
Iterated Local Search with Neighbourhood Reduction for
the Pickups and Deliveries Problem Arising in Retail

Industry?

Hanyu Gu1[0000−0003−2035−2583], Lucy MacMillan2, Yefei Zhang1, and Yakov
Zinder1[0000−0003−2024−8129]

1 School of Mathematical and Physical Sciences, University of Technology Sydney
15 Broadway Ultimo NSW 2007, Australia

Hanyu.Gu@uts.edu.au, Ye.f.zhang@student.uts.edu.au, yakov.zinder@uts.edu.au
2 Australian National Couriers

29 Huntingwood Drive Huntingwood NSW 2148, Australia
Lucym@ancdelivers.com.au

Abstract. The paper studies a vehicle routing problem with simultaneous pickups and de-
liveries that arises in the retail sector, which considers a heterogeneous fleet of vehicles, time
windows of the demands, practical restrictions on the drivers and a roster specifying the order
of vehicle loading at the depot. The high competition in this industry requires that a viable
optimisation approach must achieve a good balance of solution time, quality and robustness.
In this paper, a novel iterated local search algorithm is proposed which dynamically reduces
the neighbourhood so that only the most promising moves are considered. The results of com-
putational experiments on real-world data demonstrate the high efficiency of the presented
optimisation procedure in terms of computation time, stability of the optimisation procedure
and solution quality.

Keywords: Vehicle routing problem · Iterated local search · Neighbourhood reduction

1 Introduction

This paper considers a vehicle routing problem with simultaneous pickups and deliveries (VRP-
SPD) which arises in the retail sector. The features of this problem include: a heterogeneous fleet
of vehicles, time window for pickups and deliveries, open routes, restriction on shift length and
loading roster at the depot. In spite of the practical importance of these features, few applications
in the literature considered all of them simultaneously [9], [6]. Furthermore, the objective of the
considered problem is to maximise the number of allocations which is practically essential, but is
rarely considered in the literature [9].

Since VRPSPD is NP-hard in the strong sense [3], the majority of the publications in this topic
present various heuristics and metaheuristics [9], [6]. In practice, a scheduler expects to produce
a good solution within a short time limit, typically no more than one minute. In contrast, most
research in the literature focuses more on solution quality. In this paper, an iterated local search [7]
based optimisation algorithm is presented to achieve a satisfactory balance between solution quality
and computation time.

? Supported by an Australian Government Research Training Program Scholarship

2 H. Gu et al.

The iterated local search algorithm (ILS) has been widely used to solve combinatorial optimi-
sation problem [7]. It iteratively generates a sequence of local optimums. At each iteration a local
search is performed on a problem-specific neighbourhood structure. A perturbation mechanism is
employed to avoid local optimum and expand the search space. By allowing infeasible solutions in
the designed neighborhood structure [12], [5], ILS has been demonstrated to be much faster than
the state-of-the-art for solving the Workforce Scheduling and Routing Problem, which is, from a
practical application viewpoint, similar to the studied problem in this paper.

The most time-consuming component in ILS is the evaluation of potential moves in the local
search procedure due to the large size of the neighbourhood of the current solution. It is also critical
to select proper moves to increase the probability of converging to the global optimum. This paper
presents a mechanism to reduce the neighbourhood dynamically, which makes the move evaluation
faster, and at the same time direct search in the most promising part of the neighbourhood.

Contributions of this paper include

– development of a MIP model for a VRPSPD problem with many features from the retail sector
– introduction of neighbourhood reduction to speedup the ILS algorithm
– computational studies on real-world data

The remainder of the paper is organised as follows. Section 2 presents the problem formula-
tion. Section 3 describes the proposed iterated local search. Section 4 presents the results for the
computational experiments. Section 5 concludes the paper.

2 Problem statement

The considered vehicle routing problem can be stated as follows. Let G = {L,A} be a directed
graph, where the set of vertices L = {0} ∪C and C = {1, 2, ..., l}, the set of arcs A = AD ∪AC and
AD = {(0, i)|i ∈ C}, AC = {(i, j)|i 6= j,∀i, j ∈ C}. Vertex 0 represents the depot and the remaining
vertices represent the l customers. Each arc (i, j) ∈ A has an associated travel time ti,j .

The delivery to customer i ∈ C is characterised by its weight wd
i and volume vdi . The pickup

from customer j ∈ C is characterised by its weight wp
i and volume vpi . For customer i ∈ C, the

associated time window [ai, bi] indicates the earliest and latest time when the driver can start the
corresponding services, and let pi > 0 be the service time required for the driver to complete the
service.

Let T be the set of all vehicles. Each vehicle i ∈ T is differed by its weight capacity Wi and
volume capacity Vi. All vehicles i ∈ T depart from the same single depot and are not required
to return to depot after serving all allocated customers. The driver in each vehicle i ∈ T finishes
the shift after serving the last allocated customers. Due to the loading capacity of the depot, each
vehicle i ∈ T arrives at the depot at the specified starting time ri with loading time δi. Furthermore,
there exists an upper bound Si on the shift time of the driver in vehicle i ∈ T , which is the length
of time interval between the time when driver starts loading at the depot and the time when driver
finishes the service of the last allocated customers.

Each customer i ∈ C can be served only once, but not all vehicles are capable to serve certain
customers. In this paper, two types of vehicles are considered, i.e., the one-man vehicle T ′ ⊂ T and
the two-men vehicle T ′′ ⊂ T . The customers are also classified as either one-man customer C ′ ⊂ C,
or two-men customer C ′′ ⊂ C. The one-man customer can be served by all vehicles, while two-men
customer can only be served by two-men vehicles.

Iterated Local Search with Neighbourhood Reduction... 3

The objective is to maximise the total number of allocated customer services while respecting
all the constraints on drivers, vehicles and the depot.

Let xijk be a binary variable indicating if customer j is the immediate predecessor of customer k

in the route of vehicle i; ηij be a binary variable indicating if customer j is allocated to vehicle i; γij
be a binary variable indicating if customer j is the first customer to visit after vehicle i departing
from the depot; θij be a binary variable indicating if customer j is the last customer in the route of

vehicle i. Denote the time when driver in vehicle i starts serving customer k by sik; the weight of
the vehicle when leaving customer j by yj ; the volume of the vehicle when leaving customer j by
zj . The considered problem can be formulated as follows:

J = max
∑
i∈T

∑
j∈C

ηij (1)

subject to∑
i∈T

ηij ≤ 1, ∀j ∈ C (2)∑
j∈C

γij ≤ 1, ∀i ∈ T (3)

γij +
∑
k∈C

xik,j = ηij , ∀i ∈ T, j ∈ C (4)

θij +
∑
k∈C

xij,k = ηij , ∀i ∈ T, j ∈ C (5)

aj ≤ sij ≤ bj , ∀j ∈ C, i ∈ T (6)

(ri + δi + t0,k)γik ≤ sik, ∀i ∈ T, k ∈ C (7)

sij + (pj + tj,k)xij,k + (ak − bj)(1− xij,k) ≤ sik, ∀i ∈ T, ∀(j, k) ∈ AC (8)

pj + sij − ri − (pj + bj − ri)(1− θij) ≤ Si, ∀j ∈ C, i ∈ T (9)∑
k∈C

wd
kη

i
k ≤Wi, ∀i ∈ T (10)

yk ≤Wi + (max
e∈T

We −Wi)(1− ηik), ∀i ∈ T, k ∈ C (11)∑
j∈C

wd
j η

i
j − wd

k + wp
k − (max

e∈T
We − wd

k + wp
k)(1− γik) ≤ yk, ∀i ∈ T, k ∈ C (12)

yj − wd
k + wp

k − (max
e∈T

We − wd
k + wp

k)(1− xij,k) ≤ yk, ∀i ∈ T, ∀(j, k) ∈ AC (13)∑
k∈C

vdkη
i
k ≤ Vi, ∀i ∈ T (14)

zk ≤ Vi + (max
e∈T

Ve − Vi)(1− ηik), ∀i ∈ T, k ∈ C (15)∑
j∈C

vdj η
i
j − vdk + vpk − (max

e∈T
Ve − vdk + vpk)(1− γik) ≤ zk, ∀i ∈ T, k ∈ C (16)

zj − vdk + vpk − (max
e∈T

Ve − vdk + vpk)(1− xij,k) ≤ zk, ∀i ∈ T, ∀(j, k) ∈ AC (17)

4 H. Gu et al. ∑
i∈T ′

∑
k∈C′′

ηik = 0 (18)

xij,k ∈ {0, 1}, ∀{j, k} ∈ AC , i ∈ T (19)

ηij ∈ {0, 1}, ∀i ∈ T, j ∈ C (20)

θij ∈ {0, 1}, i ∈ T, j ∈ C (21)

yj ≥ 0, ∀j ∈ C (22)

zj ≥ 0, ∀j ∈ C (23)

where (7) and (3) guarantee that a vehicle either stays at the depot or visits exactly one customer;
(4) and (5) ensure that each customer must have an immediate successor from the same route except
for the last customer; together with (2) ensure that a customer is visited by at most one vehicle;
the arrival time, loading time at the depot, travelling time between vertices, the time window are
taken into account by (7), (8) and (6)-(8) respectively; the shift length, weight capacity, volume
capacity are enforced by (9), (10)-(13), and (14)-(17) respectively; (6) and (8) eliminate subtours
by virtue of pi > 0.

3 ILS with neighbourhood reduction

A critical component of ILS is the design of proper neighbourhood structures. It has been demon-
strated by many publications that permitting infeasible solutions in local search together with
the use of an augmented objective function can significantly boost the performance of the meta-
heuristics in the field of vehicle routing problem [1,2,8,12]. The neighbourhood structures considered
in this paper are defined by the commonly used edge exchange operators, which allows the violation
of the time window, shift length, weight and volume capacity constraints. However, the algorithm
presented in this paper reduces the size of the neighbourhood by only allowing moves that lead to
more allocations than the best known feasible solution. To be specific, let J(s) be the number of
allocated customers in a solution s which can be infeasible; H(s,O) be the neighbourhood of a so-
lution s induced by an edge exchange operator O permitting infeasible solution. The corresponding
reduced neighbourhood is defined as

Ĥ(s,O) = {s′ ∈ H(s,O)|J(s′) > J(s∗)}

where s∗ be the best known feasible solution. In the studied problem, it is permitted to have
customers not allocated. Therefore, feasible solutions can be efficiently generated using simple
heuristics (see Section 3.1 for more details). It should be noted that the reduced neighbourhood
is dynamic since s∗ can be updated in the iterative process of ILS. Since ILS can quickly find
good solutions, the size of the reduced neighbourhood becomes significantly smaller after just a
few iterations, which leads to faster convergence of the algorithm. Also, the solution process can be
more stable because only solutions with more allocations are considered in the local search process.

The paper considers two edge exchange operators

– inter-route swap O1: exchanges a sequence of up to two consecutive customers in a route with
a sequence of up to two consecutive customers in another route; exchanges a sequence of up to
two consecutive customers in a route with at most one unallocated customer;

Iterated Local Search with Neighbourhood Reduction... 5

– intra-route swap O2: extract at most two consecutive customers from a route and insert it into
a different position of the same route; reverse the order of a sequence of consecutive customers
in the route.

It should be noted that O2 cannot increase the number of allocated customers. Therefore, it is used
mainly for repair infeasibility in the local search procedure.

In the local search procedure, the solution in the reduced neighbourhood is evaluated based on
the augmented objective function

f(s) = J(s)− α× TW (s)− β ×WD(s)− σ ×Weight(s)− ψ × V olume(s) (24)

where TW (s), WD(s), Weight(s), V olume(s) are the total violation for constraints on time win-
dow, working duration, weight, volume corresponding to s and α, β, σ, ψ are non-negative weights
for TW (s), WD(s), Weight(s), V olume(s). Furthermore, TW (s), WD(s), Weight(s), V olume(s)
are computed by the technique used in [8,10,11].

The details of the local search procedure based on the reduced neighbourhood (NRS) are given
in Algorithm 1.

Algorithm 1 NRS(s)

1: while TRUE do
2: if Ĥ(s,O1) == ∅ then return s∗ end if
3: s′ = s
4: s = argmaxx{f(x)|x ∈ Ĥ(s,O1)}
5: if f(s′) < f(s) then
6: s′ = s
7: if s is feasible then s∗ = s end if
8: else
9: Break

10: end if
11: end while
12: s = s′

13: if Ĥ(s,O2) 6= ∅ then s = argmaxx{f(x)|x ∈ Ĥ(s,O2)} end if
14: if f(s′) < f(s) then
15: if s if feasible then s∗ = s end if
16: else
17: s = s′

18: end if
19: return s

In this pseudocode, the input solution s is permitted to be infeasible. The edge exchange operator
O1 is applied until a local optimum is found under the reduced neighbourhood Ĥ(s,O1). Since the
size of the reduced neighbourhood is related to the number of allocations in the current global
optimum s∗, s∗ is updated whenever a new global optimum is found (line 7 and 15). It should be

noted that Ĥ(s,O1) is empty only if the current s∗ has all customers allocated, which is also the
global optimum. Following the strategy in [12], local search based on the edge exchange operator O2

is performed for at most one iteration after the local optimum under O1 is found (line 13). In line

6 H. Gu et al.

13, Ĥ(s,O2) is empty only if s is a feasible solution. The output of NRS is either the input solution,
or a solution with more allocated customers and higher augmented objective function value.

Algorithm 2 ILS with neighbourhood reduction (ILS-NR)

1: s′ = INITIAL()
2: s∗ = s′

3: t = J(s∗)
4: h = 1
5: while s∗ has unallocated customers and h ≤M do
6: α = β = σ = ψ = 1
7: e = 1
8: repeat
9: s̄ = s′

10: s′ =NRS(s′)
11: if f(s̄) 6= f(s′) then Update α, β, σ, ψ end if
12: e+ +
13: until f(s̄) == f(s′) or s∗ has unallocated customers or e > E
14: if J(s∗) > t then
15: t = J(s∗)
16: h = 1
17: end if
18: s′ = PERTURB(h)
19: h+ +
20: end while
21: return s∗

The ILS with neighbourhood reduction (ILS-NR) is now presented in Algorithm 2. It begins
with the INITIAL procedure which generates a feasible solution for the problem (line 1). The details
of INITIAL is given in Section 3.1. This solution is also the current best known solution s∗ (line 2).
It should be noted that the current best known s∗ is a global variable and may be updated inside
the NRS and PERTURB procedure.

After the call of the INITIAL procedure, the WHILE loop (line 5 - 20) is executed if the current
best known solution s∗ has at least one unallocated customer. The WHILE loop terminates if the
current best known solution allocates all customers, or counter h exceeds M which is a parameter.
Each iteration of the WHILE loop (line 5 - 20) attempts to find a solution with more allocations
than the current best known solution s∗ applying the local search procedure (line 8 - 13).

Each iteration of the local search (line 8 - 13) is an applications of NRS which aims to find a
solution with a better value of the augmented objective function (24). The penalties for violation
of corresponding constraints are updated to force the convergence to feasible solutions. Following
[1,2,12], at the beginning of each iteration of the local search (line 8 - line 13), the initial value for
weights α, β, σ, ψ in the augmented objective function (24) are set to one (line 6). If NRS returns
an improving solution, a weight is multiplied by 1+∆ if the corresponding constraint has a positive
violation; otherwise the weight is divided by 1 +∆. ∆ is a parameter that controls the strength of
the adjustment. This weight updating mechanism is effective in producing feasible solutions, which
explains why O2 is only applied for one iteration in NRS (line 10). Local search terminates if either

Iterated Local Search with Neighbourhood Reduction... 7

the NRS procedure fails to obtain a solution with better value of the augmented objective function
(24), the current best known solution s∗ allocates all customers or the count e exceeds E which is
a parameter.

3.1 INITIAL procedure

The INITIAL procedure is a sweep heuristic [4] that constructs a feasible solution for the problem.
First a list of customers is constructed based on the geographic coordinates of the customers. Then
the customers are inserted to a route one by one until no customer can be inserted, in which case
a new route is constructed. Since one-man vehicles can only serve one-man customers, whereas
two-men vehicles can serve all-types of customers, the procedure constructs the routes for one-man
vehicles first, then followed by the routes for two-men vehicles. When inserting a customer into the
route, the procedure chooses the insertion position that respects all the constraints and gives the
smallest increase in travel time. The procedure terminates until either no customers can be inserted
into the vehicle’s route, or all customers have been allocated.

3.2 PERTURB procedure

The PERTURB procedure expands the search space by randomly perturbing the current best
solution s∗. An unallocated customer is randomly chosen, and then inserted into a position among
the routes which gives the largest value of (24) when α = β = σ = ψ = 1. Then, two randomly
selected sequences of consecutive customers are swapped between two randomly selected routes. This
random swap will be performed multiple times which depends on the counter h in the pseudocode
for the ILS-NR (Algorithm 2). To be specific, the number of swaps starts from one and increases
by one each time when counter h in Algorithm 2 increase. The current best solution s∗ may also
be updated in this process.

4 Computational study

This section presents the results of computational experiments aimed at the evaluation of the
performance of ILS-NR. A total of 60 instances were provided by a transportation company working
in the retail industry. Each instance represents the real-world situation on a particular day. The
travel time from the location of the depot to each customer, and the travel time between the location
of each customer are specified by a symmetric matrix. The time when driver arrives at the depot is
specified by a roster and each driver can work for a maximum of 10 hours. ILS-NR is implemented
in c++, and compiled with g++ O3. The following settings are used throughout the experiments
[12]:

– The maximum permissible number of consecutive unsuccessful attempts to improve the current
best known solution (the parameter M in Algorithm 2) is computed as |C|+ λ|T |), where C is
the set of all customers, T is the set of all vehicles, λ = 10.

– The maximum number of exchange operations in the perturbation is five.
– The parameter ∆ for adjusting the weights (Section 3) is 0.5.

In addition, the maximum permissible iterations for local search (the paramter E in Algorithm 2)
is 100. All computational experiments are conducted on a computer with Intel Xeon CPU E5-2697
v3 2.60GHz and 8GB RAM.

8 H. Gu et al.

Table 1: Comparison of performance between CPLEX, ILS-NR and CPLEX warm start

CPLEX ILS-NR CPLEX warm start

Instances |C| |T | Obj Gap(%) Time(s) Avg. Max. #Max Time(s) Input Obj Gap(%) Time(s)
M-2017-07-23 30 3 27 10.88 9112 28.00 28 30 0.13 28 28 0.00 3711
M-2017-07-24 26 2 21 9.52 14257 21.93 22 28 0.10 22 22 9.09 21600
M-2017-07-25 14 2 14 0.00 1 14.00 14 30 0.00 14 14 0.00 0
M-2017-10-08 28 2 24 12.50 10288 24.63 26 1 0.17 26 26 3.85 21600
M-2017-10-09 22 2 21 4.76 21600 21.00 21 30 0.03 21 21 4.76 21600
M-2017-10-10 22 2 17 11.76 21600 17.00 17 30 0.07 17 17 11.76 11304
M-2017-10-16 34 2 26 19.99 21600 26.10 27 3 0.30 27 27 15.55 21600
M-2017-10-17 24 2 21 9.52 21600 21.30 22 10 0.10 22 22 4.55 21600
M-2017-10-21 34 2 24 29.17 21600 26.87 28 1 0.33 28 28 12.75 21600
M-2017-10-24 17 2 17 0.00 3 16.90 17 27 0.00 17 17 0.00 0
M-2017-10-30 37 2 27 29.63 21600 28.90 30 1 0.40 30 30 16.85 21600
M-2017-12-22 72 7 66 9.09 21600 69.43 70 13 3.47 70 70 2.86 21600
M-2017-12-23 70 5 59 18.64 21600 65.80 67 3 3.47 67 67 4.48 21600
M-2017-12-24 70 5 50 40.00 21600 57.47 59 1 3.20 59 59 18.64 21600
M-2017-12-25 70 5 52 25.00 21600 57.50 59 1 3.40 59 59 10.17 21600
R-2017-07-23 47 5 47 0.00 463 47.00 47 30 0.00 47 47 0.00 1
R-2017-07-24 65 3 48 14.58 21600 52.13 53 5 2.60 53 53 3.77 21600
R-2017-07-25 43 4 42 0.00 19472 42.00 42 30 0.50 42 42 0.00 0
R-2017-10-08 88 6 80 8.71 21600 85.60 86 18 7.40 86 86 0.00 18582
R-2017-10-09 63 4 54 5.56 21600 55.27 56 8 2.37 56 56 1.79 21600
R-2017-10-10 44 5 44 0.00 593 44.00 44 30 0.00 44 44 0.00 0
R-2017-10-16 72 5 64 9.37 21600 68.67 69 20 3.50 69 69 1.77 21600
R-2017-10-17 37 4 34 8.82 5084 35.93 36 28 0.37 36 36 2.78 21600
R-2017-10-21 60 5 55 5.45 21600 58.00 58 30 1.80 58 58 0.00 1
R-2017-10-24 53 6 53 0.00 790 53.00 53 30 0.00 53 53 0.00 1
R-2017-10-30 71 7 69 2.90 21600 70.67 71 20 1.43 71 71 0.00 1
R-2017-12-12 52 4 49 6.12 21600 51.43 52 18 0.67 52 52 0.00 1
R-2017-12-19 52 4 46 10.87 21600 50.47 51 14 1.20 51 51 0.00 0
R-2017-12-22 62 4 53 15.09 21600 57.03 58 3 2.47 58 58 5.17 21600
R-2017-12-23 70 5 63 9.52 21600 67.73 68 22 3.23 68 68 1.47 21600
R-2017-12-24 70 5 56 10.71 21600 60.70 62 1 3.27 62 62 0.00 2
R-2017-12-25 70 5 65 7.69 21600 69.77 70 23 0.93 70 70 0.00 1
T-2017-07-23 64 5 63 1.59 21600 64.00 64 30 0.00 64 64 0.00 1
T-2017-07-24 70 5 67 2.99 21600 69.00 69 30 2.63 69 69 0.00 1
T-2017-07-25 57 4 55 3.64 21600 56.77 57 23 0.57 57 57 0.00 0
T-2017-10-08 65 8 65 0.00 3834 65.00 65 30 0.00 65 65 0.00 1
T-2017-10-09 43 7 43 0.00 31 43.00 43 30 0.00 43 43 0.00 1
T-2017-10-10 46 5 46 0.00 675 46.00 46 30 0.00 46 46 0.00 0
T-2017-10-16 63 7 63 0.00 6631 63.00 63 30 0.00 63 63 0.00 2
T-2017-10-17 56 4 49 12.24 21600 52.53 53 16 1.43 53 53 3.77 13380
T-2017-10-21 76 4 58 8.62 21600 61.93 62 28 4.23 62 62 1.61 21600
T-2017-10-24 62 4 52 10.05 21600 55.33 56 10 2.30 56 56 1.79 21600
T-2017-10-30 36 5 36 0.00 13 36.00 36 30 0.00 36 36 0.00 0
T-2017-12-12 63 7 63 0.00 1345 63.00 63 30 0.00 63 63 0.00 2
T-2017-12-19 54 5 54 0.00 923 54.00 54 30 0.00 54 54 0.00 1
T-2017-12-22 91 7 75 18.67 21600 88.73 89 22 7.47 89 89 0.00 7
T-2017-12-23 70 5 63 11.11 21600 69.93 70 28 0.67 70 70 0.00 1
T-2017-12-24 70 5 63 9.52 21600 67.10 68 3 3.77 68 68 1.47 21600
T-2017-12-25 70 5 64 9.37 21600 68.53 69 16 3.23 69 69 1.45 21600
T-2017-12-26 70 5 65 4.62 21600 67.97 68 29 3.07 68 68 0.00 1
A-2017-10-16 100 4 53 30.19 21600 61.73 63 2 4.90 63 63 9.52 21600
A-2017-12-22 100 7 76 22.37 21600 82.70 84 2 9.20 84 84 10.72 21600
B-2017-10-08 100 6 72 15.16 21600 79.60 80 18 8.70 80 80 3.65 21600
B-2017-10-16 100 5 71 15.49 21600 78.93 80 6 8.03 80 80 2.50 21600
B-2017-10-30 100 7 81 13.58 21600 86.93 88 5 9.40 88 88 4.55 21600
B-2017-12-22 100 4 58 41.79 21600 67.97 70 1 7.90 70 70 17.49 21600
C-2017-07-24 100 5 86 9.30 21600 92.83 93 25 8.77 93 93 1.65 21600
C-2017-10-16 100 7 96 2.08 21600 97.97 98 29 6.97 98 98 0.00 5
C-2017-10-21 100 4 67 20.47 21600 75.40 76 12 9.67 76 76 6.06 21600
C-2017-12-22 100 7 89 11.24 21600 97.87 99 1 10.20 99 99 0.00 5

Iterated Local Search with Neighbourhood Reduction... 9

Table 2: Comparison of performance between ILS and ILS-NR

ILS ILS-NR

Instances |C| |T | Avg. Max Time(s) Avg. % Max. % Time(s) %
M-2017-07-23 30 3 28.00 28 0.17 28.00 0.00 28 0.00 0.13 20.00
M-2017-07-24 26 2 21.57 22 0.13 21.93 -1.70 22 0.00 0.10 25.00
M-2017-07-25 14 2 14.00 14 0.00 14.00 0.00 14 0.00 0.00 0.00
M-2017-10-08 28 2 24.13 25 0.17 24.63 -2.07 26 -4.00 0.17 0.00
M-2017-10-09 22 2 21.00 21 0.07 21.00 0.00 21 0.00 0.03 50.00
M-2017-10-10 22 2 16.97 17 0.03 17.00 -0.20 17 0.00 0.07 -100.00
M-2017-10-16 34 2 25.83 26 0.33 26.10 -1.03 27 -3.85 0.30 10.00
M-2017-10-17 24 2 21.03 22 0.10 21.30 -1.27 22 0.00 0.10 0.00
M-2017-10-21 34 2 26.23 28 0.27 26.87 -2.41 28 0.00 0.33 -25.00
M-2017-10-24 17 2 17.00 17 0.03 16.90 0.59 17 0.00 0.00 100.00
M-2017-10-30 37 2 28.47 29 0.40 28.90 -1.52 30 -3.45 0.40 0.00
M-2017-12-22 72 7 69.30 70 4.37 69.43 -0.19 70 0.00 3.47 20.61
M-2017-12-23 70 5 65.70 67 4.33 65.80 -0.15 67 0.00 3.47 20.00
M-2017-12-24 70 5 57.47 59 3.87 57.47 0.00 59 0.00 3.20 17.24
M-2017-12-25 70 5 57.37 58 4.00 57.50 -0.23 59 -1.72 3.40 15.00
R-2017-07-23 47 5 47.00 47 0.00 47.00 0.00 47 0.00 0.00 0.00
R-2017-07-24 65 3 51.80 52 2.93 52.13 -0.64 53 -1.92 2.60 11.36
R-2017-07-25 43 4 42.00 42 0.67 42.00 0.00 42 0.00 0.50 25.00
R-2017-10-08 88 6 85.50 86 16.10 85.60 -0.12 86 0.00 7.40 54.04
R-2017-10-09 63 4 55.07 56 2.90 55.27 -0.36 56 0.00 2.37 18.39
R-2017-10-10 44 5 44.00 44 0.00 44.00 0.00 44 0.00 0.00 0.00
R-2017-10-16 72 5 68.90 70 4.73 68.67 0.34 69 1.43 3.50 26.06
R-2017-10-17 37 4 36.00 36 0.43 35.93 0.19 36 0.00 0.37 15.38
R-2017-10-21 60 5 58.00 58 2.30 58.00 0.00 58 0.00 1.80 21.74
R-2017-10-24 53 6 53.00 53 0.00 53.00 0.00 53 0.00 0.00 0.00
R-2017-10-30 71 7 70.77 71 1.33 70.67 0.14 71 0.00 1.43 -7.50
R-2017-12-12 52 4 51.10 52 1.10 51.43 -0.65 52 0.00 0.67 39.39
R-2017-12-19 52 4 50.50 51 1.47 50.47 0.07 51 0.00 1.20 18.18
R-2017-12-22 62 4 56.67 58 9.67 57.03 -0.65 58 0.00 2.47 74.48
R-2017-12-23 70 5 67.77 68 4.07 67.73 0.05 68 0.00 3.23 20.49
R-2017-12-24 70 5 60.73 61 3.73 60.70 0.05 62 -1.64 3.27 12.50
R-2017-12-25 70 5 69.83 70 0.87 69.77 0.10 70 0.00 0.93 -7.69
T-2017-07-23 64 5 64.00 64 0.00 64.00 0.00 64 0.00 0.00 0.00
T-2017-07-24 70 5 69.00 69 3.20 69.00 0.00 69 0.00 2.63 17.71
T-2017-07-25 57 4 56.47 57 0.93 56.77 -0.53 57 0.00 0.57 39.29
T-2017-10-08 65 8 65.00 65 0.00 65.00 0.00 65 0.00 0.00 0.00
T-2017-10-09 43 7 43.00 43 0.00 43.00 0.00 43 0.00 0.00 0.00
T-2017-10-10 46 5 46.00 46 0.00 46.00 0.00 46 0.00 0.00 0.00
T-2017-10-16 63 7 63.00 63 0.00 63.00 0.00 63 0.00 0.00 0.00
T-2017-10-17 56 4 52.47 53 1.63 52.53 -0.13 53 0.00 1.43 12.24
T-2017-10-21 76 4 61.30 62 4.37 61.93 -1.03 62 0.00 4.23 3.05
T-2017-10-24 62 4 55.03 56 2.60 55.33 -0.55 56 0.00 2.30 11.54
T-2017-10-30 36 5 36.00 36 0.00 36.00 0.00 36 0.00 0.00 0.00
T-2017-12-12 63 7 63.00 63 0.00 63.00 0.00 63 0.00 0.00 0.00
T-2017-12-19 54 5 54.00 54 0.00 54.00 0.00 54 0.00 0.00 0.00
T-2017-12-22 91 7 88.97 89 15.00 88.73 0.26 89 0.00 7.47 50.22
T-2017-12-23 70 5 69.50 70 2.17 69.93 -0.62 70 0.00 0.67 69.23
T-2017-12-24 70 5 66.90 68 4.03 67.10 -0.30 68 0.00 3.77 6.61
T-2017-12-25 70 5 68.17 69 3.97 68.53 -0.54 69 0.00 3.23 18.49
T-2017-12-26 70 5 67.87 68 12.83 67.97 -0.15 68 0.00 3.07 76.10
A-2017-10-16 100 4 61.23 62 5.97 61.73 -0.82 63 -1.61 4.90 17.88
A-2017-12-22 100 7 82.63 84 10.90 82.70 -0.08 84 0.00 9.20 15.60
B-2017-10-08 100 6 79.33 81 16.80 79.60 -0.34 80 1.23 8.70 48.21
B-2017-10-16 100 5 78.17 80 9.20 78.93 -0.98 80 0.00 8.03 12.68
B-2017-10-30 100 7 86.47 88 17.07 86.93 -0.54 88 0.00 9.40 44.92
B-2017-12-22 100 4 67.20 68 8.90 67.97 -1.14 70 -2.94 7.90 11.24
C-2017-07-24 100 5 92.50 93 12.00 92.83 -0.36 93 0.00 8.77 26.94
C-2017-10-16 100 7 98.00 98 10.33 97.97 0.03 98 0.00 6.97 32.58
C-2017-10-21 100 4 75.20 76 16.60 75.40 -0.27 76 0.00 9.67 41.77
C-2017-12-22 100 7 98.20 99 13.73 97.87 0.34 99 0.00 10.20 25.73
Average 56.19 56.70 4.05 56.33 -0.32 56.82 -0.31 2.67 17.61

10 H. Gu et al.

We first compare the performance of ILS-NR with CPLEX which solves the IP model in Section
2. Furthermore, we test the performance of CPLEX when the best solution from ILS-NR is used as
a warm start. Both CPLEX and CPLEX with warm start have a time limit of 6 hours and memory
limit of 7.5GB RAM. Version 12.10 of CPLEX is used for all the tests. In Table 1, the groups
titled “CPLEX” and “CPLEX warm start” contain results obtained by CPLEX and CPLEX with
warm start. In these groups, the objective value, optimality gap, computational time are displayed
in columns titled “Obj”, “Gap(%)” and “Time(s)”. The column titled “Input” in group “CPLEX
warm start” displays the objective value of the warm start solution. ILS-NR is run 30 times on each
instance with the average objective value (“Avg.”), best objective value (“Max.”), number of runs
the best objective value is obtained (“#Max”) and computation time (“Time(s)”) being reported
under the group “ILS-NR”.

According to Table 1, CPLEX can prove optimality for 13 instances. With warm start, CPLEX
can prove optimality for another 16 instances with significantly reduced CPU time. Among these
29 instances proved optimality by CPLEX, ILS-NR can find optimal solutions with high frequency
(#Max) within 10.2 seconds. For 45 out of 60 instances, the average objective values produced by
ILS-NR are better than the objective values produced by CPLEX which has a time limit of 6 hours.

To demonstrate the effectiveness of the neighbourhood reduction, Table 2 presents the compu-
tational results for ILS-NR and ILS without neighbourhood reduction. The performance of ILS-NR
was measured against ILS by the percentage difference

XILS −XILS−NR

XILS
× 100 (25)

where X can either be the average objective value (column “Avg.”), best found objective value
(“Max”) or CPU time (“Time”); XILS−NR is the value obtained by ILS-NR and XILS is the value
obtained by ILS. Therefore, a negative percentage difference indicates that ILS-NR is better with
respect to the average objective value and best found objective value, while a positive percentage
difference indicates that ILS-NR is better with respect to CPU time. For readers’ convenience, the
superior results produced by ILS-NR are shown in bold.

In Table 2, ILS-NR is faster than ILS on 41 out of 60 instances with an average difference of
17.61%, which clearly demonstrates the improvement on computation time due to neighbourhood
reduction. In terms of stability, the average objective value produced by the ILS-NR outperforms
the average objective value produced by ILS on 49 instances.

5 Conclusion

This paper considers a practical vehicle routing problem with simultaneous pickups and deliveries
which arises in the retail sector. A novel neighbourhood reduction technique is introduced to enhance
the performance of the state-of-the-art iterated local search algorithm. Computational experiments
carried out on a set of real-world instances demonstrate the superior performance of the proposed
algorithm in terms of computational time, solution quality and stability. The advantage of the
proposed algorithm is more conspicuous for time-critical applications given the longest computation
time among the test instances is just 10.2 seconds.

References

1. Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and multi-depot vehicle
routing problems. Networks: An International Journal 30(2), 105–119 (1997)

Iterated Local Search with Neighbourhood Reduction... 11

2. Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle routing problems
with time windows. Journal of the Operational research society 52(8), 928–936 (2001)

3. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 174. freeman San Francisco (1979)
4. Gillett, B.E., Miller, L.R.: A heuristic algorithm for the vehicle-dispatch problem. Operations research

22(2), 340–349 (1974)
5. Gu, H., Zhang, Y., Zinder, Y.: Lagrangian relaxation in iterated local search for the workforce scheduling

and routing problem. In: International Symposium on Experimental Algorithms. pp. 527–540. Springer
(2019)

6. Koç, Ç., Laporte, G., Tükenmez, İ.: A review on vehicle routing with simultaneous pickup and delivery.
Computers & Operations Research p. 104987 (2020)

7. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: Framework and applications. In: Hand-
book of metaheuristics, pp. 129–168. Springer (2019)

8. Nagata, Y., Bräysy, O., Dullaert, W.: A penalty-based edge assembly memetic algorithm for the vehicle
routing problem with time windows. Computers & operations research 37(4), 724–737 (2010)

9. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery problems. Journal für
Betriebswirtschaft 58(2), 81–117 (2008)

10. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with adaptive diversity
management for a large class of vehicle routing problems with time-windows. Computers & operations
research 40(1), 475–489 (2013)

11. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A unified solution framework for multi-attribute
vehicle routing problems. European Journal of Operational Research 234(3), 658–673 (2014)

12. Xie, F., Potts, C.N., Bektaş, T.: Iterated local search for workforce scheduling and routing problems.
Journal of Heuristics 23(6), 471–500 (2017)

	 Iterated Local Search with Neighbourhood Reduction for the Pickups and Deliveries Problem Arising in Retail Industry

