
Organisation, Govt. of India (http://www.bro.gov.in) project DANTAK framework. The
model was constructed as a point-base landslide locations, which is commonly used in
machine learning landslide modeling [7,15,16]. We utilised the spatial and location of
temporal landslides that took place in a period from 1998 to 2015 in the study area. The
landslide inventory was prepared by the Indian Border Roads Organisation, and the most
common types of landslides observed were earth slides (shallow landslides). The landslides
were mapped as single points.

As shown in Figure 1, most of the landslides occurred along the Phuentsholing–
Thimphu highway caused by intense or prolonged precipitation. Field data shows that the
depths of the landslides vary from several decimetres to a few meters.

3.3. Methodology
3.3.1. Overview

Figure 3 shows the overview of the proposed methodology for spatial prediction of
landslides at Bhutan, based on the GAN technique to address the imbalanced landslide
inventories problem. After acquiring the inventories, the geospatial databases were pre-
pared for the landslide inventories and landslide conditioning factors. As the non-landslide
pixels are more than that of landslide pixels (~3.54%), two data balancing were applied
to correct the DI, namely SMOTE and GAN. The corrected/updated dataset was then
used to generate the training and test samples according to the (30/70) ratio method used
commonly in previous works. Next, five different machine learning models (namely ANN,
RF, DT, kNN and SVM) were constructed and trained. Those models were then tested
and analysed using performance metrics, such as overall accuracy (OA), confusion matrix,
F1-score, and area under receiver operating characteristic curves (AUROC) curves. The
model analysis included the impacts of training data size, the ratio between the positive
and negative samples, and the model’s optimisation on the predictive capability of the
models. Once the models were tested and verified, the landslide susceptibility maps of the
study area were generated and prepared.

http://www.bro.gov.in
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Figure 3. Overview of the proposed methodology for spatial prediction of landslides in Bhutan.

3.3.2. Data Balancing

a. Synthetic Minority Oversampling Technique (SMOTE)

SMOTE is an approach to correct DI problems [30]. It is an oversampling technique
that works based on the interpolation process as the following. First, the k nearest neigh-
bours of all minority samples are determined. Next, artificial minority samples are gener-
ated along the lines (i.e., the line lay between the minority samples and their kNN until the
dataset reaching a balance. SMOTE is considered a pre-processing step within a modelling
pipeline. It allows the application of common machine learning models after correcting
DI. However, SMOTE cannot handle noise adequately as the introduced samples might
be the result of interpolation between noisy samples. Thus, improvements are required to
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clean the data after applying SMOTE. This approach and its extensions have been used for
spatial prediction of landslides in studies by Agrawal et al. [33].

b. Generative Adversarial Network (GAN)

As first presented by Goodfellow et al. [29], GAN is a NN model; the concept of
GAN’s training is based on adversarial form to generate new data simulating particular
distributions. It consists of two main components: a generator (G) and a discriminator (D).
The G maps a sample from the data distribution, whereas the D is trained, distinguishing
in case the produced sample has a position/place in the data’s genuine distribution. Both
G and D are regularly learned together based on games concept (Figure 4).

Figure 4. The general architecture of GANs.

A sample from random noise z (for every task) is produced via G to mislead D. The
actual samples are then stated via D and the samples generated via G, sorting the samples
as actual or fake. Through creating samples that can fool D, the G is rewarded. As a result
of making the right classification, D is also rewarded. Both tasks are continuously repeated
until a Nash equilibrium is obtained. The replication is then stopped. In particular, let D(s)
be the probability that initiates from a genuine/real data rather than the generator. Both G
and D act as a minimax match through Equation (1), as introduced by [29].

min
G

max
D

V(D, G) = Es∼pdata(s)
[logD(s)] + Ez∼pz(z)

[log(1−D(G(z)))] (1)

3.3.3. Machine Learning Models

Five machine learning models were used to evaluate the proposed GAN-based data
balancing method for the spatial prediction of landslides. Those models are briefly ex-
plained in the following subsections:

Artificial Neural Networks (ANN)

ANN is a learning algorithm composed of neurons, organised in layers that can be
used both for classification and regression tasks [47]. The training examples are continually
offered to the algorithm, whereas the weights are updated to achieve the favorite objective
value. As a benefit in landslide studies, it does not need a straightforward practice to
evaluate their favorite objectives [48].

Decision Trees (DT)

DT is a supervised classification algorithm built through recursive data partitioning.
In each iteration, the data is split according to a selected attribute’s values until data
subsets include examples of the same class. At each split in the tree, all input attributes
are evaluated for their impact on the predictable attribute. DT is doable without a prior
understanding of data distribution and straightforward analysis. Moreover, it is easy to
design and explainable for in charge decision-makers [49,50].
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Random Forests (RF)

A forest is constructed with several decision trees. Each tree fits a bootstrap sam-
ple from the training set with a random subset of features and samples selected at each
node [51]. This way, the correlation between trees is minimised. It uses each tree’s strong-
ness and their correlations, which makes it less influenced by overfitting issues. Moreover,
RF estimates the relative importance of the input variables, which makes it an explainable
model compared to other black box models as NN. For landslide studies, mixed variables,
(i.e., both categorical and numerical) are more likely. Therefore, RF is ideal for working
with such variables [52].

Support Vector Machines (SVM)

SVM is a binary classification algorithm that generates a separating hyperplane (i.e.,
from the training set points) in the original space of n coordinates between the points of
two distinct classes [53]. It aims to find a maximum margin of separation between the two
classes and constructs a classification hyperplane in the middle of the maximum margin.
In the spatial prediction of landslides, the purpose is to differentiate whether pixels are
susceptible (1) or not susceptible (−1) [54].

k Nearest Neighbours (kNN)

kNN is a nonparametric classification algorithm that assumes that the classification of
an object is most similar to the classes of other samples adjacent to the vector space [32].
The kNN classifier ranks the sample’s neighbours among the training examples and uses
the k most similar neighbors’ class labels to predict the new class. These neighbours’ classes
are weighted using the similarity by Euclidean distance or the cosine value between the
vectors.

3.3.4. Assessment and Model Analysis

a. Accuracy metrics

The proposed models are assessed through the following accuracy metrics:

i. Overall accuracy (OA)

OA is a common and primary metric used to measure the general performance of
a prediction model. It is the rate of correct classifications using an independent test set
or using cross-validation data. In this study, OA was measured using the following
Equation (2):

OA =
TP + TN

TP + FP + TN + FN
(2)

where TP is true positive which means the model predicts positive and it is true, TN is
true negative (the model predicts negative and it is true), FP is false positive (the model
predicts positive and it is false), and FN is false negative (the model predicts negative and
it is false).

ii. Confusion matrix

A confusion matrix, another statistical method for validating the model, provides
the accuracy of the obtained classification [55]. The confusion matrix was calculated by
comparing the location and class of each ground truth pixel with the corresponding location
and class in the obtained classified image.

iii. F1-score

The F1-score is the harmonic mean of recall (r) and precision (p), with a higher score
as a better model’s function. Precision (p) is determined by dividing the true positives
(number of landslide pixels) with the total number of pixels classified as a landslide. The
sensitivity (r) is the degree of true positives acceptably (correctly) predicted and identified.
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It can be defined as the number of true positives divided by the overall number of pixels
belonging to landslide’s class. The F1-score is calculated using the following formula [56]:

F1-score = 2× p × r
p + r

(3)

p =
TP

TP + FP
(4)

r =
TP

TP + FN
(5)

The problem with the F1-score metric is assuming a 0.5 threshold for selecting which
samples are predicted as positive. Changing this threshold would change the performance
metrics. AUROC curve is a very common method to solve this problem.

iv. Area under the receiver operating characteristic curve (AUROC)

The area under ROC is known as AUROC, a quantitative measure summarizing
model performance. ROC curves help to recognize the balance between true-positive and
false-positive rates. A perfect model has 1.0 AUROC, and 0.5 AUROC indicates random
models. The closer the AUROC to 1.0, the higher the model performance.

b. Model analysis

To achieve this goal, three experiments were performed as follows:

1. Impacts of training data size: The quantity of training samples affects the machine
learning models’ performance [57]. Thus, we conducted an experiment to understand
how each model is impacted by the size of the training dataset. Also, this experiment
was performed to understand how data balancing methods work with different sizes
of training samples.

2. Impacts of the ratio between positive and negative samples: The ratio between the
positive and negative samples has a great impact on the machine learning models’
performance. As a result, this experiment was performed to understand how each
model is impacted by the ratio between the landslide and non-landslide samples.

3. Impacts of model’s optimisation: Several hyperparameters for each machine learning
model were employed in this research. Those require optimisation to achieve the best
performance for the model and also to improve their generalisation in unknown areas.
Thus, this experiment was conducted to study the impact of model optimisation on
the accuracy of the landslide susceptibility maps.

3.3.5. Preparing Landslide Susceptibility Maps

Based on the models’ outputs and analysis step, each cell in the study was assigned a
probability of landslide occurrence value ranging from 0 to 1 using the models’ predictions:
the greater the probability value, the more exposed (susceptible) to landslides [58]. The
resulting raster maps were then reclassified according to five categorical classes via ArcGIS
10.7 software: very-low (<0.2), low (0.2–0.4), moderate (0.4–0.6), high (0.6–0.8), and very-
high (>0.8). The classification was carried out based on the natural breaks method (the Jenks
method of optimisation), which was proven as a reliable classifier in landslide susceptibility
mapping [58–60]. This classifier is an iterative process based on data segmentation aims
to calculate the best value arrangement in various classes. It has no class bias, and the
intra-class deviation is minimum and inter-class deviation is maximum [60].

4. Results

This section describes the results obtained from a number of experiments conducted in
this study. It investigates various sampling methods (Table 2) integrated with five machine
learning models (ANN, RF, DT, kNN, SVM) for the spatial prediction of landslides at
Chukha, Bhutan. Those experiments included: (i) assessing two oversampling techniques
i.e., SMOTE and GAN for balancing landslide datasets; (ii) assessing and comparing
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different machine learning models for the susceptibility mapping considering various
sampling techniques; and (iii) analysing the proposed models through (1) optimisation of
their hyperparameters, (2) studying the effect of training data size, and (3) studying the
effect of the ratio between non-landslide and landslide samples in the training datasets.
The following subsections describe the main findings obtained from these experiments.

Table 2. The definition of sampling methods used in this research.

Sampling Method Explanation

Dense sampling
Non-landslide samples have been generated randomly, covering the investigated area with 500 m as a
minimum distance between the points. The total number of non-landslide samples was 952 compared

to 269 landslide samples. The ratio between the non-landslides to landslide samples is ~3.54.

Sparse sampling
Non-landslide samples have been generated randomly to sparsely cover the study area. The number of
non-landslide samples is the same as the landslide samples. The minimum distance allowed between

the points was 500 m. The ratio is 1:1 between the non-landslides and landslide samples.

SMOTE
Given the original samples, which contained 952 non-landslide samples and 269 landslide samples, the

SMOTE procedure was applied to generate an additional of 683 landslide samples. Thus, the ratio
became 1:1 between the non-landslides and landslide samples.

GAN
Given the original samples, which contained 952 non-landslide samples and 269 landslide samples, the
GAN model was applied to generate an additional 683 landslide samples. Thus, the ratio became 1:1

between the non-landslides and landslide samples.

4.1. Assessing Data Balancing Methods, i.e., SMOTE and GAN

The two approaches (SMOTE, GAN) were assessed using five different machine
learning models, such as ANN, RF, DT, kNN and SVM. The assessment was carried out
based on several standard accuracy metrics, including OA, Kappa Index, F1-score, and
AUROC. Figure 5 demonstrates the evaluation of the two methods based on the four
accuracy metrics and the five models.

Figure 5. Assessment of SMOTE and GAN data balancing methods using different machine learning models. The accuracy
refers to the total combination of four multi-metrics including OA, Kappa Index, F1-score, and AUROC. (a) Default
parameters, and (b) optimal models.
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Considering the models with default parameters, they all performed better (any
accuracy metric) with the samples generated by the GAN method compared to SMOTE,
except the two data balancing methods performed equally for SVM based on F1-score.
Based on AUROC, the models i.e., ANN, RF, DT, kNN, and SVM achieved 0.918, 0.933,
0.927, 0.878, and 0.907 with GAN compared to SMOTE which yielded 0.887, 0.929, 0.919,
0.846, and 0.903, respectively. Nevertheless, using the optimal parameters for the models,
SVM gained accuracy with SMOTE higher than that from GAN. The remaining models all
performed better with GAN. Employing the optimal parameters of the models ANN, RF,
DT, kNN, and SVM achieved 0.93, 0.95, 0.923, 0.91, and 0.906 AUROC with GAN compared
to SMOTE which yielded 0.925, 0.925, 0.900, 0.859, and 0.908 AUROC, respectively.

Consequently, as it appears from the above assessment, GAN was found as an ef-
fective approach that can be used as a data balancing method for spatial prediction of
landslides compared with more standard methods such as SMOTE. Although the results
from this study were consistent with several machine learning models, some algorithms
like SVM (with optimal parameters) seem to gain higher accuracy with the SMOTE method
compared to the proposed GAN approach. Additional experiments have been consid-
ered to analyse further the two data balancing methods in more detail, explained in the
following subsections.

4.2. Assessment and Comparison of used Models

The inventory data used in this research (available for the study area) are highly con-
centrated along the highway. This issue has created a DI problem since the non-landslide
samples generated to cover the study area were more than the number of landslide samples
(by ~3.54 times). As mentioned earlier, two data balancing methods (i.e., SMOTE and GAN)
were applied to correct the DI. In addition, those techniques were compared to the standard
sampling methods, namely dense sampling and sparse sampling. Those methods are
undersampling techniques widely used in spatial prediction of landslides studies. Sparse
sampling is applied in usual practice, which generates non-landslide samples as much as
the landslide samples (equally). No DI issues occur with this sampling method. However,
it is not always effective in real-world situations to use such methods as the case in this
research. Therefore, it was important to solve the DI problem before the application of
machine learning models.

The results are summarized in Appendix A and Figure 6a,b, for (a) default parameters,
and (b) optimal parameters. The results based on OA show that the dense sampling is
better than the sparse sampling for both default and optimal models, except in the optimal
case, DT performed better with the sparse samples. Considering the Kappa index, the two
methods, i.e., dense and sparse sampling, both performed differently based on the type of
model used. With the default parameters, ANN and SVM performed better with the dense
sampling, whereas the remaining models performed best with the sparse sampling.

Utilising the optimal parameters, kNN and SVM achieved the best results with the
dense sampling, whereas the remaining models performed best with the sparse sampling.
Based on F1-score, sparse sampling was found better than dense sampling for all the
models except the default ANN. Moreover, tree models, such as DT and RF with default
parameters, performed better with the sparse sampling compared to the other method. DT
with the optimal parameters also achieved higher accuracy with the sparse sampling. RF
with the optimal parameters worked best with the dense sampling. The remaining models
all worked best with the dense sampling for both the default and optimal parameters.

According to any accuracy metric used, both SMOTE and GAN methods achieved
higher accuracies than the standard dense and sparse sampling methods. Based on F1-
score, on average, the SMOTE and GAN methods improved the accuracy of the models
(with default parameters) by 0.104 (±0.05) and 0.115 (±0.058), respectively. Regarding
the optimal models, the accuracy was improved by 0.051 (±0.039) and 0.06 (±0.034) after
correcting the DI by the SMOTE and GAN methods, respectively.
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Figure 6. Assessment of DENSE and SPARSE data balancing methods using different machine learning models. The
accuracy refers to the total combination of four multi-metrics including OA, Kappa Index, F1-score, and AUROC. (a) Default
parameters, and (b) optimal parameters.

4.3. Model Analysis
4.3.1. Analysis of Optimisation Impact on Machine Learning Models

The performance of the used machine learning models depends on several hyperpa-
rameters. This research used both the default values of those hyperparameters provided
by the sklearn package and the optimal values found by a randomised search algorithm
over a specific search space of values (Table 3). The optimisation was based on the critical
hyperparameters for the models. The search space for those hyperparameters was based
on common values and a logical minimum and maximum values for each hyperparameter.
The randomised search algorithm was run for 20 iterations to find the best values using a
cross-validation AUROC accuracy metric. The results of this process are summarised in
Table 3. Those best models were used in the experiments (conducted in this study) and
compared to the default models.

Table 3. Summary results of optimisation of machine learning models.

Model (Parameters) Search Space Best
Value

Validation
Score
(Std)

ANN
Solver

Max Iteration
Learning Rate

Type of Learning Rate
Hidden Layer Sizes

Alpha (L2)
Activation Function

[LBFGS, SGD, ADAM]
(10, 1000, steps:10)

power(10, range(-3, 1))
[Constant, Invscaling, Adaptive]

[(128,), (64,), (32,), (128, 64), (64, 32), (32, 16), (128, 64, 32), (64, 32,
16), (32, 16, 8)]

power(10, range(−4, 1))
[Identity, Logistic, Tanh, ReLU]

LBFGS
650
0.1

Constant
(32,)

1.0
Logistic

0.882
(0.007)

RF
Number of Estimators

Max Depth
Max Features

(10, 1000, steps:10)
(2, 15, steps:1)

[Auto, Sqrt, Log2]

350
8

Log2

0.910
(0.027)

DT
Max Depth (2, 15, steps:1) 5

0.910
(0.024)
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Table 3. Cont.

Model (Parameters) Search Space Best
Value

Validation
Score
(Std)

kNN
Nearest Neighbours (3, 15, steps:1) 6

0.842
(0.008)

SVM
C

Kernel Function
(1, 1000, steps:10)

[Linear, RBF, Sigmoid]
81

RBF

0.854
(0.012)

4.3.2. Analysis of Training Data Size Impact on Machine Learning Models

The size of the training data has an impact on the performance of the machine learning
models. In this study, several training data sizes have been tested with the five models used.
In addition, different sampling methods, including dense, sparse, SMOTE and GAN, were
also tested with the training data sizes. Generally, the results (as presented in Appendix B)
show that a training size of 0.7 (test data size = 0.3) can achieve good results. Some models
such as RF, DT, and kNN, when combined with SMOTE, showed better accuracies with
0.9 training data size. When combined with different sampling methods, some other
models showed the best results, with smaller training data sizes 0.5 or 0.3. However, those
results were random, and no consistent pattern was observed in the results. Consequently,
this study suggests that a training data size of 0.7 should be used with the test models.

4.3.3. Analysis of Landslide to Non-Landslide Sample Ratio Impact on Machine
Learning Models

This research also investigated the effect of the ratio between landslide and non-
landslide samples on different machine learning models [57]. The study also analysed
how the two data balancing, i.e., SMOTE and GAN, perform with different ratios of
landslide/non-landslide samples. In particular, three different experiments have been
conducted, including the ratio of 1:1, 1:2, and 1:3 of landslide to non-landslide samples.

First, a balanced dataset (sparse) is created based on the number of landslide samples.
The models were tested using this dataset and compared to each other. The results are
summarised in Table 4. RF was found to perform the best according to all the four accu-
racy metrics (OA= 0.914, Kappa= 0.827, F1-score= 0.918, AUROC= 0.914), whereas kNN
achieved the lowest accuracies. DT outperformed the remaining models but performed
slightly worse than RF. ANN and SVM performed comparably.

Table 4. Assessment of models with a dataset created based on a ratio of 1:1.

Metric

OA Kappa F1-Score AUROC

ANN 0.846 0.691 0.855 0.846
RF 0.914 0.827 0.918 0.914
DT 0.901 0.802 0.904 0.901

kNN 0.802 0.605 0.820 0.802
SVM 0.852 0.704 0.852 0.852

Values presented in bold represent the best according to all the four accuracy metrics achieved by RF based on a
ratio of 1:1 landslide to non-landslide samples.

Second, an imbalanced dataset was created based on the ratio of 1:2 landslide to
non-landslide samples. The five models were tested based on this dataset first. Then, the
two data balancing (i.e., SMOTE and GAN) were used to correct the DI. The models were
tested again on these datasets and compared with the first data. Table 5 shows the results
obtained from this experiment. For all the models tested, data balancing was an important
step and improved the models’ accuracy. GAN worked best for ANN, RF, DT, and kNN,
except for SVM that SMOTE had slightly better performance than GAN (since generated
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samples are linear combinations of existing samples). The results of ANN were slightly
mixed. The accuracies of ANN obtained with the samples generated by the GAN method.
According to OA and AUROC metrics, ANN achieved better results without correcting
the DI compared to the SMOTE approach. However, according to Kappa and F1-score, the
ANN achieved better results with SMOTE compared to the imbalanced dense samples.

Table 5. Assessment of models with datasets created based on a ratio of 1:2.

Sampling Model
Metric

OA Kappa F1-Score AUROC

ANN 0.922 0.829 0.889 0.926
RF 0.909 0.804 0.874 0.917

Dense DT 0.909 0.799 0.867 0.904
kNN 0.840 0.636 0.755 0.815
SVM 0.860 0.685 0.790 0.843

ANN 0.916 0.833 0.920 0.917
RF 0.941 0.882 0.944 0.941

SMOTE DT 0.904 0.808 0.910 0.904
kNN 0.870 0.740 0.881 0.870
SVM 0.932 0.864 0.933 0.932

GAN

ANN 0.951 0.901 0.951 0.951
RF 0.960 0.920 0.961 0.960
DT 0.935 0.870 0.938 0.935

kNN 0.895 0.790 0.895 0.895
SVM 0.926 0.852 0.927 0.926

Values presented in bold represent the best according to all the four accuracy metrics based on a ratio of 1:2
landslide to non-landslide samples.

Finally, a dataset was created with a 1:3 ratio between the landslides to non-landslide
samples. The dataset was used to test the data balancing methods, i.e., SMOTE and GAN,
against using the five machine learning models’ imbalanced dataset. The results are shown
in Table 6. The best results were achieved with the GAN method for models (i.e., ANN, RF,
DT, and kNN). In contrast, SVM performed best with the SMOTE method. Thus, the used
data balancing methods were found useful in improving the accuracy of the models.

Table 6. Assessment of models with a dataset created based on a ratio of 1:3.

Sampling Model
Metric

OA Kappa F1-Score AUROC

ANN 0.910 0.773 0.834 0.907
RF 0.932 0.830 0.876 0.942

Dense DT 0.910 0.770 0.830 0.899
kNN 0.895 0.715 0.785 0.852
SVM 0.926 0.813 0.864 0.930

ANN 0.928 0.856 0.932 0.928
RF 0.944 0.889 0.947 0.944

SMOTE DT 0.922 0.843 0.927 0.922
kNN 0.878 0.757 0.886 0.878
SVM 0.938 0.876 0.939 0.938

GAN

ANN 0.951 0.901 0.950 0.951
RF 0.951 0.901 0.951 0.951
DT 0.930 0.860 0.931 0.930

kNN 0.905 0.810 0.905 0.905
SVM 0.934 0.868 0.935 0.934

Values presented in bold represent the best according to all the four accuracy metrics based on a ratio of 1:3
landslide to non-landslide samples.
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4.4. Spatial Prediction of Landslides with Machine Learning Models

Finally, five landslide susceptibility maps were produced for the study area (Chuka
Dzongkhag) by ANN, RF, DT, kNN, and SVM models using the corrected datasets created
by the proposed GAN approach with optimal parameters (Figure 7). In the maps, the high
susceptibility areas are distributed along the Phuentsholing–Thimphu highway. Besides,
the majority of the genuine landslides are scattered in the higher susceptibility area, whereas
only limited landslides are spread in the lower susceptibility area. According to the maps,
the results reveal that the proposed models’ predicted susceptibility values are in good
agreement with the real landslide distribution. Figure 8 illustrates the AUROC plot for
the best models balanced with GAN. These graphs can better interpret the relationship
between true positive rate and false-positive rate, where 1.0 indicates the best AUROC and
0.5 indicates the worst AUROC.

The results of variable importance for RF using the corrected datasets created by
the proposed GAN are provided in Figure 9. Based on the RF analysis for variable
contribution, the most significant conditioning factors were STI, lithology, followed by
the distance from the road. While total curvature, TWI, and distance from the stream
were in lower ranks in terms of their significant effects on the landslide occurrence
in the region. This result indicates a logical outcome, as the study area is located in
a mountainous region that is exposed to intense monsoon rainfall, and identified as
vastly cracked and weathered rocks with plenty of clay. Additionally, road construction
activities such as hill cutting are a common process in such areas, which all could initiate
soil instability. Considering STI, it ranked the highest conditioning factor among the
others in the study area. It represents the slope failure and deposition processes and
directly relates to the water accumulation at the bottom of the catchment and the erosion
quantity [61]. As Bhutan is exposed to an annual high level of rainfall (maximum of
4000–6000 mm), usually throughout the southwestern monsoon, it is expected that the
greater amount of the flow can carry more sediment that contributes to soil instabil-
ity/landslides triggering. Another important factor was lithology. Lithological units
have different impacts on landslides [62–64]. Generally, weathering prompts slopes to
failures. Weathered and fine/cracked rocks are more exposed to slope failure than strong
separate/disjointed ones [65]. The most disposed zones to slope failures of the Bhutan
region are deeply cracked (results in unstable soils) and weathered rocks of phyllite,
slate, and schist that comprise a large quantity of clay. Clay particles control soil strength
and shearing mechanism when their proportion is more than 30% [66]. Clay cannot be
stabilized and consequently holds the particles together when they are wet [67]. As
such, soil erosion frequently occurs during the wet season and this could be one of
the important factors causing landslides [67]. Distance from road was another crucial
factor in the study area. The majority of landslides occur along Phuentsholing–Thimphu
highway, a lifeline link that connects the capital Thimphu with India. Numerous road
cuttings, external loads applications, and plants removal are general activities while
constructing and maintaining roads and highways, raising the probability of landslides
adjacent to such places as the case in the current study.
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Figure 7. Landslide susceptibility maps produced by ANN, RF, DT, kNN, and SVM models using the corrected datasets
created by the proposed GAN.
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Figure 8. Evaluation of the landslide susceptibility maps (balanced by GAN) based on the AUROC test using: (a) ANN,
(b) RF, (c) DT, (d) KNN, and (e) SVM.
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Figure 9. Variable importance analysis derived from RF corrected datasets created by GAN.

5. Discussion

This paper introduced a new method of data balancing based on GAN for improving
training in various machine learning models, i.e., ANN, RF, DT, kNN, and SVM. The
new method was compared to the standard data balancing methods, such as SMOTE.
Those methods were also compared to commonly used methods, such as dense and sparse
sampling. When a dataset is not balanced, the predictive models often produce biased
results. The models become biased towards the majority class. As a result, developing data
balancing methods in spatial prediction of landslides is important.

The proposed data balancing method is based on state-of-the-art generative models,
such as GAN. In previous works, GAN models were also applied to create synthesised
datasets to improve the performance of machine learning models [18]. Such models learn
the distribution of a given training dataset and provide the ability to generate samples that
are similar to training samples. In this way, additional training samples can be created to
correct imbalanced datasets.

Both the proposed GAN and SMOTE data balancing methods yielded higher accuracy
than the imbalanced dataset and sparse sampling. The models with default parameters
worked best with the samples generated by the proposed GAN method. Based on AUROC,
the models (i.e., ANN, RF, DT, kNN, and SVM) achieved 0.918, 0.933, 0.927, 0.878, and 0.907.
The optimal models, i.e., ANN (0.93), RF (0.95), DT (0.92), and kNN (0.91) also achieved the
best accuracies with GAN, except SVM yielded the highest accuracy (0.906) with SMOTE.
These results indicate the high standing of correcting DI in spatial landslide prediction.
Four of the tested models showed higher accuracies compared to SMOTE, both with the
default and optimal parameters.

The factor importance resulting from the RF balanced by GAN model suggests that
the most important conditioning factors for landslides are STI, lithology, and distance
from the road, which shows a direct connection with landslide occurrence. In terms of
factor importance, limited studies might have similar results as each area has various
geo-environmental variables [68]. In previous studies, distance to rivers, altitude, and
lithology were the dominant factors for landslides, while the distance to roads, distance
to river and lithology were the main factors [69]. Another study found that distance to
fault, elevation and distance to road had the most contribution among 17 conditioning
factors [70].

Our finding is quite reasonable, as the Chukha Dzongkhag region is highly impacted
by monsoon rainfall, leading to erosion of soil and rocks and triggering extensive mass
movements, especially near roads where anthropogenic activities are prevailing.
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The factor importance results, however, indicate different weights for the conditioning
factors within every algorithm and it is one of the reasons that some differences were
observed among various results in some regions in susceptibility maps. This is due to
their architecture and the way these models approach a problem in model fittings (learning
schemes) in machine learning/data science [71]. Furthermore, we used the Jenks natural
break method (The Jenks method of optimisation) to classify the data based on their
distribution. Several studies showed that this method is suitable for natural hazard studies
such as landslide susceptibility [58,60,68]. The primary benefit of the natural break method
is that it has no class bias. Also, the intra-class deviation is the lowest (minimum) and inter-
class variation is the highest (maximum) Jenks, [59,60]. In the previous similar analysis
by Taalab et al. [19], distance to rivers, TWI, and rainfall were the most important factors,
while curvature was the least influential factor. Another study by Xiong et al. [72] showed
that the mean altitude, altitude difference, aridity index, and groove gradient have the
most significant contribution in their study area. In contrast, seismic intensity and area
of moderate soil erosion had the least share. These differences can be attributed to each
study area’s environmental and geological variation and can be considered as a general
limitation of machine learning models.

The statistical validation using ANOVA is applied in order to decide whether two
very close values are significantly different from each other [73]. The results in Table 7
show that there are significant differences between different classes and the p-value are less
than 0.05 for all classes.

Table 7. Statistical Validation of RF-GAN using ANOVA.

Classes Estimate Std. Error Mean +95% −95% p-Value

Very Low −0.5969524 0.0008443 0.0616 0.0619 0.0613 < 2e−16 ***
Low −0.3625884 0.0009018 0.2960 0.2967 0.2952 < 2e−16 ***

Moderate −0.1826528 0.0009546 0.4759 0.4768 0.4751 < 2e−16 ***
High 0.6586289 0.0008322 0.6586 0.6596 0.6575 < 2e−16 ***

Very High 0.1467942 0.0243412 0.8054 0.8084 0.8024 1.64e−09 ***

Signif. Codes Symbol: ‘***’ for p ≤ 001.

This study also analysed the impacts of training data size and landslide/non-landslide
samples ratio on the performance of the models. Generally, a training size of 70% can
achieve decent results. Some models, such as RF, DT, and kNN when combined with
SMOTE, showed better accuracies with 0.9 training data size. With the balanced dataset
(ratio 1:1), RF achieved the best results, whereas kNN achieved the lowest accuracies. The
analysis based on ratio 1:2 showed that the models i.e., RF, DT, and kNN worked best with
GAN. However, SMOTE performed better than GAN for SVM. The results of ANN were
slightly mixed. With a ratio of 1:3, the results suggested that GAN was the best method
for models, i.e., ANN, RF, DT, and kNN. In contrast, SVM performed best with SMOTE.
Although the number of training size of landslides (inventory) using machine learning
models have affected the landslide susceptibility maps, the type of landslides could affect
the distribution of susceptibility classes, with more reliable results when a multi-temporal
inventory is considered. Previous studies highlighted that different rainfall events in an
area could affect the estimation of shallow landslide susceptibility in the same region [74].

Thus, the role of different types of landslides can further be investigated using ad-
vanced machine learning models [74]. Moreover, scholars stated that limitation of accurate
information on the type of landslides (e.g., debris flow, rock fall, etc.) might cause un-
expected consequences in the models’ comparison [63]. On the other hand, increasing
positional inventory-based error is commonly related to the misrepresentations of modeling
and validation outcomes [75]. However, complex mutuality exists between the statistical
models and inventory-based spatial inaccuracies, which can be reduced by choosing a
compatible study design [75].

GAN can generate synthetic data that has the original data distribution [29]. Since
these models depend on neural networks, which have several hyperparameters to fine-
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tune, the generated data can be controlled and targeted for specific applications. However,
SMOTE is less flexible to control. Thus, its performance is hard to improve for some
models [30,33]. However, training of GAN models is not an easy task and requires extensive
testing of the model’s architecture and hyperparameters. Careful analysis is crucial to
avoid overfitting when implementing GAN models. Furthermore, as with any deep neural
networks, optimisation is another important issue that should be taken into account as
GANs are highly sensitive to hyperparameters settings [29,76]. Another possible limitation
is that only limited samples may be generated by the generator failing (mode collapse), or
the discriminator might get over-successful that it could vanish the generator gradient that
nothing can be learned (diminished gradient). In some cases, this difficulty may result in
SMOTE outperforming the methods that are based on GAN or related complex models. As
a result, GAN can be a better alternative for SMOTE when more data are required, with a
similar distribution to the training data.

6. Conclusions

Spatial prediction of landslides is an important step for landslide risk assessment and
planning mitigation measures. As a result, many studies have developed models for spatial
landslide prediction, and research has progressed significantly in this direction. This study
developed a new approach to data balancing based on GAN. This approach was compared
to other data balancing methods such as SMOTE as well as other sample techniques, such
as dense and sparse sampling. The assessment of these sampling methods was performed
based on five machine learning models i.e., ANN, RF, DT, kNN, and SVM, including the de-
fault and optimal parameters. Optimisation of the models’ hyperparameters was based on
a randomised search for 20 iterations using a cross-validation AUROC. This study showed
that data balancing is an important step that can significantly impact the performance
of machine learning models used for spatial prediction of landslides. Other generative
models, such as Gaussian mixture models, autoencoders, and variational autoencoders
also should be considered for landslide data balancing.

To sum up, one of the major limitation of machine learning models is that they need
plenty of data to perform well. Generally, more data (quality and quantity data) can
lead to a better learning scheme and better performance. Nevertheless, data from smaller
number of samples (particularly landslides data) can lessen the performance and accuracy
of such models. Using state-of-the-art generative models (GAN) can fill the gap and
solve such problems. Our finding suggests that RF balanced with GAN can provide the
most reasonable criterion for landslide prediction and future aim for comprehensive risk
assessment in Bhutan. The approach is especially useful when integrated with RF. It can
create a better practice of feature selection due to the nature of RF. It also reduces overfitting
in decision trees and works well with both continuous and categorical data.

Our attempt in this study can be considered a preliminary experiment to understand
the likelihood of landslides occurring in the region where the landslide data are limited,
imbalanced, or scarce.
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SVM support vector machine
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PALSAR the phased array L-band synthetic aperture radar

Appendix A

Table A1. Assessment of different sampling methods used in this study with five machine learning
models (both default and optimised parameters)–based on OA.

Parameters Model
Sampling Method

Dense Samples Sparse Samples SMOTE GAN

Default

ANN 0.856 0.721 0.887 0.918
RF 0.894 0.866 0.929 0.933
DT 0.854 0.840 0.919 0.927

kNN 0.840 0.792 0.846 0.878
SVM 0.859 0.803 0.903 0.907

Optimal

ANN 0.903 0.874 0.925 0.927
RF 0.908 0.907 0.925 0.943
DT 0.889 0.903 0.900 0.923

kNN 0.874 0.784 0.859 0.889
SVM 0.863 0.803 0.908 0.906

http://www.bro.gov.in
http://www.bro.gov.in
http://www.hydromet.gov.bt
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Table A2. Assessment of different sampling methods used in this study with five machine learning
models (both default and optimised parameters)–based on Kappa Index.

Parameters Model
Sampling Method

Dense Samples Sparse Samples SMOTE GAN

Default

ANN 0.597 0.442 0.773 0.836
RF 0.697 0.732 0.857 0.866
DT 0.582 0.68 0.838 0.853

kNN 0.585 0.584 0.691 0.757
SVM 0.614 0.606 0.807 0.813

Optimal

ANN 0.732 0.747 0.851 0.853
RF 0.757 0.814 0.851 0.887
DT 0.701 0.807 0.800 0.847

kNN 0.635 0.569 0.718 0.778
SVM 0.623 0.606 0.815 0.811

Table A3. Assessment of different sampling methods used in this study with five machine learning
models (both default and optimised parameters)–based on F1-score.

Parameters Model
Sampling Method

Dense Samples Sparse Samples SMOTE GAN

Default

ANN 0.690 0.661 0.885 0.916
RF 0.765 0.862 0.931 0.932
DT 0.676 0.826 0.923 0.926

kNN 0.690 0.811 0.862 0.882
SVM 0.705 0.800 0.907 0.907

Optimal

ANN 0.794 0.883 0.929 0.928
RF 0.817 0.909 0.930 0.943
DT 0.773 0.904 0.906 0.926

kNN 0.716 0.793 0.870 0.888
SVM 0.712 0.800 0.911 0.906

Table A4. Assessment of different sampling methods used in this study with five machine learning
models (both default and optimised parameters)–based on AUROC.

Parameters Model
Sampling Method

Dense Samples Sparse Samples SMOTE GAN

Default

ANN 0.809 0.721 0.887 0.918
RF 0.855 0.866 0.929 0.933
DT 0.795 0.840 0.919 0.927

kNN 0.828 0.792 0.846 0.878
SVM 0.825 0.803 0.903 0.907

Optimal

ANN 0.882 0.874 0.925 0.93
RF 0.915 0.907 0.925 0.95
DT 0.878 0.903 0.900 0.923

kNN 0.818 0.785 0.859 0.91
SVM 0.830 0.803 0.908 0.906
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Appendix B

Table A5. Assessment of the models with different sampling methods based on OA.

Sampling Model
Training Size

0.3 0.5 0.7 0.9

Dense

ANN 0.855 0.903 0.918 0.894
RF 0.892 0.908 0.924 0.902
DT 0.904 0.889 0.899 0.878

kNN 0.832 0.874 0.872 0.837
SVM 0.843 0.863 0.880 0.862

Sparse

ANN 0.836 0.874 0.870 0.833
RF 0.881 0.907 0.914 0.907
DT 0.889 0.903 0.907 0.907

kNN 0.769 0.784 0.833 0.759
SVM 0.780 0.803 0.852 0.796

SMOTE

ANN 0.921 0.925 0.935 0.932
RF 0.920 0.925 0.941 0.948
DT 0.900 0.900 0.899 0.916

kNN 0.839 0.859 0.874 0.885
SVM 0.903 0.908 0.913 0.911

GAN

ANN 0.898 0.927 0.937 0.916
RF 0.939 0.943 0.946 0.942
DT 0.929 0.924 0.934 0.942

kNN 0.890 0.889 0.897 0.890
SVM 0.900 0.906 0.900 0.880

Table A6. Assessment of models with different sampling methods based on Kappa Index.

Sampling Model
Training Size

0.3 0.5 0.7 0.9

Dense

ANN 0.579 0.732 0.766 0.703
RF 0.711 0.757 0.795 0.723
DT 0.737 0.701 0.723 0.658

kNN 0.494 0.635 0.612 0.512
SVM 0.568 0.623 0.666 0.612

Sparse

ANN 0.671 0.747 0.741 0.667
RF 0.761 0.814 0.827 0.815
DT 0.783 0.807 0.815 0.815

kNN 0.539 0.569 0.667 0.519
SVM 0.560 0.606 0.704 0.593

SMOTE

ANN 0.842 0.851 0.871 0.864
RF 0.839 0.851 0.881 0.895
DT 0.800 0.800 0.797 0.833

kNN 0.677 0.718 0.748 0.770
SVM 0.806 0.815 0.825 0.822

GAN

ANN 0.796 0.853 0.874 0.832
RF 0.879 0.887 0.892 0.885
DT 0.858 0.847 0.867 0.885

kNN 0.780 0.778 0.794 0.780
SVM 0.799 0.811 0.801 0.759
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Table A7. Assessment of the models with different sampling methods based on F1-score.

Sampling Model
Training Size

0.3 0.5 0.7 0.9

Dense

ANN 0.672 0.794 0.819 0.772
RF 0.781 0.817 0.844 0.786
DT 0.799 0.773 0.789 0.737

kNN 0.600 0.716 0.693 0.615
SVM 0.670 0.712 0.744 0.702

Sparse

ANN 0.846 0.883 0.879 0.830
RF 0.887 0.909 0.916 0.912
DT 0.897 0.904 0.911 0.909

kNN 0.776 0.793 0.838 0.755
SVM 0.774 0.800 0.852 0.784

SMOTE

ANN 0.926 0.929 0.938 0.935
RF 0.924 0.930 0.943 0.950
DT 0.908 0.906 0.905 0.922

kNN 0.855 0.870 0.884 0.894
SVM 0.907 0.911 0.916 0.913

GAN

ANN 0.900 0.928 0.937 0.917
RF 0.940 0.943 0.946 0.942
DT 0.931 0.927 0.936 0.943

kNN 0.889 0.888 0.896 0.888
SVM 0.903 0.906 0.901 0.883

Table A8. Assessment of the models with different sampling methods based on AUROC.

Sampling Model
Training Size

0.3 0.5 0.7 0.9

Dense

ANN 0.791 0.882 0.890 0.866
RF 0.885 0.915 0.929 0.871
DT 0.891 0.878 0.882 0.842

kNN 0.739 0.818 0.794 0.749
SVM 0.800 0.830 0.848 0.818

Sparse

ANN 0.836 0.874 0.870 0.833
RF 0.881 0.907 0.914 0.907
DT 0.889 0.903 0.907 0.907

kNN 0.769 0.785 0.833 0.759
SVM 0.780 0.803 0.852 0.796

SMOTE

ANN 0.921 0.925 0.935 0.932
RF 0.920 0.925 0.941 0.948
DT 0.900 0.900 0.899 0.917

kNN 0.839 0.859 0.874 0.885
SVM 0.903 0.908 0.913 0.911

GAN

ANN 0.898 0.927 0.937 0.916
RF 0.939 0.943 0.946 0.942
DT 0.929 0.923 0.934 0.942

kNN 0.890 0.889 0.897 0.890
SVM 0.900 0.906 0.900 0.880
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