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Abstract: Studies relating to trends of vegetation, snowfall and temperature in the north-western
Himalayan region of India are generally focused on specific areas. Therefore, a proper understanding
of regional changes in climate parameters over large time periods is generally absent, which increases
the complexity of making appropriate conclusions related to climate change-induced effects in the
Himalayan region. This study provides a broad overview of changes in patterns of vegetation,
snow covers and temperature in Uttarakhand state of India through bulk processing of remotely
sensed Moderate Resolution Imaging Spectroradiometer (MODIS) data, meteorological records and
simulated global climate data. Additionally, regression using machine learning algorithms such as
Support Vectors and Long Short-term Memory (LSTM) network is carried out to check the possibility
of predicting these environmental variables. Results from 17 years of data show an increasing trend
of snow-covered areas during pre-monsoon and decreasing vegetation covers during monsoon since
2001. Solar radiation and cloud cover largely control the lapse rate variations. Mean MODIS-derived
land surface temperature (LST) observations are in close agreement with global climate data. Future
studies focused on climate trends and environmental parameters in Uttarakhand could fairly rely
upon the remotely sensed measurements and simulated climate data for the region.

Keywords: machine learning; remote sensing; global climate data; MODIS; Uttarakhand; Himalaya

1. Introduction

A good understanding of changes related to temperature, areas covered with snow
and vegetation is a preliminary step towards developing meaningful conclusions asso-
ciated with the variations in these environmental components [1,2]. The knowledge is
an important guide to explore the interconnectedness among these environmental com-
ponents and the influence of changes in one component affecting other environmental
variables [3–5]. There are examples of studies where remote sensing observations along
with machine learning algorithms have been used to analyse environmental components
over wide-ranging areas [6,7].

Some previous studies have mentioned the changes in environmental components in
the Uttarakhand state of the north-western Himalayan region [8,9]. Most of the studies in
this state have mentioned some local changes or considered only one or two environmental
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parameters [10,11]. Examples of studies where remotely sensed data in combination
with machine learning algorithms are applied to study environmental components in the
north-western Himalayan region of Uttarakhand are not pronounced [12].

Aqua Earth Observation System and Terra Earth Observation System monitor the
Earth’s surface using a Moderate Resolution Imaging Spectroradiometer (MODIS) sensor
system, the principal instrument in these satellites [13]. This instrument records data
to analyse several environmental variables such as greenness [14], areas covered with
snow [15], Earth’s surface temperature [16], and many others [17]. These grids are available
for different intervals of time and in different grid cell sizes. MODIS grids have remained
largely successful in providing information about global as well as regional changes in
environmental parameters over time [18–20].

There are several global climate data set available for the study of past, present and
future climate conditions [21]. These data set could be a collection of field based records
or results of numerical simulations or a combination of both. Availability of these climate
data set provide with an opportunity to understand past, present and future climate
conditions. As there are a number of global climate data sets available for analysis, using
multiple data set in a single study helps identify those data set that are more accurate
in representing actual ground conditions. MODIS data sets are available since 2001 and
therefore, application of MODIS data set can help understand the climate of the recent
past as well as the present climate conditions. However, there are climate data set that can
provide information about climatic variables since 1970 [22]. Therefore, combination of
MODIS climate data with global climate data can help study not only the present climate
as well as the climate of the recent past but also climate conditions before several decades.

To establish an all-inclusive understanding about variations in environmental com-
ponents in different elevation zones of Uttarakhand in India, this study uses 17 years of
gridded data available from MODIS sensor to analyse variations in extents of snow and
vegetation and distribution of land surface temperature. A large volume of remotely sensed
data has been bulk processed, and machine learning operations have been additionally
applied to discover changes in environmental components. The interconnectedness among
the analysed environmental parameters has been realized for different elevation zones
within the state of Uttarakhand. Periodic changes in the environmental components annu-
ally as well as for different seasons within a year are observed. To authenticate findings
from remote sensing observations, field-based records available from meteorological sta-
tions are used. In addition, machine learning operations have been applied for predicting
values of environmental variables. Consequently, the usage of remotely sensed data in
combination with machine learning and statistical operations has been assessed to reflect
upon the ongoing environmental changes in the region. This study also aims to provide
information about the degree of agreement of MODIS climate data with the global climate
data set available from different sources. This information can be useful in the application
of MODIS data, in combination with other global climate data, to study different regions in
the remote Himalayan region, where data from the past are usually unavailable.

Localized studies focused on the assessment of snow cover, vegetation and land
surface temperatures in particular places of Uttarakhand are essential to understand the
variability in these environmental attributes. However, these studies do not help under-
stand the altitudinal variations in these parameters. Similarly, these studies are carried
out for a specific time period, making it difficult to understand changes occurring over
larger time scales. Additionally, there are few studies that explore the variability among the
environmental parameters [9]. This study attempts to provide detail information about the
variations in multiple environmental factors over the entire state of Uttarakhand, which is
an essential preliminary step in understanding the interrelationship among environmental
variables. Additionally, this study explores the application potential of neural networks
and deep learning methods for prediction of environmental variables, which is otherwise
an unusual practice for this north-western Himalayan state. This study is possibly the first
to examine the changes in more than two environmental variables over entire Uttarakhand
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for almost two decades using a combination of bulk processing of remotely sensed data set
and application of machine learning and deep learning methods.

2. Study Area

The region of Uttarakhand in India expands from 28.71◦ N in the north to 31.47◦ N
in the south and from 77.56◦ E in the west to 81.02◦ E in the east. The north-western
Himalayan state almost occupies an area about 53,500 km2. The lowest and highest
elevation in the state is recorded around 200 m a.s.l. and 7800 m a.s.l., respectively (Figure 1).
Precipitation distribution in Uttarakhand is majorly controlled by Asian monsoon as well
as the Westerlies [23]. The monsoon precipitation generally begins in July and continues
until the end of September, whereas the precipitation from Westerlies is received during
winter months. Since there are mountains in low elevation regions in Uttarakhand, sub-
temperate climate prevails in such areas. The climate turns temperate as we move towards
the mountains in the high elevation regions [24].
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shown in purple. Glacier boundaries are accessed through Randolph Glacier Inventory [25]. Base-
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in Uttarakhand. Two locations, Kausani and Mukhem, in Uttarakhand are shown. 

  

Figure 1. (a) Area in red shows Uttarakhand inside the map of India. (b) Political boundary of
Uttarakhand is delineated in red. All glaciers located within the political boundary of Uttarakhand
are shown in purple. Glacier boundaries are accessed through Randolph Glacier Inventory [25].
Base-map layer [26] fills the background. (c) Multiple colour legends highlight different elevation
classes in Uttarakhand. Two locations, Kausani and Mukhem, in Uttarakhand are shown.

3. Data
3.1. MODIS Grids

MOD10A2 grid, available as a composite product representing average conditions of
snow extent, is a Terra grid and has a spatial resolution of 500 m [15]. MOD11A2 grid, also
available as a composite product representing average conditions of land surface tempera-
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ture, is another Terra grid with a spatial resolution of 1000 m [16]. Additionally, MOD13A1
grid, also available as a composite product representing average conditions of vegetation
or greenness cover, is another Terra grid with a spatial resolution of 500 m [14]. MOD10A2
and MOD11A2 are 8-day composites, whereas MOD13A1 is a 16-day composite product.

MODIS grids, MOD10A2, MOD11A2 and MOD13A1 are used in this study to obtain
information related to snow coverage, temperature distribution and Normalized Difference
Vegetation Index (NDVI), respectively (Table 1).

Table 1. Summary of the remotely sensed data and field-based observations used in this study (NA
refers to not applicable).

Remote Sensing Data

Grids Grid Cell Size Temporal Resolution

MOD10A2 500 m 8 days
MOD11A2 1000 m 8 days
MOD13A1 500 m 16 days

SRTMGL1 V003 30 m NA
WorldClim 2.0 (BIO1, BIO10, BIO12 and BIO16) 1000 m NA

CHELSA (BIO1, BIO10, BIO12 and BIO16) 1000 m NA
MIROC-ES2L (BIO1, BIO10, BIO12 and BIO16) 1000 m NA

Meteorological Records
Station Duration Type

Mukhem 2001–2008 Average value of maximum temperature for
each month

Kausani 2001–2009 Average value of maximum temperature for
each month

3.2. Elevation Grid

Elevation grid, SRTMGL1 V003 [27] provides the elevation data for analysis. This grid
is a global 1 arc second (~30 m) grid generated through the Shuttle Radar Topography
Mission (SRTM) mission.

3.3. Meteorological Records

Field-based meteorological records available from local stations located in Kausani as
well as Mukhem are incorporated in this study.

3.4. Climate Data

Climate data from WorldClim 2.0 [22], CHELSA (Climatologies at high resolution
for the earth’s land surface areas) [28] and MIROC-ES2L (Model for Interdisciplinary
Research on Climate, Earth System version 2 for Long-term simulations) [29] have been
used for comparisons among remotely sensed observations and modelled climate data set.
WorldClim 2.0 provides one of the highest resolution global climate data for 1970–2000.
The data has been generated using records from ground-based meteorological records.
CHELSA has been generated through statistical downscaling using global reanalysis data.
Four bioclimatic variables from these three data sets were considered in this study: BIO1,
BIO10, BIO12 and BIO16. In this study, BIO1 has been referred to as Mean Annual Air
Temperature (MAAT hereafter), BIO10 is referred to as Mean Temperature of Warmest
Quarter (T-WQ hereafter), BIO12 is referred to as Annual Precipitation (AnP hereafter) and
BIO16 is referred to as Precipitation of Wettest Quarter (P-WQ hereafter). The maximum,
minimum and mean values of these four bioclimatic variables obtained from the three
global climate data set for the 10 elevation sections within Uttarakhand were estimated
and these values were compared with results obtained from MODIS data set.

Data sets used in this study, except for the data from the meteorological records, are
all freely available. Use of freely available data sets makes this study simpler and easy to
reproduce. Regional analysis using freely available data are few, therefore, this study is
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intended to produce an example for a reasonable analysis using freely available data sets
for the western Himalayan region.

4. Methods

Flow diagram (Figure 2) summarizes the methods used in this study.
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Figure 2. Methodological flow chart to explain step wise process followed in this study.

4.1. MODIS Data

MODIS grids were downloaded for the years 2001–2017. The state of Uttarakhand was
partitioned into 10 different areas based on elevation. Regions with elevation lower than
2000 m a.s.l. and higher than 6000 m a.s.l. were classified into two (2) areas. Regions with
elevation from 2000 m a.s.l. to 6000 m a.s.l. were classified into eight (8) areas, with each
area having an elevation difference of 500 m. These partitions were made using SRTMGL1
V003 in GIS environment.

ArcPy, an arcgisscripting module for performing geospatial analyses using Python.
ArcPy scripts, were written to operate with downloaded MODIS grids and withdraw
subset layers. ArcPy scripts are able to perform necessary operations related to layer
scaling and layer extraction. Binary classification of grids was followed to withdraw grids
for each elevation area and hence 10 grids were generated. Temporal inspections were
executed using monthly observations. For NDVI, a threshold value of 0.3, NDVI ≥ 0.3, was
accepted. The resulting outputs include monthly observations of temperature, vegetation
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and snow cover from 2001 to 2017. A similar workflow was recently applied to observe
environmental components in Himachal Pradesh, India [30].

4.2. Observation of Trends

Monotonic patterns and sudden fluctuations in numerical values of climate parameters
for the years 2001–2017 were observed through Mann–Kendall tests [31,32]. Computation
of Sen’s slope [33] also contributed to the observation of tends of the parameters. Statistical
output (S) from Mann–Kendall was obtained through time series of monthly observations of
climate parameters (Equation (1)). Variance for the same set of data VAR(S) was calculated
(Equation (2)) and this was followed by Standardized test Z (Equation (3)) [34].

S =
n−1
∑

i=1

n
∑

j=i+1
Sgn

(
Xj − Xi

)
,

Sgn
(
Xj − Xi

)
=


+1,>

(
Xj − Xi

)
0,=

(
Xj − Xi

)
−1,<

(
Xj − Xi

)
,

(1)

VAR(S) =
1
18

[
n(n− 1)(2n + 5)−

q

∑
p=1

tp
(
tp − 1

)(
2tp + 5

)]
, (2)

Z


S−1√
VAR(S)

i f S > 0

0 i f S = 0
S+1√
VAR(S)

i f S < 0.
(3)

In Equation (1), Xi and Xj are terms representing the values of parameters that were
chronologically placed. Similarly, in Equation (2), n indicates the total length of the time
series, tp shows ties corresponding to the pth value, q shows total tied values. When the
value of Z is positive; it signifies a variables trend that is increasing and when this value is
negative; it indicates a decreasing trend. All equations were processed using XLSTAT and
Microsoft Excel [35].

4.3. Correlation Analyses

Using monthly observations of climate parameters, Pearson correlation function was
used to determine the nature of association among climate parameters. Accordingly,
total cells in the NDVI grid layer and average temperature values for each month were
correlated. Similarly, total cells in the NDVI grid layer and snow grid layer were correlated.
Additionally, total cells in the snow grid layer and average temperature values were also
correlated. This process was executed for the entire area of observation, as well as for the
ten separate elevation sections. All computations were performed in International Business
Machines Corporation’s Statistical Package for the Social Sciences (IBM SPSS) Statistics [36].
To estimate the nature of the relationship between climate data from MODIS and ground
observations, linear correlation and linear regression among MOD11A2 values and values
recorded at stations in Kausani and Mukhem were observed.

4.4. Lapse Rate

Monthly averages of MOD11A2 for different elevation sections were used to compute
monthly, annual as well as seasonal lapse rates for Uttarakhand. Values of 8 elevation
sections for the years 2001–2017 were used. Therefore, temperature values from 2000 m
a.s.l. to 6000 m a.s.l. were considered. The averages of the lowermost and uppermost
elevation of each section were computed and the monthly average of temperature for that
elevation section was attributed to the average value of the lowermost and uppermost ele-
vation. Consequently, 8 averages (2250, 2750, 3250, 3750, 4250, 4750, 5250 and 5750 m a.s.l.)
corresponding to 8 elevation sections were generated. Using 8 averages for the elevation
sections and their corresponding monthly temperature averages, linear regression was
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performed to obtain regression lapse rate. Thus, 204 monthly lapse rate values were com-
puted, which were later used to generate annual lapse rate, seasonal lapse rate and lapse
rate for each month.

4.5. Support Vector Regression

The regression is performed using a data set {(x1, y1), . . . ., (x`, y`)} considered for
training. In this data set, xi ⊂ Rn signifies the input having an output yi ⊂ R where i = 1,
. . . , n. The term n signifies the data length [37,38]. The equation for regression is written as:

f (x) = (w·Φ(x)) + b (4)

In the equation, w ⊂ Rn as well as b ⊂ R. Additionally, Φ symbolizes transformation
that is non-linear in nature and occurs from Rn to a space that lies in higher dimension.
Solving the equation provides the values for w and b.

Following this, x is determined when the risk from regression is reduced:

Rreg( f ) = C
`

∑
i=0

Γ( f (xi)− yi) +
1
2
‖w‖2 (5)

In the equation, Γ(·) denotes the cost function, C is a constant and w denotes a vector.
The equation for the vector can be written as:

w =
`

∑
i=1

(αi − αi
∗)Φ(xi) (6)

Replacing w as expressed in (6) in the Equation (4), we get:

f (x) =
`
∑

i=1
(αi − αi

∗)(Φ(xi)·Φ(x)) + b

=
`
∑

i=1
(αi − αi

∗)k(xi, x) + b
(7)

As can be seen in Equation (7), k (xi, x) replaces the dot product. In the expression,
k (xi, x) is the kernel function. Two kernels, linear as well as polynomial, were tested in
this study.

The regression function was used for forecasting one climate variable using known
conditions of the remaining two climate variables, and this appraisal was carried out for all
3 climate variables. For the training data, observations from 2001 to 2012 were selected and
regression models were developed. These models predicted values of the climate variables
from 2013 to 2017. Finally, predicted values were compared with the observations from
MODIS grids to check the efficiency of the models.

4.6. Long Short-Term Memory (LSTM) Regression Analysis

Long Short-term Memory (LSTM) neural network is a special class of recurrent neural
networks (RNN) [39] and has both special units and standard units. LSTM is mostly used
for carrying out regression functions.

Scripts in Python were written and Keras library [40] was accessed to construct the
neural network. Additionally, Tensorflow [41] was used for the model to process. Within
the network, Sequential module helped the network to begin working and dense module
assisted in the accumulation of required layers within the network. Scaling was performed
and stochastic gradient descent method was used for running the network. Using all these
combinations, results were simulated using 100 epochs.

Composition function in [42,43], outlines the LSTM network applied for the present analysis.
The network was used for forecasting one climate variable using known conditions

for the remaining two climate variables, and this appraisal was carried out for all three
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climate variables. For the training data, observations from 2001 until 2012 were selected
and LSTM models were developed. These models predicted values of the climate variables
from 2013 until 2017. Finally, predicted values were compared with the observations from
MODIS grids to check the efficiency of the models.

5. Results
5.1. Distribution of Snow Extent, Vegetation Area and Temperature

NDVI grid layer with NDVI ≥ 0.3, temperature and snow coverage in Uttarakhand
provided information about these environmental variables within different elevation sec-
tions of Uttarakhand.

Land areas occupying more than 24,000 km2 below the elevation of 2000 m a.s.l. is
found to have vegetation cover in Uttarakhand state. Above 4000 m a.s.l., vegetation is
negligibly present. From 2000 m a.s.l. to 4000 m a.s.l., vegetation cover is less than 4000 km2

(Figure 3). Snow occupied areas exist even below 2000 m a.s.l. Significant fluctuations in
snow cover can be seen above 4000 m a.s.l. Median values for land surface temperature
stay about 25 ◦C for areas lower than 2000 m a.s.l. Similarly, for areas within 2000 to
4000 m a.s.l., temperature values generally remain about 15 ◦C and for areas higher than
4000 m a.s.l., temperature drops to about 0 ◦C.
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Maps of monthly variations of environmental variables in 2017 (Figures 4–6) and
previous months and statistical calculations provided an understanding of these variations.
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A vertical rise related to vegetation covers was observed for the years 2004–2005
(Figure 7). Less snowfall in 2004 and hence lack of snow-covered areas could be responsible
for the increase in vegetation covers. Quite reasonably, much lower temperatures were
observed in winter and relatively higher temperatures were observed in pre-monsoon
compared to other seasons. The region has the least snow cover during monsoon and the
most during winter.
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5.2. Trend Analysis

Observations of monotonic trends and sudden fluctuations in patterns of environmen-
tal variables for the entire state of Uttarakhand contained several interesting outputs with
a confidence level around or greater than 85%. These outputs suggested that Uttarakhand
has been experiencing an increase in annual snow covers for the years 2001–2017. This
increase is particularly visible for the pre-monsoon season. Monthly observations showed
that this is true, especially for the months from May to July. Consequently, areas of veg-
etation have been decreasing for the pre-monsoon periods and this can be seen clearly
for the months of June and July. When temperature is considered, no significant trends
were observed.

Observation of monotonic trends and sudden fluctuations in patterns of environmen-
tal variables for the different elevation sections of Uttarakhand also contained several
interesting outputs with a confidence level around or greater than 85%. Snow covers were
found to increase for the region beyond 4000 m a.s.l. through pre-monsoon. For the areas
lying from 2000 m a.s.l. until 4000 m a.s.l., post-monsoon vegetation covers have increased.
Pre-monsoon temperatures in areas lower than 2000 m a.s.l. have increased.

5.3. Correlation Analyses

Correlation function showed strong connections among the variables for the elevation
range 3000–4000 m a.s.l. Quite justifiably, for almost all elevation sections, average temper-
atures and snow covers have a pronounced negative relationship and this also applies to
the relationship among vegetation covers and snow covers.

5.4. MODIS LST and Station Data
5.4.1. Mukhem Station

Temperature data from MODIS temperature grid used in this study and temperature
records from the station in Mukhem in Uttarakhand were compared (Figure 8). A scatter
plot to compare the data from Mukhem and MODIS grid information for the elevation
section 2000–2500 m a.s.l. was drawn and the equation for linear fit was obtained. The
regression equation showed that the R-squared value remained at around 0.60 which
indicated that the two data were fairly related.

5.4.2. Kausani Station

Temperature data from MODIS temperature grid used in this study and temperature
records from the station in Kausani in Uttarakhand were compared (Figure 9). A scatter
plot to compare the data from Kausani and MODIS grid information for the elevation
section 2000–2500 m a.s.l. was drawn and the equation for linear fit was obtained. The
regression equation showed that the R-squared value remained at around 0.65 which
indicated that the two data were fairly related.
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Figure 8. (a) Linear curve for the average value of maximum temperature for each month drawn using the temperature
records at Mukhem for the years 2001–2008 and linear curve for the mean values of temperature for each month obtained
using MODIS grid for the years 2001–2008 for the elevation ranging from 2000 to 2500 m a.s.l. (b) Scatter plot drawn
using the average value of maximum temperature for each month based on temperature records at Mukhem for the years
2001–2008 and the mean values of temperature for each month obtained using MODIS grid for the years 2001–2008 for the
elevation ranging from 2000 to 2500 m a.s.l.
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Figure 9. (a) Linear curve for the average value of maximum temperature for each month drawn using the temperature
records at Kausani for the years 2001–2009 and linear curve for the mean values of temperature for each month obtained
using MODIS grid for the years 2001–2009 for the elevation ranging from 2000 to 2500 m a.s.l. (b) Scatter plot drawn
using the average value of maximum temperature for each month based on temperature records at Kausani for the years
2001–2009 and the mean values of temperature for each month obtained using MODIS grid for the years 2001–2009 for the
elevation ranging from 2000 to 2500 m a.s.l.

5.5. Lapse Rate Analysis

Lapse rate calculations showed that the yearly value of lapse rate when the entire area
of Uttarakhand state is considered is 5.69 ◦C/km. Similarly, the value of lapse rate for the
monsoon period is 2.86 ◦C/km, the post-monsoon period is 5.61 ◦C/km, the winter period
is 7.49 ◦C/km and the pre-monsoon period is 6.18 ◦C/km. The lapse rate is highest during
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the winter and lowest during the monsoon period. A distinct periodical change in the value
of lapse rate is seen for the different periods in a year in Uttarakhand (Figure 10). A distinct
low lapse rate during monsoon could be mainly due to the continuous existence of clouds
during the monsoon period that minimize the effect of solar radiation upon temperature
distribution on the Earth’s surface.
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Figure 10. Distribution of the lapse rate values in Uttarakhand for all months in a year for the elevation ranging from 2000
to 6000 m a.s.l.

5.6. Support Vector Regression Analysis

Regression using support vectors, in the absence of scaling operations, displayed that
forecasting of temperature is the most accurate when linear kernel is used in the regression
and the values for both constant and gamma function are fixed at 100. Similarly, forecasting
of snow covers is the most accurate when polynomial kernel is used in the regression and
the value for constant is fixed at 100 and gamma function is defined as “auto”. In the
same way, forecasting of NDVI is the most accurate when polynomial kernel is used in
the regression and the value for constant is fixed at 10 and gamma function is defined
as “auto”.

5.7. LSTM Regression Analysis

Forecasted values of temperature using LSTM networks were compared with the
values from MODIS temperature grids for the years 2012–2017 (Figure 11a). Similarly,
forecasted values of snow covers using LSTM networks were compared with the values
from MODIS snow grids for the years 2012–2017 (Figure 11b) and forecasted values of
NDVI using LSTM networks were compared with the values from MODIS NDVI grids for
the years 2012–2017 (Figure 11c).
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Figure 11. (a) Linear curve for the forecasted values of temperature using LSTM networks (black curve) and average values
of temperature obtained using MODIS grids (grey curve) for each month for the years 2012–2017 for entire Uttarakhand.
(b) Linear curve for the forecasted values of snow covers using LSTM networks (black curve) and average values of snow
covers obtained using MODIS grids (grey curve) for each month for the years 2012–2017 for entire Uttarakhand. (c) Linear
curve for the forecasted values of NDVI using LSTM networks (black curve) and average values of NDVI obtained using
MODIS grids (grey curve) for each month for the years 2012–2017 for entire Uttarakhand.

Forecasted values of the climate parameters obtained through LSTM networks and
actual values obtained through MODIS grids were compared using regression and cor-
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relation. LSTM networks can be considered appropriate for forecasting of temperature
(R-squared= 0.87; correlation coefficient = 0.93) and snow cover (R-squared = 0.74; corre-
lation coefficient = 0.86) but not appropriate for forecasting of NDVI (R-squared = 0.20;
correlation coefficient = −0.36).

5.8. Global Climate Data

Curves indicate that there are significant differences in values among the global climate
data set and maximum and minimum values obtained from MODIS LST observations.
However, mean values obtained from MODIS are more or less in close agreement with the
values obtained from global climate data. Maximum values from WorldClim 2.0 are almost
similar to mean values from MODIS LST (Figure 12).
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Figure 12. Minimum, maximum and mean values of mean annual air temperature (BIO1) obtained for each elevation
section using WorldClim 2.0, CHELSA and MODIS observations. Here, MinC, MaxC and Mean C represent minimum,
maximum and mean values of mean annual air temperature obtained for each elevation section using CHELSA. Similarly,
MinW, MaxW and MeanW represent minimum, maximum and mean values of mean annual air temperature obtained for
each elevation section using WorldClim 2.0. Correspondingly, MinM, MaxM and MeanM represent minimum, maximum
and mean values of land surface temperature obtained for each elevation section for the period from 2001 to 2017 using
MODIS observations.

Curves indicate that maximum values obtained from MODIS observations are higher
than values obtained from all other climate data set. Values obtained from the three global
climate data are more or less in close agreement with each other (Figure 13).



Sensors 2021, 21, 7416 19 of 25
Sensors 2021, 21, x FOR PEER REVIEW 20 of 27 
 

 

 
Figure 13. Minimum, maximum and mean values of mean temperature of warmest quarter (BIO10) obtained for each 
elevation section using WorldClim 2.0, CHELSA and MIROC climate dataset. Here, MinC, MaxC and Mean C represent 
minimum, maximum and mean values of mean temperature of warmest quarter obtained for each elevation section using 
CHELSA. Similarly, MinW, MaxW and MeanW represent minimum, maximum and mean values of mean temperature of 
the warmest quarter obtained for each elevation section using WorldClim 2.0. Correspondingly, MinMi, MaxMi and 
MeanMi represent minimum, maximum and mean values of mean temperature of warmest quarter obtained for each 
elevation section using MIROC. Similarly, MaxM represents maximum values of land surface temperature obtained for 
each elevation section for the period from 2001 to 2017 using MODIS observations. 

Higher bars are present from 4000 to 6000 m a.s.l., whereas curves steadily report 
decreasing values of annual precipitation for these ranges (Figure 14). This is mainly be-
cause snowfall and, hence, increases in snow-covered areas, are visible above 4000 m a.s.l., 
whereas annual precipitation is higher in the low elevation ranges below 3500 m a.s.l. 
Most of the precipitation received by lower elevations is in liquid, while most of annual 
precipitation above 3500 m a.s.l. remains solid in nature. 

-15

-10

-5

0

5

10

15

20

25

30

35

40

Below 20002000–2500 2500–3000 3000–3500 3500–4000 4000–4500 4500–5000 5000–5500 5500–6000 Above
6000

M
ea

n 
te

m
pe

ra
tu

re
 o

f w
ar

m
es

t q
ua

rte
r (

°C
)

Elevation sections ( in m a.s.l.)

MinC MaxC MeanC MinW

MaxW MeanW MinMi MaxMi

MeanMi MaxM

Figure 13. Minimum, maximum and mean values of mean temperature of warmest quarter (BIO10) obtained for each
elevation section using WorldClim 2.0, CHELSA and MIROC climate dataset. Here, MinC, MaxC and Mean C represent
minimum, maximum and mean values of mean temperature of warmest quarter obtained for each elevation section using
CHELSA. Similarly, MinW, MaxW and MeanW represent minimum, maximum and mean values of mean temperature
of the warmest quarter obtained for each elevation section using WorldClim 2.0. Correspondingly, MinMi, MaxMi and
MeanMi represent minimum, maximum and mean values of mean temperature of warmest quarter obtained for each
elevation section using MIROC. Similarly, MaxM represents maximum values of land surface temperature obtained for each
elevation section for the period from 2001 to 2017 using MODIS observations.

Higher bars are present from 4000 to 6000 m a.s.l., whereas curves steadily report
decreasing values of annual precipitation for these ranges (Figure 14). This is mainly
because snowfall and, hence, increases in snow-covered areas, are visible above 4000 m a.s.l.,
whereas annual precipitation is higher in the low elevation ranges below 3500 m a.s.l.
Most of the precipitation received by lower elevations is in liquid, while most of annual
precipitation above 3500 m a.s.l. remains solid in nature.

There is little consistency among the bars representing the maximum number of
average count of pixels for different elevation sections and the curves representing the
precipitation during the wettest quarter, which mainly confirms that the precipitation
during wettest quarter remains mainly liquid in nature in Uttarakhand (Figure 15).

When minimum, maximum and mean values of mean annual air temperature from
global climate data were compared against the minimum, maximum and mean values of
temperature from MODIS observations, differences were minimum when the mean values
were selected (Table 2).
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Figure 14. Curves represent minimum, maximum and mean values of annual precipitation obtained for each elevation
section using WorldClim 2.0, CHELSA and MIROC climate dataset. Here, MinC, MaxC and Mean C represent minimum,
maximum and mean values of annual precipitation obtained for each elevation section using CHELSA. Similarly, MinW,
MaxW and MeanW represent minimum, maximum and mean values of annual precipitation obtained for each elevation
section using WorldClim 2.0. Correspondingly, MinMi, MaxMi and MeanMi represent minimum, maximum and mean
values of annual precipitation obtained for each elevation section using MIROC. Bars represent mean values of average
count of pixels representing snow covered area for each elevation section obtained using MODIS observations.

Table 2. Differences among MODIS land surface temperature observations and BIO1 values obtained from different climate
data set. Here, MinC, MaxC and Mean C represent minimum, maximum and mean values of mean annual air temperature
obtained for each elevation section using CHELSA. Similarly, MinW, MaxW and MeanW represent minimum, maximum
and mean values of mean annual air temperature obtained for each elevation section using WorldClim 2.0. Correspondingly,
MinM, MaxM and MeanM represent minimum, maximum and mean values of mean annual air temperature obtained for
each elevation section using MODIS observations. In the same way, MinMi, MaxMi and MeanMi represent minimum,
maximum and mean values of mean annual air temperature obtained for each elevation section using MIROC.

Elevation
Range

(m a.s.l.)

MinM-
MinC

MaxM-
MaxC

MeanM-
MeanC

MinM-
MinW

MaxM-
MaxW

MeanM-
MeanW

MinM-
MinMi

MaxM-
MaxMi

MeanM-
MeanMi

<2000 −14 9 5 −16 9 3 −25 8 3
2000–2500 −23 15 8 −26 11 4 −26 9 3
2500–3000 −23 13 8 −24 9 4 −24 7 3
3000–3500 −19 12 7 −19 8 5 −19 6 4
3500–4000 −21 13 7 −19 8 6 −21 7 4
4000–4500 −17 14 7 −13 10 7 −17 9 5
4500–5000 −14 15 7 −9 11 9 −12 8 4
5000–5500 −15 16 7 −9 14 9 −16 10 4
5500–6000 −21 14 5 −15 14 8 −21 10 2

>6000 −23 11 3 −14 12 7 −27 6 −1
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Figure 15. Curves represent minimum, maximum and mean values of precipitation of wettest quarter obtained for each
elevation section using WorldClim 2.0, CHELSA and MIROC climate dataset. Here, MinC, MaxC and Mean C represent
minimum, maximum and mean values of precipitation of wettest quarter obtained for each elevation section using CHELSA.
Similarly, MinW, MaxW and MeanW represent minimum, maximum and mean values of precipitation of wettest quarter
obtained for each elevation section using WorldClim 2.0. Correspondingly, MinMi, MaxMi and MeanMi represent minimum,
maximum and mean values of precipitation of wettest quarter obtained for each elevation section using MIROC. Bars
represent the maximum number of average count of pixels representing snow covered area for each elevation section
obtained using MODIS observations.

When minimum, maximum and mean values of mean temperature during warmest
quarter from global climate data were compared against the minimum, maximum and
mean values of temperature from MODIS observations, differences were minimum when
the mean and maximum values were selected (Supplementary Table S1). Significant neg-
ative associations among mean pixels and some of the climate data simply indicate that
with elevation, the number of pixels increases whereas the values for annual precipita-
tion decrease (Supplementary Table S2). This is mainly because annual precipitation is
mainly comprised of liquid precipitation in Uttarakhand and the amount of annual pre-
cipitation decreases with altitude whereas snow covered areas due to solid precipitation
increases with elevation. No significant association exists among the max pixels and the
global climate data. Climate data from CHELSA, WorldClim 2.0 and MIROC indicate
that MAAT values gradually decrease with an increase in elevation from 2500 m a.s.l. to
4500 m a.s.l. Among the three global climate data, MIROC has the highest values for MAAT
whereas CHELSA has the lowest values for MAAT in Uttarakhand (Supplementary Fig-
ures S1, S5 and S9). Similarly, climate data from CHELSA, WorldClim 2.0 and MIROC also
indicate that T-WQ values gradually decrease with increase in elevation from 2500 m a.s.l.
to 4500 m a.s.l. Again, among the three global climate data, MIROC has the highest values
for T-WQ whereas CHELSA has the lowest values for T-WQ in Uttarakhand (Supplemen-
tary Figures S2, S6 and S10). Climate data from WorldClim 2.0 and MIROC indicate that
AnP and P-WQ values gradually decrease with an increase in elevation from 2500 m a.s.l. to
4500 m a.s.l. However, CHELSA shows higher values of AnP and P-WQ when the elevation
increases (Supplementary Figures S3, S4 and S7, Supplementary Figures S8, S11 and S12).
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6. Discussion

A previous investigation [44] mentioned the decrease in snowfall in Uttarakhand for
the years 1991–2015. Present investigation reports an increase in annual snow covers for
the years 2001–2017 and this is particularly visible for the pre-monsoon period.

The Indian Institute of Remote Sensing recently published a report detailing an
analysis of snow extents for the Uttarakhand state, which stated that highest snowfall
occurred in 2016 and 2017 [45]. The year 2017 had the highest snowfall when in the month
of February; snow covers persisted in almost 67% of areas in the north-west Himalayas. If
we consider this finding, the results reported from the present study using MODIS data set
are in close agreement with this report.

Snowfall records for the months November–April from 2002 to 2008, available from
a weather station in Uttarakhand, was compared with the sum of grid cells representing
snow covers within entire Uttarakhand for the months November-April from 2002 to
2008. Coefficient of determination thus obtained was about 0.75. This fairly suggests that
information about snow covers from MODIS grids reasonably exemplifies snowfall events
in the north-west part of Himalayan region.

Results related to changes in NDVI from the present investigation closely correspond
to outcomes obtained from past studies that document analogous negative trends related
to NDVI parameters for the Uttarakhand state through analysis of MODIS grids [46].
Similarly, results related to changes in snow covers from the present investigation also
closely correspond to outcomes obtained from past studies that document analogous
increasing trends related to snow covers for the Uttarakhand state through analysis of
MODIS grids [10].

Maps of monthly variations of environmental variables in 2017 (Figures 5–7) and
monthly lapse rate (Figure 10) indicate a strong seasonal influence upon climate variables.
Maps and graphical representations in this study highlight the importance of visual analysis
in the interpretation of environmental changes on a regional level.

Application of machine learning algorithms to bulk processed remotely sensed data
set is attainable only through efficient computations using proper infrastructures. The
present investigation is a good example of the study of environmental variables in the
Himalayan region. However, the study is confined to a single state in India. Wide-ranging
investigations of this nature can be very illustrative and contribute towards a stronger
knowledge base related to climate variables and their changes over time. Nevertheless,
this is attainable only through a larger amount of processed data sets and much more
complex computations.

Mean temperature values obtained from MODIS are in greater agreement with the
global climate data and therefore, for future assessments, mean MODIS values could
be used for effective comparison with output from global climate data when these data
are used for environmental modelling in the region. Reasonable association among the
snow cover area information from MODIS observations and the precipitation information
from global climate data cannot be found and therefore, this combination of data set is
not appropriate to be used together for precipitation assessment and additional snowfall
records from other sources are necessary to establish a meaningful relationship among the
data set. WorldClim 2.0 and MIROC serve as better precipitation data sets for any kind of
environmental modelling, since CHELSA predicts increasing precipitation values with an
increase in elevation, which is highly unlikely.

MODIS grids are available after 2017 as well and therefore, the study could have been
extended to 2020, thus completing two decades of analysis and results. However, this study
only consists of observations and results for the years 2001–2017 to halt data download
and proceed with the analysis of the downloaded data to obtain desired outcomes. A
total of 17 years of data are used for analysis, which fairly represents the variations of
environmental parameters over nearly two decades. A greater interest of this study lies
in experimenting with several methods to analyse the available information for 17 years
through multiple MODIS grids.
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Although several stations could have been included, records from only two me-
teorological stations are considered to compare with the remotely sensed information
using MODIS.

7. Conclusions

The outcomes of this study are essential in formulating assumptions for investigations
related to modelling of environmental components and processes in the study area. Results
from temperature lapse rate analysis were found to be essential in developing models
associated with glacier melt, snow melt and other processes which use temperature as an
important input parameter. Results also corroborated that MODIS data set in combination
with global climate data set can be used to study past, present and future climate conditions.
The past and future climate data set from WorldClim 2.0 proves to be a better choice while
working with global climate data sets.

Although this study reasonably captures the variability in climate parameters since
2001, inclusion of climate data set exceeding larger time scales would have been essential
in understanding changes over several decades and not just the recent past. Despite that
machine learning algorithms have been implemented to understand the changes in and
interconnectedness among climate variables, there were limited data available for the
training and testing of the algorithms. Climate data expanding several decades would
have been more convenient to work with these algorithms.

Similar studies in the future could contribute towards a deeper understanding of
environmental changes in the region assisting several stakeholders. Future research could
consider adding precipitation, evapotranspiration, as well as other variables, to correlate
additional variables with the parameters already under consideration in this study.
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