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Landslide is a natural phenomenon that can turn into a natural disaster. The main goal of this research
was to spatial prediction of a high-risk region located in the Zagros mountains, Iran, using hybrid
machine learning and metaheuristic algorithms, namely the adaptive neuro-fuzzy inference system
(ANFIS), support vector regression (SVR), the Harris hawks optimisation (HHO), and the bat algorithm
(BA). The landslide occurrences were first divided into training and testing datasets with a 70/30 ratio.
Fourteen landslide-related factors were considered, and the stepwise weight assessment ratio analysis
(SWARA) were employed to determine the correlation between landslides and factors. After that, the
hybrid models of ANFIS-HHO, ANFIS-BA, SVR-HHO and SVR-BA were applied to generate landslide sus-
ceptibility maps (LSMs). Finally, in order to validation and comparison of the applied models, two
indexes, namely mean square error (MSE) and area under the ROC curve (AUROC), were used.
According to the validation results, the AUROC values for the ANFIS-HHO, ANFIS-BA, SVR-HHO and
SVR-BA were 0.849, 0.82, 0.895, and 0.865, respectively. The SVR-HHO showed the highest accuracy, with
AUROC of 0.895 and lowest MSE of 0.147, and ANFIS-BA showed the least accuracy with an AUROC value
of 0.82 and MSE value of 0.218. Based on the results, although four hybrid models with more than 80%
accuracy can generate very good results, the SVR is superior to the ANFIS model, whereas the HHO algo-
rithm outperformed the bat algorithm. The map generated in this study can be employed by land use
planners in more efficient management.
� 2021 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.

V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Gravity causes downward movement of the materials of a slope
(including rock, soil, and natural materials), a phenomenon which
is called landslide (Highland and Bobrowsky, 2008). According to
the estimations, this geological phenomenon accounts for at least
17% of casualties of natural disasters worldwide (Pourghasemi
et al., 2012), resulting billions of dollars of financial losses
(Yilmaz, 2009); therefore, landslides are a globally serious issue.

The development of remote sensing and geographic informa-
tion systems allow spatial modelling of many natural disasters
such as landslides (Arabameri et al., 2020). Considering the lack
of standard and specific procedures for landslide zonation
(Polykretis et al., 2015), different approaches have been employed
in the literature for this purpose. For instance, the statistical/prob-
abilistic methods (Li et al., 2017; Liu and Duan, 2018; Kadavi et al.,
2019) have been widely used. Using these methods has disadvan-
tages, including (1) a large amount of data to run and (2) linear nat-
ure (Razavi Termeh et al., 2018). In some cases, these models have
been combined to increase the output accuracy (Fan et al., 2017).
In addition, recently, there has been a great interest in machine
learning algorithms such as artificial neural networks (ANNs)
(Aditian et al., 2018; Bragagnolo et al., 2020), adaptive neuro-
fazzy inference system (ANFIS) (Chen et al., 2019; Paryani et al.,
2020), Support vector machine (SVM) (Lee et al., 2017; Zhang
et al., 2019), and random forest (RF) (Cao et al., 2019) due to their
capability to solve nonlinear problems through learning. Although
the mentioned models have been implemented successfully, many
scholars have demonstrated that using ensemble models gives
more accurate results (Xi et al., 2019; Panahi et al., 2020).
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For example, Xi et al. (2019) used the ANN method and the
hybrid ANN-PSO (particle swarm optimization) model. Despite
the good performance of the ANN in calculating the LSI, the hybrid
ANN-PSO model improved the performance and convergence in
both training and validation phases. In another study, Balogun
et al. (2021) used the SVR and three metaheuristic algorithms for
spatial modeling of landslides. They reported that ensemble mod-
els provide more accurate results than stand-alone applications of
SVR. However, due to the complexity of the landslide problem and
the fact that each region has its own unique characteristics, using
alternative methods is of great importance (Bui et al., 2019). The
review of recent studies shows that although machine learning
models have been widely used, their combination with meta-
heuristic algorithms has received less attention. Therefore, the
main purpose of this research is to fill this study gap using a new
combination of ANFIS and SVR machine learning models with
Harris hawk optimizer and compare them with ANFIS-BA and
SVR-BA.

Iran has always been prone to landslide. According to
Nadim et al. (2006), both the Alborz and Zagros Mountain Ranges
fall within the moderate or high susceptible to landslides, but
the Zagros Range is more affected by landslide patterns than the
Alborz Range (Aghdam et al., 2017). The study region is located
in the Zagros Mountain Range in Lorestan Province, Iran. Therefore,
LSM can be employed as a useful tool for more efficient planning
and management (Piacentini et al., 2015).

In this paper, to spatially predict the landslides, a combination
of ANFIS and SVR machine learning methods with HHO and BA
algorithms was used. The difference between the present study
and previous research is in using two new hybrid models of SVR-
HHO and ANFIS-HHO as well as their comparison with SVR-BA
and ANFIS-BA. The SWARA model was first used to determine
the correlation between dependent and independent variables.
After calculating the LSIs, the final maps were generated and com-
pared to select the most accurate model.

2. Studied region

The study region is located in the Middle Zagros Mountain
Range in the east of Lorestan Province (Fig. 1). With an area of
3553 km2, this region extends from the latitude 48⁰ 220 2000 to
49⁰ 290 3000 and the longitude 32⁰ 530 2700 to 33⁰ 280 3400. Its lowest
Fig. 1. Study area and
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and highest elevations are 486 and 4032 m, respectively. This
region is affected by Mediterranean systems, and its annual rainfall
varies from 263 mm to 600 mm (http://www.lorestanmet.ir/index.
php/fa/). This region is affected by landslides every year due to its
complex geology and climatic conditions. In addition, in recent
years, with the increase of settlements and land use change with-
out considering engineering standards, we have seen an increase in
the risk of the occurrence of this natural phenomenon. Therefore, it
is essential to generate LSM for risk management as well as better
decision making for development of human activities.

3. Spatial database

3.1. Landslide inventory data

In the first step, the distribution of landslides was obtained
from the Forest, Range, and Watershed Management Organization
of Iran. The Google Earth Pro and field observations were then used
to check and update the data (Fig. 2). According to Fig. 1, 70% of
255 detected landslides were used to train models. The remaining
30% points were used for the validation. In this regard, the same
number of training and testing data were generated in the
landslide-free areas using the create random points tool in the Arc-
Map 10.5 software. Most landslides occurred are of the slides (in-
cluding transitional and rotational) with a number of rock falls.

3.2. Thematic layers preparation

According to the literature review (Aghdam et al., 2017; Chen
et al., 2019) and available data, 14 conditioning factors were con-
sidered (Fig. 3). Table A.2 shows the source of data used. In the first
step, ASTER global images (with 30 m resolution) were used to cre-
ate the digital elevation model (DEM). The DEM of the study area
was used to extract the slope angle, slope aspect, plan curvature,
profile curvature, and topographic wetness index (TWI) (Fig. 3a–e
and m). According to Fig. 4 the lithology of the studied region
includes 17 classes. The land use map including agriculture, dry-
farming, low forest, garden, poor range, range, and urban classes
was obtained and then converted to raster format (Fig. 3f). Three
GIS layers of distance to roads, distance to rivers, and distance to
faults were prepared and classified into 9 classes using Euclidian
distance (Fig. 3g, i, k). In the following, road and river density were
inventory map.

http://www.lorestanmet.ir/index.php/fa/
http://www.lorestanmet.ir/index.php/fa/


Fig. 2. Landslide locations using Google earth pro.
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constructed using line density method and classified into 7 classes
(Fig. 3h, j). The dataset obtained from the weather stations and
inverse distance weighted (IDW) technique was also used to gen-
erate rainfall map (Fig. 3l).

Storage, analysis, and generation of layers were performed in
ArcGIS 10.5 platform. Furthermore, in the current study, manual
and natural break approaches were used to classify conditioning
factors using literature review and expert’s opinions. Fig. 5 illus-
trates all steps adopted in this research.

4. Methodology

4.1. Stepwise weight assessment ratio analysis

Stepwise weight assessment ratio analysis (SWARA) method is
one of the multiple-criteria decision-making (MCDM) techniques
designed to weight the study indices. Proposed by Keršuliene
et al. (2010), in this method, expert opinions play a key role in
selecting the significance of every criterion. It is implemented
through the following steps (Torkashvand, 2020; Keršuliene
et al., 2010):

� The first step is to identify the research criteria
� The second step is to rank the criteria based on their signifi-
cance. A criterion is represented by the symbol Sj, therefore:

Sj ¼
Pn

i Ai

n
ð1Þ

where the subscript j shows the criterion number, n is the number
of experts, and Ai refers to the ranks recommended by experts for
every criterion. The next step is to determine Kj and Qj.

Kj, which is a function of the relative importance of each crite-
rion, is calculated as follows:

Kj ¼ Sj þ 1 ð2Þ
Qj, which is the initial weight, is calculated as follows:

Qj ¼
Xj�1
Kj

ð3Þ

where Xj represents the weight of the class j.

� The last step is to determine the final normalized weight
obtained from the following equation:

Wj ¼
QjPm
j¼1Qj

ð4Þ
847
where j shows the criterion number and m represents the number
of criteria.

4.2. Adaptive Neuro-Fuzzy inference system

Integrating a fuzzy inference system with an artificial neural
network (ANN), Jang (1993) proposed a powerful structure to solve
nonlinear problems. Generally, the ANFIS consists of five layers,
and its structure includes the interconnected nodes directly linked
to each other. Considered a processing unit, every node has a func-
tion with tuning and constant parameters. Sugeno’s system out-
performs the other systems in terms of computational
performance (Tien Bui et al., 2012). Therefore, the Sugeno’s system
was used in this study. According to Sugeno’s rules:

Rule1 : if x is A1 and y is B1; then f 1 ¼ p1xþ q1yþ r1
Rule2 : if x is A2 and y is B2; then f 2 ¼ p2xþ q2yþ r2

where x and y are the non-fuzzy inputs, f is the output, A1, A2, B1,
and B2 are the fuzzy membership functions, and pi, qi, and ri
(8i ¼ 1;2) are the consequent parameters determined by the ANN
(Jang, 1993). For further details, see the papers by Jang (1993) and
Oh and Pradhan (2011).

4.3. Support vector regression

The support vector regression (SVR) is an adapted version of the
Vapnik SVM developed to solve regression problems (Smola and
Schölkopf, 2004). The SVR function can be either linear or nonlin-
ear. The SVR model benefits from a series of linear functions
(f xð Þ ¼ w:xð Þ þ b) to make predictions, where x and w respectively
show the input and weight vectors, and b indicates the bias. In this
process, a loss function is also employed to show the permissible
deviation of the predicted values from the real values. Therefore,
the following equations are utilized to minimize the optimization
problem (Drucker et al., 1997):

Minimize :
1
2
j wj jj2 þ C

Xn
i¼1

ðn� þ nÞ ð6Þ

Subjectto :

yi � w:xi þ bð Þ � eþ ni
w:xi þ bð Þ � yi � eþ n�i

ni; n
�
i � 0

8><
>: ð7Þ

where e shows the permissible error in a loss function, ni; andn
�
i are

the slack variables, and C is the penalty parameter. It is noteworthy
that the SVR performance depends on the proper setting of some
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parameters, such as C, e, and the relevant kernel parameters. For
more details, see Drucker et al. (1997).

4.4. Harris hawk optimization algorithm

Inspired by the collective behavior and pursuit style of Harris
hawks, the population-based HHO algorithm was introduced by
Heidari et al., in 2019. Generally, the mathematical simulation of
this algorithm is based on three principles:

4.4.1. Exploration phase
In the first step, they determine their own positions based on

the positions of other family members and that of the prey (e.g. a
rabbit) (q < 0.5). In the second step, the positions of hawks are
totally random (q � 0.5). From a mathematical point of view
(Heidari et al., 2019):

X iter þ 1ð Þ ¼ XrandðiterÞ � r1XrandðiterÞ � 2r2XðiterÞ if q � 0:5
ðXrabitðiterÞ � XmðiterÞÞ � r3ðLBþ r4ðUB� LBÞÞ if q < 0:5

�

ð8Þ

where iter represents the iteration, X iter þ 1ð Þ is a hawk’s position
vector in the next iteration, Xrabbit iterð Þ and X iterð Þ are a rabbit’s
and a hawk’s positions, respectively, Xrand iterð Þ represents the hawk
Fig. 3. Thematic layers: (a) Altitude, (b) Slope angle, (c) Slope aspect, (d) Plan curvature,
to rivers, (j) River density, (k) Distance to faults, (l) Rainfall, (m) TWI.

848
selected randomly from the population, and LB and UB represent
the lower and upper bounds of variables, respectively.

4.4.2. Exploration-exploitation transmission
Obviously, the prey’s energy decreases through escape. This

energy can be modelled using the following equation:

E ¼ 2E0 1� iter
T

� �
ð9Þ

where E0 is the initial prey’s energy ranging from �1 to 1.

4.4.3. Exploitation phase
In this case, Harris hawks employ soft besiege (|E|�0.5) and

hard besiege (|E|<0.5) strategies to exhaust and easily hunt the
prey. A variable showing the prey’s chance of a successful escape
(r) and the prey’s energy (E) are employed to model this phase.
For further details and equations, see the paper by Heidari et al.
(2019).

4.5. Bat algorithm

Inspired by the collective behavior of bats in nature, Yang
(2010) suggested a metaheuristic algorithm based on the swarm
(e) Profile curvature, (f) Land use, (g) Distance to roads, (h) road density, (i) Distance
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intelligence called the bat algorithm. This strategy enables them to
hunt their preys in the dark of the night. This behavior can be sim-
ulated mathematically to optimize nonlinear problems (Yang,
2010).

The velocity and position of each bat (i) in a d-dimensional
search space in every iteration (t) are respectively represented by
Vt

i and Xt
i . These values are obtained from the following equations:

f i ¼ f min þ ðf max � f minÞb ð10Þ

Vt
i ¼ Vtþ1

i þ ðXt
i � X�Þf i ð11Þ

Xt
i ¼ Xt�1

i þ Vt
i ð12Þ

where b is a random vector from 0 to 1, and X� is the best global
position (solution) selected by comparing the positions of n bats.
Depending on the problem size, f min and f max were considered as 0
and 100, respectively. After each iteration, a new position (solution)
is generated for every bat, as follows (Yang, 2010):

Xnew ¼ Xold þ �At ð13Þ
where e is a random value within the [�1, 1] interval. Moreover, At

shows the mean amplitude of all bats at t. Amin and Amax can be
assigned to the amplitude. This value is changed and updated
through the following equations:
849
Atþ1
i ¼ aAt

i ð14Þ

rtþ1
i ¼ r0i ½1� e �ctð Þ� ð15Þ
where a and c are constants (0 < a < 1; c > 0).

For more details, see Yang (2010).

4.6. Model and map assessment

4.6.1. Statistical methods
The model error assessment is a major step in the training and

testing phase when using machine learning methods and/or their
hybrids (Kia et al., 2012). The assessment results indicate which
model was trained better and yielded more accurate outputs. The
MSE and RMSE indices were used in this study:

MSE ¼ 1
n

Xn
i¼1

Xi � X
�
i

� �2
ð16Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Xi � X
�
i

� �2

vuut ð17Þ

where n shows the total number of samples, Xi is the target values,
and Xi shows the output values.
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4.6.2. ROC curve
The ROC curve is a graphical representation of the balance

between negative and positive error values (Razavi Termeh et al.,
850
2018). This curve was employed to estimate the model accuracy
using success and prediction rates. The training and testing data-
sets were respectively used for the success and prediction rates.



Fig. 4. Geological map.
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5. Results

5.1. Application of SWARA to indicate correlation between landslides
and conditioning factors

The SWARA model was used in this study to show a latent rela-
tionship between factors and landslides (Table A.3). The closer the
values to 0.5, the more significant relationships; however, the clo-
ser the values to 0, the weaker the relationships. In the case of alti-
tude, the class of 900–1100 showed the strongest correlation, with
a weight of 0.337. The highest number of landslides has also
occurred at the altitude of 900–1100 m. Regarding the slope
degree, the class of 15.39⁰-21.79⁰ (with a SWARA value of 0.442)
has the highest number of landslide in addition to having most
coverage in the study area. Moreover, the analysis of different
slope directions indicated that the east and southwest directions
had the highest degrees of susceptibility. Regarding the plan and
profile curvature, the classes (�0.407) – (�0.159) and 0.443–
1.235 illustrated the highest landslide probability (0.349 and
0.373, respectively). The lithology of MPIfgp and EMas-sb units
showed the highest SWARA rates of 0.328 and 0.2, respectively
(Table A.3 of Appendix A). For land use, dry-farming class (with
the weight of 0.330) was highly correlated with landslides in the
study region. Investigation of land use factor showed that although
the dry-farming class covers only 7% of the study area, it has the
highest impact on landslide occurrence. In the case of distance to
roads and rivers, the class of 0–100 m had the highest values
851
(0.291 and 0.271, respectively). Concerning road density, the
0.575–0.845 class (0.265) had the highest importance, whereas
the 0.714–1.044 class (0.383) showed the highest landslide poten-
tial for the density of the river. Related to the distance to faults, the
600–900 m class showed the highest probability of landslide
occurrence (0.393). Regarding the rainfall factor, the ranges of
449–495 mm (0.204) illustrated the highest correlation. For TWI,
the class of <1.73 has the highest probability of landslide occur-
rence (0.405).

5.2. Generate landslide susceptibility maps using ANFIS and SVR
ensemble models

The metaheuristic HHO and BA algorithms were employed in
this study to optimize the ANFIS and SVR methods. To this end,
the MATLAB 2015b was applied. Furthermore, the training datasets
(including 179 landslide/non-landslide points 1/0) and testing
datasets (including 76 landslide/non-landslide points 1/0) were
entered into the MATLAB environment in order to implement
hybrid models. After the algorithms were executed, the outputs
were entered into the ArcMap software to produce LSM.

Despite various methods for the LSM classification, there is no
specific rule as to which method should be used (Ayalew et al.,
2004). In this study, the natural breaks method was used. Accord-
ing to Fig. 6, the study area was classified into five classes namely,
very low, low, moderate, high and very high. In addition, Fig. 7
illustrates the percentage of susceptible classes for each map. As



Fig. 5. Procedure of methodology.
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clearly seen, the hybrid ANFIS-HHO, ANFIS-BA, SVR-HHO, and SVR-
BA models showed the lowest coverage percentages of 3.06%,
2.97%, 8.35%, and 4.53%, respectively, in the very high class. To this
end, the highest percentages of coverage were obtained for ANFIS-
HHO in the low class and for three other models in very low class.

5.3. Validation and comparison of models

5.3.1. Statistical index
According to Figs. A.1 and A.2 of Appendix A, the MSE values of

the ANFIS-HHO, ANFIS-BA, SVR-HHO, and SVR-BA models in the
testing phase were 0.178, 0.218, 0.147, and 0.158, respectively.
Based on the obtained values, the lower error rate of the hybrid
SVR-HHO model (0.147) leads to more accurate prediction. The
SVR-BA model was ranked as second. Finally, the ANFIS-BA model
showed the poor performance among all models.

5.3.2. ROC curve analysis
Fig. 8 shows the values of AUROC curve for training and testing

datasets. In line with the values of the success rate, the values of
prediction rate for ANFIS-HHO, ANFIS-BA, SVR-HHO, and SVR-BA
hybrid models were 0.849, 0.82, 0.895, and 0.865, respectively
(Fig. 8b and Table 1). According to the comparison results, the
SVR outperformed the ANFIS, whereas the HHO outperformed
the BA (Fig. 9). Table 2 also shows the comparison between the
MSE, RMSE and ROC values of the models.
6. Discussion

The hybrid ANFIS-HHO, ANFIS-BA, SVR-HHO, and SVR-BA mod-
els were employed for the spatial prediction of landslides in a
852
region located in Lorestan Province, Iran. To this end, a comparison
was made between the ANFIS and the SVR to estimate the perfor-
mance of each machine learning method in combination with two
metaheuristic algorithms, i.e. the HHO and the BA. Many scholars
have acknowledged that using machine learning-metaheuristic
ensemble models can improve the LSM’s accuracy. Razavi
Termeh et al. (2018), for example, used three hybrid ANFIS-ACO,
ANFIS-GA, and ANFIS-PSO models to construct flood susceptibility
map. They reported that, although all models applied have excel-
lent results, ANFIS-PSO exhibited better performance. In line with
the study conducted, we concluded that the ANFIS based models
with more than 80% accuracy have very good performance. In
another study, Panahi et al. (2020) used the SVR and ANFIS
machine learning models and their combination with two Bee
and GWO algorithms to spatially predict landslides. Their results
indicated that, SVR ensemble model provides more accurate
results compared to the ANFIS. Consistent with this study, we
found that combination of SVR with metaheuristic algorithms pro-
vides better accuracy than ANFIS ensemble model. Balogun et al.
(2021) integrated SVR model with three metaheuristic algorithms
for modeling landslides in western Serbia. The model validation
indicated that ensemble models applied yielded better results than
only SVR. Our results also revealed that SVR-HHO and SVR-BA
ensemble models with more than 80% accuracy provide very good
performance.

In this study, the validation results indicated that the ANFIS-
HHO, ANFIS-BA, SVR-HHO, and SVR-BA models had very good per-
formance with AUCs above 80%. There are two important points
regarding the results of this research. First, the SVR showed more
accurate results than the ANFIS. In other words, the SVR model
showed better adaptability in combination with meta-heuristic
algorithms due to the advantages of this method, including 1) solv-



Fig. 7. Bar diagram showing the percentage of each class.

Fig. 6. Landslide susceptibility maps.
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ing nonlinear and multi-dimensional problems effectively and 2)
its flexibility in integration with other optimization models
(Panahi et al., 2020). In addition, Balogun et al. (2021) stated that
the SVR model has the ability to solve nonlinear problems with a
small number of samples and high dimensions. Secondly, although
both HHO and BA succeeded in optimization, the HHO was more
accurate than the BA. Heidari et al. (2019) assessed the HHO per-
formance through 29 unconstraint benchmark problems and
853
showed that the HHO algorithm outperformed the other intelligent
algorithms in finding more accurate solutions and not converting
on the local optimum. This finding is backed by the superiority of
the HHO algorithm to the BA in this study. It is worth noting that
the weights of SWARA can show the correlation between land-
slides and conditioning factors well. The results obtained from
the reviewed studies (Chen et al., 2019) confirm this claim.

The proposed hybrid models can also be used for the spatial
modelling of other phenomena. It is also suggested that other intel-
ligent algorithms be used in future studies in combination with
machine learning methods.
7. Conclusion

Prevention has always been themain strategy in facing potential
natural hazards such as landslides. In this study, a combination of
SVR and ANFIS machine learning methods with HHO and BA meta-
heuristic algorithms was used to prepare a landslide susceptibility
map of the study area. Moreover, three indices of MSE, RMSE and
AUROC were also used to determine the accuracy and compare the
performance of each model. The results revealed that the SVR-HHO
model with the highest AUROC of 0.895 and lowest MSE of 0.147
exhibited better performance than other models. Comparison
between hybrid models indicated that, the SVR method outper-
formed the ANFIS. Moreover, the HHO algorithm illustrated more



Fig. 8. ROC curve for success rate (a) and prediction rate (b).

Table 1
Details of AUROC for prediction rate.

Test Result
Variable(s)

Area Std.
Error

Asymptotic
Sig.

Asymptotic 95%
ConfidenceInterval

Lower Bound Upper Bound

ANFIS-HHO 0.849 0.030 0.000 0.790 0.909
ANFIS-BA 0.820 0.034 0.000 0.753 0.888
SVR-HHO 0.895 0.025 0.000 0.846 0.944
SVR-BA 0.865 0.030 0.000 0.807 0.924

Fig. 9. Comparison between success and prediction rates.

Table 2
Comparison between MSE, RMSE and AUROC.

Ensemble model MSE RMSE Prediction rate Success rate

ANFIS-HHO 0.178 0.422 0.849 0.877
ANFIS-BA 0.218 0.467 0.820 0.817
SVR-HHO 0.147 0.384 0.895 0.919
SVR-BA 0.158 0.398 0.865 0.906

S. Paryani, A. Neshat and B. Pradhan Egypt. J. Remote Sensing Space Sci. 24 (2021) 845–855
suitablethantheBAincombinationwiththeANFISandSVRmethods.
Based on the study’s outcome, the proposed hybridmethods can act
as an effective approach for the zonation of other landslide-prone
regions and also help decision-makers tomanage disaster better.
854
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