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ABSTRACT Mapping lithological units of an area using remote sensing data can be broadly grouped
into pixel-based (PBIA), sub-pixel based (SPBIA) and object-based (GEOBIA) image analysis approaches.
Since it is not only the datasets adequacy but also the correct classification selection that influences
the lithological mapping. This research is intended to analyze and evaluate the efficiency of these three
approaches for lithological mapping in semi-arid areas, by using Sentinel-2A data and many algorithms for
image enhancement and spectral analysis, in particular two specialized Band Ratio (BR) and the Independent
component analysis (ICA), for that reason the Paleozoic Massif of Skhour Rehamna, situated in the western
Moroccan Meseta was chosen. In this study, the support vector machine (SVM) that is theoretically
more efficient machine learning algorithm (MLA) in geological mapping is used in PBIA and GEOBIA
approaches. The evaluation and comparison of the performance of these different methods showed that SVM-
GEOBIA approach gives the highest overall classification accuracy (OA ~ 93%) and kappa coefficient (K)
of 0, 89, while SPBIA classification showed OA of approximately 89% and kappa coefficient of 0, 84,
whereas the lithological maps resulted from SVM-PBIA method exhibit salt and pepper noise, with a lower
OA of 87% and kappa coefficient of 0, 80 comparing them with the other classification approaches. From
the results of this comparative study, we can conclude that the SVM-GEOBIA classification approach is the
most suitable technique for lithological mapping in semi-arid regions, where outcrops are often inaccessible,
which complicates classic cartographic work.

INDEX TERMS Lithological mapping, sentinel-2A, SVM-GEOBIA, remote sensing, moroccan meseta.

I. INTRODUCTION well-established information technology in lithological map-
The importance of producing geological maps makes ping and mineral exploration [1]-[3]. It is a very popular
the entire branch of remote sensing science one of the and powerful technique for regional geological classification

process, particularly in arid and semi-arid areas [4]. The

The associate editor coordinating the review of this manuscript and remotely sensed spectral imagery provides a high potential in
approving it for publication was Qianggiang Yuan. overcoming the cost-effective, time-consuming and logistical
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limitations associated with traditional field-based geologi-
cal mapping over vast regions [5], [6]. Recent development
of multi-spectral remote sensing data such as Sentinel-2A
Multi-Spectral Imagery (MSI), launched by the European
Space Agency (ESA), has shown a high potential for com-
plex geological and mineral mapping in various parts of the
globe [7]-[9].

In combination with multi-spectral satellite imagery for
geological mapping, a wide array of classification approaches
have been applied, which can be broadly categorized into
three main categories; Pixel-Based Image Analysis (PBIA),
Subpixel Based Image Analysis (SPBIA) and GEographic
Object Based Image Analysis (GEOBIA) [10], [11].

PBIA uses machine learning algorithms (MLAs), by tak-
ing into account the approximate fit between the spectral
characteristics of the image pixel spectrum and the reference
spectra of a known lithological unit, in order to classify each
pixel to its litho-class [12], without taking into consideration
the spatial context. However, selecting appropriate training
samples is considered as an essential stage in PBIA tech-
nique to succeed the classification procedure. The MLAS that
have been widely used for per-pixel lithological mapping are
k-Nearest Neighbor (k-NN), Random forest (RF) and Support
Vector Machine (SVM) [13]-[15]. The SVM algorithm was
implemented in this research due to its efficiency in geo-
logical mapping and great performance in high-dimensional
feature space [16], [17]. The main problem encountered by
this approach is the intra-class spectral heterogeneity related
to land cover such as buildings, vegetation and many sur-
face materials. Consequently, the resultant lithological maps
exhibit misclassified pixels that occurs the ““Salt and Pepper”’
artifacts, of isolated and spurious pixel classifications, in
addition to the poorly defined boundaries [18].

Therefore, in order to overcome the issues related to mixed
pixels in the images, Sub-pixel Image Analysis (SPBIA), also
termed soft classification, have been widely used in the liter-
ature. It consists of deconvolving the image pixel spectra into
fractional abundance images of different ground materials
[18]. However, the generalized lithological maps generated
from various fractional images engenders often difficulties in
producing homogeneous maps [19], [20], and also produce an
inconsistent generalized thematic results [21]. This technique
is seldom applied in lithological mapping but widely used in
crop mapping [22], [23].

It was acknowledged in previous studies [24], [25], that a
pixel is not the optimal spatial unit for lithological mapping.
So due to the limitations encountered by pixel-based and
sub-pixel-based approaches [25] as well as the high spatial
resolution of Sentinel-2A imagery, the Geographic Object-
Based Image Analysis (GEOBIA), also known as Object-
Based Image Analysis (OBIA), came into the picture [26].
This approach is basically based on segmenting the image
into meaningful and homogeneous objects by combining con-
tiguous and identical like-pixels i.e. the textural and spectral
properties [27], [28], thus, image objects accordingly con-
tain supplemental spectral and spatial attributes compared to
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individual pixels [29]. On the basis of the resultant segmented
images, numerous MLAs are applied in GEOBIA approach
such as k-NN classifier [30] to extract thematic maps, nev-
ertheless, the supervised classifier support vector machine
(SVM) is one of the most effective algorithm in GEOBIA
approach for land use land cover mapping (LULC) [31], it has
also has been used in this study to evaluate its performance in
the field of geological mapping. Consequently, object-based
approach has been widely used for several studies, including
LULC classification [32], [33], change detection [34], [35],
urban mapping [36], landform mapping [37]-[39], and litho-
logical mapping [30], [40]. Furthermore, most publication
that used GEOBIA in geological mapping applied either
WorldView-3 (WV-3) along with SVM MLA [41], or the
Airborne LiDAR (Li), Airborne Thematic Mapper-9 (ATM9)
[40] and Sentinel-2A (S2A) datasets using k-NN algorithm
in the classification process [30]. Digital image process-
ing tools such as Principal Component Analysis (PCA) [4],
[42], Minimum Noise Fraction (MNF) [4], [40], Indepen-
dent Component Analysis (ICA) [43], [44], Band Ratio (BR)
[42], [45] and intensity Hue Saturation (IHS) [46], [47] were
extensively used to improve lithological and mineral discrim-
ination, based on enhancing color and features in order to
demarcate different rock types.

In this research, we used MLA over the traditional classi-
fication approaches based on spectral distance measurement
(Mahalanobis Distance, Minimum Distance, . ..), due to the
fact that the latter are more restrictive and require assump-
tions about data distribution, which makes lithological map-
ping complicated in the study area, because each rock unit
comprises a linear mixture on a microscopic scale of different
minerals with a distinct spectral signature, which justifies
their pixels’ heterogeneity [48], [49]. Moreover, the high
spatial and spectral resolution in the VNIR and SWIR bands
of Sentinel-2A images [9], [15], allow to apply different
spectral enhancement techniques, specifically Independent
component analysis (IC1, IC3 and IC5) and two band ratios
(BR), (band 4 4+ band 11)/(band 3 4+ band 8A) and (band 7 +
band 11)/(band 8A + band 12), in order to extract all the rock
units exposed in the study area and evaluate the capability of
different classification techniques particularly, SVM-PBIA,
SPBIA and SVM-GEOBIA, for generating the optimal litho-
logical map with well-defined boundaries of the lithological
units.

Despite the high potential of GEOBIA approach, a very
limited number of research papers are available on its perfor-
mance, specifically on Sentinel-2A imagery for discriminat-
ing lithological units. This study aimed to compare GEOBIA,
SPBIA and PBIA classification approaches in lithological
mapping; by using the most applicable MLA in geological
mapping, which is the SVM algorithm [15] and focusing
on a higher spatial and spectral dataset along with spectral
enhancement processing to select the optimal technique for
mapping rock features in a geologically complex semi-arid
region. The results of this work, show that SVM-GEOBIA
approach is predicted to be more efficient and surpass the
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FIGURE 1. Study area (Google Earth imagery with resolution of 5m) on the simplified geological and structural map of the Moroccan

Variscides [51].

other two approaches. The lithological maps obtained were
then compared to the pre-existence geological map and vali-
dated by field investigation.

Il. GEOGRAPHIC AND GEOLOGICAL SETTINGS OF THE
STUDY AREA

The Skhour Rehamna Paleozoic massif of is a semi-
arid region situated between the longitudes 7°54'55” and
7°43/50” west and the latitudes 32°22/30” and 32°14/39”
north. It is a buttonhole located, as depicted in Figure 1,
between the central Hercynian massif (Central Morocco) in
the north and the Jebilet in the south [50].

The geological map used in this study is that of Skhour
Rehamna (1/50000), realized by the French government
geological survey BRGM-CID (The geological and min-
ing research bureau), and published in 2004 by the Min-
istry of Industry, Trade, Energy and Mines of Morocco [50]
(Figure 2). It consists primarily of lower metamorphic rocks
formed by two major units, as described below:

The Ouled Hassine Devonian entity [52] that is predom-
inantly with micashists, that are marked by the presence of
reference levels composed of a combination of carbonate
bars, quartzite bars and more rarely conglomerate levels [53].
The Unit of Lalla Tittaf [54] which the age remained until
now as Visean, although it may be in the Paleoproterozoic age
[53]. The contact between the micaschists of the Lalla Tittaf
Unit and those of the Ouled Hassine Unit are not visually
marked in the ground. However, the distinction between the
two units is generally based on their composition: Lalla Tittaf
presenting various orthoderivated rocks (lenses of amphibo-
lites, porphyroids and gabbroic bodies) and small carbonate
levels containing semipelites and metapelites of metabasite,
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orthogneiss, calcschist, and marble intercalations [52], which
make this unit darker than Ouled Hassine Unit [50], [53].

Moreover, The Dalaat el Kahlat entity, whose age remains
uncertain, lies between the two units. It is characterized by the
same facies as the Unit of Ouled Hassine with predominance
of micaschists that is marked by a combination of carbonate
bars, quartzite bars and more rarely conglomerate levels [55].
Also, in the NW of the geological map of the study area out-
crops the granite of Ras el Abiod that is broadly arenized [50].

The south side of the geological map, is covered by the
phosphate series which constitutes the eastern part of the
Maastrichtian Gantour deposit, it is mined at Ben Guerir, in
a very large surface [50].

Ill. MATERIALS AND METHODS

A. DATASETS AND PRE-PROCESSING

The Sentinel-2A cloud-free imagery used in this study was
acquired on 29 October 2017. The software package of
the platform developed by the ESA (SNAP) was used for
atmospheric and terrain correction of the Sentinel-2A Top-
Of-Atmosphere (TOA) Level-1C image. The Sentinel-2A
Level 2A BOA orthorectified reflectance image was gener-
ated using the ESA Sen2Cor processor (version 2.3.1) [56],
[57]. The processing includes optional cirrus correction, ter-
rain correction in addition to the retrieval of Aerosol opti-
cal Thickness (AOT) and Water Vapor (WV) content [57].
Sen2Cor relies on the Digital Elevation Model (DEM) that
is downloaded automatically by the processor SRTM (Shut-
tle Radar Topography Mission Digital Elevation Model) in
order to achieve a Bottom-Of-Atmosphere (BOA) corrected
reflectance orthoimage. In this research, the default param-
eters in Sen2Cor were used, ignoring Cirrus correction and
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in 2004) ©.

WYV retrieval. In the present research, spectral bands 1, 9 and
10 were removed due to the sensitivity to clouds, aerosol in
addition to the low spatial resolution (60m) (Table 1) [58].
The remaining 20 m spatial resolution bands were resampled
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to 10 m modifying the pixel spacing to match the VNIR
bands resolution. The datasets were finally re-projected
in the WGS84 coordinate system and UTM projection
i.e. zone 29N.
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B. PROCESSING

The sentinel-2A image bands were layer stacked to the three
Independent Component bands (IC1, IC3 and IC5) and two
band ratios (BR) due to its high discrimination of the rock
types exposed in the study area. An overview of the methods
used in this research is shown in Figure 3.

1) BAND RATIO (BR)

Band ratioing is a spectral enhancement technique broadly
used in lithological discrimination [4], [59], [60], due to
its proven ability to highlight rock-units that cannot be dis-
tinguished apparently in the raw bands, by dividing the
reflectance value of each pixel in one image band by the
value of reflectance in the pixel of the other band [61]. This
technique is efficient in minimizing shadow effects owing
to topography. Spectral signature provides helpful hints for
settling on the bands employed for ratioing, where target earth
surface material will appear as bright or dark pixel in the BR
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image. Different band ratios for mineral and rock detection
have been developed based on the spectral absorption and
reflectance properties of rocks and minerals. for example,
Khan et al. (2007), employed ETM + band ratios of 5/7,
4/5, and 3/1 to delineate mafic and ultramafic rocks [62].
Pournamdari ef al. (2014b) created a false color composite
for lithological differentiation in an ophiolite complex using
specific ASTER band ratios of 4/7, 4/5, and 4/1 [63]. Wenyan
Ge et al. (2018) used Sentinel-2A and Aster datasets to
extract band ratio, (S3 4+ A9)/(S12 + AS), to discriminate
the serpentine in the ophiolite complex [4]. In this study,
the spectral signature extracted from S2A imagery, which
is characterized by the highest reflectance, of all lithologies
exposed in the study area, at band 7 and band 11, against
the highest absorption in band 12 and band 8A, in addition
to the first reflectance of all facies at band 3 against the
absorption at band 4 (Figure 4), which leads to use the two
most effective and accurate band ratios, (band 4 + band 11)/
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TABLE 1. Spectral bands characteristics of Sentinel-2A MSI.

Band Number Spectral Characteristic Central wavelength (nm) Spatial resolution (m)
B1 Coastal aerosol 443 60
B2 Blue (B) 490 10
B3 Green (G) 560 10
B4 Red (R) 665 10
BS Vegetation red edge 1 (Rel) 705 20
B6 Vegetation red edge 2 (Re2) 740 20
B7 Vegetation red edge 3 (Re3) 783 20
B8 Near infrared (NIR) 842 10
B8a Near infrared narrow (NIRn) 865 20
B9 Water Vapor 945 60
B10 Shortwave infrared Cirrus 1380 60
B11 Shortwave infrared 1 (SWIR1) 1910 20
B12 Shortwave infrared 2 (SWIR2) 2190 20

Endmember collection Spectra

5000 —

4000

Reflectance value

3000

2000

T
"|Legend
——cc
—1c
| — LmP

Band Number

FIGURE 4. Spectral characteristics of lithological units exposed in the study area using S2A spectral bands.

(band 3 + band 8A) and (band 7 + band 11)/(band 8A +
band 12), BR1 and BR2 (Figure 5) respectively, in order to
highlight all the rock units exposed in the region of interest.

2) INDEPENDENT COMPONENT ANALYSIS (ICA)

Independent component analysis (ICA) is a statistical and
high order computational feature extraction technique, it
can be applied on multispectral or hyperspectral remote
sensing datasets, in order to expose hidden factors behind
random variable sets, signals or measures [64], [65]. This
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transform consists of finding maximally independent and
non-gaussian components [66], [67]. Moreover, the out-
put independent component (IC) are not only uncorrelated,
as principal component analysis (PCA), but also indepen-
dent and containing features details even when they cover
just a small portion of image pixels [68]. ICA transfor-
mation can be used for image characteristics extraction,
noise reduction, feature separation, endmember extrac-
tion, target and anomaly identification, classification and

mapping.
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A visual interpretation of the resulted IC bands had led to
choose the IC1, IC3 and IC5 (Figure 6) for their interpretable
RGB color composite that successfully enable us with the
help of geological map and field investigation to extract all
ROIs of the lithologies exposed in the investigated region.

3) SUPPORT VECTOR MACHINE CLASSIFICATION
ALGORITHM

Special interest has recently been focused on Support Vector
Machines (SVM) as a superior supervised MLA, increas-
ingly applied for geological mapping [47], [69]-[71]. SVM
is a statistical non-parametric learning method which was
defined by Vapnik and Chervonenkis [72]. By focusing on the
training samples (Support Vectors) [73], which are placed at
the margin of class descriptors [74], the SVM classification
approach aims to find the optimum separating hyperplane
between classes (Figure 7).
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In the SVM algorithm, there are four kernel functions
developed: linear, polynomial, sigmoid and Radial Basis
Function (RBF). SVM-RBF was applied in this study because
it classify the given support vectors non-linearly into a larger
dimensional feature space [76]. The GFK parameter specifies
how far the influence of a single training example reaches, as
long as the C parameter controls the trade-off between the
misclassification on the training data and the simplicity of
the decision boundary. The high performance of the SVM,
using RBF kernel, classification accuracies depends on the
right choice of regions of interest (ROIs) and the training
parameters particularly, Gamma Kernel Function (GKF) and
the penalty parameter [77], the most accurate prediction was
attained using error penalty value (C = 100), and a GKF
equaling to 0.1. We tested SVM RBF algorithm for both PBIA
and GEOBIA approach for comparison.

4) PBIA

The PBIA approach focus on assigning any pixel to the sur-
rounding pixels by taking into account each pixel’s spectral
properties and ignoring contextual characteristics [78]-[80].
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FIGURE 8. The segmentation result for different scale parameter values: (a) 9; (b) 6; and (c) 3 the blue lines show the boundaries of the extracted
objects superposed on the RGB color composite generated with the 1C3, BR2, B2 bands.

In this study, SVM (RBF) algorithm was implemented,, as
it is the most effective and applicable MLA in the field of
geological mapping [15], [59], [81].

5) SPBIA
SPBIA technique is used to address the major limitation of
PBIA classification approach connected with mixed pixels
since they can assign pixels a degree of membership to many
classes, as itis wildly used in geological and mineral mapping
[82]-[84].

A variation of both pure and mixed pixels is also found
in remotely sensed datasets. Mixed pixels are assigned to the
class with the greatest proportion of coverage or likelihood
through complicated classification techniques. During this
process, data loss is unavoidable. In order to correct this loss,
soft classification methods were introduced: they allocate
pixel fractions to the earth’s surface classes corresponding to
the represented region within a pixel [85].

This is the principal of SPBIA approach that has been
developed to detect materials that are smaller than the size
of the image pixel, to improve the classification accuracy.
It consists of discriminating between different classes within
the spectrum of the single pixel, and reducing problems asso-
ciated with mixed pixels [86].

Subpixel classification is based on four principal sequential
components [87]:

—Preprocessing

It is a required prior step that consist of removing the
background spectra of the image and leave only the Material
of Interest (MOI) candidate spectrum.

—Environment correction

An automatic necessary process, that calculate a set of
environmental correction factors to prepare the image for
signature derivation.

—Signature derivation

The signature derivation function is a required step that
allows to develop a signature for a particular MOI to classify
an image.

—MOI classification

It is the final stage in sub-pixel classification; it consists of
finding the pixels that contain spectral properties similar to
the given MOIs signature.
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6) GEOBIA

The process of producing a generalized lithological map from
a set of abundance maps in SPBIA approach is rather subjec-
tive and frequently necessitates further visual interpretation
of lithological boundaries [88]. which led to use GEOBIA
approach that is generally capable of eliminating the “salt-
and-pepper”’ artefact and mapping lithological contacts more
accurately.

GEOBIA approach is an effective technique to delineate
several image objects arranged by their relative resemblances
in spectral, spatial and textural properties in an integrative
way [89]. The GEOBIA approach offers a procedural frame-
work using two main phases [90]:

—Image segmentation is recognized as the initial and the
crucial step in GEOBIA approach [91]. It consists of dividing
the image into neighboring pixels with similar characteris-
tics that are based on spatial, textural and relational infor-
mation that define the homogeneity of the resultant object
[92]. In this study, segmentation was accomplished using
the multiresolution image segmentation (MRS) algorithm
(Figure 8). This algorithm starts with each pixel region and
consecutively group them into meaningful objects, based
on homogeneity criterion [28]. The necessary prerequisite
for a successful MRS is the optimization of the following
parameters:

o The scale parameter (SP), defined also as homogeneity
criteria. This criterion is considered as the most critical
of MRS process as it controls the homogeneity and
the image object size. Therefore, higher the SP, bigger
and more merging are the objects, and vice versa [90],
[93]. SP was selected visually using “trial-and-error”
approach, by evaluating the segments obtained using dif-
ferent fixed scale values (Figure 8). This medium scale
parameter of 6 (Figure 8.b) was preferred to perform
the image segmentation, because it conserved the spatial
information and avoids under-segmentations that results
heterogeneous image objects.

o The shape or the color criterion, can be considered
as pixels spectral values heterogeneity of the objects
formed. If the weight of the shape factor is high, then
the influence of the image color decrease in the segmen-
tation, and vice versa [90].
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TABLE 2. Parameter values used for multi-resolution image
segmentation.

Parameters Value
Scale 6
Shape 0.01
Compactness 0.08

« The smoothness or compactness criteria affect the shape
between compact edges and smooth boundaries [90]. A
high weighted compactness will lead to more compact
objects and smoother boundaries.

In addition to the different weighting of the 15 input layers,
those parameters must be as accurate as possible to obtain
meaningful and real-world objects. The parameter values
used to perform the multi-resolution image segmentation are
shown in Table 2.

—Feature extraction and classification, is the second and
last stage in GEOBIA approach. It sought to select a set of
feature vector to differentiate between the target classes and
create connectivity between real-world classes and the image
objects to apply a suitable classification rule. In this study,
the classification of image objects was carried out by SVM
classifier.

7) ACCURACY ASSESSMENT

In order to evaluate the accuracy of the classified images
generated from different classifiers, the confusion matrix
was carried out, comparing the results to the pre-existing
geological map of the research region, by computing the
statistical accuracies for each result obtained using a sample
plots of validation pixels [94]. The Kappa coefficient (K) is
an appropriate accuracy measure between thematic maps and
reference data, it takes into account the entire elements of
the confusion matrix (diagonal and non-diagonal). The over-
all accuracy (OA) takes into consideration just the diagonal
elements of the confusion matrix. Two other thematic errors,
take into account the accuracy of each class individually, were
used. One is provided by the producer’s accuracy (PA), which
identifies the proportion of a ground image pixel correctly
labeled by the classifier. The second error is presented by
user’s accuracy (UA), which indicates the probability that a
classified pixel from the resultant map is in fact that lithology
on the ground [94]. Also, the reference data based on the field
work outcrops, with several GPS points that was held on 26
October 2019, were used to validate the resultant maps.

IV. RESULTS
The results of the lithological maps, generated from the
subpixel in addition to both pixel-based and object-based
approaches using SVM algorithm are described in the fol-
lowing sub-sections.

A total of eight general litho-classes are identified
(Figure 9.a): Limestones, marls, phosphates (LMP), intrusive
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bodies of Amphibolitized Gabbro (AG), Set of homoge-
neous light-gray schists containing one or more sandstones
quartzites bars very tectonized (SQ), Continental terrigenous
series with conglomeratic dominance (CC), Low and medium
terraces and colluvium (TC), Limit of the phosphates mining
area (LPMA), Schists and mica schists (SM), and Leucogran-
ite (LG).

Although all the approaches generated aggregations of
lithologies exposed in the field of research, the most promi-
nent difference between the thematic maps classified by the
PBIA, SPBIA and GEOBIA methods, from visual inspec-
tions, is that: the lithological map obtained using PBIA SVM
machine learning algorithm give more speckled regions than
the other lithological maps, as shown in the Figure 9.b. Thus
the classification results of low and medium terraces and col-
luvium (TC), limestones, marls, phosphates (LMP) and the
leucogranite (LG) marked by the blue, the yellow and the red
circles, respectively, are largely misclassified into surround-
ing lithological units. In addition, as illustrated by the orange
circle, the Continental Terrigenous series with conglomeratic
dominance (CC) is completely misclassified into Schists and
mica schists using per-pixel approach.

Since the SPBIA approach was developed to overcome the
challenge of mixed pixels, the fractional abundance images
for each litho-class have been shown in the Figure 10. Also,
it is clear in Figure 9.c that this process enabled the detection
of some facies such as Limestones, marls, phosphates and
the schists and mica schists, illustrated by the yellow and
green circles respectively, that were mixed in PBIA method.
Otherwise, abrupt appearance could be seen in the SPBIA
approach, due to the shadow effect, compared to the GEOBIA
method resultant map (Figure 9.d) that is more efficient,
reduce the salt and pepper effect and give a better visual-
ization with more pronounced boundaries compared to the
other two approaches as it takes into consideration the shape
of features and this can be illustrated by the Continental
terrigenous series with conglomeratic dominance (CC), the
leucogranite and Low and medium terraces and colluvium
(TC), marked by the orange, red and blue circles accordingly,
that was identified very well by this method.

This distinction can be due to the fact that the character-
istics of the GEOBIA are composed of multi-pixel units and
have been classified as such, while the PBIA were classified
as per-pixel level based on spectral characteristics only.

V. DISCUSSION AND VALIDATION

Satellite borne remote sensing images are increasingly
becoming more available, thus making them an important
resource to geological mapping. The traditional methods have
been proven to be time and cost-intensive, making it difficult
to completely utilize these useful datasets [15]. Although
the methods of PBIA classification can provide adequate
results for lithological mapping over semi-arid areas, there
have been some limitations, found in their ability to generate
detailed geological maps, related to the topographic effect
and solar illumination variations that caused the mixed pixels.
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FIGURE 9. (a) Digitalized geological map; Thematic map results of (b) PBIA-SVM, (c) SPBIA and (d) GEOBIA-SVM classification methods.

Figure 9.b represents the example of mixed litho-classes,
e.g., between low and medium terraces and colluvium (TC)
and schists and mica schists (SM) which is marked by a blue
circle in SVM PBIA approach. In addition to the salt and
pepper problems, as shown by the yellow circle in Figure 9.b,
which are occurred due to the use of only image pixel spec-
tral information. In order to overcome the problems associ-
ated with mixed pixels, SPBIA classification technique was
applied. However, the incoherency of SPBIA resultant litho-
logical map caused by the shadow effect (Figure 9.c), as well
as the high spatial resolution of Sentinel-2A imagery led to
the emergence of GEOBIA classification approach, that per-
forms by taking into account not only spectral characteristics
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but also the texture, spatial and geometry of features during
the process of classification [95].

The use of parametric classifiers for mapping complicated
spectral heterogeneous regions was discouraged due to the
fact that they employ the assumptions normality between
the provided training dataset [93]. Nevertheless, the use
of non-parametric MLAs such as, Neural Networks (NN),
Random Forest (RF) and Support Vector Machines (SVM)
is recommended because they do not use any presump-
tions regarding the statistical relationship between the train-
ing dataset presented and can also allow the inclusion of
auxiliary data that may be essential in enhancing accuracy
assessment [96], [97].
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TABLE 3. Synthesis of accuracy results for the different classifiers.

AVERAGE KAPPA

STANDARD DEVIATION

AVERAGE OVERALL

Statistics INDICES OF KAPPA INDICES ACCURACY (%) p-Value
PBIA 0.80 0.053 87 <0.0001
Classification
approaches SPBIA 0.84 0.076 89 <0.0001
GEOBIA 0.89 0.046 93 <0.0001

In this study, SVM PBIA, SPBIA and SVM GEOBIA
approaches were compared and evaluated in terms of map-
ping lithological units in semi-arid regions such as the
southern of the western Moroccan Meseta, by integrating
Sentinel-2A spectral enhancement techniques, particularly
the two BR and ICs bands (1, 3 and 5) in order to improve
lithological mapping.

A. STATISTICAL COMPARISON OF RESULTANT MAPS
Accuracy assessment was performed for the above three tech-
niques using random sampling technique, in which 33 trials
of around 1000 random samples were distributed in the study
area. Besides the digitalized geological map of the region of
study was used as a reference image to analyze the accuracy
results. Table 3 presents the average overall accuracy (OA),
as well as the average kappa indices (K) their standard devi-
ation and the statistical significance of differences (p-value)
between the GEOBIA, SPBIA and PBIA approaches. There-
fore, the statistical comparison between the three classifi-
cation methods demonstrated that the GEOBIA approach
outperforms its PBIA and SPBIA counterparts (p < 0.0001),
with an average kappa difference of 5% and 9% in SPBIA and
PBIA, respectively (Table 3) and show smoother lithological
map. This is most likely because the integration of spatial
and spectral information into the classification process of
GEOBIA method as well as combining the values of all
contiguous pixels within objects which reduces the intra class
variability that is identified as heterogeneous pixels when
they are considered individually in pixel-based approaches.
The PBIA approach gave less accuracy due to the salt and
pepper effects, otherwise the SPBIA method exceeded the
accuracy of its per-pixel equivalent, but it underperforms its
GEOBIA counterparts due to the shadow effect.

Through the comparison of the resultant lithological maps
using different approaches, it can be concluded that GEOBIA
SVM classification surpassed the accuracy statistics with
the PBIA and SPBIA classification methods falling short
(Table 3), moreover, the lithological maps generated from
SVM GEOBIA (Figure 9.d) approach provided close depic-
tions of the broad rock-units in the geological map of the
study area, by reducing the salt-and-pepper artifacts and pro-
ducing smoother features with well-defined limits between
litho-classes.

Even though, SVM GEOBIA approach improved the accu-
racy of lithological maps and outperforms those produced by
the other two classifiers with regards to OA and K. The per-
formance of classifying the individual litho-classes is slightly
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FIGURE 11. Average accuracies and standard deviation of the individual
lithological classes: (a) PA; and (b) UA.

different between the methods, as it’s graphically demon-
strated in Figure 11. For instance, despite the greatest OA
and K of SVM GEOBIA approach, its PA and UA are lower
than the other two approaches for some lithological classes
(e.g., LPMA and SQ). Such variation may indicate that a
single scale value is insufficient for segmenting all litho-
logical units [98]. Generally, when each type of classi-
fier is considered individually, the overall superiority of
the GEOBIA approach over PBIA and SPBIA approaches
is usually attributed to improve discrimination of litholog-
ical units with low intra-class variability (e.g. CC, LMP,
LG, SM and AG), Because those rock-units are homoge-
neous and particularly distinctive in terms of topography.
The observed increases in PA and UA of GEOBIA over
the PBIA and SPBIA approaches are most usually related
to the averaging effect, which leads to a decrease in intra-
class heterogeneity, improved distinction between classes,
reduce ‘‘salt-and-pepper” artefact and eliminate shadow
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effect, which confirm the key reason for choosing GEOBIA
over PBIA and SPBIA approaches for lithological mapping in
complex semi-arid regions. Irrespective of the classification
approaches, meaningful and efficient PA and UA accuracies
obtained over heterogeneous lithological units are usually
low (e.g. TC and AG), whereas high accuracy estimates are
obtained over homogeneous regions.

B. FIELD VALIDATION

After the comparison of the results with the previous geologi-
cal map, a validation with field investigations was performed,
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by identifying classes of the lithological maps produced using
the three approaches with their respective rocks exposure
in the study area (Figure 12). The lithological units of the
SIX field locations are somewhat agreed with the predicted
litho-classes in the lithological maps generated from SVM
GEOBIA and SPBIA approaches, it has also been observed
that the PBIA method didn’t show some facies such as the
small outcrop of leucogranite (LG) and the Amphibolitized
Gabbro (AG), nevertheless the amphibolite in the schist and
mica schist in the south of the study area is well identified
using SVM PBIA approach. However, it has been recognized
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that the previous geological map of the study area shows
considerable compatibility with ground existence.

In summary, the integration of high spatio-spectral resolu-
tion datasets along with spectral enhancement techniques and
SVM GEOBIA approach, can be utilized for recognizing rock
outcrops and generating precise, homogeneous lithological
maps with well-defined boundaries of litho-units, in hetero-
geneous semi-arid regions.

VI. CONCLUSION AND FUTURE DIRECTIONS

Selecting the best classifier is essential in determining geo-
logical units. Consequently, this study assesses the efficacy
and prospects the originality of the SVM machine learning
algorithm in pixel and object-based classification approaches
to improve the discrimination of lithologies by comparing
them to SPBIA method, in addition to the added value of
integrating the spectral information contained in the neo-
channels extracted from Sentinel-2A imagery, including BR
and ICA. Besides, the three major techniques have been
validated and confirmed through the geological map and
series of field investigations. The results showed that the
GEOBIA method gave a higher overall accuracy and larger
kappa coefficient, following by the SPBIA classifier and the
PBIA approach results the lowest accuracies. The visual com-
parison also highlighted the importance of the segmentation
step by showing that the classification of homogenous objects
reduces the heterogeneity of classes caused by shadow and
salt and pepper artefacts, therefore producing a greater classi-
fication accuracy. Though the results obtained from the three
algorithms, all approaches have some pros and cons. Thus,
our new research will be based on finding appropriate algo-
rithms by executing a hybrid method, which can accurately
discriminate individual litho-classes exposed in the ground
using the cloud computing to produce an optimal geological
map of all the region of Rehamna.
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