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Abstract: In Australia, droughts are recurring events that tremendously affect environmental, agri-
cultural and socio-economic activities. Southern Queensland is one of the most drought-prone
regions in Australia. Consequently, a comprehensive drought vulnerability mapping is essential
to generate a drought vulnerability map that can help develop and implement drought mitigation
strategies. The study aimed to prepare a comprehensive drought vulnerability map that combines
drought categories using geospatial techniques and to assess the spatial extent of the vulnerability of
droughts in southern Queensland. A total of 14 drought-influencing criteria were selected for three
drought categories, specifically, meteorological, hydrological and agricultural. The specific criteria
spatial layers were prepared and weighted using the fuzzy analytical hierarchy process. Individual
categories of drought vulnerability maps were prepared from their specific indices. Finally, the
overall drought vulnerability map was generated by combining the indices using spatial analysis.
Results revealed that approximately 79.60% of the southern Queensland region is moderately to
extremely vulnerable to drought. The findings of this study were validated successfully through the
receiver operating characteristics curve (ROC) and the area under the curve (AUC) approach using
previous historical drought records. Results can be helpful for decision makers to develop and apply
proactive drought mitigation strategies.

Keywords: drought; vulnerability assessment; remote sensing; GIS; spatial analysis; Australia

1. Introduction

Droughts are climatic disasters, with varying frequencies and intensities, that extend
worldwide [1,2]. The considerable effects of droughts are observed on the availability of
water and on agricultural, economic, environmental and socio-economic activities [3–5].
Particularly, regional economic development, food and ecological security are threatened
by drought [6]. On average, an estimated US $6–8 billion in economic losses are caused
by drought each year worldwide, a number higher than the economic losses caused by
other meteorological disasters [7]. The frequency and severity of drought have recently
increased considerably in many areas of the world [8,9]. As expected, drought occurrences
and the extent of these effects will be higher in the coming years due to climate change and
an increase in water demand for human activities [10–12].

Given its geographical location and rainfall pattern, Australia is one of the driest con-
tinents [1,13–15]. In Australia, droughts with various intensities frequently occur, which
detrimentally affect river ecosystems and agricultural activities [4,16,17]. The economy
incurs enormous losses, and a humanitarian crisis is created [1,15]. Australia experienced a
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long and devastating drought at the beginning of the 21st century, called the millennium
drought (2001–2009) [16–18]. According to the Bureau of Meteorology records from 1860,
Australia experienced severe drought with an 18-year interval on average [18,19]. Queens-
land is one of the highly drought-vulnerable states in Australia [20–22]. Currently, the
southern Queensland, particularly its southeast and southwest parts, is experiencing a
severe drought that began in 2017 [2,19]. In May 2019, almost two-thirds of Queensland
was declared drought vulnerable by the Queensland government. Resultantly, environ-
mental, agricultural and socio-economic activities are affected sectors in such areas of
Queensland [19,20].

Effective drought management can reduce the overall effects of droughts on people,
economy and the environment [2,8,23]. The development and timely implementation of
drought mitigation strategies are parts of effective drought management [9,24]. Spatial in-
formation regarding factors liable for droughts, vulnerable areas, and levels of vulnerability
are essential in preparing and implementing drought strategies [25]. Drought vulnerability
mapping offers a framework for identifying, processing and analysing relevant factors that
trigger drought [6,26,27]. The term vulnerability explains the extent of suffering and effects
on the community and environment from a particular hazard in a specific area [26–28]. The
produced vulnerability map can also help decision makers to visualise the exact location
and level of vulnerability to droughts and convey this information to respective affected
sectors to reduce potential drought-related losses [29,30].

Satellite remote sensing and spatial analysis are efficient drought vulnerability map-
ping tools [8,31,32]. Various spatial and non-spatial data are essential for preparing the
relevant spatial criteria layers that influence drought vulnerability [24,31]. Remote sensing
and spatial analysis provide a suitable framework for analysing, mapping and integrat-
ing different criteria to assess drought vulnerability accurately [29,32]. Several drought
vulnerability mapping approaches are available in the literature [1,8,24,31,33–35]. Some
approaches focus on a single criterion [1,35,36], whereas others use multi-criteria [25,34,37].
Multi-criteria assessment for each category of drought can provide detailed spatial drought
vulnerability information. The fuzzy analytical hierarchy process (FAHP) is one of the
best techniques to assess the multi-criteria of each category of drought and integrate them
for spatial decision making to assess overall drought vulnerability [31,32]. This technique
reduces the imprecision and subjectivity in the pair-wise comparison decision-making
process [36,37]. Instead of a crisp value, FAHP uses a range of value to incorporate the
decision maker’s uncertainty [38]. FAHP has been widely applied in assessing the vulnera-
bility of other natural hazards [39–42]. Several studies have also reported drought hazard
analysis [25,33,34].

Several studies have been conducted on drought mapping, monitoring and manage-
ment in Australia [2,4,17,19,20,22,43–45]. Most of these studies have focused either on
meteorological [4,22,23,46] or agricultural drought forecasting and monitoring [2,16,21].
For example, Feng, et al. [19] used various remote sensing drought factors to manufacture
agricultural drought in southeastern Australia. A meteorological- and soil-moisture-based
drought index was developed by Mpelasoka, et al. [44] for present and future drought
assessment in Australia. Deo, et al. [4] applied an effective drought index using mete-
orological data for monitoring drought events in Australia. Some studies have focused
on hydrological drought forecasting and monitoring [17,45]. For example, Verdon and
Franks [17] assessed long-term hydrologic drought risks in New South Wales using pa-
leoclimatic data. Many studies have also used limited criteria in drought forecasting
and monitoring [2,4,21,22]. For example, Dayal, et al. [43] used artificial neural networks
(ANNs) for forecasting drought events using only historical climate data of two small
regions (temperate and grassland) of southeast Queensland. Generally, droughts are
broadly categorised into four classes: meteorological, agricultural, hydrological and socio-
economic [46,47]. Hence, integrating as many criteria that influence these categories as
possible is necessary for deriving comprehensive overall drought vulnerability information
to support the effective drought management. However, studies related to drought vulner-
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ability assessment integrating multiple categories of droughts with sufficient criteria are
limited in Australia. Recently, Dayal, et al. [20] developed a drought risk map for southeast
Queensland using fuzzy logic. They integrated vulnerability, hazard and exposure criteria
and focused mostly on agricultural drought in their drought risk assessment. Although the
southern Queensland region is prone to drought, no study has mapped a comprehensive
drought vulnerability, integrating multiple drought category with adequate criteria using
FAHP-based weighting scheme.

The current research is designed to develop a comprehensive drought vulnerability
map that combines meteorological, hydrological and agricultural drought vulnerability by
applying geospatial techniques and to assess the spatial extent of drought vulnerability
for southern Queensland. The objectives addressed in this research are as follows. First is
to prepare a vulnerability map of meteorological, hydrological and agricultural drought
applying a multi-criteria FAHP-based decision-making approach. Second is to develop
a comprehensive drought vulnerability map that combines meteorological, hydrological
and agricultural drought vulnerability maps to assess the degree of drought vulnerability.
Third is to evaluate the generated drought vulnerability results.

2. Study Area

The present study was applied in southern Queensland, Australia. The area occupies
the southwest and southeast parts of Queensland (Figure 1) with a total area of 434,440 km2.
The study region is between 24◦00′–30◦040′ S latitude and 142◦00′–152◦00′ E longitude.
The total population of this region is 748,470, which is booming because of migration from
overseas and other states [48]. This region is renowned for cattle grazing, horticulture,
animal production and cotton farming [20].
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entire Queensland State and Australia; and (c) Climatic zones of Australia.

Climate change, availability of water, economic burdens and population growth are
fundamental challenges for sustainable agricultural activities in this region [49]. This
region is also often affected by droughts that have extensive effects. Climate change and
other factors are triggering these droughts directly [21]. Water supply for irrigation is
disrupted frequently and continuously by droughts. A sub-tropical climate prevails in
Southeast Queensland. The average temperature in the summer is 24 ◦C, whereas 14 ◦C
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in winter. Most rainfall occurs in the summer and autumn with 388 and 295 mm per year,
respectively. Meanwhile, southwest Queensland is part of Australia’s arid inland. The
average annual maximum and minimum temperatures are 28 ◦C and 14.5 ◦C, respectively.
The average historical annual rainfall fluctuates between 492 and 286 mm across this region
from 1879–2015.

3. Materials and Methods

A comprehensive drought vulnerability mapping approach was developed that incor-
porates meteorological, hydrological and agricultural drought information for southern
Queensland using geospatial techniques. Thirteen criteria were selected, and their indi-
vidual spatial layer was created from various data sources using geospatial techniques.
FAHP was used to rank and assign the weights of the 13 criteria in producing an integrated
drought vulnerability map. The methodological process is summarised in Figure 2, and
their detailed descriptions are presented in the subsequent sections.
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3.1. Dataset and Sources

Various spatial and non-spatial data pertaining to the 13 criteria were used in this
study to prepare a comprehensive drought vulnerability map. The required datasets were
acquired from local, national and international organisations. The collected data were
processed using remote sensing and geospatial tools to generate spatial layers for each
criterion. We also used validation datasets collected from the relevant organisation and peer-
reviewed published articles. These datasets, with their sources and other characteristics,
are detailed in Table 1.
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Table 1. The used datasets for drought vulnerability assessment.

Criteria Types Source Period

Land use and land cover
(LULC)

Sentinel-2 (10 m
resolution)

USGS Earth Explorer
(https://earthexplorer.usgs.gov/), accessed on
4 April 2018

2018
(January–February)

Elevation 3-s DEM data (90 m
resolution) Queensland Spatial Catalogue–QSpatial 2000

Slope In percentages (90 m
resolution)

Terrestrial Ecosystem Research Network
(TERN) 2000

Surface water bodies QSpatial data (90 m
resolution)

Queensland Land Use Mapping Program
(QLUMP) 2016

Plant available water
capacity (PAWC) 90 m resolution

National Agricultural Monitoring system
(NAMS; http://www.nams.gov.au), accessed
on 3 February 2018

2014

Soil depth, Sand percentage 90 m resolution TERN 2014

Soil Moisture 90 m resolution
(NetCDF format)

Australian Government, Bureau of
Meteorology (http://www.bom.gov.au),
accessed on 1 March 2018

2014–2018

Stream density Polyline
Geoscience Australia
(https://www.ga.gov.au/), accessed on
7 May 2018

2016

Mean annual rainfall, mean
annual maximum
temperature, mean annual
humidity

90 m resolution
Australian Government, Bureau of
Meteorology (http://www.bom.gov.au),
accessed on 10 March 2018

1970–2018

Mean annual evaporation 90 m resolution
Australian Government, Bureau of
Meteorology (http://www.bom.gov.au),
accessed on 9 March 2018

1975–2005

3.2. Evaluation Criteria for Vulnerability Mapping

A total of 14 criteria were chosen under three categories of drought on the basis
of the literature review, data accessibility, local study context, and relevance to drought
vulnerability. Following the importance of vulnerability to drought, every criterion was
mapped, categorising into several alternatives to convert to spatial layers. All spatial layers
were transformed into raster format with a spatial resolution of 90 m× 90 m for supporting
a raster-based analysis. The natural break statistical approach was also used to classify
some criteria spatial layers [30,50]. ENVI (Version 5.4) and ArcGIS (Version 10.4) geospatial
software were applied to process the spatial criteria layers. The characteristics, importance,
justification and mapping approaches of the influencing criteria of each category of drought
are discussed in the next section.

3.2.1. Meteorological Drought Vulnerability Mapping Criteria

Dry weather pattern creates a favourable condition for meteorological drought [51,52].
Several variables, such as mean annual rainfall, mean annual maximum temperature,
mean annual evaporation and mean annual humidity were used for mapping meteoro-
logical drought vulnerability. The natural break statistical approach was used to classify
meteorological drought criteria spatial layers [30,50].

Meteorological droughts are influenced by temperature, rainfall, humidity and evap-
oration parameters [53]. Areas prone to drought are characterised by low rainfall and
humidity [30,54]. In addition, places that have a higher temperature are more exposed to
drought than places characterised by low temperatures [53,55]. Moreover, evaporation
is directly linked to meteorological drought. Areas with high evaporation are more vul-
nerable to meteorological drought because of the increased amount of water evaporation,
thus making the region drier [32,53]. Meteorological drought-related criteria (precipitation,
temperature and humidity) datasets were acquired from the Bureau of Meteorology of
Australian government from 1970–2018 from 79 weather stations, located inside or nearby

https://earthexplorer.usgs.gov/
http://www.nams.gov.au
http://www.bom.gov.au
https://www.ga.gov.au/
http://www.bom.gov.au
http://www.bom.gov.au
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of the study area (Figure 1). The globally accepted kriging method was used [56] to inter-
polate the point-based datasets for producing a spatial layer of the mean annual maximum
temperature, the mean annual rainfall and the mean annual humidity (Figure 3a–c respec-
tively). The annual evaporation data were also acquired from the Bureau of Meteorology
of Australian government from 1975–2005 (Figure 3d). The spatial resolution was set to 90
m for all output layers.
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3.2.2. Hydrological Drought Vulnerability Mapping Criteria

The scarcity of subsurface or surface water supply(i.e., in streamflows, lakes, reservoirs
and groundwater) in a period is linked to hydrological drought [29,57]. Elevation, slope,
surface water bodiesstream density, and surface runoff were selected as relevant criteria
for mapping hydrological drought vulnerability [15].

The elevation and slope of an area could play an important role in hydrological
drought vulnerability [30]. The vulnerability to drought is higher for regions that have
a high elevation and steep slope, whereas lower vulnerability has prevailed in regions
with low elevation and gentle slope [31,56]. A digital elevation model (DEM) was also
used to produce an elevation spatial layer (Figure 4a). The DEM was collected from
Queensland Spatial Catalogue–QSpatial at 90 m spatial resolution. The slope spatial layer
was created using the data acquired from the Terrestrial Ecosystem Research Network
(TERN) (Figure 4b).
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Surface water bodies and stream density are also important factors in hydrological
drought vulnerability assessment [15]. Regions close to water sources are less vulnerable
to drought that are distant from water sources [3]. Similarly, areas with high stream
density are assumed less vulnerable to drought due to their greater water contact than
other areas [25,30]. The data of surface water bodies, including natural and man-made
structures, were collected from the QLUMP for 2016, and the spatial analyst tool and
Euclidean distance were used to create distance buffers from the surface water bodies to
develop the spatial layer (Figure 4c). Contrarily, streamline data from Geoscience Australia
were used to generate stream density spatial layer at 90 m spatial resolution (Figure 4d). To
create this layer, the stream density was calculated by employing the line density tool of
ArcGIS software.
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Surface runoff is one of the important variables for hydrological drought vulnerability
assessment [58]. In this study, we estimated the surface runoff using geospatial data such
as digital elevation model (DEM), Land use, soil, and precipitation data following the
methods explained in Pal and Samanta [59] and Vojtek and Vojteková [60]. Primarily,
weighted curve number was calculated for each sub basin using Equation (1):

Weighted sub basin CN =
CN1 × A1 + CN2 × A2 . . . + CNn × An

A1 + A2 + . . . + An
(1)

where, CN1, CN2 . . . CNn are the curve numbers for different land uses and treatment,
and hydrologic soil groups present in the sub-basin of the total river basin. A1, A2, . . . An
are its respective sub-basin areas.

The weighted CN for the whole basin is calculated by using the Equation (2):

Weighted CN =
CN o f sub− watershed× it area

Total area o f watershed
(2)

Subsequently, potential retention capacity P was calculated following Equation (3):

P = 25.4
(

1000
CN

− 10
)

(3)

The runoff depth was calculated using Equation (4):

H0 =

(
Hp − 0.2P

)2(
Hp + 0.8P

) (4)

In addition to the potential retention of catchment (P), the formula also contains the
value of average daily rainfall with N-year return period (Hp).

The next step was to create a raster of contributing areas (Sp) in the catchment where
each cell is inserted the number of connected cells in the direction of flow above this cell
and their size is then calculated. Equation (5) was used for the calculation of contributing
areas (Sp) where the cell size has a value of 90 m2:

Sp = accumulation raster × cell size/1, 000, 000 (5)

Finally, the surface runoff was calculated based on Equation (6):

Op = H0 × Sp × 1000 (6)

3.2.3. Agricultural Drought Vulnerability Mapping Criteria

Agricultural drought occurs when water is insufficient for crop growth and pro-
duction [15,30]. Land use/land cover (LULC), plant available water capacity (PAWC),
soil depth and percentage of soil moisture were selected as relevant criteria for mapping
agricultural drought vulnerability.

The LULC is an important criterion for assessing agricultural drought vulnerability
because it serves as a driving force behind water demand [61]. In this study, the 72 Sentinel
imagery (10 m spatial resolution) was used to prepare the LULC spatial layer (Figure 5a).
The Sen-2 Cor toolbox of SNAP software was used to perform the entire pre-processing
task of sentinel images. The hybrid classification approach, a combination of un-supervised
and supervised (maximum likelihood algorithm) classification techniques, was followed
to classify eight different LULC classes: production forestry, water bodies, urban use,
pasture/grassland, natural conservation and agricultural land [20]. Accuracy assessment
of classified images was performed using Kappa accuracy assessment technique [62].
High-resolution Google Earth images were used to generate validation samples that corre-
spond to the same period as these Sentinel images. In total, 1500 random samples with
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200 samples for each LULC category were collected using stratified random sampling. The
overall accuracy and Kappa coefficients of the produced LULC map were found 89% and
87%, respectively.
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PAWC extremely influences agricultural drought vulnerability. PAWC indicates the
difference between water content within field capacity and permanent wilting point [20].
When the level of PAWC decreases, drought vulnerability increases [63]. Thus, a PAWC
spatial layer utilising the data acquired from the Australian NAMS was produced in this
study (Figure 5b).
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Soil depth and soil texture (sand) are important factors for agricultural drought
vulnerability assessment [64]. The thickness of the soil materials is attributed to soil depth
that influences plant growth, providing water and nutrients [25]. Areas that have higher
soil depth are less vulnerable to drought than those with shallow soil depth because of their
higher capacity to preserve and provide moisture to plants for growing [20]. Soil depth
spatial layer was created using data from TERN (Figure 5c). Similarly, soil texture controls
the water holding capacity in the soil. Therefore, proneness to drought is higher for areas
characterised by high percentages of sand [30]. Therefore, sandy soil data from TERN
for 2014 was used to generate a sand percentage spatial layer (Figure 5d). The detailed
processing of these data was explained by Dayal, et al. [20].

Soil moisture is another vital criterion influencing agricultural drought vulnerabil-
ity [64]. The area with low soil moisture content is highly vulnerable to agricultural drought
than those with high soil moisture content [65]. Hence, a soil moisture spatial layer was
prepared by applying soil moisture data at 90 m spatial resolution from 2014–2018. The
data were obtained in NetCDF format from the Bureau of Meteorology, Australia, and then
converted into a raster format. Finally, a single spatial layer averaging all year values was
created (Figure 5e).

3.3. Standardisation Criteria Layers and Alternative Ranking

Vulnerability ratings were assigned for all alternatives of spatial criteria layers follow-
ing a numerical ranking scheme. The numerical ranking scheme used values from 1 to
5, where 1 represents extremely low vulnerability, and 5 has extremely high vulnerability.
The value of rank for each alternative was assigned to the contribution of alternatives
to drought vulnerability (Table 2). The corresponding alternative ranking values were
standardised in a uniform range from 0–1 using Equation (7). The standardisation was
required to integrate all criteria alternatives uniformly and facilitate the application of the
spatial multi-criteria decision-making approach:

p =
x − min

max − min
(7)

where, p specifies the standardised value; min and max refer to the minimum and maxi-
mum values of each dataset, respectively; x indicates the cell value.

Table 2. Alternative ranking of each criterion following the influence to drought vulnerability.

Component Criteria Classes Rank Vulnerability

Meteorological drought

Mean annual maximum
temperature (◦C)

22.38–26.98 1 Very low
26.99–27.86 2 Low
27.87–28.32 3 Moderate
28.33–29.04 4 High
29.05–30.1 5 Very high

Mean annual rainfall (mm)

639.38–1607.82 1 Very low
535.81–639.37 2 Low
411.51–535.8 3 Moderate
307.94–411.5 4 High
287.21–307.33 5 Very high

Mean annual humidity (%)

63.38–75.99 1 Very low
56.82–63.37 2 Low
49.99–56.81 3 Moderate
46.52–49.98 4 High
43.16–46.51 5 Very high

Mean annual evaporation
(mm)

1600–2000 1 Very low
2000–2400 2 Low
2400–2800 3 Moderate
2800–3200 4 High
>3200 5 Very high
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Table 2. Cont.

Component Criteria Classes Rank Vulnerability

Hydrological drought

Elevation (m)

<173.68 1 Very low
173.69–286.74 2 Low
286.75–426.71 3 Moderate
426.72–631.28 4 High
>631.28 5 Very high

Slope (%)

0–0.64 1 Very low
0.65–1.32 2 Low
1.33–4.47 3 Moderate
4.48–7.38 4 High
>7.38 5 Very high

Surface water bodies (km)

1 1 Very low
2 2 Low
3 3 Moderate
4 4 High
5 5 Very high

Stream density (km/km2)

1.8–3.3 1 Very low
1.3–1.7 2 Low
0.85–1.2 3 Moderate
0.42–0.84 4 High
0–0.41 5 Very high

Surface runoff (m3) 9–35.8 1 Very low
35.9–80.6 2 Low
80.7–129.8 3 Moderate
129.9–192.4 4 High
>192.4 5 Very high

Agricultural drought

LULC

Water bodies, natural
conservation 1 Very low

Production forestry 2 Low
Pasture/grassland 3 Moderate
Urban use 4 High
Agricultural lands 5 Very high

PAWC (mm)

>175 1 Very low
150–175 2 Low
100–150 3 Moderate
75–100 4 High
<75 5 Very high

Soil depth (m)

1.33–1.81 1 Very low
1.17–1.32 2 Low
1.04–1.16 3 Moderate
0.9–1.03 4 High
0.4–0.89 5 Very high

Soil moisture (%)

0.37–0.81 1 Very low
0.25–0.36 2 Low
0.17–0.24 3 Moderate
0.091–0.16 4 High
0.022–0.09 5 Very high

Sand (%)
<50 2 Low
>50 4 High

3.4. Weighting the Criteria Using FAHP

Multi-criteria weighting technique FAHP was used in this study given that FAHP is a
proven technique to manage uncertainties that arise by giving the preferences in the multi-
criteria weighting decision-making process [66,67]. Various FAHP approaches have been
applied in several studies [38,39,68]. Moreover, an integrated FAHP approach was used
this study, which was developed by Chang [68]. A triangular fuzzy number (TFN) was also
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used with this approach to simplify the pair-wise comparison process. The five-step FAHP
method [68], which was followed here for weighting the multi-criteria, is described below:

Step 1: the criteria linked to the drought vulnerability assessments were chosen.
Step 2: pairwise comparison matrices were prepared following the opinions of six

experts. All of the experts had considerable experience in drought research, factors liable
for droughts and their influence on the study site. They were selected from academic, gov-
ernment, and non-government research institutions. The experts provided their opinions
considering the relative importance of chosen criteria. A geometric mean method was
followed to incorporate the expert’s opinions as follows:

R = (a, b, c), K = 1, 2, . . . ., K(R : triangular f uzzy member and K : no. o f DMs (8)

where a = (a1 × a2 × . . .× ak)
1
k , b = (b1 × b2 × . . .× bk)

1
k , c = (c1 × c2 × . . .× ck)

1
k .

Step 3: pairwise comparison matrixes were aggregated, and the judgments were
synthesised to develop a set of overall priorities for the hierarchy.

Step 4: the consistency of experts’ opinions in pairwise metrices was justified by
calculating the consistency ratio (CR). The rating is considered true if the consistency ratio
is equal to or less than 0.1. To calculate the CR, was adopted:

CR = Consistency Index/Random Index,

where, the random index (RI) was calculated on the basis of the following the matrix
order (n) developed by Saaty [69]. Moreover, consistency index (CI) was measured by the
following equation:

CI = (λmax − n)/(n− 1),

where, λmax and n present the largest eigenvalue and order of a matrix, respectively [70].
To maintain the consistency in the pairwise comparisons, the CR value should be lower
than 0.10 [71]. The calculated criteria and drought category weights from the developed
matrices and CR values are presented in Table 3.

Table 3. Criteria weights and CR values.

Component Criteria Weight

Meteorological drought

Mean annual maximum temperature 0.249
Mean annual rainfall 0.305
Mean annual humidity 0.209
Mean annual evaporation 0.238

CR: 0.06

Hydrological drought

Elevation 0.208
Slope 0.140
Surface water bodies 0.22
Stream density 0.0.217
Surface runoff 0.215

CR: 0.03

Agricultural drought

LULC 0.140
PAWC 0.220
Soil depth 0.215
Soil moisture 0.217
Sand percentage 0.208

CR: 0.03

Overall drought vulnerability
Meteorological drought 0.267
Hydrological drought 0.390
Agricultural drought 0.343

CR: 0.06
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Step 5: Pairwise matrix criteria weights were transformed into linguistic variables fol-
lowing Table A1 in Appendix A. The priority weights were determined using Chang [69]’s
method (Table 3).

3.5. Overall Vulnerability Assessment

Adopting the weighted overlay approach, the drought vulnerability index was pre-
pared for each drought type, incorporating their related criteria weights. The overall
drought vulnerability index combining all categories of drought indices was then devel-
oped by reapplying the weighted overlay approach using their respective weights. The
index values of each drought type and overall drought were then standardised using
Equation (1) to convert into a uniform range from 0–1. Afterwards, the standardised
indices values were classified into five categories (i.e., normal, mild, moderate, severe and
extreme vulnerability) to create maps of meteorological, hydrological, agricultural and
overall drought vulnerability. The natural breaks classification technique was applied to
classify these maps because using this technique is consistent and efficient in presenting
the spatial pattern of drought in the study site [50].

3.6. Validating Drought Vulnerability Maps

To validate the result of the produced three drought vulnerability maps, the ROC
and AUC approach was adopted. This is a classical way to evaluate the susceptibility and
vulnerability model accuracy. This approach is the most suitable technique to evaluate the
effectiveness of deterministic and probabilistic justification [72]. Therefore, the ROC-AUC
technique was used to verify the produced three drought vulnerability maps following
Equation (5), where, TP is true positive, TN is true negative, P is positive and N is negative:

∑ TP + ∑ TN
P + N

(9)

In the present study, the prediction rate curve was generated using soil moisture
data, rainfall data and surface water bodies data for agriculture, meteorological and
hydrological drought, respectively. The relative departure of rainfall (RDR) is a common
hazard index used for identifying meteorological drought [2]. Similarly, validation of
agricultural drought vulnerability map applying soil moisture data is appropriate through
the relative departure of soil moisture (RDMS) given that the moisture content works
as a crucial indicator of agricultural droughts [15]. However, no appropriate method to
validate hydrological drought was found; therefore, the relative departure of surface water
bodies (RDSW)was adopted. In the RDSW, the water bodies during the drought period
and non-drought period were calculated.

A few steps were followed to perform the procedure. At first, the soil moisture dataset
(2014–2018) from the Australian Government, Bureau of Meteorology, the precipitation
data (1970–2018) and the surface water data (2013 and 2018) were acquired. Afterwards,
following the methods by Rahmati, et al. [2], the RDR, RDSM and RDSW were calculated
and then an integrated drought inventory map was generated employing Equations (6)–(8):

RDR =
xi − xi

xi
× 100 (10)

RDSM =
Si − Si

Si
× 100 (11)

RDSW =
zi − zi

zi
× 100 (12)

where, xi indicates rainfall for the given year (2013) and xi refers mean annual rainfall
over the base period (1970–2018), Si specifies annual soil moisture for 2013 (Queensland
had the driest year in the history) and Si indicates mean annual soil moisture between
2005 and 2019, zi represents the surface water bodies for 2013 and zi denotes surface water
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bodies for 2018. In the next step, the values of RDR, RDSM and RDSW were standardised
into a 0–1 scale employing a fuzzy logic operation process. Then, 0.5 threshold was used
for the RDR (i.e., RDR > 0.5), RDSM (i.e., RDSM > 0.5) and RDSW (i.e., RDSW > 0.5) to
determine drought-affected locations for meteorological, hydrological and agricultural
droughts in the study sites, respectively. The whole validation procedure was adopted
from Rahmati, et al. [2] and Rahmati, et al. [73]. The authors employed a threshold of
0.5 for a similar environment (southern Queensland). Following Rahmati, et al. [2] and
Rahmati, et al. [73], we employed >0.5 as a standard threshold value. Next, 984 drought
locations (317 for meteorological, 347 for agricultural and 320 for hydrological) were
randomly chosen to validate the prepared drought vulnerability maps where the validation
data represent 100% of the drought location points.

4. Results and Discussion
4.1. Meteorological Drought Vulnerability Mapping

To validate the result of the produced three drought vulnerability maps, the ROC
and AUC approach are presented in Figure 6a reveal that the severe and extreme drought
vulnerability area covers roughly 14.98% (65,076.8 km2) and 18.88% (82,009.8 km2) of the
study area, accordingly.
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Around 21.38% (92,875.5 km2) of the study region was classified as a moderately
vulnerable zone. These moderate to extreme drought vulnerable zones are found mostly in
the northern, northwestern and southwestern parts of the study region, particularly Bulloo,
Quielpie, Murweh and Parro. Less rainfall, high temperatures and high evaporation prevail
in these regions. Meanwhile, around 44.77% (194,479 km2) of the study site are classified as
normal to mild drought vulnerability zones. Most of these areas are located in the eastern,
northeastern and southeastern portions of the studied region, which have low rainfall, low
temperature and low evaporation.

4.2. Hydrological Drought Vulnerability Mapping

Figure 6b demonstrates the spatial distribution and pattern of hydrological drought
vulnerability of the study region. The extreme drought vulnerability category accounts for
approximately 15.4% (63,167.04 km2) of the study region, which is lower than other drought
vulnerability categories. The area labelled as moderate to extreme drought vulnerable
region is 68.94% (289,574.51 km2). These highly vulnerable regions are found in the central,
northeastern and southeastern portions of the study site, particularly Murweh, Maranoa,
Balonee, Western Downs and Goodniwindi. The high elevation, steep slope and less
surface water bodies of these regions are considered factors that cause high vulnerability to
hydrological drought. Conversely, places that have normal to mild drought vulnerability
cover 9.47% (39,774.13 km2) and 21.57% (90,628.34 km2), respectively, located mostly in
western, northwestern, southwestern and eastern portions of the study region.

4.3. Agricultural Drought Vulnerability Mapping

Figure 6c exhibits the spatial distribution and pattern of agricultural drought vulnera-
bility of the study area. The extreme and severe agricultural drought vulnerable categories
constitute 91,674.87 and 44,122.4 km2 of the study area, accordingly and cover 31.26% of
the study site (Table 4). These highly vulnerable areas are found mostly in the western,
northwestern and southwestern portions of the study region covering Bulloo, Quilpie and
Paroo. The areas classified as moderately vulnerable to agricultural drought represent
28.01% (121,665.1 km2) of the total study site. These classified areas are scattered mostly
in the central and south-eastern portions of the study site, particularly Balonne, Mara-
noa, Goondiwindi, Western Downs and Lockyer valley. All these moderate to extremely
vulnerable regions are characterised by expansive agricultural lands, shallow soil depth,
sandy and less PAWC. Areas classified as mild to normal vulnerability to agricultural
drought comprise 26.22% (1,139,906.9 km2) and 13.83% (60,076.74 km2) of the study area,
accordingly. Land use patterns, high soil depth and high PAWC are observed in areas with
low agricultural drought vulnerability.

Table 4. Area coverage of meteorological, hydrological, agricultural and overall drought vulnerability classes and share of
drought events according to the defined drought vulnerability classes.

Vulnerability
Class

Meteorological Drought Hydrological Drought Agricultural Drought Overall Drought

Area (sq. km) Area (%) Area (sq. km) Area (%) Area (sq. km) Area (%) Area (sq. km) Area (%)

Normal 87,926.82 20.24 39,774.13 9.47 60,076.74 13.83 32,898.09 7.83
Mild 106,551.73 24.53 90,628.34 21.57 113,906.86 26.22 87,403.22 20.81

Moderate 92,875.52 21.38 116,645.94 27.77 121,665.09 28.01 125,223.64 29.81
Severe 65,076.79 14.98 109,761.53 26.13 44,122.40 10.16 100,997.17 24.04

Extreme 82,009.77 18.88 63,167.04 15.04 91,674.87 21.10 70,824.2 16.86

4.4. Overall Drought Vulnerability Mapping

Figure 7 presents the overall vulnerability to drought in the study area. The ex-
treme and severe overall drought vulnerable categories in the study regions cover 16.86%
(70,824.2 km2) and 100,997.17% (24.4%), respectively, representing approximately 40.6% of
the total study regions (Table 4). These regions are observed mostly in the western, north-
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western, southwestern and some middle portions, specifically, Bulloo, Quilpie, Parro, Mur-
weh, Balonne and Maranoa. Areas classified as moderately vulnerable to overall drought
comprise 21.49% (93,357.94 km2) of the total study regions. These regions are concentrated
mostly in the eastern, northeastern and southeastern portions of the study sites, covering
Goodniwindi, Western Downs, Lockyer valley, Western Downs and Toowoomba. Mean-
while, normal and mild drought areas encompass approximately 7.83% (32,898.09 km2)
and 20.81% (87,403.22 km2) of the study regions, accordingly. These regions are scattered in
portions of the eastern and northern parts, especially areas towards the coastline. Overall,
nearly the total area, except for several areas of the eastern and northeastern regions, can
be labelled as drought prone.
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4.5. Validation of Drought Vulnerability Maps

Figure 8 demonstrates the prediction rate curves, providing model efficiency applied
in the current study. The AUC of the prediction rate for the meteorological, agricultural
and hydrological vulnerability maps were 0.79, 0.82 and 0.88, respectively, explaining
79.3%, 82.7% and 86.8% AUC prediction accuracy of the tested model. The values of
AUC vary between 0.5 and 0.1, and value close to 1 shows higher accuracy [72]. Conse-
quently, AUC values of the prediction rate (79.3%, 82.7% and 88.8%) of this study present
a convincing outcome of our prepared and tested drought vulnerability mapping ap-
proach. Moreover, our findings corroborated with the existing studies applied in a similar
environment [2,21,67,74]. For instance, Rahmati, et al. [73] and Rahmati, et al. [2] validated
their models for agricultural and meteorological droughts. A similar method was also
applied by Dayal, et al. [20] for validating drought risk. Later Rahmati, et al. [73] and
Rahmati, et al. [2] modified the method to apply it only for specific drought hazards, such as
meteorological or hydrological. Rahmati, et al. [73], Rahmati, et al. [2] and Dayal, et al. [20]
tested their models in south-east Queensland, Australia whilst we targeted the entire
southern Queensland.
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5. Discussion

In the recent past, drought has been one of the major concerns for Australia. Due to
recurrent drought incidents, crop production, livestock farming, the river flows, water-
dependent ecosystems, rural and urban communities of Australia have been affected
severely [17,74]. Several studies anticipated further increase in trend of drought for Aus-
tralia in more severe scale [75–78]. Therefore, this study designed to develop a compre-
hensive drought vulnerability map that combines three common drought components by
applying geospatial techniques and to assess the spatial extent of drought vulnerability for
southern Queensland. We selected the relevant variables to assess the particular drought
type vulnerability which are influencing the relevant drought category vulnerability fol-
lowing the methodology of several published articles in renowned journals [25,26,34,35,55].
We believe that chosen variables had direct impacts on the particular drought hazard and
were effective in the assessment of drought vulnerability. Moreover, we mostly focused on
physical aspects of drought vulnerability in this study.

The findings demonstrate that extreme and severe overall drought-vulnerable cate-
gories in the study regions cover 20.1% and 20.5%, respectively, representing approximately
40.6% of the total study regions. These regions are observed mostly in the western, north-
western, southwestern and some middle portions, specifically, Bulloo, Quilpie, Parro,
Murweh, Balonne and Maranoa. Our findings of meteorological, agricultural, and overall
drought corroborated with existing relevant studies of Rahmati, et al. [2], Dayal, et al. [20],
Rahmati, et al. [73] and Kiem, et al. [79]. These studies focused on the southeastern part of
Queensland. Similarities were observed between vulnerability index by Dayal, et al. [20]
and the findings of the current overall drought vulnerability. Such resemblance is also
found between Rahmati, et al. [2] and Rahmati, et al. [73] with the current findings from
agricultural vulnerability index. The overall drought vulnerability is the final outcome of
individual drought indices such as meteorological, agricultural, and hydrological drought.
These individual indices were validated through ROC technique and all the indices have
an accuracy close to 80%. With an acceptable level of accuracy, all the drought indices
reveal appropriateness of applied models first applied by Hoque, et al. [53].

This study also has several drawbacks. For example, only meteorological, hydrological
and agricultural categories were integrated into this study as categories of drought for
vulnerability assessment. We were unable to include socio-economic drought effects.
Although we integrate three types of drought, the time scales were not same which can
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deliver potential error. Managing datasets at similar time scales was challenging. Similarly,
application of the annual time step index was underestimated. Moreover, the study
benefitted from high-resolution datasets for preparing some criteria layers (e.g., elevation,
LULC, and slope). Most data were used in this study were at low spatial resolution (90 m).
As a result, our final outputs were mapped at only 90 m spatial resolution. High spatial
resolution maps can improve the accuracy and visualisation of the findings. Historical
drought records were used to validate our final outputs because we could not collect field
data due to time constraint and funding issues. In terms of meteorological drought, we rely
on the meteorological stations that are capable of providing data without year gaps, thus
the meteorological stations do not cover the entire study area. However, meteorological
stations that cover the whole study area could provide a better outcome. Further, the
weights determined by FAHP technique is basically based on the experience of the experts.
Due to time frame and funding, we are unable to consider other methods for this study.
The application of robust machine learning method is planned in our future work. Further,
it would be better to include the drought impact sectors in the drought vulnerability
assessment. However, due to time frame and funding, we are unable to consider the
drought impact sectors at this moment. It will be our future effort. We attempted to
validate the final vulnerability map using NDWI. However, our validation method requires
datasets for 2013 which is one of the driest years in history. We already used Sentinel-2
for generating LULC and to maintain consistency Sentinel-2 is also required for NDWI.
Unfortunately, Sentinel-2 datasets are not freely available for 2013. Further, we also require
time series datasets for computing mean NDWI between 2013 and 2018 as we did for
other drought validation. Due to the limited timeframe, it is not possible for us to deal
with 60+ satellite images for each year. It will be our future effort. Along with the above
drawbacks, future studies can also consider relevant climate change factors that influence
each type of drought. Despite these limitations, the findings of this study are still useful in
the development of drought mitigation measures to minimise drought losses and its effects
on agricultural, socio-economic activities and environments.

6. Conclusions

The current study aimed to develop a comprehensive drought vulnerability map and
assess the spatial extent of the overall vulnerability of droughts for the southern Queensland
regions of Australia. For the first time, the three categories of drought with their relevant
criteria are combined to produce reliable outputs in the study region. To this end, the
preparation, processing and integration of criteria and drought types were performed
using geospatial techniques and FAHP. The overall drought vulnerability map was verified
successfully by using the ROC and AUC approach. The overall drought vulnerability
map demonstrates severe to extreme drought vulnerability for Bulloo, Quilpie, Paroo,
Murweh, Balonne and Maranoa areas of the study site. Except for several areas in the
eastern (i.e., Gympie, Noosa, Somerset, Ipswich, Logan and Scenic Rim) and northeastern
regions (i.e., South Burnett and Southern Downs), all areas of the study site are under mild-
to-moderate drought vulnerable areas. The results can assist concerned authorities and
policymakers in visualising drought vulnerability and its level of intensity and developing
proactive drought mitigation strategies.
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Appendix A

Table A1. Membership function of linguistic scale.

Linguistic Variable Crisp Number Triangular Fuzzy
Numbers

Reciprocal Triangular
Fuzzy Numbers

Equally strong 1 (1, 1, 1) (1, 1, 1)
Moderately strong 3 (2, 3, 4) (1/4, 1/3, 1/2)
Strong 5 (4, 5, 6) (1/6, 1/5, 1/4)
Very strong 7 (6, 7, 8) (1/8, 1/7, 1/6)
Extremely strong 9 (9, 9, 9) (1/9, 1/9, 1/9)

Intermediate

2 (1, 2, 3) (1/3, 1/2, 1)
4 (3, 4, 5) (1/5, 1/4, 1/3)
6 (5, 6, 7) (1/7, 1/6, 1/5)
8 (7, 8, 9) (1/9, 1/8, 1/7)
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