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Abstract: The application of machine learning (ML) algorithms for processing remote sensing data
is momentous, particularly for mapping hydrothermal alteration zones associated with porphyry
copper deposits. The unsupervised Dirichlet Process (DP) and the supervised Support Vector
Machine (SVM) techniques can be executed for mapping hydrothermal alteration zones associated
with porphyry copper deposits. The main objective of this investigation is to practice an algorithm
that can accurately model the best training data as input for supervised methods such as SVM.
For this purpose, the Zefreh porphyry copper deposit located in the Urumieh-Dokhtar Magmatic
Arc (UDMA) of central Iran was selected and used as training data. Initially, using ASTER data,
different alteration zones of the Zefreh porphyry copper deposit were detected by Band Ratio,
Relative Band Depth (RBD), Linear Spectral Unmixing (LSU), Spectral Feature Fitting (SFF), and
Orthogonal Subspace Projection (OSP) techniques. Then, using the DP method, the exact extent
of each alteration was determined. Finally, the detected alterations were used as training data to
identify similar alteration zones in full scene of ASTER using SVM and Spectral Angle Mapper (SAM)
methods. Several high potential zones were identified in the study area. Field surveys and laboratory
analysis were used to validate the image processing results. This investigation demonstrates that
the application of the SVM algorithm for mapping hydrothermal alteration zones associated with
porphyry copper deposits is broadly applicable to ASTER data and can be used for prospectivity
mapping in many metallogenic provinces around the world.

Keywords: porphyry copper deposits; ASTER; machine learning; DP; SVM; SAM

1. Introduction

Because of the importance of minerals in industry and other aspects of human life,
appropriate methods to explore minerals are essential. The use of remote sensing data
to obtain information from far objects is one of the most significant technologies in this
century. Remote sensing satellite imagery is extensively used in different sectors of Earth
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science such as mineral mapping [1–4]. The results of remote sensing studies, by means
of saving time and cost in identifying alteration zones, have greatly contributed to the
exploration of minerals, especially in the reconnaissance stages [5–8].

In recent decades, remote sensing has been used successfully in the identification
of lithological units, structure features, and alterations zones with the development of
new algorithms and ML techniques [9–11]. Owing to the high volume of remote sensing
satellite data, data mining methods to extract the desired information are necessary [12,13].
Classification algorithms undoubtedly play an essential role in analyzing multidimensional
data such as multispectral and hyperspectral images. Depending on need, different clas-
sification methods have been used for mineral mapping. These methods are generally
divided into three categories: supervised, unsupervised, and semi-supervised. Supervised
methods such as spectral angle mapping (SAM), support vector machines (SVM), and
maximum likelihood (ML) have been widely used for remote sensing data processing with
the aim of geological mapping [14,15]. The SVM method in the field of mineral mapping
has been considered over the past two decades [16,17]. Clustering or unsupervised meth-
ods divide the data into groups to have the most similarity in each group and the least
similarity between the groups [18]. Unlike supervised methods, these methods are less
commonly used for remote sensing data processing in mineral exploration. For mineral
exploration, clustering methods are usually used in conjunction with supervised methods
to obtain better results. Semi-supervised methods aim to improve the results by combining
these two methods [19]. Different clustering methods are used in various sciences, such
as data mining, pattern recognition, image clustering, etc. [20]. These methods do not
require training data. These methods are divided into two main categories: model-based
and non-model-based. In non-model-based methods, the only parameter that needs to
be known initially is the number of clusters [21]. Determining the number of clusters is
a significant challenge that can be problematic in clustering big data [22]. Model-based
methods do not even need to determine the number of clusters and can cluster the data
without any information.

Despite proper performance in identifying minerals and alterations using supervised
methods, preparing and selecting appropriate training data from them is costly and time-
consuming. In this research, an attempt has been made to determine appropriate training
data based on the nature of the data, using an approach consisting of clustering and
classification methods. Then, using this training data for the supervised methods, identical
areas in terms of alteration were identified. In this study, the basic model of the DP
method was used to cluster the alteration zones of the Zefreh porphyry copper deposit,
the UDMA, central Iran, using ASTER data. Then the results of this clustering were used
as training data to identify corresponding alteration zones using the SVM method. The
specific objectives of this research are: (i) to detect alteration zones in the Zefreh porphyry
copper deposit using RBD, LSU, OSP, SFF algorithms; (ii) to determine the exact expansion
of alteration zones in the Zefreh porphyry copper deposit using the DP method and use its
results as training data for supervised methods; (iii) to perform SVM and SAM methods
using training data obtained from the DP method and specify analogous alteration areas
in the ASTER scene; and (iv) to verify the classification results using field checking of
alteration zones.

2. Geology of the Study Area

The Zefreh porphyry copper deposit is located in the UDMA belt of central Iran,
northeast (65 km) of Isfahan province. The location is bounded by latitudes 33◦03′9.35′′ N
and 33◦03′54.5′′ N and longitudes 52◦13′38.48′′ and 52◦14′25.88′′ E (Figure 1a,b). The copper
deposit is related to the Qom-Zefreh fault and its placement in the UDMA belt. Mechanism
of movement of Qom-Zefreh and Naein-Baft and tensile performance between these two
tectonic lineaments has led to the creation of longitudinal sliding tensile basins in the
Zefreh region [23]. Crustal stretching along these strike–slip faults has facilitated the ascent
and replacement of intrusive masses and the formation of dikes and the concentration of
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several mineralogical hydrothermal systems such as the Zefreh porphyry copper deposits,
Kahang, Zafarqand, and the Kalchoye epithermal deposits, which are related to these two
tectonic lineaments [23]. Volcanic activity in the Zefreh region occurred from the Eocene to
the Miocene. Pyroclastic and andesitic lavas in the eastern, southeastern, and southwestern
parts of the area are the oldest rock units in the region. These units have been altered to
propylitic as a result of magmatic activity. In the central part, in the Late Eocene dacites,
phyllic and argillic alterations zones are observed. Granodiorite subvolcanics are presented
in the northeastern, penetrating dacite, pyroclastic, and andesitic lavas. In these stocks,
weak potassium alteration and abundant quartz-magnetite veins are observed [24,25].
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3. Materials and Methods
3.1. Data Characteristics

In this study, ASTER Level 1 T (Precision Terrain Corrected Registered At-Sensor
Radiance) data were used. The ASTER sensor is a multispectral imager on NASA’s Terra
platform. ASTER has 14 bands in three subsystems, the visible and near infrared (VNIR)
(3 bands), the shortwave infrared (SWIR) (6 bands), and the thermal infrared (TIR) (5 bands),
in the range of 0.52–11.65 µm. The ASTER image has a spatial resolution of 15 m in the
VNIR bands, 30 m in the SWIR bands, and 90 m in the TIR bands [26]. ASTER satellite
imagery was designed based on geological needs, and it has been very efficient in this
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field over the last two decades [27]. ASTER data have an appropriate spectral and spatial
resolution in the SWIR range, where many alteration minerals can be distinguished [8,9].
ASTER SWIR detectors are no longer functioning due to anomalously high SWIR detector
temperatures. ASTER SWIR data acquired since April 2008 are not usable and show saturation
of values and severe striping. However, VNIR and TIR data continue to show excellent quality,
meeting all mission requirements and specifications. ASTER images can be downloaded from
the “https://search.earthdata.nasa.gov/” site. To download the ASTER data, the ASTER
granule ID can be found in the “https://earthexplorer.usgs.gov/” site.

The ASTER image used in this study was acquired on 11 March 2008. This ASTER
scene covers the Zefreh porphyry copper deposit in the UDMA of central Iran. The image
has 1% cloud coverage and is suitable for a remote sensing study. In this study, the nine
bands of the VNIR and SWIR subsystems were stacked and used. The 30 m resolution SWIR
of the ASTER data was re-sampled to correspond to the VNIR 15-m spatial dimensions.
Nearest neighbor re-sampling method was applied to preserve the original pixel values in
the re-sampled image. Radiometric and geometric corrections had been already applied
on the ASTER L1T level data used in this study. ASTER data were also georeferenced
and orthorectified [28]. The necessary preprocessing of this data included atmospheric
correction and vegetation removal, which were subsequently done. Internal Average
Relative Reflectance (IARR) correction was used to eliminate atmospheric effects. The
IARR technique is recommended for mineralogical mapping as a preferred calibration
technique in arid and semi-arid regions, because it does not require the prior knowledge of
samples collected from the field [29]. Parts of the image that contained vegetation were
identified with the NDVI index [30], and values greater than 0.3 were masked so that the
results were not affected by vegetation reflectance. Figure 2 show the flowchart of the
methodology used in this study.

3.2. Methods
3.2.1. Dirichlet Process (DP)

Owing to the nature of alterations, which are composed of different minerals with dif-
ferent values, their values can be modeled as distributions and can be separated from each
other through the distribution of their compounds. In other words, different alterations
can be separated into separate clusters. In this research, the DP method, which is based on
the distribution over the dispersal of parameters, was used to model different alterations.
In addition to the expected results, the advantage of using this method is that there was no
need to determine the number of clusters.

In this study, considering that the DP clustering algorithm was implemented on the
image in the Zefreh area with different lithologies, we assumed that each type of lithology
was a multivariate normal distribution. Because each lithology was composed of a number
of minerals with different compositions that have different spectral characteristics, we also
considered their distribution to be normal. Because of the complexity of the composition of
lithologies and their constituent minerals, we considered a hierarchical structure for the
model parameters to fit well with the data structure.

The DP method is a non-parametric Bayesian method. DP was first introduced in 1973 by
Ferguson [31]. This method was then developed and used in various sciences [32–34]. Mixed
model DP uses a database distribution to model data that are mixed from several clusters.
DP is generally formulated using Equation (1), but the number of model parameters is not
fixed and can be changed as needed.

G ∼ DP(α.G0)
θzi ∼ G

P(zi = k) = πk
zi ∼ cat(πk)

xi|zi.θzi ∼ F(θzi) i = 1 : n

(1)

https://search.earthdata.nasa.gov/
https://earthexplorer.usgs.gov/
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where, G and G0 are the distributions on the θ parameter. G0 is the base distribution,
and α is the concentration parameter of the Dirichlet distribution (Equation (1)). This
parameter controls the degree of similarity of the G distribution to the base distribution.
It is also effective in assigning a new sample to the previous cluster or being in a new
cluster [35,36]. Equation (1) has a hierarchical structure so that each parameter is obtained
from the posterior distribution of another parameter. θ is the parameter of data distribution.
This study assumed that the values of each pixel xi are a mixture of several clusters, and
πk is the mixing proportion of each cluster (k). The value of zi was obtained from the
categorical distribution on πk.
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Then Equation (2) was used to classify each data point (in this study, each pixel) in an
existing cluster or a new cluster.

P(zi = z|z−i, x−i, θ) ∝

{
N−i,z

N−1+αF(xi, θc) if c exist
α

N−1+α

∫
F(xi, θ)dG0(θ) new c

. (2)

Several methods have been proposed in the literature to represent DP, including the
Stick-Breaking (SB), Chinese restaurant, and, the Polya urn [35,37]. Here, the SB process
was used for the probability of each cluster (Equation (3)). Each part of the SB models the
probability of mixing proportions. In Equation (3), β is the beta distribution.

π1 = β1

πk ∼ βk
k−1
∏
j=1

(
1− βj

)
∑k

j=1 πj = 1

βk ∼ Beta(1.α) k = 2, 3, . . .

(3)

As mentioned before, this method is non-parametric, and after constructing the model
that fit the data, we were faced with several unknown parameters where the Markov chain
Monte Carlo (MCMC) simulation was used to find their values. Using MCMC methods, the
number of unknown quantities based on posterior probability is simulated in an acceptable
way [38] (Equation (4)).

p(θ, π|x 1, . . . , xn) ∝
n

∏
i=1

{
k

∑
j=1

πjf
(

xi |θ j

)}
p(θ)p(π) (4)

3.2.2. Support Vector Machine (SVM)

Geo-computational methods for mapping minerals in satellite images, analysis of
geochemical, geophysical data, etc., are kinds of classification because each method aims to
find a prospect or non-prospect area [39]. SVM is one of the classification methods used to
classify high-dimensional data and is suitable for cases where a limited number of training
data are available [40].

The SVM algorithm was first used by [41] as a supervised method. Other studies have
used this method as an unsupervised method [42], and a semi-supervised method [43]
for clustering and classification. This method uses a hyperplane to separate the data
(background value from an anomaly or desired from undesirable), which maximizes
the margin between classes. SVM uses the pairwise classification strategy for multiclass
classification. Suppose we have xi ∈ Rn i = 1, . . . , n educational data vectors (in this study,
we had n as the number of pixels with dimension P) so that each pixel belongs to the class
yi ∈ {−1, 1}. Multiple hyperplanes can be used to separate data; a hyperplane with the
maximal margin from the most external data of each class (Support vectors) is desirable.

This hyperplane can be formulated as follows [39]:

f(X) = sgn
(

WTX + b
)

, (5)

sgn(X) =


1 if x > 0
0 if x = 0
−1 if x < 0

(6)
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The soft margin is used to obtain the parameters w and b by considering the vari-
able ξi and the penalty function C (Equations (7) and (8)). This hyperplane permits the
misclassification of some data in a controlled condition [44]:

Minimize 1
2

∣∣∣|w|∣∣∣2 + C ∑n
i=1 ξi

Subject to

{
yi

(
WTXi + b

)
≥ 1− ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n

(7)

Minimize L(W, b,α) =
1
2

∣∣∣∣∣|W|
∣∣∣∣∣2 − n

∑
i = 1

αiyi(W.Xi + b) +
n

∑
i=1

αi (8)

To minimize Equation (8) concerning W and b, we obtained the derivative of the above
equation with respect to these variables (Equation (9)). Finally, we arrived at the following
equations by placing the results (Equation (10)). By converting the problem to a quadratic
programming problem and calculating the Lagrangian multipliers (Equation (11)), the
problem is solved by finding the saddle point [39,44]:

∂L
∂W

= 0,
∂L
∂b

= 0 (9)

W =
n

∑
i=1

αiyiXi

n

∑
i=1

αiyi=0 (10)

Maximize L(α) =
n

∑
i=1

αi −
1
2

n

∑
i,j=0

αiαjyiyjXi.Xj = 0 (11)

Subject to αi ≥ 0, i = 1, . . . , n,
n

∑
i=1

αiyi = 0 (12)

f(x) = sgn

(
n

∑
i,j=1

αiyi
(
XiXj

)
+ b

)
(13)

In high-dimensional data, classification will be difficult. One way to overcome this
problem is to use a kernel to transfer data to another feature space to make class sepa-
rations easier and better. In this study, the Radial Basis Function (RBF) kernel was used
(Equation (14)), which studies show has a better performance in this field. This kernel
is like the K-nearest neighbor. It has all the advantages of a K-nearest neighbor. In ad-
dition, because it only needs to save support vectors instead of entire data it reduces
space and complexity [45,46]. Finally, the decision function is changed as follows [44,47]
(Equation (15)).

K
(
Xi, Xj

)
= e−γ(Xi−Xj)

2
(14)

f(x) = sgn

(
n

∑
i,j=1

αiyiK
(
Xi, Xj

)
+ b

)
(15)

3.2.3. Spectral Angle Mapper (SAM)

The SAM classification method is one of the most widely used methods in mineral
mapping. The library spectrum, field spectrum, and image spectrum can be used for
training or reference data in this method. Each pixel is considered a multidimensional
vector with dimensions equal to the number of bands [48]. In the SAM method, the
similarities between training or known data and test data in n-dimensional space are
calculated with the angle between their spectra [48,49]. In this method, the direction of
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the spectra vectors is substantial, not their length, so the difference of light intensity in
different parts of the image does not affect processing.

SAM = arccos


〈

I{k}.J{k}
〉

‖I{k}‖ ‖J{k}‖

. (16)

In Equation (16), I{k} is the spectrum vector of the known data (in this study, Zefreh
training data), and J{k} is the spectrum vector of the ASTER scene case study. 〈·.·〉 indicates
the scalar multiplication. ‖ · ‖ is the vector’s norm [50,51].

3.2.4. Laboratory Analysis

Inductively coupled plasma–mass spectrometry (ICP-MS) analysis is one of the most
accurate methods for measuring the value of elements in the selected samples. This analysis
can detect and measure values less than one per billion (ppb). The input of the ICP-MS
device must be a solution without suspended particles. The sample solution is sprayed
into a plasma torch. The argon gas plasma ionizes the solution’s molecules in the ICP. An
electric field then accelerates these ions. Accelerated ions enter a magnetic field in the ICP
device. The ions in the magnetic field are separated based on the charge-to-mass ratio, and
the device can measure the value of each ion [52]. In this study, the collected rock samples
were analyzed using a Perkin Elmer Sciex ELAN 9000 ICP-MS for some trace elements.
The X-ray fluorescence (XRF) measured the value of sample compounds by bombarding
the sample with X-rays or gamma rays and measuring the emission characteristic [53]. A
Philips PW1480 XRF spectrometer was used in this study for measuring the percentage
of major oxides in the selected rock samples. The samples were analyzed in the Zarazma
Laboratory, Tehran, Iran. The results of these analysis are presented in Appendix A,
Tables A1 and A2.

The thin section was a microscopic cut of rock, thickness between 25–30 µm, both
sides were covered with glass slides. Thin sections were used for petrographic studies by
optical microscopy. Quartz and feldspars should be gray to white in cross-polarized light in
standard thin sections [54,55]. In this study, thin sections of alteration zones and lithological
units were prepared. Thin sections were studied using the Kyowa ME-POL2 microscope
(made in Japan) at magnification 20 in the Isfahan University of Technology, Iran. X-ray
diffraction (XRD) was used to identify the crystal structure and major and minor minerals
in a sample. In this method, the X-ray beam was irradiated to the sample, and the output
diffraction pattern determined the type of mineral [56]. An ASENWARE/AW-XDM300
XRD diffractometer was used for measuring the important minerals in the sample collected
in this study (Appendix A, Table A3). The XRD analysis was also performed in the Zarazma
Laboratory, Tehran, Iran.

4. Results and Analysis
4.1. Determining the Training Data

In order to accurately determine the training data to use in the SVM and SAM algo-
rithms, firstly, the alteration zones were identified by several mapping methods such as
RBD, LSU, OSP, and SFF [57–60]. Then the exact extent of each alteration zone in the Zefreh
porphyry copper deposit was determined using the DP algorithm.

4.2. Detection of the Alteration Zones

In each alteration, several indicator minerals had a specific spectral signature that
made it possible to identify them in remote sensing images and determine the type of
alteration. According to the kind of alteration, the location of enrichment elements and
mineralization was identified. In this study, we used RBD, LSU, OSP, and SFF mapping
methods to reveal phyllic, argillic, and propylitic alterations in the Zefreh porphyry copper
deposit. Figure 3a shows an RGB color composite (R:3, G:2, B:1) of the ASTER full scene
covering the study area.



Minerals 2021, 11, 1235 9 of 25

Minerals 2021, 11, x FOR PEER REVIEW 10 of 28 
 

 

 

Figure 3. (a) Color composite of ASTER (R:3, G:2, B:1); (b–d) Phyllic, argillic and propylitic alteration 
results of the RBD method; (e–g) alteration results of the LSU method; (h–j) show mapping of phyl-
lic, argillic and propylitic alterations using the OSP; (k) and (l) are the results of the SFF method; 
(m) shows the Fe-oxide alteration. 

Figure 3. (a) Color composite of ASTER (R:3, G:2, B:1); (b–d) Phyllic, argillic and propylitic alteration results of the RBD
method; (e–g) alteration results of the LSU method; (h–j) show mapping of phyllic, argillic and propylitic alterations using
the OSP; (k,l) are the results of the SFF method; (m) shows the Fe-oxide alteration.

In the RBD method, considering the points of absorption and reflectance of mineral
spectra, to determine the alterations, the band ratios (B7 + B5)/B6 for phyllic, the ratio
(B7 + B4) / B5 for the argillic, and the ratio (B7 + B9)/B8 for propylitic alterations were
used [61,62] (Figure 3b–d). To identify the alterations using LSU or SFF methods, the
reference spectra related to the indicator minerals of each alteration zones were extracted
from the USGS spectral library [63]. Figure 4 shows the USGS spectral of the indicator
minerals after re-sampling to the ASTER band-passes. The phyllic alteration zone included
sericite, illite, pyrite, and quartz [64]. The sericite mineral spectral signature was considered
for mapping the phyllic zone. The argillic zone accumulated clay minerals, including illite,
kaolinite, montmorillonite, alunite, halloysite, and quartz [64]. Argillic was identified by
representative spectra of kaolinite and montmorillonite. The propylitic alteration zone
consisted of epidote, calcite, and chlorite minerals, and was characterized mainly by the
spectral signature of chlorite and epidote minerals [65]. Implementing the LSU method
on the ASTER subset of the Zefreh porphyry copper deposit, the regions containing the
indicator minerals manifested as bright pixels (Figure 3e–g). These images showed the
mapping of phyllic, argillic, and propylitic alteration zones, respectively. LSU assumed
that the value of each pixel was a linear combination of its endmembers in the fraction of
endmembers with noise [57]. By projecting the pixel vector of the image in the subspaces,
the OSP method eliminated the undesirable effects by increasing the signal-to-noise ratio,
determining the spectral signature of the desired indicator mineral [66]. The results of the
OSP method are shown in Figure 3h–j. The SFF method identified the desired areas by
comparing the image spectrum with the spectral library spectrum, performing the least
squares fitting, and selecting the best fit [48]. The SFF method showed acceptable results
only for the phyllic and propylitic alteration (Figure 3k,l). The B2/B1 band ratio was used
for mapping iron oxides (Figure 3m).
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4.3. Implementation of the DP Method on the Zeftreh Area

The results obtained from different alteration mapping methods (Figure 3) were used
as input to the implementation of the DB method. Using the DP method, the digital number
(DN) value of the distribution of the pixels was assumed to be Gaussian. Considering the
fact that rocks are composed of minerals and minerals are composed of elements, the DN
values of each pixel were modeled as distributions over dispersals. This means that the
value of each pixel (Xi) was considered a normal distribution with a distinct mean and
variance. The number of different distributions was equal to the number of clusters. It
was assumed that the mean value of these distributions had a normal distribution (base
distribution) (Equations (17) and (18)). Gaussianness of data distribution is not required,
and if the data distribution is not normal, the results will not be much different. As
mentioned in Section 3.2.1, this method is a non-parametric method where, after defining
the model and implementing it in the Bayesian inference Using Gibbs Sampling (BUGS)
software, unknown parameters including the mean and variance of data distribution,
probability of each cluster, and the number of clusters were identified by the MCMC
simulation method. The BUGS was first released by Smith and Gelfand [67].
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The parameter values were obtained after 3000 times MCMC simulation and removing
the first 1000 unstable values (Figure 5a,b). The number of simulations varies and should
continue until the value of the parameters converges.

Xi ∼ Normal(µ1(Ci),σ1(Ci)), (17)

µ1(Ci) ∼ Normal(µ2,σ2), (18)

Ci ∼ Categorical(P(1 : C)), (19)

σ1(Ci) ∼Wishart(R). (20)
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In the above equations, Xi specifies the DN value of each pixel, Ci is the categorical
distribution of the probability occurrence of each cluster. µ and σ show the mean and
variance of the normal distribution, respectively (in BUGS software, precision is used
instead of variance). The precision value is calculated from the Wishart distribution [68,69].

The result of the implementation of the DP algorithm was the clustering of the ASTER
image in Figure 6. The alteration zones in this image were more accurate than the geological
map because the alteration zones were detected by the approach applied in this analysis.
Therefore, the results of this clustering as training data provided more significant results
compared to the existing geological map (Figure 1). Hence, the result of DP was used as
the training data in the SVM and SAM supervised methods. The result of this clustering
was five distinct clusters, and by adapting them to the geological map, we determined
which kind of alterations defined each cluster. Figure 6 indicates that the areas showing
the potassic zone were also mapped. This zone was not used as training data because the
potassic spectra were not easily detectable in the SWIR and VNIR bands of ASTER. Map-
ping the potassic zone can be performed using the TIR bands, which was not considered in
this analysis.
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zones in the study area.

4.4. Implementation of the SVM on ASTER Data

The alteration zones derived from the DP were used as training data to find similar
alteration zones in the ASTER scene. We used the RBF kernel to transfer data to other spaces
and classify the data. In the SVM method, the γ parameter and the penalty parameter
must be defined. These parameters were optimized on the training data using the genetic
algorithm in MATLAB software. The optimal values of the penalty and γ, 0.211 and 2,
respectively, were obtained. Finally, the SVM algorithm was implemented on the ASTER
image using the specified parameters and the training data using ENVI (Environment for
Visualizing Images, http://www.exelisvis.com) version 5.3 software package (L3Harris
Technologies, Melbourne, FL, USA). The results of this classification for phyllic, argillic and
propylitic alterations are shown in Figure 7a–d.
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4.5. Implementation of the SAM on ASTER Data

The SAM classification was used to compare the efficiency of the SVM results. DP clus-
tering data was used as the training data for this algorithm. Phyllic, argillic, and propylitic
alteration zones were mapped using the SAM algorithm on the ASTER image. The selected
SAM spectral angles (in radians) used in this study were: α = 0.4 for phyllic alteration,
α = 0.25 for argillic, and α = 0.3 for propylitic. The results of the SAM classification are
shown in Figure 8a–d.
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Figure 8. The results of SAM spectral mapping on the ASTER data. (a) Argillic alteration, (b) phyllic alteration, (c) propylitic
alteration, and (d) Fe-oxide alteration.

5. Fieldworks

To validate the classification results, the field survey was performed by considering
the following records: (i) the areas where the results of SVM showed the distribution of
several alteration zones, especially phyllic and argillic; (ii) rock units of the mineralization
zone; and (iii) areas where faults and ring structures were identified. In the field survey,
21 rock samples were collected by bulk sampling method for ICP-MS analysis, thin section,
XRD and XRF. The location of sampling points was recorded with a handheld GPS (Garmin
eTrex 30x; average accuracy of 3 m; made in Taiwan). The results of ICP-MS, XRF, and
XRD are presented in Appendix A, Tables A1–A3. Figures 9 and 10 show the location of
the sampling points on the SVM and SAM alteration maps, respectively.
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The S01 and S02 samples were taken from the northwestern part of the study area.
The rock of this area is diorite, which had been altered to argillic, phyllic, and iron oxides.
The SVM results showed phyllic and argillic alteration, and the SAM method performed
better in determining iron oxides in this area. The S03 was sampled from rhyodacite rocks.
In this area, the rocks had been altered to sericite and silica. The zone of S04 and S05
sampling (Figure 11a) consisted of rhyolite and dacite rocks with calcareous interlayers
altered to argillic and phyllic caused by intrusive masses. The S06 and S07 samples that
were collected from marl and limestone tuffs had been severely altered by the intrusion of
diorite and rhyodacite rocks. In this area, the thickness of the adjacent metamorphic zone,
which consisted mainly of garnet and epidote, reached about 100 m. There were lenses
made of silica and iron oxide with a thickness of 2 m among these skarns. The S08 sample
was composed of rhyodacite and breccias tuff. This area incurred argillic alteration and
is strongly siliceous along northwest-southeast faults. Sampling was performed from the
S09 point owing to the presence of multiple faults and the detection of argillic alteration
in the SVM results. During the field survey, a skarn mass was observed, and silicification
and epidotization were identified in some parts of this zone. The S10 and S11 samples
were taken from granodiorite and diorite, where argillic, advanced argillic, and propylitic
alteration occurred. Mn dendrites were observed in this part. The S12, S13 and S14
samples were taken from the zones of argillic, propylitic, phyllic alterations and iron oxides
(Figure 11b), which were identified in the SVM and SAM maps. At the field surveys, the
argillic alteration was observed in a pyroclastic tuff unit, and in some parts the partial
silicification alteration was recorded. The S15, S16, S17, S18 and S19 samples were taken
from the southern part of the study area (Figure 11c). The field survey of these points
showed that the porphyry dacites had been altered to argillic, phyllic, iron oxides, and
silica. The S20 and S21 samples were collected from the southeastern part of the study
area. This area is a pyroclastic complex that was influenced by dacite to diorite masses.
Argillitization (Figure 11d), silicification, turmalinization, and iron oxides were seen in
this zone.
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5.1. Petrography Study

The thin section in Figure 12a was prepared from the S04 sample. This thin section had
a porphyry texture with a microgranular matrix. This sample had undergone pervasive
alteration, and the rock had been entirely replaced by secondary minerals such as sericite,
quartz, clay minerals, and iron oxides. Quartz veins were also observable. The thin section
of the sample S07 (Figure 12b) was a porphyry rhyodacite with a hyalomicrogranular
matrix. Rock feldspar minerals were selectively altered to sericite, illite, and muscovite.
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Alteration to clay minerals, especially kaolinite, was observed throughout the thin section.
Iron oxides were observed on the opaque minerals. In the thin section of the sample S13
rhyodacite porphyry with hyalomicrogranular matrix was detected (Figure 12c). Euhedral
and subhedral plagioclase, alkaline feldspar, and quartz with corrosion gulf were the rock’s
main minerals. Tourmaline was also found among feldspar crystals. The main alterations
observed in this section were argillic, sericite and phyllic. The thin section in Figure 12d
was prepared from sample S19 corresponding to a lithic tuff with a volcanoclastic texture.
Subhedral to amorphous plagioclase–alkali crystals, feldspar, and quartz were the main
minerals, which had been altered to sericite, muscovite, iron oxides, and clay minerals.
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Figure 12. Thin sections of (a) the S04, (b) S07, (c) S13, and (d) S19 rock samples. The dusty surface
of the images is due to the alteration and formation of clay and sericite minerals. Abbreviations:
Ser = Serecite, and Qt = quartz, Afs = Alkali-feldspar, Pl = plagioclase, Tour = Tourmaline.

In the XRD results, indicator minerals for phyllic, argillic, and propylitic alteration
zones such as hematite, muscovite, illite, kaolinite, montmorillonite, chlorite, epidote, and
goethite were detected (Figure 13a–g and Appendix A, Table A3), which confirmed the
results of the remote sensing analysis.

5.2. Geochemical Analysis

ICP-MS and XRF analyses were performed on all 21 samples taken from the study
areas. The ICP-MS analysis of the S04 sample showed enrichment of Au (104 ppb), As
(289 ppm), Cu (467 ppm), and Mo (21 ppm) elements (Appendix A, Table A1). In the
ICP-MS results of S06 and S07 samples, the Zn enrichment (1195 and 3014 ppm) was
observable (Appendix A, Table A1). In the S09 sample, Mn (3464 ppm), Cu (198 ppm) and
Au (60 ppb) showed enrichment (Appendix A, Table A1). The ICP-MS results of the S11
sample analysis showed Mn (1664 ppm) enrichment (Appendix A, Table A1). Pb (280 ppm)
and Cu (509 ppm) enrichment in the form of malachite were observed at the location of
Figure 11e, from which the S21 sample was collected (Appendix A, Table A1). The XRF
analysis was performed for all samples; the results are shown in Appendix A, Table A2.
Altered samples showed high amounts of Al2O3 (17.00% up to 24.20%), SiO2 (41.42% up to
56.24%), and Fe2O3 (2.44 % up to 9.43%) and low amounts of Na2O (<0.1% up to 3.68%)
and K2O (1.85% up to 3.70%) owing to alteration processes (Appendix A, Table A2).
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Figure 13. The XRD analysis of (a) the S04, (b) S07, (c) S13, (d) S19, (e) S21, (f) S14, and (g) S16 samples. The XRD results of
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6. Accuracy Assessment

To evaluate the performances of the SVM and SAM methods, classification results
were compared with the DP results. In this comparison, the DP results that included the
alteration of phyllite, argillic, propylitic, and iron oxides were used as ground truth. User
accuracy, producer accuracy, overall accuracy, and kappa coefficient [70,71] were calculated
to evaluate the accuracy of the results. The results showed a total accuracy of 84.4 and 67.2%
for SVM and SAM, respectively. The value of the kappa coefficient for SVM was 0.74 and
for SAM it was 0.52. As can be seen from Tables 1 and 2, the classification of the phyllic,
argillic, and propylitic alteration results of the SVM method were more accurate, but the
Fe-oxides alteration result of the SAM classification was more consistent with ground truth.
The best result was in the classification of propylitic alteration in the SVM method.
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Table 1. Confusion matrix for the SVM classification.

Classes Phyllic Argillic Propylitic Fe-Oxides Total User’s Accuracy

Unclassified 20 46 9 30 105
Phyllic 172 23 0 0 195 88.21
Argillic 33 795 6 47 881 90.24

Propylitic 0 3 201 1 205 98.05
Fe-Oxides 0 17 0 104 121 85.95

Total 225 884 216 182 1507

Producer’s accuracy 76.44 89.93 93.06 57.14
Overall accuracy 84.4
Kappa coefficient 0.744

Table 2. Confusion matrix for the SAM classification.

Classes Phyllic Argillic Propylitic Fe-Oxides Total User’s Accuracy

Unclassified 8 102 47 23 180
Phyllic 146 107 0 7 260 56.15
Argillic 43 586 0 15 644 90.99

Propylitic 0 1 128 0 129 99.22
Fe-Oxides 24 108 9 153 294 52.04

Total 221 904 184 198 1507

Producer’s accuracy 66.06 64.82 69.57 77.27
Overall accuracy 67.2
Kappa coefficient 0.52

7. Discussion

Distinguishing hydrothermal alteration zones resulting from hydrothermal processes
in the porphyry systems is a significant stage of mineral exploration [58]. Remote sensing
data have a great capability for mapping hydrothermal alteration zones and are exten-
sively and successfully used for distinguishing hydrothermal alteration minerals and
zones in metallogenic provinces around the world [8,9,72–74]. Several image processing
techniques are broadly applied to remote sensing imagery for classifying, identifying,
and distinguishing spatial distribution of alteration minerals and zones [61,62]. Band
ratios, Principal Component Analysis (PCA), Independent Component Analysis (ICA),
Matched-Filtering (MF), Mixture-Tuned Matched-Filtering (MTMF), Linear Spectral Mixing
(LUS), and Constrained Energy Minimization (CEM) methods have been extensively im-
plemented on ASTER data for mapping alteration zones associated with porphyry copper
deposits [75–77]. However, these techniques are conceptual (i.e., knowledge-driven) algo-
rithms and the reconfiguration formula is used to map the desired criteria. Consequently,
the zones that encounter most of the desired criteria are highlighted as prospective zones.
These algorithms are provisional regarding the type of input remote sensing data and thus
can be biased. By applying these algorithms, expert knowledge is used more than the
proficiency of the statistical methods [78]. The application of ML algorithms to remote
sensing data has high potential to produce accurate maps, especially for mapping argillic,
phyllic, and propylitic zones associated with porphyry copper deposits [78–80].

In hydrothermal alteration mapping, the placement of each pixel in a cluster is essen-
tial. Hence, the image processing methods categorizing only a fraction of the pixels into a
particular class are not very effective and accurate. In view of that, the use of clustering
methods is highly useful in determining the ML of a pixel belonging to a cluster. This study
showed that the fusion of unsupervised and supervised methods in mineral mapping
leads to more accurate results. The methods and algorithms used for mineral mapping
are in line with the reality of the data and provide better results. The DP method used in
this study models alteration zones well because its performance is based on distribution.
Consequently, in specifying training data, it is more consistent with reality than using
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endmembers or pure training data. More reliable results can be obtained especially when
the detection methods are used to determine the extent of each alteration zone. The train-
ing data achieved from the DP method are suitable input for use in the SVM and SAM
methods. The SVM method with RBF kernel and training data generated from the DP
showed better results than SAM. Furthermore, the DP method can also be used to cluster
all other types of data, including the results of geochemical analysis of stream sediments,
lithogeochemical and geophysical data, etc., which can be applied in the future mineral
exploration in metallogenic provinces.

Geological surveys were performed based on the results obtained from remote sensing
imagery. The results of the fieldwork and laboratory analysis showed good accordance
with the obtained remote sensing results. The presence of illite and muscovite minerals
in the XRD results indicated a phyllic alteration zone in the study area. The occurrence
of kaolinite and montmorionite minerals in the XRD results confirmed the occurrence of
an argillic alteration zone in the study areas. The manifestation of epidote and chlorite
minerals in the XRD results indicated a propylitic alteration. In the XRF results, owing to
the degradation of feldspars in the alteration process, the amounts of K2O, CaO, and Na2O
decreased and the Al2O3, Fe2O3, and SiO2 increased. Increasing the amount of Cu, Au,
Zn, and Mn obtained in the ICP-MS results was related to copper mineralization in some
samples collected from different zones in the study area. Consequently, the remote sensing
approach applied in this study was a valuable tool for porphyry copper exploration in the
metallogenic provinces.

8. Conclusions

Mineral mapping using supervised methods requires appropriate training data to
classify the data accurately and comprehensively. Considering that minerals and rocks
have various compositions, the DP method was used to model phyllic, argillic, propylitic,
and Fe-oxides alteration zones in the Zefreh porphyry copper deposits. The classification
maps with the DP results training data were more accurate. The DP process was used
to specify the training data on ASTER images of the Zefreh porphyry copper deposits,
where alteration zones were detected by spectral mapping methods such as BDR, LSU,
OSP, and SFF. The DP clustering results were realistic, considering the field survey and
laboratory analysis. By performing the SVM and SAM methods on the ASTER data, areas
including phyllic, argillic, propylitic, and iron oxide alterations in the full ASTER scene
were identified. By field survey of these zones, a good coincidence was perceived between
the results obtained from the SVM method and field observations. Alternation zones
similar to those obtained from the SVM results were observed in the field at most of the
surveyed points. With the SAM method, most of the iron oxides and propylitic alterations
were identified, and in some areas, it was less compatible with the alterations observed in
the field than the SVM method. This study reinforced the application of the SVM algorithm
for mapping hydrothermal alteration zones associated with porphyry copper deposits,
which is applicable to ASTER data for potential mapping in various metallogenic provinces
around the world.
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Appendix A

Table A1. ICP-MS analysis results of some significant elements (Au unit: part per billion, other element unit: part per million).

Row Sample_NO X (m) Y (m) Au (ppb) Fe Ag As Cu Mn Mo Pb Sb Zn

1 S01 585,770 3,701,063 <5 5855 0 8.3 18 178 2.1 5 1.08 20
2 S02 586,064 3,700,766 <5 17,302 0 8.9 5 29 5.3 5 1.24 53
3 S03 589,488 3,690,065 70 13,866 0 150.7 15 219 6.8 63 201 39
4 S04 591,489 3,685,219 104 185,397 0 289.2 467 161 20.9 86 1.1 138
5 S05 591,544 3,685,158 <5 21,278 0 9.1 6 67 2.18 6 1.29 16
6 S06 592,703 3,683,705 7 123,344 0 8.9 112 564 4.8 32 1.09 1195
7 S07 592,237 3,683,423 <5 14,281 0 909.2 346 10,111 7.4 124 1.26 3014
8 S08 599,089 3,684,040 <5 8571 0.27 16.2 6 59 4 7 1.02 9
9 S09 605,129 3,675,998 60 81,444 0.35 28.1 198 3464 2.27 32 1.17 60

10 S10 621,599 3,670,515 <5 35,705 0.27 8.8 16 110 3.4 7 1.13 78
11 S11 623,023 3,670,502 <5 47,093 0.22 8.9 63 1664 2.31 37 1.09 234
12 S12 631,737 3,673,323 <5 15,726 0.24 11.2 28 65 2.43 7 1.12 18
13 S13 632,235 3,672,977 <5 27,364 0.28 8.4 40 49 3.2 197 1.02 119
14 S14 632,566 3,672,641 8 77,478 0.36 36.4 12 80 26.9 25 1.06 23
15 S15 615,304 3,656,553 12 37,739 0.22 8.6 8 29 2.16 5 1.01 22
16 S16 615,253 3,656,502 23 20,271 0.25 8.3 40 48 6.6 5 0.97 19
17 S17 615,249 3,656,248 25 42,181 0.27 120.8 10 39 2.27 13 1.09 22
18 S18 616,106 3,656,542 6 17,893 0.28 8.4 24 52 3.8 6 1.02 17
19 S19 616,073 3,656,271 <5 43,412 0.22 8.8 56 115 2.1 7 1.1 37
20 S20 626,512 3,639,545 <5 18,158 0 13 29 36 8.1 9 1.05 6
21 S21 626,422 3,639,297 55 39,771 0 61.7 509 63 9.6 280 1.04 16

Table A2. XRF analysis results of some main oxides (Oxides unit: percent). L.O.I: Loss Of Ignition.

Row Sample_NO SiO2 Al2O3 CaO MgO TiO2 Fe2O3 MnO P2O5 Na2O K2O SrO L.O.I Total

1 S01 56.24 24.19 0.71 0.66 0.75 3.14 <0.1 0.48 <0.1 2.24 <0.1 10.70 99.11
2 S02 49.23 22.81 2.70 1.55 0.85 6.08 0.14 0.46 1.54 3.23 <0.1 10.00 98.60
3 S03 41.85 20.15 8.97 2.94 0.61 6.81 0.28 0.38 0.32 2.23 <0.1 13.50 98.04
4 S04 50.16 23.24 5.66 1.58 0.43 3.43 <0.1 0.32 <0.1 1.94 <0.1 11.30 98.06
5 S05 47.91 23.51 6.90 1.64 0.43 4.01 <0.1 0.34 <0.1 2.81 <0.1 11.49 99.03
6 S06 43.86 22.51 6.31 1.39 0.65 7.35 0.17 0.31 0.62 2.91 <0.1 12.62 98.70
7 S07 53.06 18.94 4.31 3.26 0.71 6.49 0.26 0.42 3.68 3.58 <0.1 4.14 98.85
8 S08 43.38 18.91 8.87 2.86 0.66 6.80 0.16 0.43 1.99 2.22 0.12 12.70 99.08
9 S09 52.32 22.22 5.02 2.14 0.50 2.44 <0.1 0.34 <0.1 3.85 <0.1 9.50 98.33
10 S10 41.42 17.01 8.66 3.44 0.77 9.28 0.33 0.57 2.56 1.85 0.10 12.98 98.98
11 S11 44.85 21.87 4.79 2.21 0.62 7.67 0.15 0.36 0.65 3.27 <0.1 12.34 98.77
12 S12 49.31 19.29 5.46 2.63 0.55 6.14 0.15 0.38 2.33 2.46 <0.1 9.39 98.09
13 S13 48.28 17.41 8.81 3.28 0.69 8.44 0.18 0.52 2.97 3.62 0.19 5.15 99.56
14 S14 44.26 17.00 6.57 3.07 0.75 8.95 0.17 0.37 2.91 3.70 0.10 9.84 97.69
15 S15 56.24 24.19 0.71 0.66 0.75 3.14 <0.1 0.48 <0.1 2.24 <0.1 6.70 95.11
16 S16 49.23 22.81 2.70 1.55 0.85 6.08 0.14 0.46 1.54 3.23 <0.1 10.00 98.60
17 S17 41.85 20.15 8.97 2.94 0.61 6.81 0.28 0.38 0.32 2.23 <0.1 13.50 98.04
18 S18 50.16 23.24 5.66 1.58 0.43 3.43 <0.1 0.32 <0.1 1.94 <0.1 11.30 98.06
19 S19 47.91 23.51 6.90 1.64 0.43 4.01 <0.1 0.34 <0.1 2.81 <0.1 11.49 99.03
20 S20 43.86 22.51 6.31 1.39 0.65 7.35 0.17 0.31 0.62 2.91 <0.1 12.62 98.70
21 S21 53.06 18.94 4.31 3.26 0.71 6.49 0.26 0.42 3.68 3.58 <0.1 4.14 98.85

Table A3. The results of the XRD analysis.

Samples Major Phase Minor Phase Alteration

S04 Quartz, Calcite, Albite Hematite, Muscovite, Illite, Orthoclase Phyllic
S07 Albite, Quartz, Calcite, Orthoclase Hematite, Muscovite, Chlorite Phyllic

S13 Quartz, Calcite, Albite, Orthoclase Hematite, Muscovite, Illite, Kaolinite Phyllic–Argillic

S19 Quartz, Calcite, Albite Hematite, Muscovite, Kaolinite,
Orthoclase Phyllic–Argillic

S21 Quartz, Calcite, Orthoclase, Albite Montmorillonite, Hematite Argillic

S14 Quartz, Calcite, Albite, Orthoclase Chlorite, Hornblende, Hematite Propylitic
S16 Quartz, Albite, Calcite Chlorite, Epidote, Goethite, Hematite Propylitic
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