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ABSTRACT Assistive driving is a complex engineering problem and is influenced by several factors such as
the sporadic nature of the quality of the environment, the response of the driver, and the standard of the roads
on which the vehicle is being driven. The authors track the driver’s anticipation based on his head movements
using Spatio-Temporal Interest Point (STIP) extraction and enhance the anticipation of action accuracy
well before using the RNN-LSTM framework. This research tackles a fundamental problem of lane change
assistance by developing a novelmodel calledAdvancedDriver’sMovement Tracking (ADMT). ADMTuses
customized convolution-based deep learning networks by using Recurrent Convolutional Neural Network
(RCNN). STIP with eye gaze extraction and RCNN performed in ADMT on brain4cars dataset for driver
movement tracking. Its performance is compared with the traditional machine learning and deep learning
models, namely Support Vector Machines (SVM), Hidden Markov Model (HMM), Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and provided an
increment of almost 12% in the prediction accuracy and 44% in the anticipation time. Furthermore, ADMT
systems outperformed all of the models in terms of both the accuracy of the system and the previously
mentioned time of anticipation that is discussed at length in the paper. Thus it assists the driver with additional
anticipation time to access the typical reaction time for better preparedness to respond to undesired future
behavior. The driver is then assured of a safe and assisted driving experience with the proposed system.

INDEX TERMS RCNN, advanced driver movement tracking system, Spatio-temporal interest points, eye
gaze tracking, deep neural networks.

I. INTRODUCTION
Recent years have seen a rise in the research and the efforts
to develop self-driving or autonomous vehicles, starting from
prototypes to targeting a full-scale development [1]. The pio-
neer companies in this domain include Tesla and Google [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Long Xu.

While there is no unanimous acceptance of such systems,
the focal point of the research continues to be on improving
their efficiency and effectiveness. Over 80% of fatalities and
accidents reported on roads can be attributed to human errors
introduced due to the driver’s fault [3]. He often makes mis-
takes while changing the lanes on the highways. If he gets
lane change assistance while driving, the possible accidents
can be reduced drastically [4].
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This paper proposes a solution to real-time lane change
tracking drivers using deep learning frameworks. The
demanding task of driver assistance systems is to provide a
timely and appropriate response to the drivers. Thus, these
systems must be aware of both the context and the situa-
tion [3], [4]. Accurate prediction of the possible events and
corresponding driver maneuvers is possible only when the
system considers the time sequence of the context [5]. The
precise prediction helps in the prompt delivery of action
suggestions to the driver. An alert and fast context analysis
system can be developed using modern deep learning tech-
niques, which work well in real-time situations like driv-
ing [6]. Because of increased computational power and new
technological advancements, image processing, and com-
puter vision have been widely evolving and deployed in
assistive driving [7]. However, owing to multiple action
sequences, automated moderation of driver activity antici-
pation is challenging for these techniques [8]. The authors
present approaches that build upon the previously proposed
situation-aware mechanisms [9]–[11]. Thus, the problem
objective can be framed as a system that can anticipate
driver action and alert drivers with good accuracy of action
anticipation.

One of the challenges while designing the anticipation
models for the driver is sufficient anticipation time with high
accuracy [12]. Anticipation is referred to as reaction time that
is 2-3 sec for a human being in an actual situation for any
mishap. The anticipation of a driver’s future action should
be more using computer vision techniques to help the driver
make real-time decisions [13]. The authors tried to improve
the anticipation time with correct maneuver prediction by
the ADMT system. More anticipation time means adding
a few extra seconds to the driver’s reaction time for indi-
vidual actions while driving, thereby minimizing the pos-
sibility of an accident [14]. This research work is inspired
by the Brain4cars research group [15]. Their sensory fusion
architecture using deep learning gives a 3.5sec anticipation
time with 86% action accuracy. The authors further improved
these performance parameters by extracting Spatio-temporal
features from video sequences, driver’s eye gaze tracking,
and deep learning for future action prediction. This paper has
attempted to build a driver activity prediction system by com-
bining convolutional and recurrence-based deep neural archi-
tectures. The proposed method is capable enough to provide
accurate responses well within the required anticipation time
so that drivers get a more reliable and trustworthy assistance
system. The feature extraction from the Spatio-temporal
video data is performed using the Spatio-Temporal Interest
Points (STIP) method [16], [17]. The benefit is demonstrated
using results obtained on the standard brain4cars dataset [15].
The obtained results comfortably outperformed the exist-
ing popular machine learning and deep learning approaches.
Though machine learning /deep learning models are used in
human activity tracking on a broad scale, they lack accuracy
or head movement tracking or eye-gaze tracking, or future
activity prediction [18]–[21]. Most systems use the proactive

approach of driver action anticipation by incorporating either
CNN or RNN [15], [18], [21]. The driver’s activities like head
movement and eye gaze identification can be tracked from
the inside captured video of the dataset. The ADMT system
also tried to cut down the computational resources by using
only the internal context of the vehicle, as opposed to previous
approaches, which used both inside and outside contexts for
processing.

The key contributions in this paper can be highlighted as
follows:

i. First, automatic detection of driver actions from the video
sequences using the Spatio-temporal interest points tracking
helps interpret the driver action’s nature.

ii. Implementation of eye gaze tracking for driver’s inten-
tion prediction to improve the action anticipation time.

iii. Design of ADMT (Advanced Driver’s Movement
Tracking) system to track the driver’s actions and retrieve the
driver’s movement by processing the frames. The proposed
ADMT systemmakes use of inside context for driver’s action
prediction.

iv. Implementation of ADMT with Recurrent Convolu-
tional Neural Networks (RCNN) as a deep learning technique
to enhance the action classification accuracy.

v. Detailed performance analysis and discussion of the pro-
posed ADMT using RCNN with other ML and DL methods.

II. PREVIOUS WORK
A. DRIVER’S MOVEMENT TRACKING
Driver’s movement tracking in a video has always been
an interesting research problem to provide effective ADAS
solutions [22]–[24]. Driver actions have been controlled and
predicted using semi-autonomousmethods [1]. Koppula et al.
stated that Spatio-temporal tracking could be used for the
activity anticipation, though it may not produce sufficient
lead time [12]. Alert generation systems sometimes may
lead to delayed warning messages that could not prevent
any mishap [13]. Jain et al. combined recurrent and long
short-termmemory networks (RNN-LSTM) to develop a sen-
sory fusion deep learning approach for pre-emptive anticipa-
tion of the driver’s actions [15]. The authors are motivated by
the recent development of assistive driving by [15]. However,
it is computationally expensive to collect and merge both
types of features (inside and outside) and process them for
every instance of the videos and other data provided from
both sources. The information given by the inside camera
would be sufficient to track the driver’s facial actions, so the
authors get rid of the dependency on external features and
save up processing time. Thus, only an internal context that
portrays the driver’s movements is considered, and the system
has been developed accordingly.

B. VIDEO SEQUENCE ANALYSIS (VSA)
Video sequence means images are getting displayed con-
tinuously at a fixed rate. Video Sequence Analysis (VSA)
has become a capable and potential area of research in the
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FIGURE 1. Example of Spatio-Temporal Cuboids Points extraction (STCP) [33].

computer vision and image processing domain because of
its usefulness in numerous applications [25], [26]. It needs
to know core digital image processing and related processes
like image enhancement, image segmentation, morphological
operations, feature extraction, image representation, image
classification, and many others [27]. It works in both
spatial-temporal manner and extracts information concerning
spatial and temporal changes [16]. To perform the analysis of
the video sequences, the Spatio-temporal approach is mainly
used [17]. It primarily includes segmentation (spotting tar-
geted objects or regions in the video scene) and feature
extraction processes. The segmentation and feature extrac-
tion of the spatial and temporal dimensions is needed for
the powerful representation of the object/region in the video
sequence. However, there are challenges in the analysis of
video sequences, such as quality of the videos, background
noise, the recording settings, illumination variations, camera
motion, viewpoint variations, foreground and background
similarity of the object, high dimensionality, and also redun-
dancy of the data, etc. [28]. Designing and developing a
system that can deal with these issues is still an exciting
computer vision problem, and STIP can effectively solve
these issues. It can handle the detection of interest points from
a video to process the Spatio-temporal domain information
effectively [29], [30]. Hence, it has become adaptable for the
research problem.

C. SPATIO-TEMPORAL ACTION RECOGNITION
The STIP method is used by Yanshan Li et al. [16] for the
action detection problem but can also be used for driver’s
action recognition in our case. Spatio-temporal action recog-
nition or action localization enables the action classification
task performed in a sequence of frames (or video) and local-
izes each action both in space and time. Convolutional Neu-
ral Network (CNN) architectures have been primarily used
in localization tasks and can be identified using bounding
boxes or masks [20]. Figure 1 depicts the example of human
action recognition using the STIP extraction approach. Then

the fusion of all the cuboids of the spatiotemporal method
occurs subsequently, and the final cuboid is produced as
Depth Motion Sequence (DMS) by different layers. DMS
generates Spatio-Temporal Cuboids Pyramids (STCP) that
takes care of all the changes happening in the video pro-
cess. Every depth map from a video sequence generates
DMS by calculating the difference between two successive
frames in the anticipated sequences of videos. It helps to
keep the temporal details of depth maps and grip the prob-
lematic situation like self-occlusion. STCP subdivides DMS
into multiple temporal segments and spatial sub-cuboids to
capture the temporal order along with object and body shape,
respectively. In the end, the cuboid feature fusion method
effectively implemented the correlation between projected
image planes. Therefore, a Spatio-temporal approach would
effectively track the actions from a video and hence been used
in the problem statement.

However, Spatio-temporal action recognition has problems
like tracking the action in a video, object, or action local-
ization [32]. Moreover, action localization becomes more
challenging with the temporal dimension [33]. STIP extrac-
tion would be an effective solution for these types of prob-
lems, with the capability of moving object detection while
reducing the need for background modeling with foreground
segmentation. In addition, STIP extracts more features from
the images and better video recognition accuracy to improve
the video/action/image classification [34].

D. MACHINE LEARNING AND DEEP LEARNING FOR
ACTION RECOGNITION
Probabilistic approaches were used in the recent past for
action recognition problems, whereas recent developments
are executed mainly by machine learning and deep learning
techniques [20], [37], [38]. The researchers exploited popular
data mining algorithms, like SVM, Bayesian, clustering, and
decision tree for activity recognition [25]. Some clustering
algorithms are shown reasonably good accuracy, and even
SVM also offers good anticipation accuracy. However, to get
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the desired anticipation time by using SVM or machine learn-
ing classifiers is a challenging task because it is not possible
to process time-series data like a video. Therefore, ongoing
research focuses on using artificial neural network (ANN)
algorithms for such a non-linear real-time problem [39], [40].
Nevertheless, anticipation is of utmost importance in predict-
ing driver’s behavior while maintaining accuracy and preci-
sion in action anticipation; hence, adopting recent techniques
generates the desired outcomes.

It has been observed that the majority of the machine
learning and deep learning approaches in the past were imple-
mented by combining the driver features with the exter-
nal road data, thus leading to more trainable parameters
from the video data [12]–[15]. Deep learning methods help
optimizes the performance of anticipation/recognition sys-
tems significantly by intelligent algorithms such as CNN
or RNN, or LSTM [37]. The most common fusion of deep
learning methods for human activity recognition provides a
pool of features automatically used in different application
areas [41]. CNN is beneficial in image processing, cap-
turing real-time videos, and other computer vision-related
tasks [37], [41]. Convolutional Neural Network is a deep,
interconnected layered structure to perform a convolutional
operation on the input data using multiple hidden layers
that facilitates robust feature extraction [41]. These hidden
layers are merged to formulate deeply layered architectures
for the feature extraction of correlated image data. RNNs
work sequentially to predict the following action. LSTM has
the memory gates and decides which part of the information
to be excluded from the data pool [42]. An essential difference
between these two algorithms is that while CNN is a core
component of feed-forward propagation of visual data in the
architecture, RNNs are more powerful to get the following
sequence in the data because it is a sequential model [37].
A fusion of LSTM and RNN as a collective deep learning
approach is used to classify the driver’s actions, represented
in the DMT algorithm [43], to model spatial-temporal depen-
dencies in the continuous video data. It works well in a dif-
ferent contextual environment applicable for human activity
recognition applications [40], [41], [44].

Some methods used the inside visual features and outside
features as input to the sensory fusion deep learning model,
but it takes more processing time. Hence to optimize this can
be a research gap in this problem. Thus, the research gaps
were identified, such as more accurate, more response time
generating future action prediction systems for a driver. There
is also substantial research potential in the Spatio-temporal
domain by extracting and utilizing interest points for driver’s
movement tracking, head pose estimation, and eye gaze that
would give important clues about his intent [45], [46]. When
the combination of CNNwith RNN takes place in ADMT, the
representations obtained from the RNN are used to enhance
CNN progressively [47]. STIP helps extract driver move-
ments in the dynamic Spatio-temporal domain, whereas the
eye tracker extracts eye gaze, and the system could work in
an ‘advanced’ way for assistive driving.

III. METHODOLOGY
This paper presents two main contributions: STIP with
eye gaze implementation and RCNN in ADMT for pro-
posed driver anticipation architecture. As discussed earlier,
the authors designed STIP-based techniques to improve the
robustness in the continuous images and reduce feature
extraction time. For visual feature extraction, rather than
using the typical face detection, landmark points extrac-
tion, head-pose motion detection, the authors proposed the
STIP detection-based techniques to develop robustness and
decrease the time for feature extraction only the driver’s
inside the video [16], [32]. The proposed STIP for tracking
the driver’s movements is designed in which the filtering
method is used to extract the STIPs from the input videos for
noise removal. If the driver intends to take any lane change
action, he first moves his head to that side to get the idea
of other vehicles on the road. Here the authors assumed that
the driver is moving his head in the desired direction only
when he has to take any turn and ignoring the scenario where
he is talking with his fellow members by moving his head
towards the right as the driver’s seating position on the left of
the car in the dataset [15]. Therefore, the authors restrained
processing the outside videos and only focused on inside
videos with the driver’s face. Then, the anticipation of the
drivermaneuver using a deep learning classification approach
took place.

A. DATASET
The performance of proposed approaches is evaluated on the
publicly available Brain4Cars video dataset [15] of around
700 video clippings ranging from 2-5sec with 25FPS (frames
per second). It has a combination of videos from both the
internal setup of the car and the external environment gath-
ered under a standard design. For the ADMT system, only
inside cabin videos are taken as input. This dataset was
divided into the ratio of 70:30 as training and testing sets,
respectively. Moreover, cross-validation was not used in this
paper, so 70:30 has been adopted. The number of video
samples was sufficiently large enough (700) to generate the
desired model output that further justified the need for the
split of 70:30. As such, there is no global standard rule for
the selection of the sampling ratio for training-test data.

Moreover, [52] have used 70:30 split applied for multiple
video datasets video containing faces. Additionally, in the
earlier implementation papers of the authors, the same dataset
split generated remarkable results [21], [43]. In the machine
learning literature, it can be observed that different sample
ratios have been used depending on the size of the dataset.
The rationale behind this split was the nature, volume, and
complexity of the training videos. Considering all the aspects
related to the dataset, the optimal dataset split for the video
dataset was finalized.

B. HYPERPARAMETERS AND SYSTEM DESIGN
In this section, the hyperparameters used in the proposed
RCNN model are given below in Table 1.
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FIGURE 2. Eye gaze tracking.

TABLE 1. Hyper parameters used in RCNN model.

When the complexity of the RCNN Model is compared
with other ML/DL models used in this work, 5 hidden layers
generated the optimal performance for the driver activity
anticipation problem. The authors have tested the variation
in the hidden layers (from 1 hidden layer to 25 hidden layers)
to check the model’s performance. However, a model with
5 hidden layers generated the best set of results in both
maneuver accuracy and anticipation time.

The proposed framework’s system design contains three
steps: a driver’s inside context is taken as an input, visual
motion-based feature extractions of head movement with eye
gaze tracking, and the future action prediction. Since the
focus is only on the inside details, features from the driver’s
head movements are tracked, extracted, and fused with eye
gaze. Then our RCNN framework processes the features to
find out the probability for five classes. In the dataset, five
classes are Left Lane (L.L.), Right Lane (R.L.), Left Turn
(R.T.), Right Turn (R.T.), and Straight Drive (S.D.).

C. RNN_CNN MODEL IN ADMT
RNN has been used in maneuver anticipation because it
works well in sequential data like ours [37]. However, CNN
is the best suit for video and image data, and the authors used
CNN also in ADMT. This approach is called ‘‘Advanced’’ as
it takes care of both sequential and visual aspects of the data
by fusing CNN with RNN. It is to classify driver action from

the video input data. Driver’s Movement Tracking (DMT)
is proposed in [43] to track driver’s movement by context
fusion of inside and outside video data and the RNN-LSTM
framework. RNNs and CNNs can be combined for more
efficiency in classification. In this paper, the authors have
worked upon recurrence-based convolutional networks [48].

The STIP extraction method is implemented to determine
the variations in the subsequent images, forming the multiple
cuboids. Finally, the cuboids are fused to generate the final
array of visual features. The advantage of STIP-based move-
ment is that it can be directly detected from video to describe
moving objects [35]. It is the local invariant feature for video,
and it can resist the changes such as rotation, scale variations,
viewpoint change, etc. In the ADMT model, face tracking is
done by Kanade-Lucas-Tomasi (KLT) tracker [49], and then
Spatio-temporal points from the face can be tracked [50]. The
framework is elaborated below subsections.

Eye gaze estimation is played a significant role in getting
the intentions of the person [45], [46]. So the eye region
features are also extracted from the videos once the face
detection is performed with the Viola-Jones detector [51],
as shown in figure 2. DMT proposed fast and accurate eye
tracking with effective localization of the iris center [43].
Subsequently, iris boundary and eye gaze are tracked. Kalman
filter is used for iris tracking, which alsoworks for eye closure
identification and eye corner recognition, leading to accurate
eye-gaze recognition [52]. Thus, implementing STIPs and
eye gaze features could effectively track the driver’s move-
ments and predict the driver’s action. It also helps to generate
sufficient reaction time for future action prediction.

For the set task of action detection, the authors proposed
a convolutional network consisting of Recurrent CNN or
RCNN [48]. As depicted in figure 3, the RCL or recurrent
convolutional layers are the core component of our proposed
architecture and are considered the fundamental idea of our
methodology. Though the input connection is static in this
framework, the network can develop with these connections,
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FIGURE 3. Propagation of data in the proposed RCNN [47].

FIGURE 4. Proposed ADMT system using the RCNN.

and its adjacent units highly influence each network unit.
First, the model structure of the proposed RCNN for driver
activity prediction is visualized. Here, considering a triad of
time steps of the recursive connections, the authors decode the
working of the RCNN architecture. The architecture consists
of a combination of convolution and pooling layer set such
that the practical complexity of training is minor. Then use
of max-pooling in the pooling layers to extract maximum
features took place.

Further, four RCL layers are placed together, with a
max-pooling layer placed after the first two. The terminal
nodes of the RCL layers are connected to the final softmax
layer via a global max-pooling layer. The stride values for
pooling layers are set to 2 and 3. The feature map extracted
from the global max-pooling layer helps to obtain the inter-
mediate feature vector representation. A similar description
for RCL is provided over 3-time steps, connected to an

FFNN ranging in depth from one to four. Thus, the entire
RCNN configuration consists of one convolution layer, three
max-pooling layers, four recurrent convolutional layers, and
a final softmax layer.

The block diagram of RCNNarchitecture for driver activity
prediction is shown in Figure 4. The pre-processing steps
and strategies used for the intermediate stages of feature
extraction from STIPs and eye gazes are executed. During
the prediction phase, the maneuver can be predicted, which
is the driver’s possible future action. However, the significant
difference is that the class-wise probability for each input
video frame is calculated using the RCNN model.

IV. ADVANCED DRIVER MOVEMENT TRACKING (ADMT)
Gite et al. [43] presented a Driver Movement Track-
ing (DMT) approach consisting of three steps: pre-processing
techniques, STIP, tracking of the eye gaze, and classification
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FIGURE 5. Pseudocode of ADMT.

of actions using deep learning algorithms. The movement
tracking process, which is done by STIPs, is then followed
by the eye gaze estimation of the driver. It further enhances
the accuracy of action prediction. In DMT, RNN with LSTM
classifies the driver’s maneuvers and is processed inside and
outside contexts. The authors tried to explore CNN to solve
the driver maneuver anticipation problem as CNNworks best
for image or video data.

A. MANOEUVRE ANTICIPATION USING ADMT
In the ADMT system, prediction of the driver activity is made
by passing the visual input data to the deep learning model
after extracting the STIPs and efficient eye-gaze features.
Then LSTM is executed for action prediction, which reduces
the overall inference time. Finally, the architecture predicts
combining the elements from context frames and then prop-
agating them further to the deep learning modules of the
system. The system’s working for driver activity prediction
using a mix of algorithms is shown in Algorithm 1in figure 5,
similar to presented in the papers [11], [43]. Initially, the
Spatio-temporal and eye-gaze-based features are extracted,
and then combined to form the intermediate vector represen-
tation. This representation is then fed to the RCNNmodel that
returns the probability of the input video frame belonging to
one of the possible class labels. This final prediction suggests
the next feasible driver activity move.

In the proposed approaches, the authors only focus on the
frames provided from the internal context, upon which all the
processes are performed. These extracted internal features are
used to derive the final prediction for the next activity of the
driver. The output of the deep learning models is a probability
for each of the class labels. Further, the obtained probability

is normalized to a range between zero to five, where 0 indi-
cates an entirely contrary predicted maneuver, while 5 shows
a complete match to the expected safe maneuver. Finally,
a limit threshold is applied to the derived probabilities to
obtain the final prediction value post computation.

The performance of the proposed system is assessed via
multiple metrics. Firstly, the classification accuracy is calcu-
lated with each possible maneuver as one of the class labels.
Later, the authors also derive the F1 score, which is the
harmonic mean of the system’s precision and recall. The per-
formance measures like precision, recall, accuracy, F1 score,
and anticipation time have been considered for the system
model. Two measures, namely accuracy in driver maneuver
and anticipation time for predicting driver maneuver are the
crucial parameters for our research problem. Jain et al. [15]
have formulated the equations for precision and recall of the
system for this task. Consider the following symbols and their
definitions:

F.P. = False positive, i.e., activity is anticipated but the
wrong one.

T.P. = True positive, i.e., maneuver predicted correctly.
T.N. = True negative, i.e., maneuver predicted, but no

movement from the driver
F.N. = False negative, i.e., No activity anticipated, but the

driver does perform a maneuver.
The primary reason for false-positive predictions could be

samples of diverted driving. Driver’s interactions with other
passengers in the car or their distractions towards any neigh-
boring visuals may get processed wrongly by the system.
Consistent interpretation of the distractions caused by the
driver is a challenging research task out of the scope of this
research work.
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FIGURE 6. STIP performances on various algorithms.

In addition, the authors calculated the inference time that
an algorithm takes to predict the activity and previously men-
tioned metrics. The authors term this time as the anticipation
time and indicate it by T. Along with task-based performance.
It is also essential to assess how early the system can pre-
dict a particular activity. The proposed deep learning-based
model is expected to provide an improvement in not just
the performance metrics but also make these predictions
at a faster time. Here the authors focus on increasing it,
as an early anticipation of the right maneuver prevents the
driver from performing a risky activity and proactively assists
him.

The anticipation time can be calculated as follows:

T = TN− T PN (1)

T.N. in the frame when the activity occurs, and TPN is
when the maneuver is anticipated to occur at T.N. A higher
value of prediction time indicates a better performing mode,
the simple principle of deciding the better classification
technique.

Having elucidated the terminologies and performancemet-
rics, the authors are considering, we now present the proposed
and standard approaches across these metrics for the deter-
mined dataset.

V. RESULTS AND ANALYSIS
The authors assessed the performance of the proposed
RCNN in this section concerning the current state-
of-the-art methods. They then conducted a compara-
tive analysis of the earlier driver movement tracking
algorithm [43].

A. CURRENT STANDARD METHODS
As baseline models for comparison and further evaluation,
the authors considered a set of approaches. These standard
sets of classifiers include Fusion of Recurrent Neural Net-
work with LSTM (F-RNN-EL), SVM, HMM, along with the
traditional feed-forward network [15]. Each of these methods
considered for the study is:
• Support Vector Machine (SVM): It is one of the tradi-
tional approaches that involve a discriminative method
for classification. The context videos from inside data
for a 5 seconds frame are used for training the SVM.
Then, the fusion of extracted features is done to get the
probability of driver maneuver.

• Hidden Markov Model (HMM): HMM is a probabilistic
classifier with one hidden layer but considers the only
current context for prediction. It makes use of a Bayesian
setup for the prediction of the driver activity. The fusion
of extracted features is done to get the probability of
driver maneuver.

• Feed-Forward Neural Network (FFNN): FFNN is a
machine learning classifier with the feature of the dis-
criminative classifier. The training of 5 seconds of driv-
ing context is given on FFNN, and the internal context
features are combined to train the FFNN. The fusion of
extracted features is done to get the probability of driver
maneuver.

• Fusion-RNN-Exp-Loss (F-RNN-E): For more informa-
tion on F-RNN-EL, interested readers are referred
to [15]. It considers the RNN + LSTM for maneu-
ver anticipation. LSTM is one of the proper mod-
els of sequential data for deep learning, making the
driver activity prediction faster and more accurate.
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FIGURE 7. Performance evaluation metrics: (a) precision, (b) recall, (c) accuracy, (d) F1 score, and (e) anticipation time.
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FIGURE 7. (Continued.) Performance evaluation metrics: (a) precision, (b) recall, (c) accuracy, (d) F1 score, and (e) anticipation time.

TABLE 2. Performance evaluation of F-RNN-EL-STIP and eye gaze tracking.

For minimizing the loss function, the exponential loss
layer is applied. Then, the fusion of extracted features is
done to get the probability of driver maneuver.

• ADMT: The authors proposed and implemented CNN
for the driver maneuver anticipation. They used
pre-processing techniques, Spatio-temporal interest
point techniques for feature extraction, and CNN for the
action classification.

B. EVALUATION OF THE F-RNN-EL-STIP MODEL
The performance of the F-RNN-EL-STIP model is com-
pared against some popular approaches like SVM, HMM,
and FFNN techniques. As observed in figure 6, the
F-RNN-EL-STIP showed an essential improvement in eval-
uation parameters compared to existing methods due to
an accurate motion tracking algorithm preferred over dif-
ferent visual features extraction techniques. Furthermore,

the correct key point’s extraction boosts the computation
and maximizes the probability of the maneuver anticipa-
tion. Hence the improved system performance is observed as
depicted in the below graphs.

The performance of STIP on SVM is improved in all eval-
uation parameters. Anticipation time is enhanced by almost
11% after using STIP, and accuracy is improved by 24%.Here
STIP did work well in SVM for the desired performance.
We noticed that STIP performance on HMM is not improved
in almost all evaluation parameters except anticipation time,
which is enhanced by nearly 3% after using STIP. The per-
formance of STIP on FFNN is enhanced in all evaluation
parameters. Anticipation time is improved by almost 1% after
using STIP, and accuracy is improved by 6.66%. The perfor-
mance of STIP on F-RNN-EL is enhanced in all evaluation
parameters. Anticipation time is enhanced by almost 32%
after using STIP. However, in HMM, STIP does not work
well; instead, the performance is decreased. It is because of
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FIGURE 8. ADMT performance evaluation metrics: (a) precision, (b) recall, (c) accuracy, (d) F1 score, and (e) anticipation time.
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FIGURE 8. (Continued.) ADMT performance evaluation metrics: (a) precision, (b) recall, (c) accuracy, (d) F1 score, and (e) anticipation time.

the sequential video data that is given as the input to the
system model. HMM handles only current data, and hence
action recognition or prediction is not managed effectively
and not a good solution for our kind of problem.

The thorough evaluation of the STIP and eye gaze methods
are comprehended in table 2. The computed time average
is 4.92 seconds before the actual maneuver may help the
driver take timely action and using eye gaze 4.89 seconds.
This is because of the reduced processing time required
for only inside features, whereas other state-of-the-methods
work on both inside and outside features computation. Fur-
ther, the results of different classifiers using STIPs + Eye
gaze features are presented, as demonstrated in table 2. For
each classifier, eye gaze features with STIPs improve the
precision, recall, and accuracy rates, with minimum impact
on prediction time compared to just using the STIPs fea-
tures. Eye gaze feature extraction has also seen improvements
in the performance, as shown in table 2 and presented in
diagrams 7 (a-e).

C. DISCUSSION ON STIP AND EYE GAZE
IMPLEMENTATION
The main goal of using the STIP and eye gaze is to enhance
the early anticipation time performance. SVM and FFNN
are improved using STIP-based feature extraction techniques
based on inside video compared to the performances dis-
cussed in table 2. STIPs with RNN-LSTM show the best
performance compared to other classifiers.

The improvement in the anticipation accuracy is the focus
on the inside context, which reduces processing efforts. The
classifiers such as SVM and FFNN give insufficient anticipa-
tion time, whereas the HMM-based method gives excellent
performance for anticipation time; however, the accuracy of
maneuver anticipation is reduced for the HMM-based tech-
nique is not acceptable for the system. STIP with the deep
learning methodology outperforms other standard algorithms
in anticipation time and maneuver accuracy.

After applying the STIP and eye gaze to the state-of-
the-art techniques, the results have shown an improve-
ment. For example, suppose the percentage improvement
of F-RNN-EL-STIP-Eye gaze is compared with F-RNN-EL
increases around 9% inaccuracy and 34% in anticipation
time. That concludes STIP with eye gaze is an effective
technique when applied to F-RNN-EL.

D. EVALUATION OF ADMT
Table 3 presents the results of ADMT system implementa-
tion using all the performance metrics. The emphasis is to
improve the anticipation time by processing only inside video
data to track the driver’s movements. The last row indicates
the percentage of improvement in the various performance
evaluation parameters of ADMT with the baseline FFNN.
There is a clear indication of performance enhancement in
terms of all the parameters, like precision, accuracy, recall,
and anticipation time. The accuracy of the proposed ADMT
is superior compared to the previous approaches, including
the state-of-the-art ones. However, the anticipation time for
STIP was the best so far compared to advanced techniques
such as eye gaze extraction and RCNN. The probable reason
behind this could be that the extraction of more features led to
more processing and anticipation generation time. In RCNN,
feature extraction through recurrent layers and then thorough
convolutional layers might take more time, so ADMT took
3.94 seconds, which is still a 64% improvement compared
with FFNN.

As shown in the above diagrams of ADMT performance in
various evaluation parameters, ADMT is a superior solution
for maneuver accuracy, one of the system’s desired criteria.
The ADMT approach gave a better performance as compared
to F-RNN-EL and F-RNN-EL-STIP. However, anticipation
time is not improved by ADMT; instead declined by almost
20% compared with F-RNN-STIP. A possible reason for the
decrease in the anticipation time is the time required to run
the RCNN networks. RCNN is computationally expensive
compared to the other two approaches, where simple ANN
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TABLE 3. Comparison of algorithms performance evaluation of ADMT.

works on the system performance. Accuracy is improved by
8%. The generated anticipation time is 3.94sec by ADMT
with RCNN and F-RNN-EL-STIP gives 4.92sec, which is
sufficient for the driver to consider taking any further action
without any haphazardness.

VI. CONCLUSION
In this paper, the authors carried out the task of driver activity
anticipation using a deep learning method that combined
convolution with recurrence to build an Advanced Driver
Movement Tracking (ADMT) system. The comparison of
STIP and eye gaze performance on SVM, HMM, FFNN and
F-RNN-EL are presented, and it shows STIP improves the
system performance in SVM, FFNN, and F-RNN-EL. It does
not work well for HMM as it is not a good fit for non-linear
data like the driver’s video data. ADMT is both faster and
accurate than the previous approaches. It has the novelty of
requiring working only on the interior features, including
the combination of the context video frame, the eye gaze
movement, and the STIP values. STIP also performed well as
the model could extract more Spatio-temporal features of the
driver’s activity, improving the system’s performance. The
RCNN obtains the best values for precision and recall. There-
fore, it can be concluded to be the best performing method
for this task. Our proposed deep learning-based approach
has improved more than 12% accuracy (96%) and 62% in
anticipation time (3.94 sec) compared to the basic DL model.

Some critical observations for this research work could be
stated as the Brain4cars dataset contains only daytime videos,
so this model’s performance may be varied for night-time
videos and can be considered an extension of this research
work. Another limitation is the RCNN model’s testing for
robustness on some other datasets to formalize a generalized
DL solution. Comparative study of the proposed model with
similar DLADAS-basedmodels would lead to a new research
foundation. Future research directions are to integrate bidi-
rectional LSTM in the model architecture and implement
transfer learning for activity anticipation problems. Similarly,
the action recognition applications such as patient monitor-
ing, mob monitoring, surveillance, etc., would be adopted
using similar solutions. Being uncertain about the nature of
the driver’s behavior is a challenging research problem, and it
would still attract many of the research frontiers in computer
vision and deep learning.
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