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An Entropy-guided Reinforced Partial
Convolutional Network for Zero-Shot Learning

Yun Li, Zhe Liu, Lina Yao, Xianzhi Wang, Julian McAuley, Xiaojun Chang

Abstract—Zero-Shot Learning (ZSL) aims to transfer learned
knowledge from observed classes to unseen classes via semantic
correlations. A promising strategy is to learn a global-local
representation that incorporates global information with extra
localities (i.e., small parts/regions of inputs). However, existing
methods discover localities based on explicit features without dig-
ging into the inherent properties and relationships among regions.
In this work, we propose a novel Entropy-guided Reinforced
Partial Convolutional Network (ERPCNet), which extracts and
aggregates localities progressively based on semantic relevance
and visual correlations without human-annotated regions. ER-
PCNet uses reinforced partial convolution and entropy guidance;
it not only discovers global-cooperative localities dynamically but
also converges faster for policy gradient optimization. We conduct
extensive experiments to demonstrate ERPCNet’s performance
through comparisons with state-of-the-art methods under ZSL
and Generalized Zero-Shot Learning (GZSL) settings on four
benchmark datasets. We also show that ERPCNet is time efficient
and explainable through visualization analysis.

Index Terms—Zero-shot learning, reinforcement learning, im-
age representation.

I. INTRODUCTION

Zero-shot Learning (ZSL) mimics the human ability to
perceive unseen concepts [1], [2]. In image classification, ZSL
models should still work when only semantic descriptions of
a class (i.e., attributes that describe the visual characteristics
of an image, such as the object is black) are given. A
typical scheme for ZSL is to extract visual representations
from images and then learn visual-semantic associations [3].
However, approaches following this scheme often focus on
global features while failing to capture subtle local differences
between classes. Then they may fail to handle difficult tasks
in the real-world applications, e.g., fine-grained image classi-
fication [4], where classes are highly similar. A few studies
have paved the way to incorporate ‘locality’ knowledge, i.e.,
discriminative parts/regions in the original image, into global
information [5]–[9]. These approaches are either annotation-
based or weakly-supervised [5]–[7], [10]. Annotation-based
methods [10]–[13] use extra annotations of important local
regions to supervise the locality learning, although manual
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Fig. 1. Locality comparisons. (a) Conventional locality. (b) Progressive
locality.

annotations are often time-consuming and costly to obtain.
Weakly-supervised methods mitigate the challenge for labeled
data acquisition by detecting salient local regions without
ground-truth annotations. They adopt multi-attention [5], [14]–
[17] or pre-defined strategies [6], [7], [18] to capture diverse
localities.

Overall, existing studies [5], [6], [12], [15], [19] only
consider fixed numbers of localities while neglecting that
different images may need different numbers of localities. The
demand for locality exploration increases when the images are
harder to classify. Thus, methods that use a fixed number of
localities are inefficient and may introduce noise. Moreover,
such methods [5], [14], [15], [20], [21] learn regions inde-
pendently without accounting for inter-dependencies among
regions, leading to poor performance on downstream tasks. As
an example, Figure 1(a) shows a conventional deep learning
version of the blind man and the elephant parable. In this
example, six attention-maps/extractors each extract a different
part as the locality and tend to identify the elephant as
different objects (namely snake, spear, fan, wall, tree, and rope,
respectively). Then, all the extracted localities will confuse the
final classifier that aims to distinguish the elephant.

To address the above challenges, we introduce Reinforce-
ment Learning (RL) to highlight localities based on region
correlations progressively. Since it is challenging to train the
reinforced model under weak supervision and to scale to
real-world datasets [22], we learn localities at the level of
abstraction hierarchies, i.e., convolution-level, to enable fast
training. As shown in Figure 1(b), our model first selects
an ear-related feature map and speculates the object could
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Fig. 2. Overview of ERPCNet. Given an input image x, the model extracts global embeddings eng from x and progressively processes a sequence of local
regions at the abstraction hierarchies located at {loc1, loc2, . . . }. At t-th step, ERPCNet conducts partial convolution and local extraction on the local region,
as well as selecting the next location using an entropy-guided sampler π. The global and local visual features are fed into the corresponding predictors fcg
and fcl, respectively, for zero-shot recognition. The local loss Ll guarantees the distinctiveness of a locality and its embedding el,t. The joint supervision
subnet optimizes the model to improve global and local cooperation (Ljnt) and strengthens divergence across localities (Lm). Locality selection terminates
once a sufficient reward is obtained.

be a fan, an elephant, etc. Finally, the model chooses the
nose-related feature map based on the former selection and
recognizes the object as an elephant.

In particular, we propose a novel Entropy-guided Reinforced
Partial Convolutional Network (ERPCNet) for effective global-
local learning. It leverages RL to learn localities progressively
based on semantic relevance and inherent relationships among
regions. We design a reinforced partial convolution module to
ease the sample efficiency problem for better RL optimization.
Sample efficiency refers to the action amount needed for
an RL agent to reach certain levels of performance. Partial
convolution can reduce the action space by integrating RL
in the abstraction hierarchies instead of at the conventional
image level to allow fast training. Also, partial convolution
is more efficient and flexible than processing image-level
localities from scratch at each step. Besides, the entropy,
introduced as expert knowledge, can complement the reward
of the reinforced module to accelerate reward learning and
improve performance.
Contributions. In summary, we make the following contribu-
tions in this paper:
—We present ERPCNet for zero-shot learning. The network
learns a robust and powerful global-local representation in a
weakly-supervised manner. It can effectively extract localities
that complement the global representation based on semantic
relevance and locality relationships. The partial convolution
module can mitigate the high training cost of RL and allow
training to converge faster.
—We design an entropy-guided reward function and use an
entropy ratio to reflect the informativeness of localities. We

harness the ratio as expert knowledge to guide the training of
the reinforcement module, which can significantly boost and
improve the model’s efficacy and performance.
—We carry out extensive experiments on four benchmark
datasets in both ZSL and Generalized Zero-shot Learning
(GZSL) settings to demonstrate the improvement of our pro-
posed model over the state-of-the-art. We further analyze and
shed light on the effectiveness, efficiency, and explainability
of our model.

II. METHODOLOGY

We start by introducing the problem definition of
ZSL/GZSL and notations used in the paper. Let S =
{(x, y, a)|x ∈ XS , y ∈ Y S , a ∈ AS} be the training data from
seen classes (i.e., classes with labeled samples), where x ∈ XS

denotes the data instance (i.e., an image), y ∈ Y S denotes the
class label of x, and a ∈ AS represents an attribute (or other
semantic side information) of y. Similarly, we define test data
from unseen classes as U = {(x, y, a)|x ∈ XU , y ∈ Y U , a ∈
AU}. Given an image x from an unseen class and a set of
attributes of unseen classes AU , ZSL aims to predict the class
label y ∈ Y U of the image, where seen and unseen classes
are disjoint, i.e., Y S ∩ Y U = ∅. GZSL is more challenging,
aiming to predict images from both seen and unseen classes,
i.e., y ∈ Y U ∪ Y S .

A. Overview

The procedure of ERPCNet is described in Figure 2. ER-
PCNet consists of the global subnet, the local subnet, and
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the joint supervision subnet. The global subnet extracts global
information and provides inspiration for determining the initial
patch location. The local subnet adopts the entropy-guided
policy network π as the sampler to select discriminative parts
and then conducts partial convolution for locality extraction.
The joint supervision subnet, composed of two branches, takes
the global/local visual and semantic embeddings as the input
to conduct joint supervision for better optimization.

The global subnet consists of the global extractor fG and
the corresponding predictor fcg . Let eig be the corresponding
output of the i-th layer of fG. The global extractor fG takes
raw images as input and plays two important roles in the
network: 1) extracting the global representation ēng of the
original images and 2) providing the preliminary information
en−1
g for the local subnet, where fcg optimizes ēng and en−1

g

to carry the attribute information.
Given ēng and en−1

g produced by the global subnet, the
local subnet employs the partial convolution module fP , the
locality extractor Cl and the predictor fcl to progressively
learn localities to complement our global representation. fP
provides localities by an entropy-guided sampler π (for region
selection) and a convolution kernel (for partial convolution).
Cl further extracts high-level locality representation, and fcl
ensures attribute-richness of the locality.

With the global representation and extracted localities from
global/local subnets, the joint supervision subnet optimizes the
extracted embeddings. It consists of a fusion module fcj and
a normalized max pool for joint attribute regularization and
highlighted attribute regularization, respectively.

B. Global subnet

The global subnet aims to extract discriminative global
features for zero-shot recognition and provide adequate prelim-
inary information for the local subnet. Given an input image x,
the global extractor fG = {C1

g , C
2
g , ..., C

n
g } (a CNN backbone)

embeds the input to a visual feature map eng ∈ RH×W×CH :
eng = Cng (...(C1

g (x))), where H , W and CH denote height,
width and channel, respectively; n denotes the n-th layer in
the global extractor; C denotes a convolutional block.

The extractor is followed by global average pooling to learn
a visual embedding ēng , which is further projected into the
semantic space by the predictor fcg . fcg optimizes the global
subnet using the loss Lg to promote the compatibility between
the learned embedding and the corresponding attribute:

Lg = CE (āg, y) = − log
exp(fcg(ē

n
g )Tφ(y))∑

ŷ∈Y S exp(fcg(ēng )Tφ(ŷ))
(1)

where ēng = AdaptiveAvgPool(eng ); y denotes the label
for x; φ(y) denotes the attribute vector of y; CE denotes
CrossEntropy.

C. Local subnet

The local subnet aims to progressively discover the localities
ēl,t to complement the global embedding. We propose the
entropy-guided reinforced partial convolution module fP , the
local extractor Cl, and the local predictor fcl to select regions

partial
feature map

feature map

Fig. 3. Partial convolution fP .

and extract localities iteratively based on semantic relevance
and region correlation.

Entropy-guided reinforced partial convolution. Tradi-
tional convolution starts with a kernel that slides over the input
data. The kernel repeatedly conducts element-wise multiplica-
tion and aggregates the results on all locations that it slides
over. Unlike traditional convolution, to explore and strengthen
localities, our main idea is to conduct partial convolution, i.e.,
we carry out the multiplication and summation procedure only
on selected regions that are critical for classification, as shown
in Figure 3.

Suppose that H ′ × W ′ is the input size of the partial
convolution, and k × k, q, and p are the kernel size, stride,
and padding, respectively. Partial region location search can
be transferred to a grid search problem with the grid size
of (H

′+2p−k
q + 1) × (W

′+2p−k
q + 1). The search is fulfilled

by a recurrent network π that aggregates all the previous
information. Since partial convolution is non-differentiable, we
consider π as an agent and optimize it using an RL method
called Proximal Policy Optimization (PPO) [23]. When the
entropy-guided partial convolution module fP takes the global
feature map (i.e., the intermediate output of fG) from more
forward layers as the input, on the one hand, the computational
cost to explore localities increases since there are more search
locations with larger H ′ and W ′, and more subsequent convo-
lution operations are needed to encode the selected locality to
the same dimension of the global embedding eng . On the other
hand, in more forward layers, there may exist more useful
information ignored in the global embedding. Therefore, as
a trade-off between performance and computational cost, we
assign fP after the (n−1)-th convolutional block Cn−1

g of fG.
This way, the action space of π is drastically reduced, and the
regions become more information-intensive. It also becomes
easier for π to make decisions and achieve higher rewards.
All the above-mentioned factors can help mitigate the sample
efficiency problem of RL.

To better utilize global and local information, we design
the state st for π to cover two situations during progressive
selection:

st =

{
< ēng ,∅ > t = 1

< ēl,t−1, ht−1 > t > 1
(2)

where st denotes the state for the t-th step; ∅ denotes the
empty set; ht−1 denotes the hidden state from the previous
selection in the recurrent network. In the first step, we high-
light the most helpful region for global embedding. In the
following steps, we keep previous selections as the hidden
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information and find the best locality for the current extracted
representation.

Given the current state st, the sampler π chooses a locating
action loct ∼ π(loct|st). loct = {i, j} is a coordinate
where i ∈ [1, H

′+2p−k
q + 1] and j ∈ [1, W

′+2p−k
q + 1].

Then, we can obtain the region locality epl,t as: epl,t =

Conv(Crop(π(st), e
n−1
g )), where Crop is a Region of Interest

(RoI) pool; Conv is the convolution kernel for fP . We use
Crop to align the output size during selection.

We repeat the procedure of selecting and extracting locali-
ties until the reward of π exceeds a pre-defined threshold σ.
Regions that have been visited will not be chosen again. The
definition of the reward and the details of π will be discussed
in Section II-E. At this stage, epl,t is rough and insufficient for
predicting attribute vectors, so we apply a locality extractor
Cl to further distill: ēl,t = Cl(e

p
l,t).

To optimize the convolution kernels in fP and Cl, we apply
a local predictor fcl to help train the kernels to effectively
extract attribute-related localities by a locality loss Ll:

Ll =
1

|step|
∑
t

Ll,t(āl,t, y)

= − 1

|step|
∑
t

log
exp(fcl(ēl,t)

Tφ(y))∑
ŷ∈Y S exp(fcl(ēl,t)Tφ(ŷ))

(3)

where |step| denotes the selection number. It may be insuffi-
cient to use the same ground-truth attributes to optimize the
local subnet since we aim to capture diverse localities across
steps. Therefore, we apply a maximum prediction loss Lm to
maximize locality diversity in Section II-D.

D. Joint supervision subnet

We conduct joint supervision over the learned global and
local embeddings. Joint supervision consists of two losses: a
joint prediction loss Ljnt and a maximum prediction loss Lm.
Both are evaluated by CrossEntropy:

Ljnt == − log
exp(fcj(< ēng , ēl,1, ..., ēl,t >)Tφ(y))∑

ŷ∈Y S exp(fcj(< ēng , ēl,1, ..., ēl,t >)Tφ(ŷ))
(4)

Lm == − log
exp(maxi(<ā

n
g ,āl,1,...,āl,t>i)

Tφ(y))∑
ŷ∈Y S exp(maxi(<āng ,āl,1,...,āl,t>i)Tφ(ŷ))

(5)

where fcj is a fusion module to predict joint attributes āj
based on global and local visual embeddings of all steps; ām
is a vector composed of the maximum value in each dimension
of the learned global and local attributes.

Global-local cooperation. We concatenate the global em-
bedding with the corresponding localities to predict the at-
tribute vectors through fcj . Therefore, fcj can be optimized by
the loss Ljnt to help the learned global and local embeddings
collaborate better. Note that we use zero-padding to align the
input of fcj since the lengths of action sequences differ across
images.

Locality diversity. Our network aims to enable the local
subnet to capture diverse localities. Therefore, representations
from different steps should emphasize different parts of the
attribute vectors. The loss Lm is designed to optimize the

combinations of the most significant parts from global and
local attribute embeddings. Lm along with the locality loss Ll
jointly improve the locality diversity and discrimination.

E. Entropy-guided policy network

The entropy-guided policy network π is based on the
global-local structure and joint feature learning. We introduce
information entropy as expert knowledge to help optimize the
policy network. A common obstacle of RL training is the
sparse-reward problem, which occurs when the RL agent does
not observe enough reward signals to reinforce its actions and
then hinders the learning. Information entropy is a common
tool to measure information quantity and can be used to guide
the module towards informative regions that are more likely to
contain useful localities, which, intuitively, can help alleviate
the sparse-reward problem of RL.

Given an arbitrary instance (x, y, a), we obtain the corre-
sponding locality sequence as {ēng , ēl,1, ..., ēl,t}. During se-
lection, we conduct the joint prediction for each step: āj,t =
fcj < ēng , ēl,1, ..., ēl,t >. Then, we use the union prediction
probability of the ground-truth label as the reward:

rt = β(
exp(āTj,tφ(y))∑

ŷ∈Y S exp(āTj,tφ(ŷ))
+

exp(āTg φ(y))∑
ŷ∈Y S exp(āTg φ(ŷ))

) (6)

where β is the entropy weight of instances. The weight β is
calculated as follows:

β =
Entropy(Crop(loct, e

n−1
g ))

Entropy(en−1
g )

(7)

Entropy(e) = −
∑
i

∑
j

∑
k

p(ei,j,k) log p(ei,j,k) (8)

where i, j, k denote the location coordinates; loct denotes the
action for step t; Entropy calculates the information entropy
of the given region. We assess the entropy ratio of the selected
region to the whole and use this ratio to represent the relative
information richness. The entropy ratio can scale the prediction
confidence to boost the policy network optimization.

Finally, we can optimize the following loss function accord-
ing to the work of Schulman et al. [23]: maxπ E[

∑
t γ

t−1rt],
where γ denotes a discount parameter. The detailed optimiza-
tion procedure is given in Appendix A.

F. Training and Inference

We train our model in an end-to-end manner. To prevent
overfitting, we set a maximum step number T and halt the
selection once the reward exceeds the threshold rt ≥ σ (1 6
t 6 T ) or after T steps.

Training We use a two-stage strategy to maximize the
prediction capability with the fewest locality proposals. At
stage I, we train the model to predict correctly for an arbitrary
sequence of local regions. Instead of using π, we randomly
select local regions at each step without early-stopping. Then,
we optimize the rest of the model by minimizing the overall
loss: Lerpc = Lg + Ll + Ljnt + Lm. At stage II, we fix
the parameters of modules trained in Stage I and use π to
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TABLE I
STATISTICS OF EXPERIMENTAL DATASETS

Datasets Attribute dim Image num Seen/Unseen classes
SUN 102 14340 645/72
CUB 1024 11788 150/50
aPY 64 15339 20/12
AWA2 85 37322 40/10

select locations (with early-stopping). Then, we apply PPO to
optimize π to pick the most discriminative localities.

Inference Once our model is trained, we use the union of
the global and local prediction for zero-shot learning inference:
ā = āj,t + āg . For ZSL, given an image x, the model extracts
global information and then performs locality search iteratively
until the termination condition. During inference, the model
considers the predicted label as ground-truth to calculate the
reward. Then, we take the class with the highest compati-
bility as the final prediction: yU = arg max āTŷ∈Y Uaŷ∈Y U .
For GZSL, since both seen and unseen classes may occur
during testing, there exists a strong bias toward seen classes.
To help eliminate the bias, we adopt Calibrated Stacking
(CS) [24] to decrease the confidence of seen classes by a
constant. The final prediction would be: yU∪S = arg max <
āTŷ∈Y Uaŷ∈Y U , āTŷ∈Y Saŷ∈Y S − δ >, where δ is a pre-defined
parameter.

III. EXPERIMENTS

We conduct experiments on four benchmark datasets for
both ZSL and GZSL: SUN [25], CUB [26], aPY [27], and
AwA2 [28]. SUN and CUB are fine-grained datasets, contain-
ing 14,340 images from 717 scene classes with 102 attributes
and 11,788 images from 200 bird species with 312 attributes,
respectively; aPY contains 15,339 images from 32 classes
with 64 attributes, where images are from two distinct main
types (buildings and animals); AwA2 is a large coarse-grained
dataset comprising 37,322 images from 50 diverse animals
with only 85 attributes. We adopt Proposed Split (PS) [28],
which is commonly used to avoid unseen data leak, to divide
datasets into seen/unseen classes. Table I shows the statistics
of the datasets and splits.

We adopt Resnet101 [29] pretrained on ImageNet [30] as
the backbone (i.e., the global extractor fG) and divide fG into
blocks {C1

g , C
2
g , . . . , C

n
g } following [29]. Cl shares the same

structure and initial parameters with Cng but will have different
parameters after optimization. At Stage I, we use SGD [31]
with image size of 224×224, momentum of 0.9, weight decay
of 10−5, and a learning rate of 10−3. The learning rate decays
by 0.1 every 30 epochs. At Stage II, we use Adam [32] to
optimize π with a learning rate of 3 × 10−4 and γ of 0.99.
The maximum step T is set to be 10 for AwA2, and 6 for
other datasets. More parameters and network architecture are
given in Appendix B.

A. Comparisons with Baselines and Ablation Study

ZSL: We compare our method with two groups of state-
of-the-art methods: non-end-to-end methods (including em-
bedding methods and generative methods) and end-to-end

TABLE II
OVERALL COMPARISON IN ZSL. THE PERFORMANCE IS EVALUATED BY

AVERAGE PER-CLASS TOP-1 ACCURACY (%). NON-END-TO-END AND
END-TO-END METHODS ARE LISTED AT THE TOP AND BOTTOM,

RESPECTIVELY. THE BEST RESULTS ARE MARKED IN BOLD.

Method SUN CUB aPY AwA2
Non-End-to-End
SP-AEN [33] 59.2 55.4 24.1 58.5
RelationNet [34] - 55.6 - 64.2
PSR [35] 61.4 56.0 38.4 63.8
PREN [36] 60.1 61.4 - 66.6
SGV-18 [37] 59.0 67.2 - 67.5
Generation Methods
cycle-CLSWGAN [38] 60.0 58.4 - 67.3
f-CLSWGAN [39] 58.6 57.7 - 68.2
TVN [40] 59.3 54.9 40.9 68.8
SE-GAN [41] 61.8 60.8 - 68.8
Zero-VAE-GAN [42] 58.5 51.1 34.9 66.2
End-to-End
QFSL [43] 56.2 58.8 - 63.5
SGMA [5] - 71.0 - 68.8
LFGAA [44] 61.5 67.6 - 68.1
VisEn [45] - 58.6 - 65.7
AREN [15] 60.6 71.5 39.2 67.9
SELAR-GMP [46] 58.3 65.0 - 57.0
APN [6] 60.9 71.5 - 68.4
GlobalNet (ours) 61.3 68.1 39.4 66.9
PCNet (ours, random) 62.8 71.2 41.8 69.6
RPCNet (ours, reinforced) 63.3 72.0 43.5 71.6
ERPCNet (ours, entropy-guided) 63.1 72.5 43.5 71.8

methods. We evaluate the methods by average per-class Top-1
(T1) accuracy to mitigate the influence of class imbalance.
Results are shown in Table III. For competitors, we use
the accuracy reported in the original papers. Since APN [6]
additionally uses group side information (besides class labels),
we list the results of its without-group version to make a fair
comparison.

Table II shows that our method consistently outperforms
other models (and especially other end-to-end methods) by a
large margin. In particular, ERPCNet outperforms the second-
best method by 1.5%, 1%, 2.6%, and 3% on SUN, CUB, aPY
and AWA2, respectively. The performance gain on SUN and
CUB (which contains fewer images for each class) is not as
significant as on AwA2 and aPY.

Ablation study: We also compare with GlobalNet (classi-
fication using only global subnet), PCNet (randomly selecting
locality), and RPCNet (ERPCNet without entropy guidance)
as ablations in ZSL. Our proposed entropy-guided reinforced
partial convolution is effective on the four benchmark datasets,
demonstrated by the reinforced partial convolution module
improving T1 by up to 2.0%, 4.4%, 4.1% and 4.9% on SUN,
CUB, aPY, and AwA2, respectively, when compared with
GlobalNet (shown in Table II). The improvement derives from
three aspects: 1) the incorporation of local information (proved
by the superiority of PCNet over GlobalNet), 2) the use of RL
to progressively select localities (confirmed by the advantage
of RPCNet over PCNet), and 3) the guidance of entropy
(demonstrated by comparing ERPCNet with RPCNet). We also
conduct an ablation study on Lm to prove the effectiveness of
our proposed loss function. We do the ablation study on PCNet
to eliminate the influence of the RL component. The results
on CUB dataset are 71.2 % with Lm, and 70.4% without Lm.
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TABLE III
OVERLL COMPARISON IN GZSL. THE PERFORMANCE IS EVALUATED BY AVERAGE PER-CLASS TOP-1 ACCURACY (%) ON SEEN CLASSES(S), UNSEEN

CLASSES (U), AND THEIR HARMONIC MEAN (H). WE EMBOLDEN THE BEST RESULT ON EACH DATASET.

Method SUN CUB aPY AWA2
U S H U S H U S H U S H

Non End-to-End
SP-AEN [33] 24.9 38.6 30.3 34.7 70.6 46.6 13.7 63.4 22.6 23.0 90.9 37.1
RelationNet [34] - - - 38.1 61.1 47.0 - - - 30.0 93.4 45.3
PSR [35] 20.8 37.2 26.7 24.6 54.3 33.9 13.5 51.4 21.4 20.7 73.8 32.3
PREN [36] 35.4 27.2 30.8 35.2 55.8 43.1 - - - 32.4 88.6 47.4
Generative Methods
cycle-CLSWGAN [38] 47.9 32.4 38.7 43.8 60.6 50.8 - - - 56.0 62.8 59.2
f-CLSWGAN [39] 42.6 36.6 39.4 43.7 57.7 49.7 - - - 57.9 61.4 59.6
TVN [40] 22.2 38.3 28.1 26.5 62.3 37.2 16.1 66.9 25.9 27.0 67.9 38.6
SE-GAN [41] 44.7 37.0 40.5 48.4 57.6 52.6 - - - 55.1 61.9 58.3
Zero-VAE-GAN [42] 44.4 30.9 36.5 41.1 48.5 44.4 30.8 37.5 33.8 56.2 71.7 63.0
End-to-End
QFSL [43] 30.9 18.5 23.1 33.3 48.1 39.4 - - - 52.1 72.8 60.7
SGMA [5] - - - 36.7 71.3 48.5 - - - 37.6 87.1 52.5
LFGAA [44] 20.8 34.9 26.1 43.4 79.6 56.2 - - - 50.0 90.3 64.4
AREN [15] 40.3 32.3 35.9 63.2 69.0 66.0 30.0 47.9 36.9 54.7 79.1 64.7
SELAR-GMP [46] 22.8 31.6 26.5 43.5 71.2 54.0 - - - 31.6 80.3 45.3
APN [6] 41.9 34.0 37.6 65.3 69.3 67.2 - - - 56.5 78.0 65.5
Ours ERPCNet 47.2 31.9 38.1 67.1 69.6 68.4 32.7 49.3 39.3 59.1 82.0 68.7

We also do ablation on SUN dataset and vary the ratio of Lm.
The results are 62.8% and 61.5% when the ratios are 1 and
0.5, respectively.

GZSL: Following [28], we evaluate the average per-class
accuracy on seen classes (denoted by S), unseen classes (de-
noted by U ), and their harmonic mean (defined as H = 2US

U+S )
in the GZSL setting. Table III shows that our model outper-
forms all other embedding approaches, especially on the aPY
and AwA2 datasets, yielding 2.4% and 3.2% improvements
of H , respectively. The results demonstrate that our model
can transfer knowledge from seen classes to unseen classes
successfully.

Since GZSL needs to predict labels for both seen and
unseen classes, there may exist a strong bias towards seen
classes during testing. Generative methods can, to some extent,
address the problem naturally by synthesizing instances for
unseen classes. This explains why generative methods perform
better than non-generative methods in GZSL. Interestingly, our
model’s performance is comparable to or better than generative
models, demonstrating our model’s generalization ability.

B. Efficacy of entropy-guided reinforcement learning

Figures 4(a)-(b) show the average terminating steps and best
epochs (at which the model achieves the highest accuracy) of
RPCNet and ERPCNet on the four datasets. Both RPCNet
and ERPCNet take fewer steps than PCNet (6/10 steps) but
achieve higher accuracy, indicating the effectiveness of the
reinforced module π. Entropy-guided reinforcement learning
can largely decrease the number of epochs required to obtain
the best performance on CUB, aPY and AwA2. Specifically,
ERPCNet converges in 45 epochs for all datasets, which is fast
for RL training. Also, entropy knowledge can slightly reduce
the steps during testing. Entropy knowledge does not work
well on the SUN dataset. We analyze the value ranges of the
entropy weight β and find that β on SUN (on average, 1.09)
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Fig. 4. (a)-(b) Comparison between using and not using entropy-guidance. (a)
Average Step. (b) Best epoch. (c)-(d) Efficiency analysis (unit: s). (c) Average
train time. (d)Average test time.

is slightly smaller than on other datasets (on average, 1.12),
which may impair the results.

C. Efficiency of partial convolution

To examine the efficiency of partial convolution, we com-
pare our model against using hard attention [47] to explore
localities (denoted by HardNet). Hard attention finds important
image patches and extracts localities from the cropped images.
We train two feature extractors sharing the same structure with
our fG to learn from the original images and the cropped
patches, respectively. We also adopt a PPO agent π′ for
HardNet optimization. Since the size (H ′×W ′) of the feature
map for partial convolution is 14 × 14, with the kernel size
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being 5×5 and the HardNet input image size being 224×224,
we set the patch size in HardNet to 80 × 80 proportionally.
The average training and testing time of a single instance for
the optimization of π and π′ is shown in Figures 4(c)-(d),
and our model consumes around 2/3 and 1/2 of the HardNet
training/testing time, respectively. The results demonstrate the
efficiency of our partial convolution design. Integrating RL
with convolution reduces the action space from any location
in 224× 224 images to 4× 4, thus reducing the time cost.

D. Training Convergence Analysis
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(b)
Fig. 5. Acc-epoch curves. (a) CUB. (B) SUN.

To further demonstrate our claim that the proposed entropy
guidance can accelerate training convergence and improve
performance, we show how the training accuracy changes as
more epochs are performed on CUB and SUN in Figure 5.
We can find that, for CUB, the training converges around 16
epochs with the entropy guidance compared with 44 epochs
without entropy guidance. Besides, the training accuracy with
entropy guidance is higher. On the contrary, the entropy
slightly impairs the performance on SUN, which is consistent
with our observation in Section III-B. This may be due to the
lower average entropy of SUN.

E. Hyper-parameters

(a) (b)
Fig. 6. Hyper-parameter analysis. (a) Threshold analysis. (b) Step-acc curve.

Threshold σ of π: We show the performance of ZSL
varying σ from 0.1 to 1.1 with a step of 0.2 in Figure 6(a). The
results are stable when σ is over 0.7 and slightly influenced
by σ when σ ∈ [0.1, 0.5].

Step-acc curve: We fix the maximum steps T to 6 on
three datasets (SUN, CUB, and aPY) and 10 on AwA2.
The step-accuracy curves in Figure 6(b) show the accuracy

(a) (b)
Fig. 7. t-SNE visualization of unseen classes on AwA2. Rat and Bat are
circled. (a) Global embedding. (b) Union embedding.

increases as more steps are performed, and the improvement
tends to be subtle after five steps or even diminishes on
SUN. The results indicate that the local subnet incorporation
benefits classification, but introducing excessive locality could
be disadvantageous. Analysis of hyper-parameters for RPCNet
is provided in Appendix C.

F. Visualization

a) Embedding distribution visualization: Figures 7 (a)
and (b) visualize the distributions of the global embedding ēng
and the union embedding ēu = ēng + ej of unseen classes,
respectively, on AwA2 by t-SNE visualization [48]. ej is
the intermediate output of fcj . The results show that the
global embedding can distinguish most classes but can still be
confused on some unseen classes, such as bat and rat (circled
in Figure 7); in contrast, the union embedding, combined with
localities, is discriminative enough to distinguish the confused
classes.

b) Progressive process visualization: Figures 8 (a) and
(b) visualize the distinct instances that are easily predictable
with the global representation and ones that can only be
correctly classified with progressive localities on CUB and
SUN, respectively. For easier understanding, we project the
selected locality in the abstract hierarchies loct (1 6 t 6 T )
into the original image-level and use bounding boxes to
represent the locations. For the CUB dataset, green violetears
can be easily classified with probability of 99.9%, due to their
distinctiveness from other species. When classifying other sim-
ilar bird species, the progressive locality detector can gradually
increase the probability of correct predictions by locating the
regions of wing, neck, head, and tail to highlight the birds’
discriminative characteristics. Different from the CUB dataset,
experiments show that the model tends to progressively choose
representative regions for diverse objects on the SUN dataset.
For example, the proposed ERPCNet first focuses on the wall,
then concentrates on decorations and chairs to distinguish
indoor and indoor seats. This indicates that our method can
progressively pick up the best locality to distinguish similar
or diverse objects effectively.

G. Failure Modes of RL Component

Apart from the examples that ERPCNet can successfully
find progressive localities in Section III-F0b, we also perform
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(a)

(b)
Fig. 8. Visualization of progressive locality selection. The labels above the
boxes denote the step index and the prediction confidence after this selection.
The box color indicates the prediction correctness at the current step (blue:
correct; yellow: wrong). (a) CUB dataset. (b) SUN dataset.

TABLE IV
FAILURE OCCUR STEPS.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
8 3 13 3 17 13

a detailed investigation to explore failure modes of RL, in-
cluding the definition, the statistics, and the reasons for failure
mode.

We use trained models and do experiments on the CUB
dataset in the ZSL setting. There are 2,697 pictures in the
test set, with an accuracy rate of 72.5%, i.e., 816 pictures
are misclassified. There are two types of misclassifications: 1)
The model keeps misclassifying the images during the entire
decision-making process of extracting global information and
exploring the localities; 2) The model first classifies the images
correctly but then misclassifies the images after performing
several steps of locality exploration.

We attribute the first type of misclassification to the images
being beyond the classification capabilities of our model and
the second type to the failure mode of the RL component.
Specifically, 759 images belong to the first misclassification,
and 57 images belong to the second misclassification, i.e., the
failure mode. In most cases, RL components are qualified (57
failures compared with 1,938 images that are within the model
capability).

TABLE V
ACCURACY AT DIFFERENT STEPS.

Global Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
48.7 47.5 46.3 45.2 44.2 42.8 37.6

We show the steps of failure occurrence and the number of
failures in Table IV. We find that failure may occur after any
step of locality exploration, and there is no obvious regularity
in the number distribution. We also find that no matter which
steps the failure happens in the failure mode, the predicted
probabilities of correct labels decrease as more localities are
explored. Taking a failure image of northern fulmar (a seabird)
for example, the failure happens after exploring five localities.
We show the trend of the predicted probability (%) of the
correct label in Table V. We can find that the probability
declines throughout the process.

We observe the 57 images belonging to the failure mode
and find that in these pictures, the main objects account for a
relatively small area and are often hidden in cluttered environ-
ments, e.g., a bird hiding in a dense tree. Considering that the
predicted probabilities of the correct labels decline during the
decision-making process, we infer that the following results
in the occurrence of the failure mode: the initial prediction
probability does not reach the threshold of RL, so the model
continues to perform locality exploration; then the messy
background is incorporated as localities, which introduces
noise, making the probability of correct label decrease and
finally leading to wrong results.

IV. RELATED WORK

Zero-Shot Learning (ZSL). ZSL aims to classify classes
not seen during training [4], [49]–[51]. A typical strategy is
to view ZSL as a visual-semantic embedding problem, which
reduces the problem to designing an appropriate projection
that maps visual [4], [33], [34], [36], [52] and/or semantic
features [49], [53], [54] to a latent space, where ZSL measures
the compatibility score of the latent representation for classifi-
cation. For example, Ye et al. [36] design an ensemble network
to learn an embedding function from the same extracted
features to diverse labels. Zhang et al. [4] further propose a
two-branch ensemble network to learn intra-class compactness
and inter-class separability, which can provide a cross-class
classifier to ease the model bias problem in ZSL. Zhu et
al. [50] propose to fuse the prediction of semantic attributes
and the object detection, which can directly predict object
bounding boxes for both seen and unseen classes. Several
recent efforts [38], [40], [42], [55], [56] convert ZSL to tradi-
tional supervised classification by exploring generative models
to generate samples for unseen classes. For example, Chi et
al. [57] propose a dual adversarial distribution network for
the generalized embedding generation and reconstruction in
the cross-media retrieval problem, which can effectively learn
the underlying semantics and information for the classification
across heterogeneous distributions of different media types.
Yu et al. [58] propose to fuse knowledge distillation in two
different strategies (i.e., class augmentation and semantics
guidance) to improve the supervision process of the visual
classifier.

Besides, some modern works further enhance ZSL by
adopting other learning manners. For example, Chen et al. [59]
propose to conduct semantic-visual adaptation in a hierarchi-
cal manner instead of the conventional one-step adaptation,
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which can analyze the heterogeneous nature of the feature
representations. Guo et al. [60] propose a one-step ensemble
method to avoid information loss in the conventional two-
step recognition, which relies on the support vector machine
providing pseudo labels for samples from source classes. Yu
et al. [61] simulate episodes of zero-shot settings during the
training phases and thus progressively optimize the model to
be more generalized. Alamri et al. [62] propose an adapted
Vision Transformer to split images into sub-parts and capture
discriminative attributes. Some other works focus on a more
challenging setting, i.e., GZSL. For example, Chen et al. [63]
propose a feature refinement network and a self-adaptive
margin center loss to ease the cross-dataset bias between the
pre-trained dataset (i.e., ImageNet) and GZSL benchmarks.
Liu et al. [64] propose to enhance the indirect attribute
prediction by a label-activating framework, which can utilize
label information to ease the domain shift in the GZSL.

More related to our work, some end-to-end models have
been proposed for better image representation [5], [6], [15],
[43]–[45]. LFGAA [44] uses instance-based attribute attention
to disambiguate semantic characteristics. Xie et al. [15] com-
bine two branches of the multi-attention module to facilitate
embedding learning and attribute prediction. However, multi-
attention discovers a fixed number of localities independently
while neglecting their region relations, thus restricting the
attention weights to the global level. In contrast, our ERPCNet
can uncover refined local regions progressively while preserv-
ing attribute relevance and inherent correlations.

Locality and representation learning. Locality has been
extensively investigated for better representation [5]–[8].
Annotation-based methods [10]–[12] leverage extra annota-
tions in the form of ground-truth bounding boxes to extract
local information or train local detectors. Weakly-supervised
methods [7], [8], [16], [65] can avoid labor-intensive annota-
tions. [14], [15], [66], [67] adopt multi-attention to indepen-
dently search important regions and treat them equally. Xu
et al. [6] propose a prototype network to improve localities
by concentrating on semantic groups. Wang et al. [68] use a
patch proposal network to focus on discriminative regions and
remove spatial redundancy.

Summary. Our model differs from previous studies on three
aspects. 1) We first propose a new reinforced framework to find
localities in ZSL and jointly learn zero-shot recognition, re-
inforced locality exploration, and global-local representations
in an end-to-end manner. 2) We design entropy as guidance
to identify information-rich regions in order to accelerate the
training phase and alleviate sparse-reward problems. 3) We
propose reinforced partial convolution to discover localities,
which converges faster and reduces the computational cost.

V. CONCLUSION

We propose an Entropy-guided Reinforced Partial Con-
volutional Network (ERPCNet) to gain better global-local
representations in Zero-Shot Learning (ZSL). We perform
partial convolution by incorporating a reinforced region sam-
pler with a convolution kernel to dynamically find and learn
localities as complements for the global representation. We

further introduce entropy knowledge into the reward design to
guide the model toward informative regions. We evaluate our
model through extensive experiments against state-of-the-art
methods in both ZSL and GZSL settings on four benchmark
datasets. The results demonstrate the superior performance and
robustness of ERPCNet in global-local representation learning.
Ablation studies show our model’s effectiveness in locality
exploration and efficiency in training/testing the reinforced
module. In the future, we will extend ERPCNet to handle
a broader variety of multi-modality learning problems, e.g.,
visual question answering or audio-visual speech recognition
that incorporates acoustic and linguistic modalities. We will
further explore augmenting other convolutional networks with
ERPCNet as a plug-and-play component to boost their perfor-
mance.

APPENDIX A
PROXIMAL POLICY OPTIMIZATION

Our reinforcement module is implemented by an Actor-
critic network, which consists of an actor π and a critic V .
The critic V aims to estimate the state value [23]. The detailed
module architecture is shown in Section B-A.

During the training process of the reinforcement module,
we sample actions following loc ∼ π(loc|st) to optimize the
policy network, where st denotes the state for the t-th step by
maximizing the following rewards:

max
π

E[
∑
t

γt−1rt] (9)

where γ = 0.99 is a pre-defined discounted parameter and
rt denotes the reward. According to the work of Schulman
et al. [23], the optimization problem can be addressed by a
surrogate objective function using stochastic gradient ascent:

LCPIt =
π(loc|st)
πold(loc|st)

D̂t (10)

where πold and π represent the before and after updated policy
network, respectively. D̂t is the advantages estimated by an
Actor-critic network V by:

D̂t = −V (st) +
∑
t≤i≤T

γi−trt (11)

where T denotes the maximum length of the action sequence.
The policy network usually gets trapped in local optimality via
some extremely great update steps when directly optimizing
LCPI , so we optimize a clipped surrogate objective:

LCLIPt = min{ π(loc|st)
πold(loc|st)

D̂t, Clip(
π(loc|st)
πold(loc|st)

)D̂t}
(12)

where Clip is the operation that clips input to [1 − ε, 1 + ε].
We set ε = 0.2 in our experiments.

Then, to further promote the exploration of policy and the
performance of V , we take the following loss function as the
final optimization goal:

max
π,V

Ex,t[LCLIPt −α1MSE(V (st,
∑
t≤i≤T

γi−trt)+α2Sπ(st)]

(13)
where α1 = 0.5, α2 = 0.01, MSE is the mean square error
loss, and Sπ(st) denotes the entropy bonus [23], [69].
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APPENDIX B
MORE IMPLEMENTATION DETAILS

All algorithms are implemented in Pytorch 1.7.0 and com-
piled with GCC 7.3.0. The system is Linux 3.10.0, and the
GPU type is GP102 TITANX. The cuda version is 10.0.130.
The stop threshold sigma of π is set to be 0.7, 0.5, 1.1 and
0.5 for SUN, CUB, aPY, and AwA2, respectively. For GZSL,
the factor δ of CS is set to 0.2, 0.8, 0.5, and 0.5 for SUN,
CUB, aPY, and AwA2, respectively.

A. Architecture Implementation

Our model relies on the convolution layer and fully con-
nected layer. FC(n) represent a fully-connected layer with
output size n. We use the same network structure for all
four benchmark datasets yet different parameters for dropout
layers. In the following, we introduce the detailed network
architecture of global subnet, local subnet, and other prediction
layers, respectively.

First, we introduce the common setting for the layers. We
use adaptive average pool (AdaptiveAvgPool) with output
size 1 × 1, rectified linear activation function (ReLU) with
default parameter and sigmoid activation function with default
parameter for each module. In the global subnet, which is
composed of fG followed by an adaptive average pool, the
input is the cropped image with the size of 3×224×224. We
use the pre-trained ResNet-101 [29] for fG and set the output
size to 1 × 1 for AdaptiveAvgPool, where the output size of
the global subnet is N × 2048, and N denotes batch size.

The local subnet consists of a partial convolution module fP
and a convolution layer module Cl. To keep the same structure
as the global subnet, we use the last block of ResNet-101
as Cl. As for the reinforced partial convolution module, fP
contains a policy network π and a convolution kernel (size 5×5
and stride step 3). π shares the same state encoder structure
fE with the state value estimator V . The state structure fE is
a recurrent network as follows:

fE =< FC(1024)−ReLU −FC(256)−ReLU −GRU) >
(14)

where GRU denotes a gated recurrent unit with input size 256
and hidden size 256. Then, we design π and V by:

π =< fE − FC(|Action|)− Sigmoid >
V =< fE − FC(1) >

(15)

where |Action| denotes the action dim.
In respect of the prediction layers, fcj =< FC(2048) −

Dropout−FC(|A|)−Dropout >, fcg and fcl share the same
structure as < FC(|A|)−Dropout >, where |A| denotes the
attribute vector dim and Dropout is the dropout layer. The
dropout layer parameters for CUB, aPY, AwA2 and SUN are
0.5, 0.5, 0 and 0 respectively.

APPENDIX C
MORE EXPERIMENTS

Threshold σ of π: For RPCNet, we show the results of
average per-class accuracy of ZSL when varying σ from 0.1

(a) (b)
Fig. 9. (a) Threshold hyper-parameter analysis and (b) step-acc curve on
RPCNet.

to 1.1 with a step of 0.2. The results in Figure 9(a) are stable
on σ except for AwA2 dataset.

Step-acc curve: We fix the maximum step T of RPCNet to
be 6 for SUN, CUB, and aPY, whereas 10 for AwA2. The step-
acc curves in Figure 9(b) illustrate the changing tendency of
accuracy when the locality is progressively explored. Overall,
the accuracy increases as more steps are performed, and
the improvements tend to be subtle after exploring sufficient
localities.
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