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ABSTRACT Intelligent vehicle technology has made tremendous progress due to Artificial Intelligence (AI)
techniques. Accurate behavior prediction of surrounding traffic actors is essential for the safe and secure
navigation of the intelligent vehicle. Minor misbehavior of these vehicles on the busy roads may lead to
an accident. Due to this, there is a need for vehicle behavior research work in today’s era. This research
article reviews traffic actors’ behavior prediction techniques for intelligent vehicles to perceive, infer, and
anticipate other vehicles’ intentions and future actions. It identifies the key strategies and methods for AI,
emerging trends, datasets, and ongoing research issues in these fields. As per the authors’ knowledge, this
is the first systematic literature review dedicated to the vehicle behavior study examining existing academic
literature published by peer review venues between 2011 and 2021. A systematic review was undertaken
to examine these papers, and five primary research questions have been addressed. The findings show that
using sophisticated input representation that includes traffic rules and road geometry, artificial intelligence-
based solutions applied to behavior prediction of traffic actors for intelligent vehicles have shown promising
success, particularly in complex driving scenarios. Finally, the paper summarizes the most widely used
approaches in behavior prediction of traffic actors for intelligent vehicles, which the authors believe serves as
a foundation for future research in behavior prediction of surrounding traffic actors for secure and accurate
intelligent vehicle navigation.

INDEX TERMS Intelligent driving, deep learning, intelligent vehicles, vehicle behavior prediction,
pedestrian behavior prediction.

I. INTRODUCTION
Many companies, such as Waymo and Lyft, are now work-
ing on intelligent vehicle technology for various vehicles.
Although intelligent vehicles are still in the early stages of
development, partially automated systems have been used in
the automobile industry for a few years. Since the middle of
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the 1980s, several universities, research centers, and auto-
mobile manufacturers have researched and built intelligent
vehicles. Furthermore, for efficient and secure navigation
on the road with mixed traffic actors, the intelligent vehicle
should understand the current state of surrounding traffic
actors and predict their future behavior [1].

This general problem of behavior prediction of traf-
fic actors for the intelligent vehicle is mainly categorized
into two parts. One part of this problem is to predict
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the behavior of pedestrians, and another part is to predict
the behavior of surrounding vehicles. Surrounding vehi-
cles generally are of diverse types, driverless vehicles or
human-driven vehicles [2]. Furthermore, an intelligent vehi-
cle system should have the ability to perceive, understand,
and predict human behavior to interact with the human envi-
ronment safely. Human behavior comes in various forms:
full-body motion, gestures, facial expression, or movement
through space by walking, using a mobility device [3].
Accurately predicting human behavior is a very challenging
task due to their complex, dynamic and random behavior.
Although the motion behavior of vehicles (such as cars,
trucks, and buses) has well-defined rules and environmental
conditions, it is not an easy task due to several challenges.

There is interdependence amongst vehicles’ behavior,
where the behavior of one vehicle affects the behavior of
another vehicle. Therefore, predicting vehicle motion behav-
ior requires an understanding of the behaviors of the sur-
rounding vehicles [4].

Intelligent vehicle technology has made tremendous
progress due to the advancement of artificial intelligence (AI)
techniques. Machine learning, deep learning, and artificial
intelligence are the leading backbone technologies behind the
progress of the intelligent vehicle [5]. Therefore, the behavior
prediction of surrounding traffic actors begins to migrate
from the classical to the AI-based method. Recurrent neural
networks (RNN) are widely used in predicting pedestrians’
behavior and nearby vehicles (e.g., car, truck, bus, etc.). One
variant of RNN, the long short-term memory (LSTM) model,
has been popularly used to predict the behavior of pedestrians
and surrounding vehicles [6], [7]. Another variant of RNN,
the gated recurrent network, predicts vehicle trajectory by
combining conditional variational autoencoders [8].

Accurate behavior prediction of pedestrians and vehicles
is crucial for intelligent vehicles’ safe and secure navigation.
Minor misbehavior of intelligent vehicles on crowded roads
leads to an accident. Due to this, much research still needs to
be done to see an intelligent vehicle on the road. Big compa-
nies and players in the automobile industry and researchers
make intelligent vehicles as smart and reliable as human-
driven vehicles. Hence, it is crucial to identify the existing
research related to pedestrian behavior prediction and vehicle
behavior prediction concerning an intelligent vehicle. It is
necessary to conduct a systematic literature review to identify
research trends and gaps concerning the behavior prediction
of traffic actors. Towards this goal, existing studies and work
on behavior prediction of pedestrian and surrounding vehicles
concerning the intelligent vehicle examine critically and use
these insights to develop new directions.

A. PRIOR RESEARCH
Specifically, in the field of behavior prediction of traffic
actors for an intelligent vehicle, as per our knowledge, there
are very few Systematic Literature Reviews (SLRs) papers
are available. One of the most recent review papers on vehicle

behavior prediction for intelligent driving using a deep
learning approach was Mozaffari et al. [2]. In their work,
the authors discussed challenges and problems associated
with predicting future vehicle trajectories during complex
driving scenarios. They provided a comprehensive review of
the different approaches used to solve vehicle behavior pre-
diction, i.e., physics-based, maneuver-based, and interaction-
aware models. Based on input representation, output type,
and prediction model, various researchers have used different
approaches. In our view, this work gives a valuable start
to researchers who might be interested in vehicle behavior
prediction for the safe navigation of intelligent vehicles.

Ridel et al. [9] conducted a review in 2018 to predict the
behavior of pedestrians in urban scenarios for intelligent vehi-
cles. In this work, the authors discussed the state-of-the-art
research developments and challenges to overcome towards
finding solutions closer to the human ability to predict and
interpret the behavior of pedestrians. This task requires high
response time, accuracy, and precision in the real world.
However, a lot more research still needs to be done to develop
an intelligent vehicle that can ensure the safety of pedestrians
on the road.

In a very recent work in 2020, Dunne et al. [10] con-
ducted SLR to present the computational model for predicting
human behavior in an intelligent environment. The authors
have provided the frequently used dataset in human behavior
prediction and prediction accuracy, which lies in the range
of 43.9% to 100%. This research focuses on human behavior
prediction in smart homes, offices, vehicles, and healthcare,
which is the basis of research in this paper. This research
focuses on pedestrian behavior prediction and vehicle behav-
ior prediction in the area of intelligent vehicles. Table 1 shows
the prior research in the field of behavior prediction of sur-
rounding actors for intelligent vehicles.

As seen in the literature, as mentioned earlier, no existing
systematic review focuses on the challenges and problems
related to input representation for the prediction model of
behavior prediction of traffic actors. In addition, the existing
systematic literature review lacks a comprehensive review
focused on the publicly available datasets. The literature also
lacks an exhaustive study on methods or tools used for behav-
ior prediction of traffic actors in the context of intelligent
vehicles.

This systematic literature review (SLR) aims to critically
examine existing research articles and their outcomes in the
formulated research issue. Table 2 lists the research ques-
tions created to help focus on this SLR. As per the author’s
knowledge, this is the first SLR to cover the behavior of two
significant traffic actors, namely pedestrians and surrounding
vehicles, which affect the creation of intelligent vehicles.

Contributions of this SLR are summarized as follows:
• Eighty-three primary research studies were identified
on behavior prediction of traffic actors for the intelli-
gent vehicle. Other researchers can use these studies to
advance their work in this area.
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TABLE 1. Prior research related to this work.

• The significant challenges and issues regarding input
representation for the behavior prediction model are
discussed.

• A comprehensive review of the availability and quality
of publicly available datasets is performed.

• A summary of the existing artificial intelligence tech-
niques available for behavior prediction of traffic actors
is presented.

• The research gaps and future research directions were
identified, which will help researchers and business
organizations choose the proper method for behavior
prediction of traffic actors in intelligent vehicles.

The following is an outline of the article. The proposed
methodology, as well as our research questions, is detailed in
section 2. Section 3 contains the findings and answers to the
proposed research questions. In section 4, the main findings
from existing literature are discussed. Section 5 includes the
future research directions. Finally, in section 6, conclusions
are presented.

II. RESEARCH METHODOLOGY
The Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) method is used to perform a sys-
tematic review [88]. PRISMA is a collection of guidelines for
the composition and structure of systematic reviews and other
meta-analyses based on data.

The reviewing process in our paper consists of three steps:
the formulation of research questions, the search phase, and
the criteria for inclusion and exclusion of research arti-
cles. The steps for our research analysis are detailed as
follows.

This systematic review is organized to cover the breadth of
the study under consideration by categorizing and evaluating
existing publications. The first step is to define the research
questions so that the coverage rate of current works can be
accurately described and draw some perspectives that can

help researchers generate new ideas by analyzing similar
works. Table 2 lists the research questions that were used
in SLR.

The second step in our SLR is to identify informa-
tion sources. Related manuscripts were found using Sco-
pus and Web of Science. Table 3 lists the primary and
secondary keywords to form search queries for the iden-
tification of research articles. The third step is to develop
procedures for reviewing the technical and scientific articles
that these searches produced to identify relevant papers to our
situation.

The proposed approach is divided into two steps: (i) use
of Boolean operators AND/OR to identify search terms from
research questions to prepare a list of keywords; (ii) use
Boolean operators AND/OR to select queries that are used
to search for and collect all relevant data. Table 4 displays the
search queries used in this article.

A. INCLUSION AND EXCLUSION CRITERIA
Alist of inclusion criteria for selection and exclusion criteria
for rejection of research papers were developed to select
relevant research studies for systematic review (Table 5).

In the screening procedure, three inclusion criteria steps
are used:

(i) Abstract-based screening: Irrelevant research papers
based on information and keywords in the abstracts of
research articles were rejected. Abstracts of research articles
that met at least 40 percent of the IC were retained for the
next steps.

(ii) Full-text screening: Research papers that do not discuss
or relate to the search query given in Table 3, i.e., papers
with abstracts that only represent minor aspects of the search
query, were removed.

(iii) Quality-analysis step: Quality analysis on the remain-
ing research papers were performed and excluded those that
do not meet any of the following criteria:
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TABLE 2. Research questions used in this SLR.

TABLE 3. List of primary and secondary keywords used.

TABLE 4. Search queries.

• C1: Research articles must provide findings and results.
• C2: Research articles must provide empirical proof of
finding.

• C3: Research objectives and outcomes must be well
presented.

• C4: Research articlesmust use appropriate and sufficient
references.

B. CONDUCTION OF SLR
The following main steps were used to select appropri-
ate papers for this review: Search strategy began with
603 papers, 362 obtained from Scopus databases, and
241 from the Web of Science database. The total number

of discoveries was reduced to 450 after duplicates were
removed. The 450 were then examined using criteria for
inclusion and exclusion based on the title and abstract, which
reduced our results to 189; additional eligibility criteria
based on the quality-analysis step and full-text availability
yielded 83 results. These 83 papers are carefully reviewed
to arrive at the conclusions discussed in the following
section.

III. RESULTS
This section summarizes the findings of systematic analysis.
It answers the research questions posed above based on the
results of this review process.
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TABLE 5. List of inclusion and exclusion criteria.

FIGURE 1. Distribution of selected papers by (a) publication year, (b) publisher, and (c) domains.

RQ 1. What is the distribution of published papers
predicting pedestrian and surrounding vehicle activity for
intelligent vehicles by year, publication, and domain?

Authors have selected only papers on pedestrians’ behav-
ior prediction and vehicle behavior prediction related to
an intelligent vehicle. There are 83 publications in total.
Figure 1 shows the distribution of selected research articles
by (a) publication year, (b) publisher, and (c) domain. The
graph in Fig. 1(a) shows that the trend of intelligent vehi-
cles predicting pedestrian and surrounding vehicle activity is
growing, and predicting traffic actor behavior had not been
proposed before 2011. After 2011, however, this trend began

to rise, with 24 essential papers published in 2019, 35 in 2020,
and 5 in 2021. In addition, the majority of selected papers are
published in IEEE Explore, including 58 articles, followed
up by eight papers of MDPI, as shown in Fig. 1(b). Fig. 1(c)
shows that the majority of selected papers (59 papers) are
related to vehicle behavior prediction, followed by pedestrian
behavior prediction (24 papers).

RQ 2. What are the main challenges and problems
facing the prediction of traffic actor’s behavior?

Behavior prediction for an intelligent vehicle is not a trivial
task because of several problems and challenges. First, traffic
actors’ behavior is interdependent, where the behavior of
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FIGURE 2. Challenges for behavior prediction of traffic actors based on input representation.

traffic actors affects the behavior of other traffic actors. Sec-
ond, traffic rules and road geometry can change the behavior
of traffic actors. Third, the future behavior is multimodal,
forgiven history of behavior of traffic actors, there may exist
more than one possible future behavior for it.

To define the problem of behavior prediction of traffic
actors, authors adopt the following terminology according
to [2]:
• Target Actors (TAs) are the actors whose behavior
needs to predict the safe navigation of the intelligent
vehicle.

• Ego Vehicle (EV) is the intelligent vehicle that observes
the behavior of surrounding traffic actors to predict their
future behavior.

• Surrounding Actors (SAs) are the traffic actors whose
behavior needs to be predicted as their behavior influ-
ences the navigation of the intelligent vehicle.

• Non-Effective Actors (NAs) are the remaining actors in
a driving environment that have no impact on the TA’s
behavior.

• Bird’s-Eye View (BEV) is an elevated view of an object
from above, with a bird’s perspective.

• Raw Sensor Data is unprocessed sensor data obtained
from EV’s sensor.

Based on input data to the prediction model for behavior
prediction of traffic actors, authors reviewed and classified
selected articles into four categories: track history of the TA
only, track history of the TA and SAs, simplified bird’s-eye
view, and raw sensor data.
• Track history of the TA only:The Traditional approach
for predicting the behavior of traffic actors is to con-
sider its current state and track the history of its states
throughout a given time without taking into account
the behavior of SAs. In [12], [13], information about
different gestures (hand gesture, looking, node), actions
like walking or standing, a reaction like moving slow,

speed up, and crossing action is used to understand the
behavior of pedestrians. In [11], there is a switching lin-
ear dynamical system (SLDS) model and multi-layered
bidirectional LSTM model that compared to predict the
behavior of a pedestrian. SLDS and LSTM model use
dataset which provides bounding boxes, disparity, and
X and Z coordinates of target actor only. The proposed
novel objective feature uses the periodicity of human
walking (gait), mirror symmetry of the human body,
and changes in ground reaction forces in a human gait
cycle to predict poses and global positions for several
pedestrians simultaneously [14].
Track history of the target actor only is instrumental in
predicting short-term behavior. Still, it is not sufficient
to predict the long-term behavior of the target actor,
as long-term behavior is highly dependent on surround-
ing actors and the environment.

• Track history of the TA and SAs: In this approach,
interaction among traffic actors also considers the track
history of TA. State and track history of SAs, similar
to TA, can be used as input for the prediction model
to improve performance in predicting the behavior of
TA. In [15], the lane-changing behavior of drivers is
recorded using time-series input data from vehicular
time-dependent dynamic states (positions, velocities,
velocity differences, and position differences of nearby
traffic actors, for example). Behavior prediction of the
pedestrian is challenging because it requires reasoning
about the traffic actor’s past movement, social interac-
tions among varying numbers and kinds of actors, con-
straints from scene context, and the stochastic nature of
pedestrians. Novel Multi-Agent Tensor Fusion (MATF)
network encodes multiple agents past trajectory, and
the scene context into Multi-Agent Tensor then
applies convolution fusion to capture multi-agent
interaction [16].
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This input representation assumes that the state and
track history of all SVs are always observable. But it
is challenging due to sensor impairments like noise and
occlusion. The performance of prediction models for
behavior prediction of traffic actors depends not only on
the track history of the TA and SAs, but it is also very
much dependent on environmental conditions and traffic
rules.

• Simplified bird’s-eye view: Simplified Bird’s-eye
View (BEV) of the environment is used to consider the
interaction among traffic actors to predict the behav-
ior of TA for an intelligent vehicle. In this represen-
tation, a series of polygons and lines depict static and
dynamic objects, road lanes, and other environmental
elements in a Bird’s-Eye View (BEV) picture. BEV of
the world is used as input to a prediction model for
traffic actor activity prediction for intelligent vehicles
in [17]–[19], and [31]. In [20], a novel approach to
perform vehicle trajectory prediction employing graphic
representation is described. The vehicles are represented
using Gaussian distribution into bird eye view (BEV).
The deep learning model has been trained using a highD
dataset collected from aerial imagery. Occupancy Grid
Map (OGM) was used by Mohajerin and Rohani [21]
for multi-step prediction of drivable space for intelligent
vehicles. An OGM divides the space around the ego
vehicle (EV) into equivalent cells that reflect the state
of occupation of nearby regions, i.e., free or occupied.
The simplified BEV is versatile in terms of representa-
tion complexity, and it also allows data fusion from vari-
ous types of sensors into a single BEV image. However,
it inherits the flaws of the perception module, which is
used to estimate the states of static and dynamic traffic
actors in the driving context.

• Raw sensor data: The raw sensor data obtained from
the EV’s sensors is fed to the prediction model in this
input representation. As a result, the input data includes
all possible information about the surrounding area.
It helps the model learn from all available sensory data
to extract useful features. In [5], [23], [24], and [32],
raw sensory data collected from EV sensors are used and
extract valuable features as input to a prediction model
for behavior prediction of traffic actors for an intelli-
gent vehicle. For intelligent vehicles, [22] used a lane
shifting decision model. An intelligent vehicle’s moni-
toring and sensor system collects parameters (e.g., posi-
tion, velocity, acceleration, etc.) from surrounding traffic
actors. The identification and decision of vehicle chang-
ing lanes were studied by mining information from the
vehicle’s historical motion data.

The raw sensor data used as input for the prediction model
has a high dimension, requiring much computing power to
process it. The various challenges and problems for pre-
dicting traffic actors for intelligent vehicles based on input
representation to the prediction model can be summarized as
depicted in Figure 2.

RQ 3. What are the different datasets available for the
behavior prediction of traffic actors?

The cornerstone of a model based on artificial intelligence
is data. Obtaining specific, impartial data from the appropri-
ate source would aid in the development of a more accurate
and reliable model. The most commonly used publicly acces-
sible datasets for behavior prediction of different traffic actors
for intelligent vehicles are covered in this section.
• Public dataset for pedestrian behavior prediction

The authors looked at existing research articles about predict-
ing pedestrian behavior in the sense of intelligent vehicles.
Researchers appear to have used various datasets to train an
AI-based model for predicting pedestrian behavior to aid in
the safe navigation of intelligent vehicles. It is critical to
collect a suitable dataset with adequate quantity and quality
for AI-based models to achieve good results. Deep learning
models, in particular, necessitate a large amount of data for
training to achieve output close to that of humans.

The Joint Attention in Autonomous Driving (JAAD)
dataset [110] was used in the research studies [12], [51],
and [71]. This dataset focuses on pedestrian and driver activ-
ity at crossings and the factors that affect it. It contains
346 richly annotated short video clips culled from over
240 hours of driving footage shot in different weather con-
ditions across North America and Eastern Europe. There are
multiple tags (weather, places, etc.) for each video, as well
as time-stamped action marks from a setlist (e.g., stopped,
walking, looking, etc.). A list of demographic characteristics
for each pedestrian is also given, and a list of identifiable
traffic scene elements for each frame.

Driving in dynamic urban environments is one of the most
challenging challenges for intelligent vehicles. Understand-
ing motion, actions, intent, and pedestrian pose dramatically
enhances our ability to operate intelligent vehicles safely
and efficiently in a crowded area. The PedX dataset [89]
is used to understand pedestrian motion, behavior, intent,
and pose [89]. Over 5,000 high-resolution stereo image pairs
and 2,500 frames of 3D LIDAR (Light Detection and Rang-
ing) point clouds [117] are used. The LIDAR sensors and
cameras have been calibrated and synchronized in real-time.
Three four-way stops with significant pedestrian-vehicle con-
tact have been selected. Cameras are mounted on the car’s
windshield to capture driver-perspective pictures. Two sets
of stereo cameras were used to capture photographs of all
four crosswalks at an intersection, one facing forward and
the other facing the incoming road from the left. It provides
accurate 2D and 3D labels for each instance, including over
14000 pedestrian models with a distance of 5-45m from the
cameras.

The Daimler Pedestrian Path Prediction Benchmark
Dataset (GCPR13) [111] is used to infer pedestrian activity
from motion tracking. It contains 68 pedestrian sequences
representing four distinct forms of pedestrian behavior: cross-
ing, stopping, beginning to walk, and bending [11].

The ETH [112] and UCY [113] datasets are the most
widely used literature predicting pedestrian trajectories. The
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ETH dataset includes two scenes (named ETH and Hotel)
taken from a bird’s eye view (named after the ETH Zurich
University). There are 750 separate pedestrian trajectories in
total. One frame per 0.4 seconds is annotated with pedes-
trian locations. The UCY dataset (named after the University
of Cyprus) includes three scenes (Zara1, Zara2, and Univ)
captured from a bird’s eye view. It contains over 900 sepa-
rate pedestrian trajectories in total. One frame per 0.4 sec-
onds is annotated with pedestrian locations. The two datasets
are often combined since they include five scenes (ETH,
Hotel, Univ, Zara1, and Zara2) and over 1600 pedestrian
trajectories.
• Public datasets for vehicle behavior prediction

For intelligent vehicle navigation to be a secure, accurate, and
early prediction of adjacent vehicle activity is critical. The
quantity and consistency of the dataset determine the perfor-
mance of an AI-based model. Various research groups and
industries working in intelligent vehicles have made datasets
freely available to assist researchers working on this project
worldwide. It is noticed from the selected research articles on
vehicle behavior prediction that the researchers used different
datasets to predict adjacent vehicle behavior.

The most widely used dataset in the literature is the
Next Generation Simulation (NGSIM) public dataset [114],
which contains actual driving data for predicting the future
of a vehicle next to it. The Next Generation Simula-
tion (NGSIM) public dataset was used in the research stud-
ies [5], [15], [16], [22], [58]. In Los Angeles, California,
the Next Generation Simulation (NGSIM) software col-
lected comprehensive vehicle trajectory data on southbound
US 101 and Lankershim Boulevard, eastbound I-80 in
Emeryville, California, and Peachtree Street in Atlanta,
Georgia. A network of synchronized digital video cameras
was used to collect data. The vehicle trajectory data was
transcribed from the video using NGVIDEO, a specialized
software application created for the NGSIM program. Every
one-tenth of a second, this vehicle trajectory data provided
the exact location of each vehicle within the study area,
resulting in detailed lane positions and locations relative to
other vehicles.

A highD dataset [115] for predicting vehicle trajectories
using graphic representations is proposed as a BEV represen-
tation of intelligent vehicles, surrounding traffic actors, and
the environment via aerial imagery [20]. The highD dataset
is a brand-new collection of naturalistic vehicle trajectories
gathered from German highways. The aerial viewpoint over-
comes traditional limitations of existing traffic data collec-
tion methods, such as occlusions when using a drone. More
than 110500 vehicles were counted in traffic at six separate
locations. The trajectory of each vehicle is automatically
extracted, including vehicle type, scale, and maneuvers. The
positioning error is usually less than ten centimeters when
using cutting-edge computer vision algorithms. Although the
dataset was developed for the safety validation of highly
automated vehicles, it can also be used for other tasks such
as traffic pattern analysis and driver model parameterization.

An intelligent driving platform is being used to create a
new dataset of demanding benchmarks for stereo, optical
flow, visual odometry, and 3D object detection. The KITTI
dataset [116] was collected on a moving platform while trav-
eling in and around Karlsruhe, Germany. A hybrid GPS/IMU
system includes camera images, laser scans, high-precision
GPS measurements, and IMU accelerations. The primary
goal of this dataset is to accelerate the development of com-
puter vision and robotic algorithms for self-driving vehicles.
The KITTI dataset was used in the research studies [21], [30],
and [39].

The recently announced Waymo Open Dataset [72] plat-
forms for crowd-sourced intelligent vehicles, such as 3D
detection and tracking, address some of the most funda-
mental challenges. Although the dataset contains a wealth
of high-quality, multi-source driving data, academics are
more interested in the underlying driving strategy imple-
mented in Waymo self-driving cars that are unavailable
due to AV manufacturers’ proprietary rights. As a result,
academic researchers must make different assumptions to
use intelligent vehicle components in their models or sim-
ulations, which may not accurately represent real-world
traffic interactions. It contains radar, LIDAR, and camera
data from one thousand 20-second segments obtained from
WaymoLevel-5 intelligent vehicles in different traffic condi-
tions. Table 6 provides a list of the data sets, applications, and
their functionality.

RQ 4. What are the main methods used related to
artificial intelligence for the behavior prediction of traffic
actors?

The prediction of traffic-activity behaviors, which helps to
prevent, estimate and anticipate the intentions of the pedes-
trians and other nearby vehicles, is an essential component of
reliable, safe, and efficient, intelligent driving. In intelligent
driving situations, scenes seldom have a single target. Several
objects, some of which may be moving relative to the vehicle
and one another, must typically be identified and monitored
simultaneously. As a result, the most applicable literature
approaches to dealing with multiple objects aim to resolve
multiple object tracking issues [2].

Many findings from related literature show that artifi-
cial intelligence-based models are commonly used for pre-
dicting traffic actor behavior in the context of intelligent
vehicles.

Based on the type of artificial intelligence approaches used,
findings were divided into several subsections, as shown
in figure 3. The behavior prediction problem in intelligent
vehicles is relatively new as most research papers are in 2019,
2020, and 2021. However, due to advancements in artificial
intelligence techniques, researchers are working to solve this
complex problem. Chronology of the different artificial intel-
ligence techniques used in this field is given in figure 4. The
probabilistic model is used widely in the problem of behavior
prediction of traffic actors for intelligent vehicles followed by
recurrent neural network and generative adversarial network,
as shown in figure 5.
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TABLE 6. List of publicly available datasets, applications, and their functionality.

Probabilistic Model (PM): Tomake optimal behavior deci-
sions or safely perform actions, intelligent vehicles need a
detailed representation of their environment. Sincemost envi-
ronmental states are not measurable and must be assumed,
gathering the requisite data is hampered. For example, no sen-
sor can detect traffic participants’ plans. Sensory data is
frequently limited to noisy pose measurements, velocity, and
simple geometric features [38]. Furthermore, machine track-
ing algorithms are typically restricted to physical models and
the most straightforward heuristics.

In contrast, human drivers automatically put themselves
in the shoes of other traffic participants to think about their
behavior. It is insufficient for accurate long-term forecast-
ing and, as a result, anticipatory driving. When it comes
to forward-looking driver assistance and intelligent vehicles,
incorporating semantics and background knowledge is cru-
cial [44]. The use of probabilistic approaches helps link the

symbolic and metric action representations while also offer-
ing a reasonable way to deal with semantic formulation ambi-
guity and inaccuracy. Since they are enriched with a dynamic
perception of circumstances and their meaning, combining
both degrees of abstraction allows for a more precise esti-
mation of the state-of-the-art on the one side. On the other
hand, the method obtains a symbolic situation description
and forecasts it in the future, which is the foundation for
probabilistic decision-making [81] and [92].

Schulz et al. [43] used a deep neural network to pro-
pose Markovian behavioral models that were probabilis-
tic and interactional and were dependent on the driver’s
path. The following models can all be beneficial to advance
motion planning algorithms (e.g., Monte-Carlo tree search
(MCTS), partially measurable Markov decision-making pro-
cesses (POMDP), or algorithms of intent estimates and trajec-
tory predictions (e.g., Bayesian Dynamic Networks (DBNs).
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FIGURE 3. Behavior prediction using different artificial intelligence-based models.

FIGURE 4. Timeline diagram of different artificial intelligence techniques.

While Driver-based vehicle threat evaluation algorithms pre-
dict future paths and compute the degree of danger, stochas-
tic approaches define future paths with probability density
functions (PDFs) determined with Monte Carlo simulations
using statistical methods (MC). Since stochastic processes
account for uncertainty, they are safer and more reliable than
deterministic methods. The Kalman filter (KF), originally

based on a linear system model [46], is the most well-known
and widely used stochastic motion prediction tool.

Driving vehicles through dynamically changing traffic sce-
narios, particularly on city streets, is a difficult task. In intel-
ligent vehicles, predicting the driving activities of nearby
vehicles is essential. Most conventional driving behavior pre-
diction models are limited to a single traffic situation and
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FIGURE 5. AI-based model’s contributions based on: (a) number of papers, and (b) percentage-wise.

cannot be adapted to other scenarios. Furthermore, previous
experience of driving was never deemed necessary. A novel
ontology model was developed to model traffic scenarios.
Hidden Markov Models (HMMs) were used to learn con-
tinuous driving behavior characteristics [61] and [74]. Based
on the characteristics of the situation, a knowledge base was
developed to identify model adaptation techniques and to
store previous chances. Finally, the potential action of the
target vehicle was predicted using both a posteriori and a pri-
ori probability. The proposed method was thoroughly tested
using an actual intelligent vehicle.
Convolutional Neural Network (CNN) Model: Convolu-

tional neural networks include convolution layers, which
convolve a filter with learnable weights over the data,
pooling layers that minimize input by sub-sampling, and
fully-connected layers that map their input to the desired
output dimension. To extract features from image data,
CNNs are frequently used. They’ve had great success in
the field of computer vision. This success encourages
researchers in other fields to portray their data as an image to
apply CNNs. However, one-dimensional CNNs have recently
become famous for extracting features from one-dimensional
signals [2].

Physical models, maneuvering models, and interaction-
conscious models are used for vehicle trajectory predictions.
The first form is focused on mathematical models tailored to
vehicle dynamics [25]. The second attempts to anticipate the
driver’s intentions and produces a trajectory that matches the
expected maneuver. The third form predicts trajectories by
modeling interdependencies between traffic agents in some
way. The fundamental Bird’s-Eye View (BEV) representa-
tion and cutting-edge CNN trace forecasts in crowded road
situations [20].

As the U-net model [24], the prediction core was selected.
This model was used for image regression. The scene with
sizes of h ∗ w has a BEV. On the input side, a d-channel
image is generated by stacking representations of previous
samples. An image of potential samples on the output side
is the network objective. The network core learns the fun-
damental behavior of the vehicles in the input block and
then produces the exact representation of the vehicles. Rather
than trajectories or numeric locations, this approach generates
an estimation of the potential existence of the input scene.
Intelligent vehicles must consider several potential future
trajectories of the surrounding actors due to the inherent com-
plexity of traffic activity to ensure a safe and efficient journey.
Multimodality of vehicle movement prediction model is pro-
posed to resolve this crucial aspect of the intelligent driv-
ing issue. The method produces a raster image encoding
each vehicle actor’s surrounding background before using
a CNN model to produce many potential trajectories and
probabilities.

In addition, the driver’s focus of attention (FoA) is essential
in collecting knowledge about the world, which is essential
and makes the driver’s car more human. The learning and
forecasting of the focus of attention (FOA) are suggested in a
Y-shape organized completely revolutionary neural network
(Y-FCNN). This network applies to the RGB and Optical
Flow layers for the first time to obtain low-level feature
maps and then combine the two encoded low-level feature
maps. Dilated Convolution allows for a broader receptive area
with high-resolution information [35]. It then uses the final
forecast. Vehicles and other traffic participants are linked
in the future and fitted with various sensors, allowing for
communication on various levels, such as situation prediction
and intention detection. In their cooperative approach for
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cyclist beginning action identification, Bieshaar et al. [62]
use a boosted stacking ensemble system to realize feature
and judgment level cooperation. A novel technique based
on 3D Convolutional Neural Network (CNN) is proposed to
detect beginning motions on image sequences by studying
spatial and temporal characteristics. A mobile device-based
beginning activity monitoring scheme that uses the cyclist’s
smart devices supplements the CNN. Both model outputs are
coupled in a stacking ensemble solution using an extreme
gradient boosting classifier, resulting in a fast and robust
cooperative starting movement detector.

However, it is crucial to accurately estimate and monitor
human posture in many applications, as the estimated poses
are crucial for inferring their particular behavior. A forked
CNN architecture was used to predict the real-world location
of the skeletal joints in 3-D space using the radar-to-image
representation. The proposed approach was evaluated in a
single human scenario for four key motions: (I) walking,
(II) swinging left arm, (III) swinging right arm, and (IV)
swinging both arms [45].

Convolutional neural networks help predict vehicle behav-
ior because they can take image-like data, generate image-
like output, and maintain the spatial relationship of the input
data while processing it. These capabilities allow for the sim-
ulation of vehicle interaction and driving scene background
and the generation of occupancy maps. However, CNN lacks
a mechanism to model data series, which is essential for
modeling temporal dependencies among vehicle states over
time in vehicle behavior prediction.
Recurrent Neural Network (RNN) Model: The simplest

recurrent neural network (also known as Vanilla RNN) can
be considered a two-layer fully-connected neural network
with a feedback hidden layer. This small change allows for
more effective modeling of sequential data. The Vanilla RNN
processes the current step’s input data and the memory of pre-
vious steps stored in previously hidden neurons at every input
sequence. In theory, a basic RNN with several hidden units
can learn to approximate some sequence-to-sequence map-
ping. However, gated RNNs are used because it is impossible
to train this network to learn long sequences in practice due
to the gradient vanishing or exploding. Instead of a simple,
completely connected hidden layer, each cell of these net-
works employs a gated architecture. The most popular gated
RNNs are the long short-term memory (LSTM) and gated
recurrent unit (GRU). The most commonly used deep models
for forecasting vehicle operation are LSTMs [40], [52], [75],
and [79].

Understanding how other vehicles behave is critical to
improving the protection and mobility of intelligent vehicles.
Onboard sensors such as Radar, LIDAR, and Cameras can
detect the motion of nearby vehicles and provide informa-
tion such as location, velocity, and yaw. Benterki et al. [5]
suggested a hybrid approach to get the future positions of
neighboring vehicles by combining maneuver classification
with neural networks and trajectory prediction with Long
Short-term Memory (LSTM) networks. Furthermore, given

3D poses and locations measured with inaccuracy in prior
frames, a biomechanically influenced recurrent neural net-
work [14] is used to predict the pedestrian orientation and
3D articulated body pose in a global coordinate frame. The
proposed network forecasts numerous pedestrian poses and
global locations simultaneously from up to 45 meters away
from the cameras (urban intersection scale). As outputs of the
proposed network, full-body 3D meshes with Skinned Multi-
Person Linear (SMPL) model parameters are created.

Map-mask patches were used by Palli-Thazha et al. [18] to
boost the estimation of trajectories for various groups of inter-
acting traffic agents. 3D LIDAR points and maps in the form
of binary masks are used for this. In drivable and non-drivable
regions, LSTM encoder-decoder architecture is proposed that
uses Map-Mask patches to render trajectory predictions for
different groups of traffic agents. Furthermore, a hierarchical
multi-sequence learning network is used to predict long-
term interactive trajectories for surrounding vehicles using
a structural-LSTM (long short-term memory) network [59].
For each interacting vehicle, Structural-LSTM first assigns
one LSTM. Then, using a radial relation, these LSTMs share
their cell states and hidden states with their spatially adjacent
LSTMs and recurrently examine the output state and the
other LSTMs in a deeper layer. Finally, the network forecasts
trajectories for nearby vehicles based on all output states.

While recurrent neural networks (RNNs) are among the
most commonly used neural networks for data analysis
and prediction, such as trajectory prediction, they have
limitations in modeling spatial relationships such as vehi-
cle interactions and image-like data such as driving scene
background.
Generative Adversarial Networks (GANS) Model: Gener-

ative adversarial networks (GAN) were introduced by Good-
fellow in 2014 [90]. It’s an unsupervised learning technique
based on the mini-max principle, in which the generator and
discriminator networks compete to see who can outperform
the other. The training is split between the two networks.
The discriminator learns to differentiate between the pro-
duced image and the actual image in the original article’s
dataset, while the creator learns to create images similar to
real images. In a steady-state setting, the discriminator should
predict whether or not an image from the generator network
is present with 50% precision.

On the other hand, the original GAN algorithm is
unreliable and difficult to implement since it employs
Jensen-Shannon (JS) divergence as its loss function. Since
JS is a ratio of two odds that may or may not align at first,
it produces zero or infinity, resulting in vanishing gradients
in the discriminator network. The Earth Mover Distance
(EMD), which is continuous almost everywhere, replaces the
JS distance in WGAN. According to the author, it reduces
the need to strike a careful balance between training the
discriminator and the generator. Since the discriminator net-
work in WGAN does not produce a probability and does not
distinguish between synthetic and actual input, the author
renamed it the critical network [13].
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Motion synthesis, augmented reality, defense, and intelli-
gent vehicles are just a few of the applications for predicting
and understanding human motion dynamics. Because of the
recent success of generative adversarial networks (GAN),
there has been much interest in using deep neural network
architectures and learning algorithms to perform probabilis-
tic estimation and synthetic data generation. Human pose
prediction GAN (HPGAN) [13] is proposed for predicting
and interpreting human motion dynamics. HP-GAN incorpo-
rates features from Wasserstein GAN with gradient penalty
(WGAN-GP), GAN, and sequence-specific optimization,
to produce a realistic human motion sequence, and at the
same time tomeasure the consistency of the created sequence.
In addition, Gilitschenski et al. [17] suggested architecture
for studying backgroundmaps and trajectory prediction at the
same time. The prediction network, which adds to the context
map after the trajectory embedding, is built using a modi-
fied version of the Social GAN architecture. On randomly
sampled map patches and the corresponding image patches,
image description, map explanation, and label explanation
losses provide additional control for learning the context map.
Finally, to enforce the map gradient’s sparsity, the map is
regularized with a norm penalization loss and a gradient norm
penalization loss.

In addition, a Conditional Generative Neural System
(CGNS) [28] and a Coordination-Bayesian Conditional Gen-
erative Adversarial Network (C-BCGAN) [42] have been
used in the literature to predict future trajectories of nearby
vehicles for safe, intelligent vehicle navigation. However,
while GANs are an elegant data generation mechanism, they
are challenging to train and produce output due to unstable
training and unsupervised learning methods.
Reinforcement Learning (RL) Model: Reinforcement

learning (RL) has become a robust learning system capable of
learning complex policies in high-dimensional environments
due to deep representation learning. In the RLmodel, an intel-
ligent agent interacts with its environment to enhance its
output at a given task. An agent is described as something that
uses sensors to perceive its environment and actuators to act
in that environment. An expert does not tell RL agents how to
act; instead, a reward function R evaluates an agent’s output.
The agent selects an action for each state encountered and
receives an occasional reward from its environment based on
the utility of its decision. The agent aims tomaximize the total
rewards earned throughout its lifetime. Using information
gained about the potential utility (i.e., discounted amount
of expected future rewards) of various state-action pairs,
the agent gradually increases its long-term reward. Managing
the trade-off between discovery and exploitation is one of the
most challenging aspects of reinforcement learning. An agent
must use its information to choose acts proven to result in
high rewards tomaximize the rewards it receives. On the other
hand, it must take the risk of attempting new actions that may
result in higher rewards than the current best-valued actions
for each system state to discover those beneficial actions.
Put another way, the learning agent must use what it already

knows to achieve incentives, but it must also discover the
unknown to make better action choices in the future [91].

Reinforcement learning is used in various areas, includ-
ing video games, robotics, and intelligent vehicles. Under
a reinforcement learning system, driving in congested envi-
ronments can be conceived as a decision-making challenge.
SARL-SGAN-KCE was proposed by Li et al. [34], which
combines a deep socially conscious attentive value network
with a human multimodal trajectory prediction model to
identify the optimal driving strategy. The proposed algorithm
combines multimodal pedestrian trajectory forecasting and
vehicle kinematic constraints to ensure smooth pedestrian-
vehicle interactions, efficient operation, and safety. Deep
Q-learning networks (DQNs) [26] are also proposed to learn
policies that optimize intelligent vehicle intersection han-
dling. They have two goals in mind. The first goal is to learn
an adaptive standoff that aims to increase the safety margin
while maintaining the ability to make the turn within a set
time frame. The second goal is to cause the least amount of
damage to other vehicles when negotiating the intersection in
the allotted time.

Reinforcement learning is a technique for solving highly
complex problems that cannot be solved using traditional
methods. This learning paradigm is remarkably similar to
human learning. As a result, it is on the verge of achieving
excellence. The model can correct mistakes made during the
training phase. On the other hand, reinforcement learning
assumes that the universe is Markovian, which it is not.
The Markovian model describes a series of future events in
which the previous event’s condition solely determines the
probability of each occurrence. Furthermore, the curse of
dimensionality severely restricts reinforcement learning in
real-world physical systems.
Explainable Artificial Intelligence (XAI) Model: The

remarkable advances in Deep Learning (DL) algorithms have
sparked excitement for using Artificial Intelligence (AI) tech-
nologies in almost every domain; however, the algorithms’
opaqueness has raised concerns about their use in safety-
critical systems. The ‘explainability’ dimension is critical
because it explains the inner workings of black-box algo-
rithms and introduces accountability and transparency dimen-
sions critical for regulators, customers, and service providers.
Explainable Artificial Intelligence (XAI) is a series of tech-
niques and methods for converting so-called black-box AI
algorithms to white-box algorithms, in which the results
obtained by these algorithms, as well as the variables, param-
eters, and steps taken by the algorithm to reach those results,
are straightforward and explainable [93].

There are three dimensions to consider when evaluating the
comprehensiveness of AI models, as discussed below.
• Explainability: This is an active function of a learning
model that allows the model’s processes to be clearly
explained. The aim is to make the inner workings of
the learning model clearer. It’s worth noting that sen-
sitive applications necessitate explainability for scien-
tific curiosity’s sake and because the risk factor takes
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precedence over all other considerations when human
lives are at stake.

• Interpretability: Unlike explainability, interpretability is
a function of a learning model that allows users to com-
prehend and make sense of it.

• Transparency: Transparency is often linked to under-
standability, with a learning model being deemed trans-
parent if it is understandable without using an interface.
The term ‘‘transparent’’ refers to a learning paradigm
that is implicitly understandable without any additional
components.

There are, in general, two approaches in making mod-
els explainable: developing models to be explainable by
necessity or implementing techniques for an explanation
after the performance (post-hoc). The explanations can
be classified into two categories. The first is processing
explanations, in which one follows inputs to outputs, for
example, by addressing the question, ‘‘Why does this partic-
ular input lead to that particular output?’’ It is a black-box
approach, as it does not require access to the AI’s internals.
The second category includes representation explanations,
such as responses to the question, ‘‘What knowledge does
the network contain?’’ The latter approach, which requires
access to the AI’s internals, is white or grey. Figure 8 shows
the basic architecture of Explainable Artificial Intelligence
(XAI).

Furthermore, deep Convolutional Neural Networks
(CNNs) have emerged as front-runners in the field of driver
observation; however, due to their end-to-end nature, they
are frequently perceived as black boxes. The interpretability
of such models is critical for establishing trust and is a
significant concern for integrating CNNs into real-world
systems. In a detailed analysis, Roitberg et al. [35] suggested
a diagnostic system for internally evaluating such models
and clarifying the learned spatiotemporal representations.
The authors look at standard driver monitoring models from
three perspectives: (1) visually explaining the prediction by
combining the gradient concerning intermediate features and
the corresponding activation maps, (2) looking at what the
network has learned by clustering the internal representations
and discovering how individual classes relate at the feature-
level, and (3) conducting statistical analysis (e.g., common
versus rare behaviors).

However, discussing the need for clarity and clarification
of AI-related solutions in intelligent vehicles is essential. For
a variety of reasons, it’s essential to understand why an intel-
ligent car made an unexpected decision (such as driving in
the wrong direction, turning in the wrong direction, applying
sudden brakes, having trouble identifying objects, colliding
with other objects, or failing to apply brakes, for example).
The first purpose is to address the issue and increase user
experience and confidence in intelligent vehicle technology.
The second explanation is that performing forensics and
determining the cause of the accident is crucial in the event of
an accident. However, that is only possible if the intelligent
car’s decisions are straightforward and explainable [93].

Table 7 summarizes the reviewed literature, techniques,
purpose, datasets, results, and future directions.

RQ 5. What are the future directions for predicting
pedestrian and vehicle behavior early and accurately?

Following a review of papers on traffic actor behavior
prediction for intelligent vehicles, the authors identified the
core open issues and numerous ideas for potential studies in
these fields. The concepts and future research areas can be
classified into six major categories, which are as follows:
Input Data Representation: Based on input data repre-

sentation to the prediction model for behavior prediction of
traffic actors, all reviewed articles consider four categories of
data representation: track history of the TA only [11], [12]
and [49], track history of the TA and SAs [15], and [16], sim-
plified BEV [17] to [20], and raw sensor data [22], [23], [36],
and [70]. The majority of current literature uses a complete
view of the ambient environment and the states of different
traffic actors as an input to the prediction model, which is not
realistic in real-world scenarios due to sensor impairments
(e.g., occlusion, noise) [2]. However, covering all road parts
with all sensors mounted on the ego vehicle is impractical,
reducing the efficiency of the behavior prediction model in
the intelligent vehicle [76]. Possible solutions are as follows:

1) Use of noise reduction techniques to improve the effi-
ciency of sensor input.

2) Aerial imaging techniques may be used with existing
sensor data to provide a complete view of the ego vehicle’s
surroundings.

3) High-definition imaging technology may be used to
precisely locate an ego car.

HD maps for intelligent driving integrate and view data
from various sources, including vehicle sensors, LIDAR,
onboard cameras, satellite imaging, and GPS, in real-time.
The combination of this data reflects the car’s precise position
concerning all landmarks, offering detailed, real-time infor-
mation on road gradients and limits, traffic signaling, lane
orientation, predicted curves, and safety conditions. 4) The
use of connected, intelligent vehicles may be beneficial [64].
Connected intelligent vehicles may provide additional envi-
ronmental knowledge to help the behavior prediction model
perform better overall.
Adaptive Mobility: All infrastructure development for the

transportation system and driving rules are designed for
human drivers. In practice, intelligent vehicles can share
the road with human drivers. Adaptive mobility addresses
the issue of intelligent vehicles entering our human world.
In reality, all transportation infrastructure and driving rules
are designed with human-driven vehicles in mind [82]. Some
previous studies [37], [41], and [96] used a read driving
behavior dataset to train an intelligent vehicle to mimic
human driving behavior. As a result, it is fair to expect
an intelligent vehicle to model and replicate human driver
behavior and reasoning.
Use of Enhanced Contextual Cues: Intelligent systems

should have a deep semantic scene understanding to ana-
lyze and forecast human motion and prepare and maneuver
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TABLE 7. Summary of literature review.
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TABLE 7. (Continued.) Summary of literature review.
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TABLE 7. (Continued.) Summary of literature review.

alongside them. Context comprehension for better trajectory
prediction in static environment features and semantics is
still a relatively unexplored field. In situations where the
target agent is not behaving alone, socially conscious meth-
ods [34] improve over socially unaware methods. Long-term
motion trajectory prediction is one activity where contextual
cues become especially relevant. Although context-agnostic
motion and behavioral trends are helpful for short-term pre-
dictions, long-term predictions should consider intentions
dependent on the context and surrounding climate.
Driving Scenario:Most current projects are restricted to a

single driving situation, such as a roundabout, highway, inter-
section, or T junction [53]–[55]. However, a vehicle behavior
prediction module should predict behavior in any driving
situation in an intelligent vehicle. Future research should
focus on developing a model that can be used in a variety of
driving situations. End-to-end learning for intelligent vehicles
can be done with reinforcement learning [47]. Additionally,
the process of driver behavior cloning can be used to predict
behavior in any driving situation [109].
Domain Adaptation: Domain adaptation is the process of

applying an algorithm trained in one domain to a different tar-
get domain. Typically, intelligent driving systems necessitate

gathering and annotating a large amount of training data.
On the other hand, using simulated environments makes data
collection much more straightforward, but models trained
in simulated environments often struggle to generalize to
real-world situations. Using domain adaptation, a machine
learning algorithm trained on samples from a source domain
generalizes to a target domain. A GAN-based pixel-level
domain adaptation technique may be used in the future. The
adaptation process provides logical samples and generalizes
well to object classes that were not seen during testing [94].

Figure 6 shows the domain adaptation for intelligent
vehicles [100].

Moreover, Reinforcement Learning for an intelligent driv-
ing model can be used in a real-world setting after being
trained in a virtual environment.
Explainable Artificial Intelligence: Explainable AI (XAI)

is artificial intelligence (AI) that allows people to understand
the solution’s findings. It contrasts with the ‘‘black box’’
nature of machine learning, in which even the creators of the
AI are unable to explain why it made a particular decision.
However, users are increasingly delegating more tasks to
computers as automation becomesmore prevalent. Such com-
plex systems are typically built using ‘‘black box’’ Artificial
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FIGURE 6. Domain adaptation for the intelligent vehicle.

Intelligence (AI), making them difficult to comprehend for
users. It is particularly true in the field of intelligent driving,
where the level of automation is continually growing due to
the use of cutting-edge AI solutions [35].

Since interpretability and clarity are key factors for
increasing confidence and protection, future research into
Explainable AI (XAI) in the context of intelligent driv-
ing is relevant. Figure 7 shows the future direction to
improve behavior predictions of traffic actors for intelligent
vehicles.

IV. DISCUSSIONS
In this Systematic Review, various academic research articles
on behavior prediction of traffic actors for accurate and safe
navigation of intelligent vehicles were examined. There are
two important surrounding traffic actors for intelligent vehi-
cles: one is pedestrian, and the other is vehicles (e.g., car,
bus, truck, etc.). The behavior of pedestrians and surrounding
vehicles is highly stochastic and dynamic. Therefore, under-
stating behavior and predicting their future trajectory is very
important for intelligent vehicles [95].

By conducting this systematic review using the PRISMA
protocol, authors answered research questions about vari-
ous challenges and problems associated with input repre-
sentation to behavior prediction models, datasets, artificial
intelligence-based approaches used for behavior prediction
models, and future directions as follows:
• Input representation for prediction models is catego-
rized into four: track history of TA, TA and SA,
BEV, and raw sensors. Each input representation has its
advantages and disadvantages. The track history of TA

and TA and SA requires less computing time and less
response time, which is a crucial point to consider. But
the performance of the prediction model is less com-
pared to BEV and raw sensor data input representation.
BEV and raw sensor input representation require more
computing time and have more response time. But the
prediction model’s performance is more than the track
history of TA and the track history of TA and SA input
representation.

• A high-quality publicly available real-world dataset for
behavior prediction of surrounding traffic actors for
intelligent vehicles is a need of time.

• Behavior prediction problems use various artificial
intelligence-based approaches. Due to advancements
in AI-based approaches, predicting future trajecto-
ries of surrounding traffic actors becomes possible.
By examining the literature, the authors found that
six different approaches of AI-based models are used.
i.e., Probabilistic model, convolutional neural network,
recurrent neural network, generative adversarial net-
work, reinforcement learning, and Explainable Artificial
Intelligence.

• In the future, to improve the performance of the behavior
prediction model, researchers need to select proper input
data representation, which includes high definition map
(HD map). The majority of the existing research articles
are restricted to a single driving situation. However,
a vehicle behavior prediction module should predict
behavior in any driving situation in an intelligent vehi-
cle. Furthermore, gathering a large amount of training
data from the real world is a challenging task. Domain
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FIGURE 7. Future directions to improve behavior prediction of traffic actors for intelligent vehicles.

adaptation can be used to exploit training data from a
simulated environment.

V. THE FUTURE AHEAD
Apart from the above-mentioned future research work,
the authors would like to put forth a few more research direc-
tions in predicting the behavior of traffic actors for intelligent
vehicles.

A. REINFORCEMENT LEARNING
Reinforcement learning is a machine learning algorithm in
which an actor learns to perform a given task by repeat-
edly acting in a complex environment. Intelligent vehicles

should have real-time decision-making ability for safe and
secure navigation in complex driving scenarios. A signif-
icant issue for accurate prediction of traffic actors in the
complex driving environment; through experience, humans
have mastered this process of driving in a complex envi-
ronment. Therefore, reinforcement learning can be used for
traffic actors’ behavior prediction to give intelligent vehicles
real-time decision-making ability [47]. Figure 8 shows the
architecture of reinforcement learning used for intelligent
driving [101].

Conventional reinforcement learning is, by nature black-
box machine learning algorithm. Due to their inability to
interpret outcomes given by the model, it is difficult to rely
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FIGURE 8. The architecture of reinforcement learning for intelligent driving.

FIGURE 9. Adversarial attacks on the intelligent vehicle.

on intelligent vehicle training using reinforcement learning.
Explainable reinforcement learning can be used to make
intelligent vehicles reliable and trustworthy.

B. ADVERSARIAL MACHINE LEARNING
Adversarial machine learning is an approach that tries to
mislead models by providing false input. The most typical
reason is to cause a machine learning model to malfunction.
An adversarial attack can be used to attack the artificial
intelligence-based model. Most artificial intelligence algo-
rithms work on given training and testing datasets. When
those models are used in the real world, adversarial attackers
may supply data that attack statistical assumptions to fool
models [97]. Figure 9 shows the adversarial attack on intelli-
gent vehicles [102].

Adversarial attack on the behavior prediction model of
an intelligent vehicle causes a severe impact on predicting
the correct behavior of surrounding traffic actors. Therefore,
little misbehave of the intelligent vehicle due to adversarial
attack causes a severe impact on human life. To deal with this
attack, adversarial machine learning can predict the behavior
of traffic actors for secure and reliable intelligent vehicles.

C. FEDERATED LEARNING
Federated learning is a collaborative machine learning algo-
rithm without using centralized training data. It is a decen-
tralized form of machine learning. The conventional machine
learning approach uses the centralized system to train the
model, which is used for real-time prediction. This architec-
ture collects data from local devices and sensors and is sent
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FIGURE 10. Federated learning for the intelligent vehicle.

back to a centralized system, and the outcome subsequently
returns to the local device. This entire process takes a reason-
able amount of time.

In contrast, the federated machine approach downloads
the current model from a centralized system and updates the
model locally using their local data. These locally trained
models are then returned to a centralized system and aggre-
gated. Then the single improved globalmodel is sent to a local
device for making real-time predictions [98]. Figure 10 shows
the federated learning for intelligent vehicles [103].

The behavior prediction model of an intelligent vehicle
needs to respond quickly to predict the behavior of traffic
actors in complex real-world situations to avoid accidents.
A Federated machine learning approach can be used to train
machine learning models for behavior prediction of traffic
actors for quick response.

D. ETHICAL ARTIFICIAL INTELLIGENCE
Artificial intelligence ethics is a subset of technology ethics
that deals with artificially intelligent systems. It is separated
into two categories: human ethics, which is concerned with
how people design, create, utilize, and handle artificially
intelligent systems, and machine ethics, which is concerned
with how robots behave. Ethical artificial intelligence is used
to develop an artificially intelligent system that can respond
using a code of conduct in critical situations. It provides
ethical guidelines and best practice documents to help
researchers develop ethically sound artificial intelligence
algorithms [99].

The behavior prediction model of an intelligent model
needs to consider the social aspect of the surrounding envi-
ronment. Intelligent vehicles interact with humans as well as
surrounding vehicles. Therefore, intelligent vehicle systems
should act ethically to predict behavior to minimize the risk
of human life.

VI. CONCLUSION
There has been a lot of ongoing research on intelligent vehi-
cles and the behavior prediction of surrounding traffic actors
for the safety of intelligent vehicles. This article reviewed
various behavior prediction techniques using the latest input

representation, AI-based solutions for intelligent vehicles in
complex and real-time driving scenarios with their insightful
analysis. The main findings of this study are the identifying
challenges in input representation that affect the performance
of the behavior prediction model. The study also identifies a
high-quality publicly available real-world dataset that is the
backbone for developing a behavior prediction model. It pre-
sented challenges and future research directions in the field
of behavior prediction problems. However, several unsolved
issues must be resolved before they can be used in intelligent
vehicle applications. Although most current solutions con-
sider vehicle interaction, variables such as the atmosphere,
a collection of traffic rules are not explicitly inputted into
the prediction model. Domain adaptation and explainable
artificial intelligence should also be discussed in the real-
world adoption of intelligent vehicles. These findings could
be a foundation for future research in behavior prediction
of surrounding traffic actors for secure and accurate intelli-
gent vehicle navigation. The presented study would help the
automobile industry to design secure, efficient, and reliable
intelligent vehicles.
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