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Abstract

Whenever treatment effects are heterogeneous, and there is sorting into treat-
ment based on the gain, monotonicity is a condition that both Instrumental Variable
and fuzzy Regression Discontinuity designs must satisfy for their estimate to be in-
terpretable as a LATE. However, applied economic work often omits a discussion
of this important assumption. A possible explanation for this missing step is the
lack of a clear framework to think about monotonicity in practice. In this paper,
we use an extended Roy model to provide insights into the interpretation of IV and
fuzzy RD estimates under various degrees of treatment effect heterogeneity, sorting
on gain and violation of monotonicity. We then extend our analysis to two applied
settings to illustrate how monotonicity can be investigated using a mix of economic
insights, data patterns and formal tests. For both settings, we use a Roy model to
interpret the estimate even in the absence of monotonicity. We conclude with a set
of recommendations for the applied researcher.
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1 Introduction

In the early 90’s, work by Imbens and Angrist (1994), Angrist and Imbens (1995) and

Angrist, Imbens, and Rubin (1996) provided the theoretical foundation for the identi-

fication of the Local Average Treatment Effect (LATE): the treatment effect for those

individuals who are affected by the instrument. The LATE identification result applies

in any context with essential heterogeneity : (i) the gain from treatment is heterogeneous

across the population and (ii) there is sorting into treatment based on the gain from

treatment. One of the LATE identifying assumptions is monotonicity: for a given change

in the value of the instrument, it can not be that some individuals increase treatment

intensity while others decrease treatment intensity. Hahn, Todd, and Van der Klaauw

(2001) point out that, under essential heterogeneity, the assumption of monotonicity is

also needed for the identification of a LATE in a fuzzy regression discontinuity (RD)

design. When monotonicity does not hold, the IV and fuzzy RD estimates are generally

uninterpretable.

Given the importance of the monotonicity condition in both IV and fuzzy RD designs,

it is remarkable that this condition is often not investigated in applied studies. We

found 22 articles published in the American Economic Review (AER) over the 2005-2019

period that explicitly identify a local average treatment effect using either an Instrumental

Variable or fuzzy Regression Discontinuity approach. Only 11 of these articles (50%)

include the word “monotonicity”. Considering a broader set of articles published in the

AER, by removing the term “local average treatment effect” from our search, only 21

articles out of 161 (13%) included the word monotonicity.1 This is in stark contrast to

the lengthy discussions dedicated to the IV independence and rank conditions, and to

the RD discontinuity (in the probability of treatment) and continuity (in the conditional

regression function) conditions. A possible explanation for this missing step is the lack

of a clear framework to think about monotonicity in practice.

This paper makes two contributions. First, using numerical examples, we show how

informative the IV and fuzzy RD estimates are under varying degrees of heterogeneity

in treatment effects, varying degrees of sorting on gain and the degree of violation of

1The list of 22 papers is provided separately below the References. The papers that mention mono-
tonicity are denoted by the § symbol. We used Google Scholar to search the AER (2005-2019) for
articles that include the terms “local average treatment effect” combined with either “instrumental vari-
able” or (“fuzzy” AND “regression discontinuity”). This returned a total of 24 unique articles, from
which we manually removed two published in AER: Papers and Proceedings. We then added the word
“monotonicity” which resulted in a subset of 11 articles. Removing the term “local average treatment
effect” from the search resulted in the numbers reported. We restrict our search to the AER (excluding
AER: Papers and Proceedings) because our focus is on applied studies published in a general audience
journal. Note that we exclude ”Papers and Proceedings” from any field in the broader search, which
might remove some articles that only reference to an AER: Papers and Proceedings article.
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monotonicity. The originality here is to do so in an extended Roy selection model for

either binary or multivalued treatment (Heckman, Urzua, and Vytlacil (2006), Kline and

Walters (2019)), and to consider structural instead of reduced form parameters as inputs

into the sensitivity analysis. We find that the interpretation of the estimates can be very

sensitive to both essential heterogeneity and violations of the monotonicity condition.

Second, since monotonicity is relevant for a wide range of applications, we investigate

it in two existing applied studies that adopt either the IV or fuzzy RD estimator. The

first study is Clark and Royer (2013) who use changes in compulsory schooling laws to

investigate the effect of education on health in a fuzzy RD setting. The second study is

Black, Devereux, and Salvanes (2011) who use school entry age cutoffs as an instrument

to investigate the effect of entering school older on IQ test scores and adult outcomes.

We show how the monotonicity assumption has sometimes been overlooked in the applied

literature and how possible violations could have been detected and tested. In each case

we also construct a Roy model to provide an interpretation of the estimate under a

violation of monotonicity. We end with a set of recommended steps to frame a discussion

of the monotonicity assumption and its implications.

Our paper speaks to the applied economist who is faced with estimating treatment

effects under essential heterogeneity in an Instrumental Variable or fuzzy Regression

Discontinuity context, as exemplified by the list of AER papers mentioned earlier. It is

related to the literature that uses economic modelling in a potential outcomes framework

to guide interpretation of reduced form estimates, such as Börklund and Moffitt (1987),

Angrist, Graddy, and Imbens (2000), Vytlacil (2002), Aakvik, Heckman, and Vytlacil

(2005), Heckman, Urzua, and Vytlacil (2006) and Mehta (2019). It also complements the

literature that focuses on deriving testable implications of instrument validity (Huber

and Mellace (2015), Kitagawa (2015), Mourifié and Wan (2017), Arai, Hsu, Kitagawa,

Mourifié, and Wan (2018)), Kowalski (2019)) and the literature that looks at special cases

of monotonicity failures that yield interpretable estimates (de Chaisemartin (2017), Dahl,

Huber, and Mellace (2017), Klein (2010)).2

The remainder of the paper is organized as follows. Section 2 discusses the mono-

tonicity condition in IV and RD settings. Section 3 illustrates the interpretability of the

estimates in the context of the binary treatment Roy model, under different degrees of

2Throughout the paper our focus is on the identification of LATEs which rely on a single discrete
instrument. Börklund and Moffitt (1987), Heckman and Vytlacil (2005), Heckman, Urzua, and Vyt-
lacil (2006) and Cornelissen, Dustmann, Raute, and Schönberg (2016) discuss the identification of the
Marginal Treatment Effect (MTE): the average treatment effect on the marginal individuals entering
treatment. The MTE is a building block of the LATE, since the latter can be expressed as a weighted
average of MTEs. However, identification of the MTE is generally more demanding, ideally requiring
a continuous instrument, or a combination of multiple discrete instruments. Even though monotonicity
is also an important condition to identify the MTE, our emphasis is on discrete instruments which are
more commonly used in the empirical literature.
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essential heterogeneity and violation of monotonicity. Section 4 generalizes the analy-

sis to the multivalued treatment case. Section 5 provides a thorough discussion of the

monotonicity condition in two existing studies. Section 6 provides recommendations for

applied researchers. Section 7 concludes.

2 The Monotonicity Assumption

We adopt the Rubin (1974) potential outcomes framework in the context of a binary

treatment. Let Yi(0) be the response without treatment for individual i. Yi(1) is the

response with treatment for the same individual. Di is an indicator of treatment. We

observe Di and Yi = Yi(Di) = DiYi(1) + (1−Di)Yi(0). The individual’s treatment effect

βi = Yi(1)− Yi(0) is unobserved.

Essential heterogeneity arises when the treatment effect β is heterogeneous across

individuals and when there is sorting on gain such that E(βi|Di = 1) 6= E(βi|Di = 0). The

model can be generalized to include covariates (X), in which case essential heterogeneity

arises when E(βi|Di = 1, X) 6= E(βi|Di = 0, X). In the rest of the paper we keep the

conditioning on X implicit and, unless helpful, we drop the i subscript for notational

simplicity.

2.1 Monotonicity in the IV design

Define D(z) as the individual’s treatment assignment when Z = z, for each z ∈ Z.

Imbens and Angrist (1994) show that βIV identifies the average treatment effect for those

individuals whose treatment assignment is affected by the instrument (LATE), provided

a random variable Z is available that satisfies the following three conditions,.

IV1. E[D|Z = z] is a non trivial function of z (rank)

IV2. [Y (0), Y (1), {D(z)}z∈Z ] is jointly independent of Z (independence)

IV3. For any two points of support z, w ∈ Z, Either Di(z) ≥ Di(w) ∀i, Or Di(z) ≤
Di(w) ∀i (monotonicity)

Condition IV1 is the rank condition. Condition IV2 requires that the instrument is in-

dependent of potential outcomes and potential treatment assignment. The independence

between Z and the potential treatment assignment {D(z)}z∈Z is sometimes referred to as

type independence.3 The monotonicity assumption IV3 is a condition on counterfactuals

3Individuals are classified into types depending on their counterfactual treatment assignment
{D(z)}z∈Z . When both the treatment and the instrument are binary there are only four possible types:
compliers, defiers, always-takers and never-takers. We define these types more formally in section 3.1.
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that refers to an individual’s treatment in two alternative states of the world, Z = w and

Z = z. It requires that, for every individual i, a change in the value of the instrument from

w to z must either leave the treatment unchanged or change the treatment in the same

direction. Monotonicity is violated if, because of a change in the value of the instrument,

some individuals respond by getting the treatment (“switching in”) while others stop get-

ting it (“switching out”). The independence condition (IV2) together with monotonicity

(IV3) are needed to identify a LATE whenever there is essential heterogeneity.

The IV estimand for any two points of support z, w in Z is given by,

βIV (z, w) ≡ E[Y |Z = z]− E[Y |Z = w]

E[D|Z = z]− E[D|Z = w]
.

Following Angrist, Imbens, and Rubin (1996), and assuming both IV1 and IV2, we

can interpret this estimand as,

βIV (z, w) = λ×E[Y (1)− Y (0)|D(z)−D(w) = 1] + (1)

(1− λ)×E[Y (1)− Y (0)|D(z)−D(w) = −1],

where,

λ =
P [D(z)−D(w) = 1]

P [D(z)−D(w) = 1]− P [D(z)−D(w) = −1]
.

Equation (1) is very informative.

• The identification of βIV (z, w) does not rely on individuals who do not respond

to changes in the value of the instrument: D(z) − D(w) = 0. This motivates the

standard LATE interpretation.

• If the return to treatment is heterogeneous but there is no sorting on gain, then

monotonicity is not required. Without sorting on gain the expected return from

treatment is the same among those who switch in (LATE-in: E[Y (1)−Y (0)|D(z)−
D(w) = 1]) and those who switch out (LATE-out : E[Y (1)− Y (0)|D(z)−D(w) =

−1]), and equal to the average treatment effect (ATE):

βIV (z, w) = LATE-in = LATE-out = E[Y (1)− Y (0)]

• If the return to treatment is heterogeneous and there is sorting on gain, then mono-

tonicity matters. Since λ is of the form a
a−b with a ≥ 0 and b ≥ 0, then λ ≤ 0 or

λ ≥ 1. If monotonicity holds then either λ = 0 or λ = 1, and IV measures the

LATE for a specific group of individuals. For instance if Di(z) − Di(w) ≥ 0 ∀i,

5



then λ = 1 and IV estimates the effect for those individuals that are induced to

take the treatment because of the instrument: βIV (z, w) = LATE-in. Alterna-

tively, if monotonicity holds because Di(z) − Di(w) ≤ 0 ∀i then λ = 0, and IV

estimates the effect for those individuals that stop getting the treatment because

of the instrument: βIV (z, w) = LATE-out .

• If monotonicity does not hold, then either λ < 0 or λ > 1, and the IV estimate is

neither a LATE-in or LATE-out nor a weighted average of the two LATEs. In this

case Equation (1) clearly shows that the interpretation of the IV estimate depends

on four unknowns: the proportion of switchers-in, the proportion of switchers-out,

and the LATEs for each of these groups. Even if the researcher has a very good

guess on both proportions such that λ can be inferred, recovering one of the LATEs

is still not possible. Hence, it is generally not possible to interpret βIV (z, w).4

Hahn, Todd, and Van der Klaauw (2001) point out that both the fuzzy Regression

Discontinuity and the IV estimands can be expressed as a Wald estimand. A set of

conditions similar to IV1-IV3 applies arbitrarily close to the RD threshold.5 Therefore,

the above discussion regarding the role of the monotonicity assumption in interpreting

the IV estimand equally applies in the fuzzy RD design.6

3 Interpretation of IV and RD estimates: Sensitivity

to Key Assumptions

The discussion in section 2 highlights that in a world with essential heterogeneity, mono-

tonicity is an important condition to interpret IV and RD estimates. However, the

researcher might be interested in knowing to what degree the presence of essential het-

erogeneity and a violation of monotonicity are a problem. What if the treatment effects

are roughly homogeneous? What if there is limited sorting on gain? What if there is

only a small violation of monotonicity? The answers to these questions cannot be derived

from Equation (1) without an explicit selection model.

We set up an extended Roy model with an exogenous variable Z affecting the treat-

ment decision, similar to Heckman, Urzua, and Vytlacil (2006), Kline and Walters (2019).

4de Chaisemartin (2017) discusses a special case where monotonicity does not hold and where
βIV (z, w) can be interpreted as the LATE for a subpopulation of switchers-in (see section 3.4). Dahl, Hu-
ber, and Mellace (2017) and Klein (2010) discuss special cases of monotonicity failures that nevertheless
allow them to obtain a LATE for compliers.

5Dong (2018) shows that the local independence assumption can be replaced by a weaker local smooth-
ness assumption.

6We refer the reader to Appendix A.1 for more detail on the RD case in a binary treatment setting.
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The key characteristics of this model are (i) treatment effects are heterogeneous, (ii) selec-

tion into treatment is based on the gain, and (iii) the impact of Z is heterogeneous across

individuals. Such a model encompasses a broad range of settings including selection into

schooling and job market programs. The goal is to investigate the extent to which the

IV and fuzzy RD estimates can be interpreted as a LATE of interest as (i), (ii) and (iii)

are strengthened or weakened, by changing the structural parameters of the model. At

the same time, the model can also be used to gain insights into the kind of economic

behaviour that would lead to interpretation concerns.

3.1 A Roy model with violation of monotonicity

Let,

Yi(1) = α + β + Ui(1)

Yi(0) = α + Ui(0) .

Thus, the gain from treatment is heterogeneous and given by βi = Yi(1) − Yi(0) =

β + Ui(1)− Ui(0). Let the treatment be determined as follows:

D =

{
1 if Yi(1)− Yi(0) + γiZi > 0⇔ βi > −γiZi
0 if Yi(1)− Yi(0) + γiZi ≤ 0⇔ βi ≤ −γiZi .

Individuals decide whether or not to take treatment partly on the basis of the id-

iosyncratic gain (sorting on gain) and partly on the basis of an exogenously determined

variable Z (instrument). Here γZ could be interpreted as a cost or taste for treatment.

Dropping the i subscript for notational simplicity, let us consider the case of a binary

instrument Z and a binary parameter γ: z ∈ {0, 1}, and γ ∈ {γL, γH}. Importantly,

for monotonicity to be violated, we need to set γL < 0 and γH > 0. Thus, when the

instrument changes from 0 to 1, it pulls some individuals out of treatment (γ < 0) while

it pushes other individuals intro treatment (γ > 0). The proportion of individuals with

γL and γH are given by pγL and pγH = 1− pγL .

Now we can define how individuals make a treatment decision based on their real-

ization of Z, γ, U(1) and U(0). Given sorting on gain, there is a cut-off value of β

above which individuals take treatment. That cut-off value is affected by the instrument,

as indicated in Table 1. The treatment decisions under alternative values of Z allow

us to distinguish between four types based on their counterfactual treatment choices:

always-takers (AT), never-takers (NT), compliers (CM) and defiers (DF).

We maintain that conditions IV1 (rank) and IV2 (independence) are satisfied. The

rank condition requires that P (D = 1|Z = 1) 6= P (D = 1|Z = 0). Under IV2, P (D =

7



Table 1: Counterfactual Choices
(
D(Z = 1), D(Z = 0)

)
γ = γL

β ≤ 0 0 < β ≤ −γL β > −γL
Z = 0 D = 0 D = 1 D = 1
Z = 1 D = 0 D = 0 D = 1
type NT DF AT

γ = γH
β ≤ −γH −γH < β ≤ 0 β > 0

Z = 0 D = 0 D = 0 D = 1
Z = 1 D = 0 D = 1 D = 1
type NT CM AT

1|Z = 1) = pAT + pCM and P (D = 1|Z = 0) = pAT + pDF where pAT , pCM and

pDF are the proportions of always-takers, compliers and defiers respectively. Thus, the

rank condition implies that pCM 6= pDF . Moreover, since types are defined by the pair

(β, γ), type independence requires that these parameters are jointly independent of Z.

To simplify our discussion below, we set β and γ to be uncorrelated, though our results

generalize to the case where they are correlated. Finally, we assume that the treatment

effects are normally distributed: β ∼ N(β, σβ).

We can then define the probability of observing each type as a function of γL, γH ,

pγL and the distribution of the gain from treatment f(β). Figure 1 illustrates where the

different types are located along the β distribution.7

Figure 1: Types over the β distribution

• pAT = pγL×P [β > −γL]+pγH×P [β > 0]. Always-takers take treatment irrespective

of the instrument. Therefore, they must have a positive return to treatment. In

particular, ATs with γL < 0 need a large positive β to compensate for the negative

impact of the instrument and remain treated.

7Figure 1 is obtained using the parametrization described in Table 2a.
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• pNT = pγL × P [β ≤ 0] + pγH × P [β ≤ −γH ]. Never-takers do not take treatment

irrespective of the instrument. Therefore, they must have a negative return to

treatment. In particular, NTs with γH > 0 need a large negative β to compensate

for the positive impact of the instrument and remain untreated.

• pCM = 0 + pγH × P [−γH < β ≤ 0]. Compliers are on the margin of taking

treatment. They switch into treatment only when the instrument changes from

0 to 1. Therefore they must have β ≤ 0 and γ = γH such that Z = 1 pushes

them into treatment, but they must also have β > −γH otherwise the push is not

sufficient to compensate for the negative treatment effect.

• pDF = pγL × P [0 < β ≤ −γL] + 0. Defiers are also on the margin of taking

treatment. However, they switch out of treatment if the instrument changes from 0

to 1. Therefore, they must have β > 0 and γ = γL such that Z = 1 pulls them out

of treatment, but they must also have β < −γL otherwise the pull is not sufficient

to compensate for the positive treatment effect.

Given the location of types along the β distribution, one can easily derive the average

treatment effects of the various types. See Appendix B for the formal expressions.

3.2 A parametrized baseline model

In this section, we investigate the effect of violating the monotonicity condition. We

do so under our baseline parametrization, while in the next subsection we alter the

baseline. Figure 1 was obtained using the parametrization in Table 2a, and letting U(1) ∼
N(µ1, σ1), U(0) ∼ N(µ0, σ0) and Cov(U(1), U(0)) = σ01. The baseline parametrization is

chosen to be simple while ensuring that β is heterogeneous. Since β = β + U(1)− U(0),

then σβ =
√
σ2
1 + σ2

0 − 2σ01. In the baseline we set σ0 = σ1 = 1 and σ01 = −0.5 in

order to get a positive standard deviation of σβ =
√

3.8 We also set pγL = 0.25 to

ensure that the rank condition is satisfied: pCM > pDF . The resulting proportions of

types are described in Table 2b. Most of the population are always-takers, followed by

never-takers. However, compliers and defiers are also present. In this Roy model with a

binary treatment and a binary instrument:

βIV = λ× LATECM + (1− λ)× LATEDF , (2)

8Note that as a result β and Y (0) are negatively correlated since Cov(β, U(0)) = σ01 − σ2
0 = −1.5,

resulting in a negative selection bias E[Y (0)|D = 1]−E[Y (0)|D = 0]. This is similar to Heckman, Urzua,
and Vytlacil (2006).
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where,

λ =
pCM

pCM − pDF
.

Whenever both pCM > 0 and pDF > 0 monotonicity is violated. Thus, in our example,

no economic information can be recovered from βIV . It is neither a LATE nor a weighted

average of the LATE for compliers and defiers, but it is more extreme since λ > 1 (see

Table 2c).9

Table 2: Baseline

(a) Parametrization

γL γH pγL β µ1 µ0 σ1 σ0 σ01
-1 1 0.25 0 0 0 1 1 -0.5

(b) Types

pAT pNT pCM pDF pAT + pNT + pCM + pDF λ
0.445 0.336 0.164 0.055 1 1.5

All values are rounded to the third decimal digit.

(c) ATE, LATEs and IV estimate

ATE LATEAT LATENT LATECM LATEDF βIV

0 1.492 -1.818 -0.486 0.486 -0.973

All values are rounded to the third decimal digit.

3.3 Altering the baseline: interpretation of βIV

Here we alter the parameters in the baseline scenario and show how the decisions of

individuals are affected. The goal is to illustrate whether βIV becomes more or less

interpretable as we change the degree of heterogeneity in the treatment effect, the degree

of heterogeneity in the impact of the instrument and the extent of sorting on gain. We

use simulations since the expressions defining the differences between βIV and the LATEs

are too complex to get clear and intuitive results.

9In Table 2c, βIV = 2LATECM = −2LATEDF . This occurs because LATECM = −LATEDF and
λ = 1.5. It might be tempting to conclude that if we had a good guess of λ then it would be possible
to recover the LATECM and LATEDF from the βIV . However, LATECM = −LATEDF only because
f(β) is centred around 0 and γH = −γL. More generally, LATECM and LATEDF are not directly
related and even knowledge of λ would not allow us to recover any LATE.
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3.3.1 Heterogeneity in the treatment effect

In the baseline we set σβ =
√

3 ≈ 1.732 in order to get heterogeneous treatment effects.

In Figure 2a-c we illustrate the types over the β distribution as a function of σβ.10 As

σβ decreases the distribution narrows around the Average Treatment Effect (β = 0).

Figure 2d shows the proportion of each type: as σβ goes towards zero all observations

get concentrated within the [−γH ,−γL] interval. Thus, the proportions of always-takers

and never-takers fall. Moreover, the proportions of compliers and always-takers converge.

The same is true for the proportions of never-takers and defiers. Because of the symmetry

around zero, λ is constant. Figure 2e shows the ATE, the LATEs for compliers and defiers,

and βIV . As σβ tends to zero, βIV and the LATEs converge to the ATE, suggesting that

in the absence of treatment effect heterogeneity there is no monotonicity requirement.

However, for positive values of σβ, βIV is always more extreme and far from the LATEs

since λ > 1.

Figure 2: Sensitivity to σβ

(a) σβ =
√

1 (b) σβ =
√

2 (c) σβ =
√

3 (baseline)

(d) Proportion of types (e) ATE, LATEs and βIV

3.3.2 Heterogeneity in the response to the instrument

Next, we investigate what happens when we vary the degree of heterogeneity in the

response to the instrument. There are two ways to do so in the model. The first is to

10We remain agnostic as to what drives the changes in σβ since it is irrelevant for the key moments of
the model in tables 2b and 2c.
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alter pγL : however, the only effect of varying this parameter is to change the proportion of

compliers and defiers, while their LATEs are unchanged. Figure 3 shows the proportion

of types and the treatment effects as pγL varies between 0 and 0.5. Intuitively, the closer

pγL becomes to 0.5 the smaller the difference pCM − pDF , in turn leading to a larger λ in

Equation (2) and βIV becoming increasingly distant from the LATEs .

The second way to vary the degree of heterogeneity is to change the value of γH relative

to γL. In our baseline γH = −γL, but it is possible that individuals are heterogeneous

not only in the direction of their response but also in their magnitude. Thus, holding

γH constant, shifting the value of γL leads to varying proportions of defiers while also

changing the LATE of defiers.

Figure 4a shows the proportion of types as a function of γL. For γL = 0 we have

a limit case with heterogeneity in the response to the instrument but no defiers since

no individual is pushed out of treatment by the instrument.11 As γL becomes a larger

negative number, the proportion of defiers increases. In turn, λ in Equation (2) grows

larger than 1 while the LATE of defiers also increases. Figure 4b shows that as a result

βIV becomes more extreme and cannot be interpreted as a LATE of interest.

Figure 3: Sensitivity to pγL

(a) Proportion of types (b) ATE, LATEs and βIV

Figure 4: Sensitivity to γL

(a) Proportion of types (b) ATE, LATEs and βIV

Note that under both scenarios the larger the first stage pCM − pDF , the closer βIV

11This case is equivalent to a situation where γ is heterogeneous but only takes positive values.
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is to the LATE of compliers. However, this is not always true. To see this, it is useful to

rewrite (2) as

βIV − LATECM = (1− λ)(LATEDF − LATECM) (3)

Recall that in our model λ > 1, and LATEDF > LATECM due to sorting on gain. In

Figure 3, the difference βIV −LATECM becomes smaller because λ converges to 1 while

the LATEs are unchanged. In Figure 4, λ converges to 1 while the LATEDF becomes

smaller and LATECM stays unchanged. Now consider the case where we increase γH

while holding constant the value of γL. Doing so increases the proportion of compliers,

and makes their LATE more negative, while leaving the proportion of defiers and their

LATE unaffected. This case is illustrated in figure 5. βIV does not converge monotonically

to LATECM with a growing first stage. λ converges to 1 but (LATEDF − LATECM)

increases instead, and for certain values of γH the latter effect dominates resulting in βIV

diverging from LATECM . Hence, as long as there are defiers, a larger first stage is not

sufficient to counteract a departure from the monotonicity assumption.

Figure 5: Sensitivity to γH

(a) Proportion of types (b) ATE, LATEs and βIV

(c) Bias vs First Stage

3.3.3 Sorting on gain

In the model above we assume that individuals sort into treatment based on the gain, and

treatment decisions are potentially affected by the instrument Z. Monotonicity is not a

problem in the limit case of no sorting on gain. However, to what extent is a departure
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from this limit case sufficient to render βIV uninformative? To address this question,

we adjust our model by altering the relative importance of the gain in the treatment

decision. We do so by introducing an additional unobserved factor ε in the treatment

decision process. For simplicity we assume that this factor is normally distributed and

independent of all other parameters and variables of the model: ε ∼ N(0, σε). Hence:

D =

{
1 if Y (1)− Y (0) + γZ + ε > 0⇔ β + ε > −γZ
0 if Y (1)− Y (0) + γZ + ε ≤ 0⇔ β + ε ≤ −γZ .

Intuitively, as σε grows larger, ε becomes the main determinant of treatment. The

introduction of ε in the decision process could be interpreted as additional cost or taste

parameters. Alternatively it could be interpreted as individuals using β+ε as their guess

of the gain if they only have a noisy signal. While a larger σε reduces the importance

of sorting on gain, it also quickly reduces the importance of the instrument. To avoid

this, we rescale the parameter associated with Z accordingly. In particular, we set γ̃L

and γ̃H to be functions of σε in a way that leaves the proportion of the different types

unchanged.12 The treatment D is then determined as follows:

D =

{
1 if Y (1)− Y (0) + γ̃Z + ε > 0⇔ β + ε > −γ̃Z
0 if Y (1)− Y (0) + γ̃Z + ε ≤ 0⇔ β + ε ≤ −γ̃Z .

Define sorting on gain as the difference between the average treatment on the treated

(TT) and ATE (see for instance Heckman and Vytlacil (2005)). Without sorting on

gain we expect these averages to be the same, while with positive sorting we expect this

difference to be larger than zero.

Figure 6a shows that the degree of sorting on gain decreases with σε irrespective of

P (Z = 1). There would be no sorting on gain only if σε = ∞. For P (Z = 1) = 0.5,

Figure 6b shows that βIV converges to the ATE and the other LATEs as σε increases

but we would need to be in the limit case of σε = ∞ for βIV to be interpretable. This

would occur only in a setting where individuals choose not to, or cannot take their gain

12For instance, let V = β + ε, with V ∼ N(0,
√
σ2
β + σ2

ε). The proportion of compliers is given by

pγH

(
Φ
(

0
σV
√
2

)
− Φ

(
−γH
σV
√
2

))
where Φ is the CDF. The first term remains constant but the second term

becomes larger as σε increases, thus reducing the proportion of compliers. We prevent this by setting
γ̃H = −γH σV

σβ
. Hence the impact of the instrument also increases in σε, while the distribution of the

gains is left unchanged. We set γ̃L in a similar manner.
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Figure 6: Sensitivity to σε

(a) TT −ATE (b) ATE, LATEs and βIV

into account.13

3.4 Special cases of monotonicity failures

3.4.1 Compliers-Defiers condition

In an attempt to assign a meaning to an otherwise uninterpretable IV parameter, de Chaise-

martin (2017) discusses a special case where monotonicity is violated but the following

two assumptions hold:

pCMF
= pDF

LATECMF
= LATEDF ,

where CMF is a subgroup of the population of compliers CM : pCM = pCMV
+ pCMF

.

Under these assumptions de Chaisemartin (2017) shows that βIV = LATECMV
, where

CMV is the remaining subgroup of compliers. The idea is that the LATE of the CMF

group cancels out the LATE of defiers, and βIV then measures the LATE of the surviving

compliers. In our Roy model where selection is driven only by the gain and the instrument

(Figures 1-2), the support of β for compliers and defiers does not overlap, since each defier

has a larger gain from treatment than any complier. Therefore, there is no scope for a

subgroup of compliers to compensate for the LATE of defiers. Nevertheless, in a model

where an additional factor drives treatment, such as in section 3.3.3, it might be possible.

In this case it must be that the LATE of surviving compliers is more extreme than the

LATE for the overall population of compliers. Thus, one can also use de Chaisemartin

13Not shown, the proportion of each types remains the same as in the baseline model due to our
adjustment of the γ parameters. We also do not show the distribution of the types over the β distribution
since they are no longer confined to certain intervals. Intuitively, relative to the baseline case of Figure 1,
there are now some compliers with β ≤ −γH and some with β > 0. Then LATECM converges to the ATE
as σε grows since P [β ≤ −γH ] < P [β > 0]. At the same time, there are now some defiers with β ≤ 0 and
some with β > −γL, and LATEDF also converges to the ATE as σε grows since P [β ≤ 0] > P [β > −γL].
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(2017) intuition to explain why βIV is more extreme than LATECM and LATEDF if

monotonicity is violated.14

3.4.2 Local Monotonicity condition

Dahl, Huber, and Mellace (2017) show that the LATE for both compliers and defiers are

identified when these types do not coexist at any point in the support of the marginal

potential outcome distributions, Y (0) and Y (1). They label such assumption local mono-

tonicity (LM). Formally:

Either P [D(1) ≥ D(0)|Y (d) = y(d)] = 1 OR P [D(0) ≥ D(1)|Y (d) = y(d)] =

1, ∀y(d) in the support of Y (d) and d ∈ {0, 1}

Under LM, defiers can be ruled out in some regions of Y (d). The potential outcomes

and thus the LATE of compliers are then locally identified in these regions. The same

reasoning applies to identifying the LATE for defiers in regions of Y (d) without compliers.

In our Roy model where selection is driven only by the gain and the instrument,

compliers and defiers do not overlap in any region of the β = Y (1) − Y (0) distribution.

LM requires that such a lack of overlap applies to marginal outcome distributions instead.

Such a situation occurs under a perfect negative correlation between U0 and U1 (i.e.

σ01 = −1). The latter ensures V ar(β|Y (d)) = 0, ∀d = {0, 1}, preventing compliers

and defiers from coexisting.15 When additional elements other than the gain and the

instrument affect selection into treatment (section 3.3.3), σ01 = −1 is no longer sufficient

to prevent compliers and defiers from coexisting at each potential outcome value.

3.5 Summary and Discussion

How informative is βIV (or βRD) when one cannot rule out essential heterogeneity and

heterogeneous responses to the instrument (or forcing variable)? The analysis using

our extended Roy model suggests that the interpretation can be very sensitive to both

essential heterogeneity and violations of the monotonicity condition. There are extreme

cases when a violation of monotonicity is not an issue. These extreme cases are given

by either the absence of heterogeneity in the treatment effect, the absence of sorting on

gain, or the absence of heterogeneity in the response to the instrument.16 However, once

14When the outcome is binary, de Chaisemartin (2017) provides sufficient conditions under which the
two main assumptions hold and discusses them with some empirical applications. With a continuous
outcome, a sufficient condition is that there are no fewer compliers than defiers for every value in the
support of β. However, this is a difficult condition to test and would be unlikely to hold in our Roy
model.

15σ01 = 1 yields a degenerate β-distribution and thus wipes out heterogeneity in the gain.
16For the sake of brevity, we do not show results regarding sensitivity to a different β (ATE). Never-

theless, the same intuitions apply and the results are available upon request.
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we depart from these extreme cases, then βIV (or βRD) quickly becomes uninformative.

The deviation of βIV from any LATE of interest depends on the underlying selection

model. Evaluating its size requires making explicit assumptions on the model and its

parameters.17

4 Monotonicity when the treatment is multivalued

In this section, we briefly discuss the monotonicity assumption and generalize the Roy

model to the multivalued treatment case. This generalization is useful for our empirical

examples later in the paper. Angrist and Imbens (1995) discuss the interpretation of

the IV estimate when the treatment D is a multivalued random variable with support

D = {0, 1, ..., K} and K > 1. Let Y (k) be the potential outcome of an individual under

treatment value k, ∀k ∈ D. Assume that IV1 (rank) and IV2 (independence) hold, we

can express the IV estimand of β for any two points of support z, w in Z as follows

βIV (z, w) =
1

Ω
×

K∑
k=1

{
E[Y (k)− Y (k − 1)|D(z) ≥ k > D(w)]× P [D(z) ≥ k > D(w)] (4)

−E[Y (k)− Y (k − 1)|D(w) ≥ k > D(z)]× P [D(w) ≥ k > D(z)]
}

where

Ω =
K∑
k=1

(P [D(z) ≥ k > D(w)]− P [D(w) ≥ k > D(z)])

is the first stage. From equation (4) we can see that

• If assumption IV3 (monotonicity) holds such that no one decreases treatment in-

tensity, P [D(w) ≥ k > D(z)] = 0 ∀k. Equation (4) then simplifies to

βIV (z, w) =
K∑
k=1

E[Y (k)− Y (k − 1)|D(z) ≥ k > D(w)]× P [D(z) ≥ k > D(w)]∑K
k=1 P [D(z) ≥ k > D(w)]

(5)

Angrist and Imbens (1995) refer to this parameter as the average causal response

(ACR). It is a weighted average of causal responses to a unit change in treatment,

for those whose treatment status is affected by the instrument. The ACR is the

estimand of interest in the multivalued case. A similar discussion applies if instead

no one increases treatment intensity such that P [D(z) ≥ k > D(w)] = 0 ∀k.

17The Regression Discontinuity setting is very similar and is illustrated in Appendix C.
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• If monotonicity does not hold, for a given change in the value of Z some individuals

increase treatment, D(z) ≥ k > D(w), while others decrease it, D(w) ≥ j > D(z)

for at least some j, k ∈ D. Equation (4) shows that both the numerator and

the denominator include contributions from individuals affected in either direction.

While the denominator is always smaller than in (5), the impact on the numerator

is ambiguous and depends on the treatment effects of those decreasing treatment.

Without monotonicity, the IV estimate is thus not a weighted average of treatment

effects and cannot be assigned a useful interpretation. It is an equation in many

unknowns, which makes it impossible to back-out neither the ACR nor the LATE

for any particular group.

• Monotonicity is not a concern only if there is no sorting on gain and average returns

are constant across treatment levels. The former implies E[Y (k)−Y (k−1)|D(z) ≥
k > D(w)] = E[Y (k) − Y (k − 1)] ∀k, while the latter implies E[Y (K) − Y (K −
1)] = E[Y (K − 1)− Y (K − 2)] = . . . = E[Y (1)− Y (0)]. In that case (4) collapses

to the ATE.

The close analogy between the fuzzy Regression Discontinuity design and the IV

estimators extends to the case of multivalued treatment with a binary instrument in a

straightforward way. Both can still be expressed as Wald estimators. Lee and Lemieux

(2010) show that monotonicity is also required in the fuzzy RD setting with a multivalued

treatment, in which case the interpretation of the RD estimand is still the same as that

of the IV estimand.18

4.1 A Roy model when the treatment is multivalued

Let the treatment k be ordered, and let the potential outcome be

Yi(k) = α + Ui(k) ∀k ∈ D

The choice of treatment level can be described by an optimal stopping problem. Let

βi,k→k+1 ≡ Yi(k + 1) − Yi(k) be the marginal benefit from increasing treatment, and let

18With a multivalued instrument, Imbens and Angrist (1994) supplement monotonicity with another
condition to show that βIV is a weighted average of LATEs if the treatment is binary or of ACRs if the
treatment is multivalued. However, if monotonicity is violated this LATE or ACR interpretation is lost.
We refer the reader to Appendix A.2 for details of the multivalued instrument case.
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C(k+1)−γi(k+1)Zi be the marginal cost. Treatment choices are determined as follows:

D = 0 if C(1)− γi(1)Zi ≥ βi,0→1 (6)

D = k if C(k)− γi(k)Zi < βi,k−1→k AND

C(k + 1)− γi(k + 1)Zi ≥ βi,k→k+1 ∀k = 1, . . . , K − 1

D = K if C(K)− γi(K)Zi < βi,K−1→K

where γi(k)Zi is a taste or cost realization that is heterogeneous across individuals and

C(k) is a cost of treatment that is homogeneous across individuals. Both can differ across

treatment levels.19

To keep the setting as a simple extension to the binary Roy model of section 3.1,

assume that

• individuals can choose between three values of the treatment: D = {0, 1, 2}.

• the return to increasing treatment by one unit is constant over treatment levels:

βi,0→1 = βi,1→2 = βi. This restriction implies that Ui(2) = 2Ui(1)−Ui(0). Therefore,

the additional structural parameters {µ2, σ2, σ02, σ12} are a deterministic function

of the parameters in Table 2a.

• the cost of treatment is rising in k such that C(2) > C(1) = 0

• the impact on the instrument γi(k) is a binary parameter that can take values

γL(k) < 0 or γH(k) > 0 ∀k = 1, 2.

• the impact of the instrument is constant across treatment levels: γi(k) = γi ∀k =

1, 2. Thus a proportion pγL of individuals have γL(1) = γL(2) < 0 in which case

they might reduce treatment intensity, while the remaining 1 − pγL have γH(1) =

γH(2) > 0 which might raise treatment intensity. This allows for monotonicity to

be violated at each treatment level.

Hence, for each individual the marginal benefit of treatment is constant whereas the

marginal cost is rising. Given that D = {0, 1, 2} there are now nine possible types

(tA, . . . , tI) based on treatment status under the alternative values of the binary instru-

ment, as illustrated in Table 3.

Types tB, tC , tF can be denoted as complier-types since they increase treatment in

response to the instrument, with type tC is a super-complier who experiences a multi-

level increase in treatment. Similarly, types tD, tG, tH are defier-types with type tD being

19The expected reward from treatment level k is defined as Ri(k) = Yi(k) −
∑k
j=1 (C(j)− γi(j)Zi).

Only the k specific outcome Yi(k) is realized, whereas the γi(k)Zi and C(k) realizations are experienced
for all j ≤ k.
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Table 3: Multivalued Roy model - Types

Z = 1
Z = 0 D = 0 D = 1 D = 2
D = 0 tA(=) tB(+) tC(+)
D = 1 tD(-) tE(=) tF (+)
D = 2 tG(-) tH(-) tI(=)

The (+) indicates that individuals increase their level
of treatment under Z = 1 (vs. Z = 0), and viceversa
for the (-).

a super-defier. Figure 7(a) illustrates the location of each type over the β-distribution

under the parametrization described in Table 4. Figure 7(b) illustrates this for a lower

cost C(2). In the latter case, both super-compliers tC and super-defiers tG exist.

Figure 7: Multivalued Roy model - Types

(a) High cost: C(2) = 3 (b) Low cost: C(2) = 0.5

The ACR is the estimand of interest and consists of a weighted average of LATEs for

the complier-types:

ACR =
pBLATEB + 2pCLATEC + pFLATEF

pB + 2pC + pF
(7)

but the presence of defiers causes the IV estimand to be different from the ACR and

makes it difficult to interpret20:

βIV =
pBLATEB − pDLATED

Ω
+ 2

pCLATEC − pGLATEG
Ω

+
pFLATEF − pHLATEH

Ω
(8)

where Ω = (pB + 2pC + pF ) − (pD + 2pG + pH). Note that super-complier and super-defier

types, if they exist, contribute twice as much as the other complier and defier types to the IV

and ACR estimands.

20There is no compact way to describe the difference between the IV estimand and the ACR.
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Retaining the baseline parametrization from section 3.2, the only parameter still undefined

is C(2) which we initially set equal to C(1) + σ2β = 3. The full parametrization, types and

Average Treatment Effects are described in Table 4. The first stage Ω is positive since there

are more complier-types than defier-types, although both groups are present. There are no

super-compliers or super-defiers.

Table 4: Multivalued Roy model - Baseline

(a) Parametrization

γL γH pγL β µ0 µ1 µ2

-1 1 0.25 0 0 0 0

σ0 σ1 σ2 σ01 σ02 σ12 C(1) C(2)
1 1 2.646 -0.5 -2 2.5 0 3

(b) Types and First Stage

pA pB pC pD pE pF pG pH pI
∑

p Ω
0.336 0.164 0. 0.055 0.342 0.062 0. 0.008 0.034 1. 0.163

(c) ATE, LATEs, ACR and IV estimate

LATEA LATEB LATEC LATED LATEE LATEF LATEG LATEH LATEI
-1.818 -0.486 - 0.486 1.052 2.432 - 3.406 3.772

ATE βIV ACR
0. 0.109 0.314

Due the monotonicity assumption not being satisfied, the IV estimand is different from the

ACR. Figure 8 generalizes the discussion on the types and estimands for a range of values of

the cost C(2). For very large C(2), no individual has D = 2, bringing us back to the binary

treatment case of section 3.1. Similarly, for C(2) = C(1) = 0, individuals might take D = 2

but no one takes D = 1 resulting in a binary treatment where the first stage is now double the

size. Importantly, the IV estimand is always lower than the ACR irrespective of the cost.21 The

IV estimand can however fall between the LATEs of complier-types depending on the value

of C(2). Yet, in general, it is not a weighted average. Finally, as in the binary case, βIV does

not converge monotonically to the ACR with a growing first stage Ω, confirming that the latter

is not necessarily sufficient to counteract a departure from the monotonicity assumption. This

model can be generalized to unordered treatment choices as in Heckman, Urzua, and Vytlacil

(2006) and Heckman, Urzua, and Vytlacil (2008), with the caveat that a different instrument

is needed for every treatment level.

21Intuitively, in this Roy model, there is a k+1→ k defier-type for each k → k+1 complier-type, with
the defier-type located to the right-hand side of the corresponding complier-type in the β distribution
such that LATEB < LATED, LATEC < LATEG, LATEF < LATEH . The LATE of defier-types are
also all positive.
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Figure 8: Multivalued Roy model - Sensitivity to C(2)

(a) Proportion of complier-types (B,C, F ), defier-types (D,G,H), and first stage.

(b) βIV , ACR and LATEs of complier-
types (B,C, F ) (c) Bias vs First Stage

5 Empirical Applications

In this section we go through two different studies to illustrate how monotonicity can be in-

vestigated using economic insights and data analysis. We do not scrutinize the independence

condition since it is extensively discussed in these papers and in applied work more generally.

Most of our conclusions in this section are conditional on independence being satisfied. Simi-

larly, we discuss but do not test essential heterogeneity.22 On intuitive grounds we cannot see

how essential heterogeneity could be ruled out a priori in any of these studies.23 Since we find

evidence that the monotonicity assumption does not hold, we impose some structure to assign

an interpretation to the IV or fuzzy RD estimate.

22This would lengthen the discussion considerably and for both studies the data is not publicly avail-
able. In section 6 we refer to a number of articles that provide a thorough discussion of essential
heterogeneity and how to test for it.

23It is normal to imagine settings where at least some individuals take into account their expected
return when deciding to get treatment, whether this is going to college, joining a union, buying health
insurance, etc. Possible exceptions occur if the decision-maker is different from the person being treated
and this decision-maker is not altruistic, or when the expected and actual return are uncorrelated.
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5.1 Fuzzy RD using changes in minimum school leaving age

Clark and Royer (2013), hereafter CR13, investigate the effect of years of schooling (D) on

health (Y ). To deal with endogeneity, they use two changes to British compulsory schooling

laws that generated differences in educational attainment across birth cohorts (Z). The first

reform raised the minimum school leaving age from 14 to 15: it was implemented on 1 April

1947 and therefore it affected individuals born from April 1933 onwards. The second reform

raised the minimum school leaving age from 15 to 16: it was implemented on 1 September 1972

and it therefore affected individuals born from September 1957 onwards. Figure 9 is extracted

from their paper and shows the impact of the schooling laws on different cohorts by quarter

of birth. Both reforms had very large impacts. The first reform affected about 50% of the

population while the second reform affected about 25% of the population.

Figure 9: Clark and Royer (2013) page 2092

To identify the treatment effect, CR13 use a fuzzy RD approach where the discontinuities are

given by the 1 April 1933 and 1 September 1957 cutoffs in date of birth. In the estimation a local

linear regression is adopted, selecting individuals born within a 43 to 105 months bandwidth

depending on the reform and gender group. They also include trends in month of birth (see

Equation (1) in their paper). CR13 find no effect of education on health, a result that stands

in sharp contrast to previous estimates of the effects of education on health.

The same British compulsory schooling reforms have been used extensively as an instru-

mental variable for education in various contexts such as earnings and labor activity (Harmon

and Walker (1995), Oreopoulos (2006), Devereux and Hart (2010), Grenet (2013)); citizenship

and political involvement (Milligan, Moretti, and Oreopoulos (2004)); health of offspring (Lin-

deboom, Llena-Nozal, and van der Klaauw (2009)); fertility, teenage childbearing and marital

outcomes (Silles (2011), Fort, Schneeweis, and Winter-Ebmer (2016), Geruso and Royer (2018)).

None of these papers investigate monotonicity. Similar reforms have also been used in other

countries to estimate the returns to education for a variety of outcomes.
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5.1.1 Plausibility of the Monotonicity Assumption

It is worth discussing essential heterogeneity and the need for the monotonicity assumption in

this context. CR13 use these compulsory schooling reforms to study the impact of education on

health outcomes such as mortality, self-reported health status, self-reported health behaviours

such as smoking and drinking and clinical health measures collected by a nurse. A heterogeneous

return to education in terms of health seems plausible, as found in Conti and Heckman (2010)

and Galama, Lleras-Muney, and van Kippersluis (2018). Sorting on gain is perhaps less intuitive

in this setting. Would individuals take into account their health return to education when

deciding how much education to attain? We might expect that the health return to education

is at least a weaker driver of education decisions than the earnings return. However, the key

issue is whether the health return to education (β) is correlated with educational attainment

(D). For this to happen it is not necessary that individuals take into account β when making

education decisions. Suppose that individuals do not know their health return but they do

know and consider their earnings return ρ when making education decisions: Cov(ρ,D) 6= 0.

Now suppose that the health return and earnings return to education are positively correlated:

smarter and more motivated individuals might get larger returns to education for a variety of

different outcomes such as earnings, health, networks, happiness. In this world it is likely that

Cov(β,D) 6= 0 even though individuals do not directly take into account their health return

when making education decisions. In other words, sorting on gain should be interpreted in the

broad sense of a non-zero correlation between treatment and returns, resulting in TT 6= ATE.

In the setting of CR13 this is not implausible.

In the CR13 context, monotonicity holds if the schooling reforms induce all individuals to get

more years of schooling, or at least not less of it. The authors do not discuss monotonicity but we

can use information provided in the paper to scrutinise the assumption. The table in Figure 10

is extracted from their paper and shows the estimated effect of the 1947 compulsory schooling

reform. The first column reports the effect on years of schooling: the positive coefficients

clearly show that both reforms increased the average years of schooling. The following columns

report the effect by years of schooling: these columns show that the 1947 reform increased the

proportion of individuals staying in education beyond 9 and 10 years of schooling but the same

reform actually decreased the proportion of individuals staying in education beyond 11, 12 and

13 years of schooling. This latter result is mostly true for men as shown in the rectangular

selection in the table. In the remaining of this section we focus on this sub-population.

Discussion of types We can use the results in Figure 10 to consider counterfactuals. There

are several possible types of individuals based on actual and counterfactual behaviour which

we summarize in Table 5. The sign in each cell indicates the change in years of schooling if an

individual is born before vs. after April 1933 (1947 reform). The reform certainly increased the

average years of schooling. Monotonicity thus requires that no one belongs to a cell below the

main diagonal (=), because that would imply a decrease in schooling due to the reform (-).
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Figure 10: Clark and Royer (2013) page 2103

Table 5: Monotonicity - Years of Schooling

Born After April 1933
Born before April 1933 9 10 11 12 13 14+

9 = + + + + +
10 - = + + + +
11 - - = + + +
12 - - - = + +
13 - - - - = +

14+ - - - - - =

The (+) term indicates that individuals would attain more
schooling if born after the schooling reform, while the (-)
term indicates that individuals would attain less schooling.
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It is plausible that no individual who would attain 9 or fewer years of schooling before the

1947 reform would attain less education after a reform that made it illegal, even if the data

show that not everyone obeyed the law. Nonetheless, we cannot exclude that someone who

would attain 11 or more years of education before the reform would attain fewer years after, as

suggested by the significantly positive coefficients in Figure 10.24

Stochastic dominance test To complement our discussion we apply the stochastic dom-

inance test as suggested by Angrist and Imbens (1995). The (type) independence and mono-

tonicity assumptions combined have a testable implication whenever the treatment takes more

than two values: stochastic dominance (SD) of observed treatment outcomes under different

values of the instrument.25 Combining the proportions changing schooling and the pre-reform

outcome means in Figure 10 (panel 2) allows to derive the CDFs for men born before and after

April 1933. This is illustrated in Figure 11: the CDFs clearly cross.

Figure 11: Stochastic dominance

We can formally test whether the crossing is statistically significant by applying the Barrett

and Donald (2003) procedure. Let NB and NA be the number of men born before and after

April 1933. Similarly let FB(x) and FA(x) be the CDFs of years of schooling for the male cohorts

before and after the reform. Finally let the null and alternative hypothesis be H0 : FB(x) ≥
FA(x) for all x and H1 : FB(x) < FA(x) for some x. Thus we are testing the hypothesis that the

CDF for the post-reform cohorts stochastically dominates the CDF for the pre-reform cohorts.

The test statistic for first-order stochastic dominance is given by:

Ŝ =

(
NB ×NA

NB +NA

)1/2

sup
x

(FA(x)− FB(x)) .

24These coefficients reflect net flows: they could result from a large number of individuals taking less
education after the reform that are not completely compensated by a large number of individuals taking
more education after the reform.

25We refer the reader to section 6 for testing when the treatment is binary.
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Barrett and Donald (2003) show that one can compute a p-value by exp(−2(Ŝ)2).26 CR13

have a sample of N = 33,337 men. AssumingNB = NA = N/2 and given supx (FA(x)− FB(x)) =

0.021, we obtain a test statistic of 1.91713 with a p-value of 0.00064. Thus we reject stochastic

dominance.27 The test indicates that either independence or monotonicity are violated. In the

discussion that follows we assume independence holds but monotonicity is violated.28

5.1.2 Interpreting βIV under a violation of monotonicity

CR13 interpret their RD estimates as the causal impact of education on health, driven by a

reform that affected a large share of the relevant cohorts. “Therefore, our estimates should be

closer to the population-average effects of education on health [. . . ] than to the effects for smaller

subpopulations that maybe be of limited interest” (p. 2088). In this section we investigate to

what extent a violation of monotonicity might alter this interpretation.

As a starting point, it is useful to spell out what the RD estimand measures. The treatment S

is a multivalued random variable measuring years of schooling, with support {9, 10, . . . , 14}.29

The CR13 fuzzy RD design compares individuals born before the 1 April 1933 cutoff with

individuals born on or after that date who face a different compulsory schooling age. Even

though the authors use a bandwidth of 105 months for males, they include a linear trend in

month-year of birth which allows them to interpret any measured impact at the limit (v0),

i.e., at the cut-off date 1 April 1933. Formally, S(v0 − e) and S(v0 + e) are the counterfactual

schooling outcomes for an individual born on either side of the cut-off. Let Y (k) be the health

outcome of an individual who obtains k years of schooling. In what follows we assume one-way

flows between consecutive years of schooling to simplify the discussion. This restricts individuals

to move only in one direction within a pair of consecutive schooling levels, but it allows the

26See also Donald, Hsu, and Barrett (2012) for on overview of different methods for testing stochastic
dominance, including testing conditional on covariates.

27We do not know exactly how many men are on either side of the April 1933 threshold. However, the
conclusion is not sensitive to a (reasonable) imbalance in NB and NA. For example, if one third of men
were born before the threshold (NB=11,112) and the rest after (NA=22,225), the test statistic is still

larger than the critical value (Ŝ=1.8074916, p-value=0.00145).
28CR13 provide arguments in support of independence: (i) by including a linear trend in month-year

of birth, they are effectively comparing individuals born only one month apart; (ii) the April threshold
relevant to the 1947 reform is not a threshold that matters for school entry age, (iii) the estimates are
not sensitive to the chosen bandwidth and (iv) they do not find discontinuities in the predetermined
characteristics at birth.

29We assume for simplicity that no one obtains less than 9 years and no one with more than 14 years
of schooling changes schooling in response to the reform.
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direction to differ across pairs.30 The RD estimand then simplifies to:

βRD = lim
e→0

{ (
E[Y (10)− Y (9)|S(v0 + e) ≥ 10 > S(v0 − e)]× 0.478 (9)

+E[Y (11)− Y (10)|S(v0 + e) ≥ 11 > S(v0 − e)]× 0.019

−E[Y (12)− Y (11)|S(v0 − e) ≥ 12 > S(v0 + e)]× 0.021

−E[Y (13)− Y (12)|S(v0 − e) ≥ 13 > S(v0 + e)]× 0.019

−E[Y (14)− Y (13)|S(v0 − e) ≥ 14 > S(v0 + e)]× 0.014
)
× 1

Ω

}
,

where

Ω =
(
P [S(v0 + e) ≥ 10 > S(v0 − e)] + P [S(v0 + e) ≥ 11 > S(v0 − e)]

−P [S(v0 − e) ≥ 12 > S(v0 + e)]− P [S(v0 − e) ≥ 13 > S(v0 + e)]

−P [S(v0 − e) ≥ 14 > S(v0 + e)]
)

= 0.443 .

Instead, the ACR is a weighted average of LATEs for the first two groups in (9), i.e. for

those who increase schooling. Both in the ACR and βRD the treatment effect for individuals

moving from S = 9 to S = 10 receives a much higher weight. Yet |βRD − ACR| could be

non-negligible if the returns for those decreasing treatment are large. As explained in section

4, monotonicity is not a concern only if there is no sorting on gain and average returns are

constant across schooling levels.

Finally, it is worth noting that there would be no monotonicity violation if one were to

redefine treatment as binary, with D = 0 for S = 9 and D = 1 for S ≥ 10. This would exploit a

large part of the variation induced by the reform, but it would answer a different policy question.

5.1.3 What can we learn from the Roy model?

To be more specific about the effect of violating monotonicity we need to assign exact values

to each of the treatment effects in (9). Even though we are unsure about the exact mechanism

that drives defier behaviour31, we can use and calibrate the multivalued Roy model from section

4.1 to gain insights into the LATEs of the different types and interpret the RD estimate.

30This is what drives the monotonicity failure. We refer the reader to Appendix D for further discussion.
31One needs to explain why a given individual born in March 1933 would obtain 12 years of schooling,

while that same individual would reduce years of schooling if she was born in April 1933. One possibility
is that individuals suddenly constrained to stay in school by such arbitrary criteria had a behavioural
response, inducing them to drop out as soon as otherwise possible. An alternative explanation is that
the reform had different effects on the pre and post-reform cohorts that are distant from the cut-off and
that a misspecified trend is failing to fully control for this. In this case, we can no longer maintain the
interpretation at the threshold and instead we might be comparing individuals that did not share the
same classroom, school system, school quality, etc. A doubling of the number of pupils enrolled in school
at age 15 might hurt the quality of education at this age, through for example class size, peer motivation
and teacher quality. This in turn could reduce some pupils’ motivation and skills needed to obtain higher
levels of post-compulsory (11+ years of) education.
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We simplify the CR13 setting by focusing on 3 treatment levels: D = {0, 1, 2}, with D = 0

if S = 9, D = 1 if S = 10, 11, and D = 2 if S ≥ 12. This simplified Roy model is sufficient to

provide key insights into the RD estimate. We focus on the CR13 result regarding mortality

rates, where β > 0 captures a reduction in health outcomes. To be consistent with the Roy

model from section 4.1, we reverse the sign of the outcome such that β > 0 is a gain in health

instead.

Discussion of types There are 9 possible types under the alternative values of the binary

instrument (tA, tB, . . . , tI). Under our one-way flow assumption, the second panel in Figure 10

suggests that the reform pushes a large group of men to increase D from 0 to 1, while a small

group of more educated men reduces D from 2 to 1.32 Table 6 highlights the existing types in

bold and indicates proportions in square brackets: 47.8% are type tB (complier-type) and 5.4%

are type tH (defier-type) who respond to the reform. There are no other complier or defier

types. Types tA, tE and tI exist but their schooling is unaffected by the reform.

Table 6: Multivalued Roy with D = 0, 1, 2 - Types in CR13

Born after April 1933
Born before April 1933 0 1 2

∑
0

tA(=) tB(+) tC(+)
0.092 0.478 0 0.570

1
tD(−) tE(=) tF (+)

0 0.196 0 0.196

2
tG(−) tH(−) tI(=)

0 0.054 0.18 0.234∑
0.092 0.728 0.180 1

The values in the table reflect the proportions of each type.

Define βtj ≡ E[Y (k + 1)− Y (k) | tj ]. Then:

βRD =
(
βtB × ptB − βtH × ptH

)
× 1

Ω
(10)

with Ω = ptB − ptH = 0.478− 0.054 = 0.424

while the ACR is the LATE for type B (βtB ) since they are the only complier-type.

Recall the multivalued Roy model

D = 0 if C(1)− γi(1)Zi ≥ βi,0→1

D = 1 if C(1)− γi(1)Zi < βi,0→1 AND C(2)− γi(2)Zi ≥ βi,1→2

D = 2 if C(2)− γi(2)Zi < βi,1→2

We now make the following assumptions to help calibrate the model:

32To keep the model tractable, we ignore the small fraction of compliers increasing S from 10 to 11
(they remain at treatment level D = 1 in our Roy model) and bunch the various groups of defiers at
S = 12, 13, 14 into the group decreasing D from 2 to 1. As will become clear later on, this grouping will
tend to understate the impact of defiers on βRD.
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EH1. β is normally distributed: β ∼ N(µβ, σβ)

EH2. The individual health return is constant over D: βi = βi,0→1 = βi,1→2

EH3. The cost of schooling is increasing in D: C(1) < C(2)

EH4. The impact on the instrument γi(k) is a binary parameter: γi(k) ∈ {γL, γH} with γL(k) <

0 and γH(k) > 0, ∀k = 1, 2.

EH5. There are one-way flows between consecutive years of schooling. For all individuals, the

reform reduces the cost of obtaining D = 1 while it increases the cost of obtaining D = 2:

pγL(1) = 0, and pγL(2) = 1.

Assumption EH5 implies that the impact of the instrument is homogeneous across individ-

uals at any level of the treatment: γi = {γH(1), γL(2)} ∀i. Monotonicity is violated because

the impact changes across treatment levels, affecting individuals differently depending on their

gain from treatment β. We now calibrate the parameters of this Roy model to fit the proportion

of each type and the RD estimate:33

• ptA = P [β ≤ C(1)− γH(1)] = 0.092

• ptB = P [C(1)− γH(1) < β ≤ C(1)] = 0.478

• ptE = P [C(1) < β ≤ C(2)] = 0.196

• ptH = P [C(2) < β ≤ C(2)− γL(2)] = 0.054

• ptI = 1−
∑

j=A,B,E,H

ptj = P [C(2)− γL(2) < β] = 0.180

• βRD =
βtB × ptB − βtH × ptH

ptB − ptH
= −0.009

We can calibrate the parameters of the model up to a normalization. Here we normalize σβ

to 1. Intuitively, for any given β-distribution (µβ, σβ), the parameters C(1), C(2), γH(1) and

γL(2) are set to match the proportions of each type, with the LATEs determined accordingly.

Fitting the βRD estimate then pins down µβ by assigning a suitable LATE to types B and H.

Table 7 shows the solution to this calibration exercise and Figure 12 shows the types over the

β distribution.

The ATE is positive and γH(1) > |γL(2)| to match the larger proportion of complier-type

B. These are the low educated men induced to take more schooling by the reform. Their

LATE is below the ATE but positive overall, although some of them have a negative return:

0 < βtB < ATE. In addition, sorting on gain implies that the defier-type H is instead located

higher up in the β-distribution, with βtH > ATE, pulling down the numerator in equation

33The βRD moment is the impact on the mortality rate for men, taken from CR13 (Table A.2 in the
Online Appendix: mortality rate, by sex).
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Figure 12: Types over the β distribution - CR13

Table 7: Model coefficients and LATEs

(a) Model coefficients

C(1) C(2) γH(1) γL(2) µβ (ATE) σβ
0.809 1.358 1.505 -0.190 0.632 1

(b) LATEs

βRD βtA βtB (ACR) βtE βtH βtI
-0.009 -1.162 0.156 1.072 1.450 2.090

(c) βRD vs Estimands of Interest

βRD −ACR βRD−ACR
µβ

βRD −ATE βRD−ATE
µβ

-0.156 -0.261 -0.641 -1.014
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(10). As a result, βRD is 0.165 of a standard deviation smaller than the ACR even though the

proportion of the defier-type is small. Hence, our model provides two potential reasons for the

small and insignificant health return to schooling found by CR13: the ATE is larger than the

ACR, and the monotonicity violation is causing the ACR to be larger than βRD.34

5.2 IV using School Entry Age regulation

Black, Devereux, and Salvanes (2011), henceforth BDS11, investigate the effect of school entry

age (D ≡ EA) on military IQ test scores and adult outcomes (Y ) in Norway. To deal with

endogeneity, the authors use Legal Entry Age as an instrument (Z ≡ LEA). LEA is the age at

which a child can start school given his/her birth date and given the country or state-specific

school entry cutoff date. In Norway, school starts towards the end of August and children are

expected to enter school in the calendar year they turn 7, implying a January 1st cutoff date.

BDS11 use two different approaches: one including all months of birth, and one relying on

a “discontinuity sample” which includes children born one month on either side of the cutoff

date, i.e. December-January. Note that only month of birth is observed, so the authors cannot

narrow the sample any further around the cutoff date, nor include a trend in the exact date

of birth. The approach using the discontinuity sample is implemented to account for potential

manipulation of the date of birth by parents and the seasonality of births.35 In this section we

focus on the discontinuity sample, a setting with binary instrument and multivalued treatment.

Figure 13 plots the LEA by month of birth: the LEA is fully determined by the date of birth.36

In this context, monotonicity clearly holds in the extreme case where all children start school

on-time (EA = LEA): all December-born children would enter school 11 months older had

they been born in January, and vice versa.

Parents might make school entry decisions based on some knowledge of the gain from starting

school later. This gain could depend on the intellectual and emotional maturity of the child,

or on the relative age of her classmates. The practice of delayed school entry is also known as

34A few remarks about our model. First, grouping defiers in the simplified D = 0, 1, 2 model actually
understates the impact of the defier-type on the RD estimate: defiers at S > 12 will have a higher
LATE than those currently modelled. For instance, with D ∈ {0, 1, . . . , 4}, the calibration would lead
to C(4) > C(3) > C(2) and defiers spread across these three margins. Since C(2) remains unchanged
in that case, it would result in an overall larger LATE for the defier-types. In addition, ignoring the
complier-type moving from 10 to 11 years of schooling (see Table 10) reduces the LATE for the complier-
type. Hence we somewhat understate the LATEs of both complier and defier-types. Second, changing
the value of σβ rescales the parameters but does not alter the qualitative conclusions of this section.
Third, a reduced degree of sorting on the health gain would bring βtH closer to βtB but again would not
alter the qualitative conclusions.

35 For instance Buckles and Hungerman (2013) show that in the US season of birth is not random
but is associated with maternal characteristics: winter births are disproportionally realized by teenagers
and unmarried parents. If date of birth is not random, instruments relying on it are likely to violate
the independence assumption. BDS11 include family characteristics in the regression and show that the
resulting estimates are very close to estimates without these controls. In addition, they are also able to
include family fixed effects.

36In BDS11, LEA is defined as 7.7− (month of birth−1)
12 . In constructing the figures we assume children

are born on the first day of the month and that school starts September 1st.
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Figure 13: LEA by month of birth

red-shirting. The BDS11 setting plausibly a context with essential heterogeneity: (i) the gain

from treatment is heterogeneous across the population and (ii) there is some degree of sorting

into treatment based on the gain.

A variety of studies use the same intuition to estimate the causal effect of school entry

age for different countries and outcomes: Bedard and Dhuey (2006), Datar (2006), Puhani

and Weber (2007), McEwan and Shapiro (2008), Elder and Lubotsky (2009), Muhlenweg and

Puhani (2010), Muhlenweg, Blomeyer, Stichnoth, and Laucht (2012), Fredriksson and Öckert

(2014) and Dee and Sievertsen (2018). None of these studies investigate the monotonicity

assumption. The idea of using LEA as an instrument for school entry age is also very similar to

the Angrist and Krueger (1991) idea of using quarter of birth as an instrument for schooling.

In both cases the date of birth provides the variation in the instrument.37

5.2.1 Plausibility of the Monotonicity Assumption

Although BDS11 do not discuss monotonicity, the paper contains useful information. The table

in Figure 14a is taken from their paper and shows the proportion of children who enter school

on-time, before and after the expected school entry age. Throughout the year, a very large

fraction of children start school in the year they turn 7 (On Time). However, about 15% of

December-borns are red-shirted (Late), while 10% of January-borns start school before the year

they turn 7 (Early). Overall, the youngest children in an eligible school entry cohort (Oct-Dec

borns) are the most likely to be redshirted, while the oldest ones (Jan-Feb borns) are the most

likely to start school early.

This entry age behaviour is consistent with parents/educators making school-entry decisions

based on either a child’s absolute or relative age. Figure 14b replicates Figure 13 but we now add

the observed EA patterns as shown in the table. The size of the circles mirrors the proportions

37Whether monotonicity fails is, nevertheless, highly context-dependent. The discussion below provides
insights into monotonicity and implications of a monotonicity failure in the context specific to BDS11.
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(a) Black, Devereux, and Salvanes (2011) page 458.

(b) LEA and observed school Entry Age

Figure 14: Monotonicity in Black, Devereux, and Salvanes (2011)
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by month of birth. The largest circles are found along the LEA line, reflecting the high on-time

entry rates. The smaller circles on the dotted line reflect early school entry (EA < LEA),

which occurs mainly among children born in January-February. Instead, the smaller circles

on the dashed lines reflect delayed school entry (EA > LEA), which is most common among

October-December borns. This figure also clearly illustrates that all children are affected by

the instrument in this setting: EA necessarily changes with LEA.

Discussion of types We now focus on December and January born children and consider

counterfactuals to assess monotonicity. Since all children are assumed to be born on a given

day in either month, it is possible to distinguish 9 types based on actual and counterfactual

EA behaviour. Table 8 shows these types denoted by tj for j = A, . . . , I. The sign in each

cell indicates the change in EA if a child is born in January rather than December. Thus,

type E represents December-born on-time school entrants who would also enter school on-time

had they been born in January. This implies an increase in EA (+) for members of type tE :

EAi(Jan) > EAi(Dec).
38 Assuming type independence, observed behaviour of January-born

children can function as a counterfactual for actual December-borns, and vice versa. Figure

14b thus suggests that type E is the most prevalent type. Since late school entry among

January-borns does not occur, types C, F and I are absent in this setting. Similarly, since early

school entry among December-borns does not occur, types A and B are also absent. Finally,

it is highly improbable that December-born late entrants would instead enter school early had

they been born in January. Relying on this judgement regarding plausible behaviour, we rule

out type G. Thus other December-born on-time entrants would enter school early had they

been born in January (type D). Crossing the cutoff date implies a drop in EA for this type:

EAi(Jan) < EAi(Dec). Since 10% of January-born children enter school early, existence of

this type cannot be ruled out. Similarly, type H represent December-borns entering school late,

but who would enter school on-time if they had been born in January. This again implies a

drop in EA. Figures 14a and 14b again suggest that the existence of this type cannot be ruled

out. Crucially, the existence of either defier-type D (−) or H (−) alongside the more numerous

complier-type E (+) creates a violation of monotonicity.

Stochastic dominance test From Figures 14a and 14b we can derive the school entry age

under each value of the instrument. Thus for children born December 1st the support of EA is

{5.75, 6.75, 7.75} depending on whether they enter early, on-time or late respectively. Similarly,

for children born January 1st the support of EA is {6.67, 7.67, 8.67}. We can then use the

proportions in Figure 14a to draw the CDFs. Note that none of the December born children

enter school early (EA = 5.75) and none of the January born children enter late (EA = 8.67).

Hence there are only four points of support in constructing the CDFs.

Figure 15 shows that the CDFs cross. Let ND and NJ be the number of the December

38In contrast to Table 3 in the multivalued Roy model in section 4.1, here everyone is affected by the
instrument and therefore the types on the main diagonal face an increase in treatment.
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Table 8: Monotonicity

January Born
December born Early On Time Late
Early tA(+) tB(+) tC(+)
On Time tD(-) tE(+) tF (+)
Late tG(-) tH(-) tI(+)

The (+) term indicates that children enter school
older when born in January. Viceversa, the (-) term
indicates that children enter school younger when
born in January.

Figure 15: Stochastic Dominance under alternative values of the instrument
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and January born children respectively. Similarly let FD(x) and FJ(x) be the CDFs of EA

by month of birth (or equivalently, LEA). Finally let the null and alternative hypothesis be

H0 : FD(x) ≥ FJ(x) for all x and H1 : FD(x) < FJ(x) for some x. Thus we are testing

the hypothesis that the CDF for the January born children stochastically dominates the CDF

for the December born children. The Barrett and Donald (2003) test statistic for first-order

stochastic dominance is given by

Ŝ =

(
ND ×NJ

ND +NJ

)1/2

sup
x

(FJ(x)− FD(x))

BDS11 have a sample of N = 104,023 children born in December and January. From the

paper we know that supx (FJ(x)− FD(x)) = 0.15 and assuming that ND = NJ = N/2 leads to

a test statistic of 24.189 compared to a critical value of 1.517 at a 1% level of significance. The

p-value is zero, leading us to reject stochastic dominance.39 Together with the earlier discussion,

this evidence raises concerns about the internal validity of the identification approach.40

5.2.2 Interpreting βIV under a violation of monotonicity

The data provide evidence that monotonicity does not hold. BDS11 (p. 458) state “The high

compliance rates are reassuring as they imply that our IV estimates can be interpreted as an

approximation to the average treatment effect of school starting age rather than the usual local

average treatment effect (LATE) interpretation.” This is because a change in the legal entry

age instrument has an impact on the entry age of every child irrespective of whether they enter

school On Time, Early or Late. In this section we investigate to what degree a violation of

monotonicity invalidates this ATE interpretation.

In an empirical setting it is generally impossible to identify how children’s entry age and

outcomes are differently affected by the instrument and treatment respectively. This is because

counterfactuals are unobserved. However, under the very mild assumption that no December-

born late entrants would instead enter school early had they been born in January, we can

distinguish between three types of children and their relative proportions. This is illustrated in

the table below.

tE(+) These children enter school On Time irrespective of the date of birth. Thus, going

from a December to a January birth corresponds to a +11 months change in entry

age: (EA(Jan) = 7.67, EA(Dec) = 6.75). They form 75% of the discontinuity sam-

ple: ptE = 0.75.

39We do not know exactly how many children were born in December versus January. However, the
conclusion is not sensitive to a (reasonable) imbalance in ND and NJ . For example, if three quarters of
children were born in December (ND=78,017) and the rest in January (NJ=26,006), the test statistic is

still much larger than the critical value (Ŝ=13.6066).
40Alternatively, one can test for stochastic dominance using a Wald test. In this setting, the CDF

for the January born children stochastically dominates the CDF for the December born children only if
FJ(6.67) = 0 and FD(6.75) = 1. The Wald test also rejects stochastic dominance with a p-value of 0.

37



January Born
December born Early On Time Late
Early 0 0 0 0
On Time .10 .75 0 .85
Late 0 .15 0 .15

.10 .90 0 1

tD(−) These children enter On Time if born in December but enter Early if born in January.

Thus, going from a December to a January birth corresponds to a −1 month change in

entry age: (EA(Jan) = 6.67, EA(Dec) = 6.75). They form 10% of the discontinuity

sample: ptD = 0.1.

tH(−) These children enter Late if born in December but enter On Time if born in January.

Thus, going from a December to a January birth also corresponds to a −1 month change

in entry age: (EA(Jan) = 7.67, EA(Dec) = 7.75). They form 15% of the discontinuity

sample: ptH = 0.15.

Using the estimand for multivalued treatment and assuming that the return to entering

one month later is constant over age for the observed points of support, we can express βIV in

terms of yearly rather than monthly return.41 Define βtj ≡ LATEtj = E[Y (EA = k+1 year)−
Y (EA = k) | tj ]. Then42

βIV (Jan,Dec) =
11
12βtEptE −

1
12βtDptD −

1
12βtHptH

11
12ptE −

1
12ptD −

1
12ptH

, (11)

while ATE = ptEβtE + ptDβtD + ptHβtH and ACR = βtE since only one complier-type exists.

If monotonicity does not hold but β is homogeneous or there is no sorting on gain, such

that βtj is identical across types, then βIV = ATE since,

βIV (Jan,Dec) =
β ×

(
11
12ptE −

1
12ptD −

1
12ptH

)
11
12ptE −

1
12ptD −

1
12ptH

= β .

If monotonicity does not hold, β is heterogeneous and there is sorting on gain, then βIV is

different from the ATE. In BDS11, βIV is likely close to βtE for two reasons:

• Going from a December to a January birth corresponds to a +11 months change in entry

age for type E children, as opposed to a -1 month change for type D and H children.

Therefore, each type E child “counts” 11 times more than a type D or type H child.

• Type E children are more numerous being 75% of the sample.

41 Constant monthly returns are also implied by the linear specification used in BDS11: Y = b0 +
b1EA+ e, otherwise their IV approach breaks down. See Lochner and Moretti (2015) for a discussion of
IV estimation with non-constant effects.

42Proof in Appendix D.2.
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Without additional information about the different LATE’s by type, it is impossible to be

more precise about what βIV measures, and how close it is to the ATE or to some LATE such

as βtE .

5.2.3 What can we learn from the Roy model?

In this section we present a simple Roy model adapted to the BDS11 setting, where the treatment

is multivalued but individuals essentially make a binary decision (On Time school entry vs. not).

To help calibrate the model, we assume that:

EA1. β is normally distributed: β ∼ N(µβ, σβ)

EA2. The return to entering school one month later is constant over the relevant age interval

[6.67, 7.75].

EA3. There is a strictly enforced social norm or law that no individual can enter school younger

than six or older than eight. This captures the observation that no child is observed

entering school outside of the 6-8 age interval.

EA4. There is a cost from not entering school On Time: Ce is the cost of entering early, while C`

is the cost of entering late. These could be psychic costs of deviating from social norms,

time or monetary costs. For instance, BDS11 explain that parents had to formally apply

for an exception from the rule and the application had to be approved by health and

school specialists as well as by the local government. This assumption is used to explain

the high rate of On Time entry.

EA5. No December-born late entrants would instead enter school early had they been born in

January (type G in section 5.2.1). This assumption is needed to identify the proportions

of each type as discussed above.

The school entry age decision can be modelled as an optimal stopping problem: from the

year a child is eligible, parents decide whether to exit the formal or informal child care system

and enter the school system or whether to wait 1 more year. These children exit if the marginal

benefit of waiting one more year (β) does not exceed the marginal cost (C). In Table 9 we

describe the potential and observed entry age choices.

Table 9: Potential and observed entry age values

Entry age Observed Entry age Observed
December born January born

Early 5.75 No Early+ 5.67 No
On Time 6.75 Yes Early 6.67 Yes
Late 7.75 Yes On Time 7.67 Yes
Late+ 8.75 No Late 8.67 No
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Hence December borns face a binary choice On Time vs Late start: they choose On Time if

Y (7.75)− C` ≤ Y (6.75)⇒ β ≤ C` ,

while January borns face a binary choice Early vs On Time school start: they choose Early if

Y (7.67) ≤ Y (6.67)− Ce ⇒ β ≤ −Ce ,

which implies that these children have a negative return from entering school one year later.43

To identify the parameters of f(β) we then exploit the following restrictions taken from BDS11:

• ptD = P [β ≤ −Ce] = 0.1

• ptH = P [β > C`] = 0.15

• ptE = 1−
∑

j=D,H

ptj = P [−Ce < β ≤ C`] = 0.75

• βIV =
11
12
βtE

ptE−
1
12
βtD

ptD−
1
12
βtH

ptH
11
12
ptE−

1
12
ptD−

1
12
ptH

= β̂IV = 0.167 .44

As in the CR13 setting, we can calibrate the parameters of the model up to a normalization.

Again, we normalize σβ to 1. For any given β-distribution (µβ, σβ), the cost parameters C`,

Ce are set to match the proportions of each type. Then µβ is set to ensure the βIV = 0.167

restriction is satisfied.45

The solution to this problem is shown in Table 10 and in Figure 16. Since there is a cost

from not starting school On Time, children who do so must have either very negative returns

(βtD) or very positive returns (βtH ) from starting school one year later. The average return to

postponing school entry with one year is 0.25. We can now establish how informative the βIV

estimate is. The difference (βIV −ATE) is about 8.6% of a standard deviation or about 34% of

the ATE. The difference (βIV − βtE ) is about 0.1% of a standard deviation, or 4% of the ATE.

Hence βIV is fairly close to the ACR in spite of the monotonicity violation, albeit somewhat

more distant from the ATE. In addition to the two reasons mentioned earlier, this result is also

driven by the complier-type being located in between the two defier-types. Since the LATEs

of the defier-types have opposite signs, their contribution to βIV in (11) partly cancels out.

Yet, 0 < βRD < ACR since the monotonicity failure reduces the numerator more than the

denominator.

43Ce could also be negative, implying a net benefit from having a child enter school ahead of time.
Assumption EA5 rules out type G children. This assumption is violated if C` < β < −Ce for some child.
A negative Ce would make this possible. However, for children to enter On Time irrespective of their
month of birth (type E) we need −Ce < β < C` instead. Thus the existence of type G children rules out
the existence of type E and viceversa.

44β̂IV = 0.167 is derived from Table 3, column (3) “2SLS Discontinuity Sample” in BDS11, by summing
the School starting age coefficient of -0.039 and the Age at test coefficient of 0.206.

45The data used in BDS11 is not publicly available. Therefore, there is no additional information that
can be used to identify the parameters of the model or to relax the assumptions made earlier.
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Table 10: Model coefficients and LATEs

(a) Model coefficients

Ce C` µβ (ATE) σβ
1.028 1.29 0.253 1

(b) LATEs

βIV βtD βtE (ACR) βtH
0.167 -1.501 0.177 1.808

(c) βIV vs Estimands of Interest

βIV −ATE βIV −ATE
µβ

βIV −ACR βIV −ACR
µβ

-0.086 -0.341 -0.01 -0.038

Figure 16: Types over the β distribution - BDS11
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Link to Roy Model in Section 3.1 We can also express the multivalued treatment level

as a function of the binary choice, linking to the Roy model in section 3.1.

EA = 6.75 + 1× I[β > C`] +

(
11

12
− 1× I[β ≤ Ce]− 1× I[β > C`]

)
Z

= 6.75 + 1× I[β > C`] + γZ; γ ∈
{

11

12
,
−1

12

}
where I[.] is an indicator function. This formulation of the model makes explicit that i) entry

age changes value with the instrument even if the individual always enter school On Time and

ii) the impact of the instrument (γ) is a deterministic function of the gain (β).

IV vs fuzzy RD Suppose BDS11 had information on the date of birth. With enough

observations we could create a stricter discontinuity sample with children born a day apart

around the cutoff: 31 December - 1 January.46 The resulting βIV would be

βIV (Jan 1st,Dec 31st) =
364
365βtEptE −

1
365βtDptD −

1
365βtHptH

364
365ptE −

1
365ptD −

1
365ptH

≈ βtE .

This is because each type E child now counts 364 times more than a type D or type H child.

Even if the proportion of type E children becomes smaller as we approach the cutoff, it is

unlikely to change enough to reverse βIV ≈ βtE . Monotonicity is still violated because of the

type D and H children, but the cost of violating monotonicity is small because these types do

not carry much weight. An RD approach takes this to the extreme, by identifying β exactly at

the threshold. In this setting, this is an important advantage of using a genuine RD approach

as opposed to an IV approach. Alternatively, one could include a trend in date of birth which, if

correctly specified, would allow to capture the effect right at the discontinuity while also using

observations further from the cutoff date. In fact, BDS11 estimate the effect of school entry age

by also running a 2SLS procedure using all months of birth. This is numerically equivalent to

a fuzzy RD:

Y =b0 + b1EA+ b2X + e

EA =a0 + a1LEA+ a2X + v ,

where X includes month of birth (ranging between 1-12). However, we believe that even

this alternative specification is problematic because of the linear trend in the first stage. Since

children are more likely to start late (early) the closer they are born to the left (right) of the

discontinuity, the trend in EA is not linear over the different months. Imposing a linear trend

is a misspecification of the true process, and it will bias the estimate of the first stage. An

46Their discontinuity sample with children born December-January has 104,023 observations. Assum-
ing births are equally likely on any given day, a sample 31 December - 1 January has 3,467 observations.
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ideal fuzzy RD design would have data relying on date rather than month of birth, use a small

bandwidth and include a trend using local linear regression that is allowed to be different on

each side of the threshold. That is possibly a robust solution in the school entry age setting.47

Barua and Lang (2016) We are not the first ones to discuss the monotonicity condition in

the school entry age setting. Barua and Lang (2016) argue that studies using legal entry age as

an instrument may be severely biased because they violate the monotonicity assumption needed

for LATE. There are a number of differences with their work. First, based on the evidence that

several US states have increased the minimum school entry age by shifting the entry cut-off,

Barua and Lang (2016) aim to identify the effect of such policy change on children outcomes. To

this extent they propose an alternative definition of treatment and instrument. Our focus is to

understand whether using the legal entry age instrument so widely adopted in the literature is

any helpful in identifying the ATE and/or any LATE. Second, they discuss monotonicity using

US census data for cohorts born in the 1950s, for which they only observe quarter of birth. This

data has not been used in any of the school entry age studies. We look at data actually used in a

more recent study and with individuals born only a month before/after the cutoff. Third, they

argue that monotonicity is violated by simply showing that stochastic dominance does not hold.

We go further by emphasizing the role of sorting on gain in school entry decisions, how this

leads to the different types of individuals and consequently to the violation of the monotonicity

assumption. While they conclude that, in the absence of monotonicity, empirical studies do not

provide consistent estimates of the LATE, we find that βIV is fairly close to a LATE of interest

albeit not close to the ATE.

6 Recommendations for applied researchers

This section describes a thought process for the applied researcher seeking to scrutinise the

monotonicity assumption and its implications. Figure 17 summarises the main ideas.

Q1. Can Essential Heterogeneity (Cov(β,D) 6= 0) be ruled out?

Can either heterogeneous treatment effects or selection into treatment based on the gain

be ruled out? If so, monotonicity is not a required assumption: βIV = ATE.48 Two

tests of essential heterogeneity have been suggested in the literature. Both apply to the

binary treatment case. Heckman, Urzua, and Vytlacil (2006) present a propensity score-

based test that relies on either a multivalued or continuous instrument, or a vector of

instruments, while Mourifié, Henry, and Méango (2020)’s test uses selection shifters that

47Gelman and Imbens (2018) and Imbens and Kalyanaraman (2012) argue against the use of high-order
polynomials in the Regression Discontinuity design.

48If the treatment is multivalued, an ATE interpretation also requires average returns to be constant
across treatment levels.
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1. Can essential heterogeneity be ruled out?

2. Is monotonicity plausible? Provide
a discussion and test when possible

no

3. What can be done when
monotonicity is violated?

no

Monotonicity not necessary:

βIV = ATE

yes

Interpret as LATE or ACR

yes

Figure 17: Recommendations for applied researchers

might be distinct from the instrument used for identification.49

Q2. Is monotonicity plausible? Provide a discussion in your context and test when

possible.

What does monotonicity imply in your context? Can you think of a reason why it might

be violated?

Whenever possible, one should also test for the monotonicity assumption. The tests avail-

able in the literature are joint tests of instrument independence and monotonicity. These

two conditions are refutable but non-verifiable. As a result, we recommend a combina-

tion of economic insights and formal testing to assess the monotonicity condition whenever

possible.

• Multivalued treatment case: stochastic dominance as suggested by Imbens and Angrist

(1994) and fornally tested by Barrett and Donald (2003).

• Binary treatment case: see Kowalski (2019) when the instrument is binary, Kitagawa (2015)

when the instrument is discrete, Huber and Mellace (2015) and Mourifié and Wan (2017)

when the instrument is either binary or discrete.

If monotonicity seems plausible and is not refuted by the test, the estimate can be inter-

preted as a LATE or ACR .

Q3. What can be done when monotonicity is violated?

In this case IV or RD strategies do not generally identify a causal treatment effect. Now

what can be done? Here we make a few alternative suggestions:

• Spell out the IV or RD estimand and quantify the weights attached to the different types

of individuals. This step can guide interpretation.

49In the empirical examples discussed, we do not implement the suggested tests since the treatment is
not binary and we do not have access to the data used in the original analyses.
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• Give more structure. For instance, define and calibrate a Roy model to interpret the IV or

RD estimate as illustrated in section 5. Even in the absence of a full calibration, this step

can help locate the average treatment effects of the complier and defier-types.

• Redefine the treatment in a way that avoids a monotonicity failure. Example are provided

in both empirical applications discussed in section 5. A different treatment definition might,

however, answer a very different question.

• Consider whether your setting classifies as a special case of monotonicity failure that still

allows to uncover a LATE of interest: compliers-defiers condition (de Chaisemartin (2017))

or local monotonicity (Dahl, Huber, and Mellace (2017)), both are discussed in section 3.4;

or violations of monotonicity at random, which allows to approximate the bias caused by

monotonicity failure (Klein (2010)).50

• If none of the above yields sufficient insights, an alternative estimation strategy might be

needed. See e.g. Kline and Walters (2019) for an overview.

7 Conclusion

Identification of a LATE (or ACR) in an IV or fuzzy RD design with essential heterogeneity relies

on the monotonicity assumption. In this paper, we provide a framework to scrutinize mono-

tonicity and assess the impact of a monotonicity failure on the interpretation of the estimate.

We focus on the case with a binary instrument, and either binary or multivalued treatment.

First, using a Roy model for treatment selection, we find that interpretation of the estimates

can be lost even under limited essential heterogeneity and for minor violations of monotonic-

ity. We also show that a larger first stage impact does not necessarily counteract a departure

from monotonicity. Second, we investigate monotonicity in two applied studies using economic

insights and data analysis. Clark and Royer (2013) exploit changes in compulsory schooling

laws to investigate the effect of education on health in a fuzzy RD setting. Since the reform

affected a large share of the relevant cohorts, the authors suggest that their estimate should be

closer to the ATE than a LATE. Black, Devereux, and Salvanes (2011) use school entry age

cutoffs as an instrument to investigate the effect of entering school older on IQ test scores and

adult outcomes. Given the high compliance rates, they also argue that their IV estimates can

be interpreted as an approximation to the ATE rather than a LATE. We find that the data

patterns reported in these papers are indicative of a monotonicity failure and confirm this using

formal testing. By constructing and calibrating a Roy model, we conjecture that the authors’

suggested interpretation of their estimates might be incorrect, and propose an alternative one.

We conclude our paper with a set of recommendations for the empirical researcher seeking a

clear framework to scrutinize the monotonicity assumption.

50We do not discuss Klein (2010) further because his setting does not translate easily into our Roy
model.
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Appendix A Generalizations of the binary treatment

and instrument IV setting

A.1 Monotonicity in the Fuzzy RD design

Consider the potential outcomes framework with a binary treatment (as in section 2), but with

Z taking on a continuum of values (v ∈ Z). In an RD design we exploit the discontinuity in

the treatment probability at a threshold Z = v0:

lim
v↓v0

E[D|Z = v] 6= lim
v↑v0

E[D|Z = v]

with the difference being smaller than 1.51 Hahn, Todd, and Van der Klaauw (2001) point

out that both the fuzzy Regression Discontinuity and the IV estimands can be expressed as a

Wald estimand:

βRD ≡
limv↓v0 E[Y |Z = v]− limv↑v0 E[Y |Z = v]

limv↓v0 E[D|Z = v]− limv↑v0 E[D|Z = v]

which measures a similar LATE to βIV (z, w) if z = v0 + ε, w = v0 − ε and ε is arbitrarily

small. Under essential heterogeneity, regression discontinuity estimation identifies β for those

individuals with Z = v0 who are affected by the threshold (LATE at v0) under the following

conditions

RD1. limv↓v0 E[D|Z = v] 6= limv↑v0 E[D|Z = v] (RD)

RD2. E[Y (0)|Z = v] is continuous in v at v0 (continuity)

There exists a small number ξ > 0 such that for all 0 < e < ξ

RD3. [β1, D(v − e), D(v + e)] is jointly independent of Z near v0 (independence)

RD4. Either Di(v0 + e) ≥ Di(v0 − e) ∀i, Or Di(v0 + e) ≤ Di(v0 − e) ∀i (monotonicity)

Condition RD1 is the RD equivalent of the rank condition in the IV setting. Condition

RD2 implies that in the absence of treatment, individuals close to the threshold v0 are similar.

Note again that monotonicity is a condition on counterfactuals: for every individual i, cross-

ing the threshold must either leave the treatment unchanged or change the treatment in the

same direction. Invoking the reasoning in Angrist, Imbens, and Rubin (1996) and keeping the

conditioning on the running variable implicit, we can interpret the RD estimate of β as

βRD = lim
e→0

{
λ×E[Y (1)− Y (0)|D(v0 + e)−D(v0 − e) = 1] + (12)

(1− λ)×E[Y (1)− Y (0)|D(v0 + e)−D(v0 − e) = −1]
}

51When the jump in treatment probability is equal to 1, monotonicity is satisfied by definition. This
case is defined in the literature as a sharp regression discontinuity design.
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where

λ =
P [D(v0 + e)−D(v0 − e) = 1]

P [D(v0 + e)−D(v0 − e) = 1]− P [D(v0 + e)−D(v0 − e) = −1]

Equation (12) is the equivalent of equation (1) in an RD setting and provides the same

insights. Thus, if monotonicity holds, λ is equal to either 0 or 1, and the RD estimate can be

interpreted as a LATE at the threshold. When monotonicity is violated either λ < 0 or λ > 1,

and the RD estimate measures neither a LATE-in or LATE-out nor a weighted average of the

two LATEs.

A.2 Monotonicity when the instrument is multi-valued

Let Z be a multivalued random variable with support Z = {0, 1, ..., J} and with J > 1. Assume

that IV1 (rank) and IV2 (independence) hold. Define g(Z) as a scalar function from the support

of Z to the real space. Using g(Z) as an instrument, the IV estimator is now given by52

βIV ≡ Cov(Y, g(Z))

Cov(D, g(Z))

In order to interpret the IV estimator Imbens and Angrist (1994) and Angrist and Imbens

(1995) supplement IV3 (monotonicity) with another condition

IV4. (i) either ∀z, w ∈ Z, E[D|Z = z] ≤ E[D|Z = w] implies g(z) ≤ g(w); or, ∀z, w ∈
Z, E[D|Z = z] ≤ E[D|Z = w] implies g(z) ≥ g(w) and

(ii) Cov(D, g(Z)) 6= 0

Note that while monotonicity is a condition across individuals, IV4 is a condition on the relation

between E[D|Z] and g(Z): IV3 does not imply IV4 and viceversa.53 Condition IV4 is satisfied

by construction when Z is binary, or when Z is a discrete random variable that enters g(Z) in

the form of mutually exclusive dummy variables. Otherwise IV4 is not guaranteed to hold.

Under IV1-IV4, let the points of support of Z be ordered such that ` < m implies E[D|Z =

`] < E[D|Z = m]. Angrist and Imbens (1995) show that we can write the IV estimate of β as

a weighted average of Wald estimators:

βIV =
J∑
j=1

µjβ
IV (j, j − 1) (13)

where

βIV (j, j − 1) =
E[Y |Z = j]− E[Y |Z = j − 1]

E[D|Z = j]− E[D|Z = j − 1]

52The case where g(Z) = Z is the simplest case, but this notation generalizes the estimator to any
functional form of g(Z) and to the case where Z is a vector.

53Because IV3 implies that every individual has to respond to the instrument in the same direction,
Heckman and Vytlacil (2005) and Heckman, Urzua, and Vytlacil (2006) rename IV3 with the term
“uniformity”.
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and

µj = (E[D|Z = j]− E[D|Z = j − 1])

∑J
`=j π`(E[D|Z = `]− E[D])∑J

`=0 π`E[D|Z = `](E[D|Z = `]− E[D])

with π` = P [Z = `]. Given the ordering in Z we also have that 0 ≤ µj ≤ 1 and
∑J

j=1 µj = 1.

Equation (13) indicates that, under a binary treatment,

• when monotonicity IV3 and IV4 are satisfied then βIV is a weighted average of LATEs

E[Y (1) − Y (0)|D(j) −D(j − 1) = 1]. This is because each Wald estimator has a LATE

interpretation (given IV3) and the µj weights are non-negative (given IV4).

• when monotonicity IV3 is satisfied but IV4 is not then βIV is not a weighted average of

LATEs. While each Wald estimator has a LATE interpretation, some µj weights can be

negative.

• when monotonicity IV3 is violated but IV4 is satisfied then βIV is again not a weighted

average of LATEs. Now some Wald estimators no longer have a LATE interpretation,

even though all the µj weights are non-negative.

When the treatment is multi-valued the same conclusions apply with the only difference

that each Wald estimator has an ACR interpretation (under monotonicity).

The analogy between the fuzzy Regression Discontinuity design and the IV estimators is

less direct now. Let Z be the running variable in an RD setting, with v ∈ Z. Consider now the

case where there are multiple discontinuities or cutoffs (vf ) for f = 1, . . . , F and F > 1, such

that the expected treatment value jumps at each threshold

lim
v↓vf

E[D|Z = v] 6= lim
v↑vf

E[D|Z = v] ∀f

One way to approach this problem is to split the sample and run a separate RD regression

at each cutoff, doing so for both the treatment and the outcome equation. This approach yields

a vector of F treatment effects, each interpretable as a LATE (or ACR) if monotonicity is

satisfied. Note that this is not exactly how discrete multivalued instruments are used. If Z has

support Z = {z0, z1, . . . , zJ} then the instrument often enters the g(Z) function in the form of

mutually exclusive dummy variables (similarly to RD) but the outcome equation is estimated

over the whole sample (contrary to separate RD regressions). The result is a weighted average

of LATEs (or ACRs) as described earlier. Of course one could take the same approach for

the fuzzy RD by pooling all the observations together while using dummy variables to identify

threshold-specific effects.

For instance, using a linear spline specification, the RD design can now be described by:

D =α0 + δD0 × (Z − v1) +
F∑
f=1

{
α1f × 1[Z > vf ] + δDf × 1[Z > vf ]× (Z − vf )

}

Y =β0 + β1D + δY0 × (Z − v1) +
F∑
f=1

{
δYf × 1[Z > vf ]× (Z − vf )

}
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See for instance Brollo, Nannicini, Perotti, and Tabellini (2013), Clark and Royer (2013)

and Dobbie and Skiba (2013) for settings with multiple discontinuities. The case of a continuous

instrument is instead unlikely in an RD setting since that would imply a continuum of cutoffs.
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Appendix B Average Treatment Effects in the Roy

model

Using figure 1, we can write down the average treatment effects for the different types.

• Average Treatment Effect (ATE):

E[β] = β =

∫ +∞

−∞
β f(β) dβ

• ATE of compliers (LATECM ):

E[β|CM ] =
1

P [−γH < β ≤ 0]

∫ 0

−γH
β f(β) dβ

The ATE of compliers is the expected β over the interval where compliers are located.

Each β is weighted by the probability density f(β), adjusted for the fraction of individuals

in that interval (P [−γH < β ≤ 0]).54

• ATE of defiers (LATEDF ):

E[β|DF ] =
1

P [0 < β ≤ −γL]

∫ −γL
0

β f(β) dβ

The ATE of defiers is obtained in a similar way as that of compliers, but over the interval

of β where defiers are located: [0,−γL].

• ATE of always-takers (LATEAT ):

E[β|AT ] = wAT
1

P [0 < β ≤ −γL]

∫ −γL
0

β f(β) dβ

+ (1− wAT )
1

P [β > −γL]

∫ +∞

−γL
β f(β) dβ

The always-takers are spread over two different intervals of β. Over each interval there

is an expected β. Each of these are then assigned a weight equal to the fraction of

always-takers that are located in that interval (wAT and 1− wAT , see below).

54Note that the sum of weights 1
P [−γH<β≤0]

∫ 0

−γH f(β) dβ = 1
F (0)−F (−γH)

∫ 0

−γH f(β) dβ = 1.
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• ATE of never-takers (LATENT ):

E[β|NT ] = wNT
1

P [−γH < β ≤ 0]

∫ 0

−γH
β f(β) dβ

+ (1− wNT )
1

P [β ≤ −γH ]

∫ −γH
−∞

β f(β) dβ

Also never-takers are spread over 2 intervals of β. Over each interval there is an expected

β. Each of these are then assigned a weight equal to the fraction of all never-takers that

are located in that interval (respectively wNT and 1− wNT , see below).

The weights wAT and wNT are as follows:

wAT =
pγH P [0 < β < −γL]

pAT

1− wAT = 1− pγH P [0 < β < −γL]

pAT
=
P [β > −γL]

pAT

wNT =
pγL P [−γH < β < 0]

pNT

1− wNT = 1− pγL P [−γH < β < 0]

pNT
=
P [β < −γH ]

pNT
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Appendix C RD in the Roy model

The same Roy model can be used to explain the importance of monotonicity in a fuzzy Regres-

sion Discontinuity Design. Let Z be a continuous variable. At the threshold v0, let the selection

equation be

D =

{
1 if Y (1)− Y (0) + γ1[Z > v0] > 0 ⇔ β > −γ1[Z > v0]

0 if Y (1)− Y (0) + γ1[Z > v0] ≤ 0 ⇔ β ≤ −γ1[Z > v0]

Thus treatment now depends on Z in a discontinuous way: if Z is larger than a cut-off

value v0 there is an additional effect determined by γ. All other elements of the model stay

unchanged, that is γ ∈ {γL, γH} with γL < 0 and γH > 0, and the proportion of individuals

with the two values of γ are given by pγL and pγH = 1 − pγL . We also maintain that around

the threshold value v0 the assumptions of discontinuity in the probability of treatment (RD1),

continuity in the conditional regression function (RD2) and independence (RD3) are satisfied.55

C.1 Sharp RD

In a sharp design, treatment is known to depend in a deterministic way on Z. For instance,

near the threshold v0 all individuals with Z > v0 take treatment while those with Z ≤ v0 do

not take treatment. This is an example where all individuals are compliers. The model above

would generate such a sharp RD when β is a negative random variable, γ is a positive one, and

|min{β}| < min{γ} so that the instrument’s impact is strong enough to push everyone into

treatment.56

C.2 Fuzzy RD

The fuzzy design differs from the sharp design in that the treatment assignment is not a deter-

ministic function of Z but there are additional variables unobserved by the econometrician that

determine assignment to treatment. In the model these variables are β and γ. Thus, in the

presence of sorting on gain or with 0 < pγL < 1 we have a fuzzy RD. Similarly to the IV case,

individuals can then be classified into types according to their individual return to treatment β

and their response γ to crossing the threshold v0.

Under independence, the distribution of types around the threshold v0 would be the same

as in figure 1. Thus, the probability of observing each of the four types, the ATE and all the

LATEs can be computed as before. Importantly, at the threshold v0 the RD estimate of β can

again be expressed as:

55Here we focus on the threshold but the selection equation could be more complex elsewhere, for
instance including a function of the running variable Z.

56Alternatively, a sharp RD can originate if there is no sorting on gain and if γ > 0 and homogeneous.
Intuitively, sharp RD is likely to emerge in settings where there are strict rules based on Z. Thus,
individuals have no discretion in selecting into treatment resulting in no sorting on gain.
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Table 11: Counterfactual Choices - RD

γ = γL
β ≤ 0 0 < β ≤ −γL β > −γL

lime→0 Z = v0 + e D = 0 D = 1 D = 1
lime→0 Z = v0 − e D = 0 D = 0 D = 1
type NT DF AT

γ = γH
β ≤ −γH −γH < β ≤ 0 β > 0

lime→0 Z = v0 + e D = 0 D = 0 D = 1
lime→0 Z = v0 − e D = 0 D = 1 D = 1
type NT CM AT

βRD = λ× LATECM + (1− λ)× LATEDF

where

λ =
pCM

pCM − pDF
The only difference with the IV setting is that one relies on observations at the limit. The

insights of sections 3.1-3.3 extend to the RD setting in a straightforward way.
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Appendix D Applications

D.1 Clark and Royer (2013)

The treatment S is a multivalued random variable measuring years of schooling, with support

S = {9, 10, 11, 12, 13, 14}. Applying equation (4) from Section 4 to the regression discontinuity

setting:

βRD = lim
e→0

14∑
k=10

{
E[Y (k)− Y (k − 1)|S(v0 + e) ≥ k > S(v0 − e)]×

P [S(v0 + e) ≥ k > S(v0 − e)]
Ω

−E[Y (k)− Y (k − 1)|S(v0 − e) ≥ k > S(v0 + e)]× P [S(v0 − e) ≥ k > S(v0 + e)]

Ω

}
(14)

where

Ω =

14∑
k=10

(
P [S(v0 + e) ≥ k > S(v0 − e)]− P [S(v0 − e) ≥ k > S(v0 + e)]

)
Information from Clark and Royer (2013) can be used to assign values to some of the

moments in equation (14). The table in figure 10, however, only shows us the net flows between

k − 1 and k years of schooling. We can simplify the setting by assuming that these net flows

are the actual gross flows that occurred.

RD5. for all treatment levels k ∈ S, either Si(v0 + e) ≥ k ≥ Si(v0 − e) ∀i, Or Si(v0 + e) ≤ k ≤
Si(v0 − e) ∀i (one-way flows)

Under RD5, the date inform us about which of the two-way flows can be discarded at each

k, so that equation (14) simplifies to equation (9).

D.2 Black, Devereux, and Salvanes (2011)

The treatment EA is a multivalued random variable measuring age at school entry in monthly

steps, with support {6.67, 6.67+ 1
12 , 6.67+ 2

12 , . . . , 7.75}. Given that we focus on the discontinuity

sample, the instrument is binary with the two values of the legal entry age depending on whether

a child is born in December or January. Therefore, we apply equation (4). Let Y (k) be the

military IQ test score of an individual who started school at age EA = k. Y (k)− Y (k − 1
12) is

then the gain in test score associated with starting school a month older. Hence,
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βIV (Jan,Dec) =
1

Ω
×

11∑
s=1

{
E

[
Y
(

6.67 +
s

12

)
− Y

(
6.67 +

s− 1

12

) ∣∣∣EA(Jan) ≥ 6.67 +
s

12
> EA(Dec)

]
× P

[
EA(Jan) ≥ 6.67 +

s

12
> EA(Dec)

]
−

E

[
Y
(

6.67 +
s

12

)
− Y

(
6.67 +

s− 1

12

) ∣∣∣EA(Dec) ≥ 6.67 +
s

12
> EA(Jan)

]
× P

[
EA(Dec) ≥ 6.67 +

s

12
> EA(Jan)

]}

where

Ω =
11∑
s=1

(
P
[
EA(Jan) ≥ 6.67 +

s

12
> EA(Dec)

]
− P

[
EA(Dec) ≥ 6.67 +

s

12
> EA(Jan)

])

Since we know there are only three types based on counterfactual school start behaviour

(tD, tE , tH , with tE facing a jump of 11 months in EA in response to the instrument, while both

tD and tH face a drop of 1 month in EA ), we can rewrite the equation above as

βIV (Jan,Dec) =
1

Ω
×
{ 11∑
s=1

{
E

[
Y
(

6.75 +
s

12

)
− Y

(
6.75 +

s− 1

12

) ∣∣∣tE]× ptE}
− E

[
Y (6.75)− E(6.67)

∣∣∣tD]× ptD
− E

[
Y (7.75)− E(7.67)

∣∣∣tH]× ptH}
where

Ω = (11× ptE − ptD − ptH )

Finally, using the assumption that an individual’s return to entering one month later is constant

with age over the observed points of support

βIV (Jan,Dec) =
11
12βtEptE −

1
12βtDptD −

1
12βtHptH

11
12ptE −

1
12ptD −

1
12ptH

�
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Mourifié, Ismael and Yuanyuan Wan. 2017. “Testing Local Average Treatment Effect Assump-

tions.” The Review of Economics and Statistics 99 (2):305–313.

Muhlenweg, Andrea, Dorothea Blomeyer, Holger Stichnoth, and Manfred Laucht. 2012. “Effects

Of Age At School Entry (ase) On The Development Of Non-cognitive Skills: Evidence From

Psychometric Data.” Economics of Education Review 31 (3):68–76.

Muhlenweg, Andrea M. and Patrick A. Puhani. 2010. “The Evolution of the School-Entry Age

Effect in a School Tracking System.” The Journal of Human Resources 45 (2):407–438.

59



Oreopoulos, Philip. 2006. “Estimating Average and Local Average Treatment Effects of Ed-

ucation when Compulsory Schooling Laws Really Matter.” American Economic Review

96 (1):152–175.

Puhani, Patrick and Andrea Weber. 2007. “Does The Early Bird Catch The Worm?” Empirical

Economics 32 (2-3):359–386.

Rubin, Donald. 1974. “Estimating causal effects of treatments in randomized and nonrandom-

ized studies.” Journal of Educational Psychology 66.

Silles, Mary A. 2011. “The Effect of Schooling on Teenage Childbearing: Evidence Using

Changes in Compulsory Education Laws.” Journal of Population Economics 24 (2):761–777.

Vytlacil, Edward. 2002. “Independence, Monotonicity, and Latent Index Models: An Equiva-

lence Result.” Econometrica 70 (1):331–341.

List of AER Papers from Google Scholar Search

The papers that mention monotonicity are denoted by the § symbol.

Andrews, Rodney J. 2016. “Coordinated admissions program.” American Economic Review

106 (5):343–47. §.

Buonanno, Paolo and Steven Raphael. 2013. “Incarceration and incapacitation: Evidence from

the 2006 Italian collective pardon.” American Economic Review 103 (6):2437–65.

Carneiro, Pedro, James J Heckman, and Edward J Vytlacil. 2011. “Estimating marginal returns

to education.” American Economic Review 101 (6):2754–81. §.

Crost, Benjamin, Joseph Felter, and Patrick Johnston. 2014. “Aid under fire: Development

projects and civil conflict.” American Economic Review 104 (6):1833–56.

Deming, David J, Justine S Hastings, Thomas J Kane, and Douglas O Staiger. 2014.

“School choice, school quality, and postsecondary attainment.” American Economic Review

104 (3):991–1013.

Dinkelman, Taryn. 2011. “The effects of rural electrification on employment: New evidence

from South Africa.” American Economic Review 101 (7):3078–3108.

Dobbie, Will, Jacob Goldin, and Crystal S Yang. 2018. “The effects of pretrial detention

on conviction, future crime, and employment: Evidence from randomly assigned judges.”

American Economic Review 108 (2):201–40. §.

60



Dobbie, Will and Jae Song. 2015. “Debt relief and debtor outcomes: Measuring the effects of

consumer bankruptcy protection.” American Economic Review 105 (3):1272–1311. §.

Doyle Jr, Joseph J. 2007. “Child protection and child outcomes: Measuring the effects of foster

care.” American Economic Review 97 (5):1583–1610. §.

Huang, Zhangkai, Lixing Li, Guangrong Ma, and Lixin Colin Xu. 2017. “Hayek, local informa-

tion, and commanding heights: Decentralizing state-owned enterprises in China.” American

Economic Review 107 (8):2455–78.

Maestas, Nicole, Kathleen J Mullen, and Alexander Strand. 2013. “Does disability insurance

receipt discourage work? Using examiner assignment to estimate causal effects of SSDI re-

ceipt.” American economic review 103 (5):1797–1829. §.

Markevich, Andrei and Ekaterina Zhuravskaya. 2018. “The economic effects of the abolition of

serfdom: Evidence from the Russian Empire.” American Economic Review 108 (4-5):1074–

1117.

Martin, Gregory J and Ali Yurukoglu. 2017. “Bias in cable news: Persuasion and polarization.”

American Economic Review 107 (9):2565–99.

McCrary, Justin and Heather Royer. 2011. “The effect of female education on fertility and infant

health: Evidence from school entry policies using exact date of birth.” American Economic

Review 101 (1):158–95. §.

Moser, Petra, Alessandra Voena, and Fabian Waldinger. 2014. “German Jewish émigrés and
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