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ABSTRACT
Spatial modelling of gully erosion at regional level is very relevant
for local authorities to establish successful counter-measures and
to change land-use planning. This work is exploring and research-
ing the potential of a genetic algorithm-extreme gradient boost-
ing (GE-XGBoost) hybrid computer education solution for spatial
mapping of the susceptibility of gully erosion. The new machine
learning approach is to combine the extreme gradient boosting
machine (XGBoost) and the genetic algorithm (GA). The GA meta-
heuristic is being used to improve the efficiency of the XGBoost
classification approach. A GIS database has been developed that
contains recorded instances of gully erosion incidents and 18 con-
ditioning variables. These parameters are used as predictive varia-
bles used to assess the condition of non-erosion or erosion in a
given region within the Kohpayeh-Sagzi River Watershed research
area in Iran. Exploratory results indicate that the proposed GE-
XGBoost model is superior to the other benchmark solution with
the desired predictive precision (89.56%). Therefore, the newly
built model may be a promising method for large-scale mapping
of gully erosion susceptibility.
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1. Introduction

Effective and sustainable utilization of natural resources are indeed necessary for
proper understanding of environmental processes (Fistikoglu and Harmancioglu 2002;
Zhang et al. 2019; Feng et al. 2020; Tian et al. 2020). The sustainability of our envir-
onment and societies greatly depends on the optimal uses of various kinds of natural
resources (Cheng et al. 2016; Keesstra et al. 2016; Lu, Tian, et al. 2019; Lu, Liao, et al.
2019; He et al. 2020; Yang et al. 2020; Zhang et al. 2020; Chen, Chen, Tsangaratos,
et al. 2020). Among the several types of natural resources (He, Chen, et al. 2018; He,
Shen, et al. 2018), soil is the most vital and one of the key issues for the sustainability
as it is support basic human needs and livelihood on the earth surface. In the era of
twenty-first century, the sustainability of soil not only depends on management strat-
egies adopted by land planners and farmers but also impacted through marketing,
subsidies and several rules taken in political decisions (Keesstra et al. 2016). In the
most effective manner, soil is primarily a land related phenomenon and has signifi-
cant links to the several functions of United Nations sustainable development goals
(SDGs). The United Nations has proposed 17 SDGs that can challenge national gov-
ernments as well as stakeholders, and SDGs can be categorized into three groups i.e.
environment, social and economic accordingly (Keesstra et al. 2016; Visser et al.
2019). The proper functioning of soil is greatly emphasis on ecosystem services and
links to the achievement of SDGs. In the effort to achieve several SDGs, the most
essential is soil-water system with special emphasis on land degradation neutrally and
land restoration (Keesstra et al. 2018). Thus, avoiding and reducing the phenomenon
of land degradation is one of the key challenges for the sustainable development of
environment and economic activities. Therefore, it has been always required compre-
hensive planning and management of productivity as well as protection against ero-
sion. Soil erosion is a critical environmental hazard which annually destroys a large
amount of fertile soils worldwide (Wang and Shao 2013). Erosion refers to a set of
physical and chemical interactions, in which parts of the earth’s surface are affected
by processes such as weathering, destruction, dissolution, transport and sedimentation
and lose their relative stability and are transmitted from the original site to other
areas. In other words, erosion is a natural process in the geographic cycle that
extracted from disposal of soil particles by water or wind and transferring them to
other areas, while some human activities increases the natural process of the erosion
rate (Gitas et al. 2009). Generally, there are different forms of water-related erosion
(Mekonnen et al. 2017); among them, the gully erosion is widely recognized as the
most destructive form. Soil erosion has negative impact on environment as it is
reducing the soil fertility and damages agricultural land, downstream areas, destroying
network communication and ultimately produced badland topography (Rodrigo-
Comino et al. 2018). Water induced soil erosion is also control soil organic carbon in
an ecosystem with exchange and distribution of carbon, that is ultimately effect on
food production system (Berhe et al. 2012; Novara et al. 2016). The complexity of the
gully erosion initiation are facing by many researchers in various in-site and off-site
environmental and engineering problems such as land degradation, flooding, falling
of groundwater level and fill of reservoirs (Dlapa et al. 2012; Zema et al. 2012;
Gessesse et al. 2015; Zhao et al. 2019). Moreover, the progress of gully erosion varies
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in different environmental conditions including geological formations, topography,
soil characteristics and climatic conditions (Poesen et al. 1998). Notably, this type of
soil erosion is also governed by human-caused factors including land use alteration as
well as exploitation of natural resource such as water, soil and plants (Ayele et al.
2015; Slimane et al. 2016).

By the reason of several complicated interaction among the triggering factors and
the particular conditions of local environment, the formation and expansion of the
gullies cannot be limited to the simple relationship between the slope and the area of
the watershed located in the gully head-cut and physiological characteristics (Gayen
et al. 2019; Pal and Chakrabortty 2019). The initiation of ephemeral gullies and its
further development is largely dependent on several factors such as slope gradient,
drainage area, topographic indices, precipitation, surface runoff, land use characteris-
tics and soil types (Amare et al. 2019). Consequently, in different regions, rate and
type of affection of parameters on the formation of the gully may vary (Ayele et al.
2015). As pointed out by previous studies (Pimentel 2006; Bouaziz et al. 2011; Shit
et al. 2015), an average amount of 30–40 Ton/Ha/Y is removed due to erosion in
Asia, Africa and South America. Particularly in Iran, this amount can be up to 50%
with soil losses estimated to be 15 Ton/Ha/Y.

Thus, in order to assessment of gully erosion and associated risk, various mod-
els have been proposed. These models can be classified into the categories of
experimental and mechanical, dynamic and static and quantitative and qualitative
models (Gitas et al. 2009). These models have taken into account a wide range of
factors affecting soil erosion such as natural and human factors. The main criteria
for selecting these models include goal, available data, time and cost (Helming
et al. 2005). In recent decades, the analysis of soil erosion hazards by the above
models and their integration with satellite data and advanced data modelling
tools are employed to identify the physical hazards of soil erosion at regional
scales. These models can provide information about erosion-prone locations and
their trends, as well as erosion analysis scenarios. In addition, GIS techniques,
with its major advantages of greater capacity to process and analyse big data size
in digital layers in vector format and raster, can be used to determine the type
and value of factors affecting the prediction of prone-erosion through different
models, and finally, the results will be presented in the form of a digital layer
(Droogers and Kite 2002).

In recent years, the greater advancement in computer technology (Zhu 2020; Cao,
Zhao, et al. 2020; Cao, Wang, et al. 2020; Lv and Qiao 2020; Chen and Li 2020) along
with gradually development of GIS knowledge (Zhu, Wang, Chen, et al. 2019; Zhu,
Wang, Wang, et al. 2019; Zhu et al. 2020) and several platforms (Han et al. 2019;
Yan et al. 2020), a wide variety of models have been proposed for solving scientific
problems such as gully erosion susceptibility mapping (GESM). Therefore, based on
the methodological approaches, the methods used for natural hazards susceptibility
assessment has been classified into quantitative, qualitative and most recently
machine learning approaches by several research group of people. Consequently, the
aforementioned methods have also been widely used in assessment of gully erosion.
These methods can be briefly reviewed as follows:
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i. Qualitative methods include techniques such as analytical hierarchy process
(AHP) employed in (Arabameri, Rezaei, et al. 2018) and TOPSIS which is uti-
lized in (Arabameri, Pradhan, Rezaei, et al. 2019).

ii. Quantitative models includes bivariate and multivariate statistical models: infor-
mation value (Arabameri, Pradhan, and Rezaei 2019a), frequency ratio (Rahmati,
Haghizadeh, et al. 2016; Meliho et al. 2018), probability models (Rahmati et al.
2017), weights-of-evidence (Gayen et al. 2019), logistic regression (Arabameri,
Pradhan, et al. 2018) and linear discriminant analysis (Arabameri and
Pourghasemi 2019).

iii. Artificial intelligence models employs advanced data-driven methods including
artificial neural network (Sarkar and Mishra 2018), multivariate adaptive regres-
sion spline (Conoscenti et al. 2018). decision tree ensembles (Arabameri,
Yamani, Pradhan, et al. 2019; Hosseinalizadeh et al. 2019); (Tien Bui, Shirzadi,
et al. 2019) and flexible discriminant analysis (Gayen et al. 2019).

It can be seen from the literature that the predictive capabilities of artificial intelli-
gence models are often better than those of conventional qualitative/quantitative
methods (Arabameri and Pourghasemi 2019; Gayen et al. 2019). This fact is explained
by the superiority in nonlinear and multivariate data modelling of the former
approaches. Although various artificial intelligence models have been put forward for
gully erosion, other alternative models should be investigated. It is due to the com-
plex nature of this hazard which involves many influencing factors and the unique
environmental conditions of each study area. Evidences of this fact are well demon-
strated in previous studies on susceptibility mapping of gully erosion (Arabameri,
Pradhan, et al. 2018; Conoscenti et al. 2018; Sarkar and Mishra 2018; Tien Bui,
Shirzadi, et al. 2019) as well as other phenomena (Siahkamari et al. 2018; Jaafari et al.
2019; Kavzoglu et al. 2019; Tien Bui, Hoang, et al. 2019).

In this research study, the Kohpayeh-Sagzi watershed is chosen for assessment of
GESM. The Kohpayeh-Sagzi watershed locates in Esfahan Province (central part of
Iran). In this region, human pressure on land and soil resulting from population
growth along with climatic condition is arid and semi-arid types, over-grazing and
human induced deforestation and mismanagement of land use have led to serious
soil erosion and related problems. The present research work is carried out by using
18 gully conditioning factors, all of these variables have been selected based on local
geo-environmental conditions i.e. topography, hydrology, climatological, soil and
environmental related conditions. The modelling of gully erosion susceptibility (GES)
was carried out by using a novel ensemble of extreme gradient boosting machine
(XGBoost) and evolutionary genetic optimization machine learning models and its
comparison with three standalone models such as support SVM, RF and LR.
Extensive literature studies have been shown that there are till now no research work
which is based on the ensemble approach of genetic algorithm-extreme gradient
boosting (GE-XGBoost), thus GESM using novel ensemble of GE-XGBoost is the
novelty of this research study. XGBoost is an efficient algorithm that has the capacity
to find out missing values and enhanced the prediction performance result. On the
other hand, the major advantage of genetic algorithm (GA) is the multi objective
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optimization and search from a population of points and not from single points. The
stand alone machine learning models used in this study has been previously also
widely used by several researchers in different fields and the models give optimal pre-
diction performance result due to their unique advantages. The present research art-
icle is prepared into the following subsequent sections: In the first section, we already
described about the basic information of gully erosion and associated methods used
in GESM. The second section represent about the details of the study area and data
used for further progress of our research work. Subsequently, next section explained
in details about the back ground of research methods used in this study. The machine
learning models used for GESM is presented in the fourth section. The subsequent
section deals with investigational result and discussion. The concluding section of the
article summarizes the research findings with several closing remarks.

2. Study area and data

2.1. Description of the study area

Kohpayeh-Sagzi watershed is situated between longitudes 51� 340 0200 to 53� 000 5600 E
and latitudes 32� 100 5900 to 33� 120 5000 N. The study area is within the Esfahan
Province (the central part of Iran; Figure 1). The maximum and minimum elevations
of Kohpayeh-Sagzi watershed are 1443 and 3322m a.s.l., respectively. The area is
1736m above sea level in average (a.s.l.). In that study area, the mean annual precipi-
tation and temperature is 192.8mm and 12.9 �C. The majority of this area has a flat
topography whereas north, north-west and north-east parts have covered by undulat-
ing rugged mountain.

The highest slope in the study area is 69.56� with a mean of 3.4�. The depth of
soil is varied from 6.8 to 165m. Poor rangeland and agriculture-dry farming are the
major land uses practices in the study area. Pebble fan shaped debris from alluvial

Figure 1. Location map of the study area.
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Figure 2. Eighteen variables used in this study (a) elevation, (b) slope, (c) PC, (d) CI, (e) SPI, (f)
TWI, (g) TPI, (h) distance to stream, (i) drainage density, (j) distance to road, (k) rainfall, (l) NDVI,
(m) soil type, (n) soil depth, (o) soil EC, (p) geomorphology, (q) lithology and (r) LULC.
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deposits of upper maternal materials with total slope of 3 to 8%, coarse limestone fan
shaped debris along with argillaceous limestone, limestone shale, limestone marl and
old alluvial deposits with slope 5% are among the most important geomorphologic
units. Quaternary lithotypes including pediment fan of low level and deposition in
valley terrace, salt flat, sand dunes and sand sheet and clay flat are widely observed.
In addition, aridisols is the dominant soil type in the region.

2.2. Data used

As shown in previous studies, the interaction of several geo-environmental factors
like topographical, hydrological, characteristics and properties of soil, present LULC
and human interaction causes gulling in prone area (Nyssen et al. 2002; Poesen et al.
2003; Nyssen et al. 2006; El Maaoui et al. 2012). Based on literature review of related
works (Conoscenti et al. 2018; Arabameri, Yamani, Pradhan, et al. 2019); (Tien Bui,
Shirzadi, et al. 2019); physiographic characteristic in study area, multi collinearity
test, availability of data, and scale of research, 18 conditioning factors are selected as
influencing factors of gully erosion in this research area. These factors include eleva-
tion, slope, PC, CI, SPI, TWI, TPI, distance to stream, drainage density, distance to
road, rainfall, NDVI, soil type, soil depth, soil EC, geomorphology, lithology and
LULC (Figure 2(a–r)).

These conditioning factors were extracted from various resources including:

i. A 12.5 m spatial resolution of ALOS PALSAR DEM is collected from Alaska
Satellite System and used for extraction and calculation of topographical and
hydrological factors consisting of elevation, slope, PC, CI, TWI, SPI, drainage
density, TPI and distance to stream. Equation 1 is used for calculation of TPI
(Guisan et al. 1999; De Reu et al. 2013):

TPI ¼ Epixel
Esurrounding

(1)

where, Epixel represent the respective cell elevation and Esurrounding represents the
neighbor pixels mean elevation.

ii. The Geological Society of Iran (GSI) produced geological map of Iran with the
scale of 1:100,000 (http://www.gsi.ir/) and here we used this map to generate
the lithology map.

iii. The topographical map with the scale of 1:50,000 were collected from the sec-
ondary sources (www.ngo-org.ir). The road network map was digitized from
Google Earth satellite images.

iv. The NDVI map was prepared by using LANDSAT-8 OLI satellite image, which
was collected from USGS earth explorer website (https://earthexplorer.usgs.gov/)
with spatial resolution of 30 meters.

v. The mean annual rainfall map was prepared by using 30 years (1986 to 2016)
rainfall statistics of several synoptic stations.

vi. Land-use types have a have a main role in runoff and infiltration (Zhang et al.
2020). The LULC map for present study area was collected from the secondary
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source (https://www.scwmri.ac.ir). Various LULC units of present study area
are shown in Table 1.

vii. The following (http://esfahan.areeo.ac.ir/) website was used for collecting vari-
ous soil characteristics maps and prepared soil type, soil depth and soil EC
maps for this research study area.

viii. The geomorphology layer is mapped using Landsat 8 OLI satellite images for
2016, the RGB853 false color, lines of geomorphic surfaces and Google Earth
images. To distinguish geomorphic units from geomorphologic knowledge,
land area processes, slope map obtained from ALOS-PALSAR DEM and geo-
logical map were used. The boundaries of the units were determined based on
field surveys, and with the help of GPS. All steps of geomorphology mapping
were performed in ArcGIS10.5 environment. The detail descriptions of geo-
morphology units for this study area are presented in Table 2. The details
about the data sources are presented in Table 3.

Additionally, here we used ENVIv4.8, ArcGISV10.5, Google Earth pro 7.8 and Arc
HydroV10.4 software to prepare several conditioning factors which are used for
GESM. Alongside, several statistical and validation analysis was carried out by using
the SPSSv24 and Microsoft Excel 2016 packages. Beside this, enormous readers can
follow the previous works of (Arabameri, Rezaei, et al. 2018; Tien Bui, Shirzadi, et al.
2019) for more details of the gully erosion affecting factors.

3. Background of the methods used

3.1. Extreme gradient boosting machine

The XGBoost was introduced by Chen and Guestrin (2016) is selected to be used in
this study because it represents the state-of-the-art within the machine learning com-
munity. This algorithm relies on classification trees (Breiman et al. 1984) and the gra-
dient boosting framework (Friedman 2001). XGBoost is a popular machine learning
system of scalable used for boosting the performance of classification trees (Li 2010).
A classification tree typically establishes a set of rules to categorize each gully erosion
instance as a function of a set of predisposing factors in a graph structure. The graph
is built as a single tree whose leaves are assigned with a score which expresses how

Table 1. LULC units found in the Kohpayeh-Sagzi watershed.
Classes Description

A Abkhan
B Agriculture
C Airport
D Orchard
E Bare land
F Agri-dryfarming
G Poor-range
H Salt land
I Sand dune
J Rock
K Urban
L Woodland
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likely is a gully to fall in a given factor class, be it a categorical (e.g. lithotypes) or
ordinal (e.g. reclassified slope steepness).

Notably, in the framework of XGBoost, the loss function used to train the ensem-
ble model is combined with a procedure known as regularization which penalizes the
complexity of the trees. This regularization method can potentially improve the per-
formance of gully erosion model since over fitting phenomenon is alleviated. Over fit-
ting occurs when a new dataset of gully erosion used for prediction may not be
explained as well as the one stored in the training set. Thus, regularization contrib-
utes to the limitation of over fitting and to the improvement of the gully erosion pre-
diction model flexibility.

XGBoost combines the results of different tree models by taking their weighted
averages (Gusain et al. 2018). An iterative process is employed by using weak predic-
tion models to learn the overall prediction model at every step by correcting the mis-
classification in the preceding iteration. The XGBoost model is constructed by
optimizing the following objective function:

OF hð Þ ¼
Xn

i¼1

lðyi, y�iÞa þ
XK

k¼1

XðfkÞ (2)

Table 2. Geomorphological units in the Kohpayeh-Sagzi watershed.
Units Description

A Pebble fan shaped debris from alluvial deposits of upper maternal materials with total slope of 3 to 8 %
B The final part of the alluvial plain of the Zayandehrud river consists of alluvial deposits with a slope of 0

to 1%
C The stabilized sand dunes with a slope of 2 to 15 %
D Low elevation hills along with limestone, marl, shale and sandstone with moderate to high rock outcrops

with a steep slope of over 35%
E The relatively high hills include limestone and limestone shale with marl and sandstone bedding with high

rocky outcrops and averaging slope of 18%
F High hills include of grey shale, limestone, marl and limestone shale with a steep slope of 15%
G Alluvial plain with very deep soils and heavy to very heavy texture with slope of 0-1%
H Alluvial plain consisting of alluvial deposits with limestone and marl with slope of 1 to 4%
I Hill slope plain consisting of alluvial deposits with limestone and sandstone with slope of 1 to 5%
J Flood plain composed of alluvial and flood deposits, along with limestone, salt and sandstone and clay and

salt slabs with slope of 0-3%
K The flood plain consisting of alluvial and flood deposits along with limestone, salt, limestone marl and

sandstone with clay and salt slabs with slope of 0 to 3 %
L The flood plain consists of alluvial and flood deposits, along with gypsum, salt, limestone, limestone marl,

sandstone and clay
M The low lands consist of very fine alluvial deposits, with clay and salt slabs with slope of 0 to 0.5%
N old Plateau consists of limestone, salt, grey and red marls, argillaceous limestone, sandstone, conglomerate

and limestone marl
O High and very high mountains along with limestone, marl and limestone shale, with a steep slope of 33%
P Very high mountains with limestone and conglomerate stones along with rocky outcrops with a steep slope

of 43 %
Q Low-elevation mountains of limestone, shale and limestone marl, along with limestone sandstones with

slope of 26%
R Relatively high to low mountains consisting of metamorphic and pyrogenic rocks along with limestone, marl

and shale with slope of 26%
S High mountains of igneous rocks and volcanic lavas along with metamorphic rocks with slope of 45%
T Coarse limestone fan shaped debris along with argillaceous limestone, limestone shale, limestone marl and

old alluvial deposits with slope 5%
U Coarse limestone fan shaped debris along with argillaceous limestone, limestone shale, conglomerate,

sandstone, calcareous marl with a slope of 2 to 8 %
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where,
Pn

i¼1 lðyi, y�iÞ represents the loss function of root mean square error used for
fitting the model on the training data.

PK
k¼1 XðfkÞ refers to the regularization term

which helps to avoid overfitting. K denotes to the number of individual trees. fk is a
tree within the ensemble. yi and yi are an actual and predicted class output,
respectively.

The training process of XGBoost aims at minimizing of the aforementioned object-
ive function. To do so, a weak learner is added to the ensemble iteratively. Notably,
while the level of model complexities grows as the learning of trees progresses, the
regularization term prevents the over fitting problems by regulating the number of
leaf nodes in the tree (Chang et al. 2018; Gusain et al. 2018). The detail about the
model construction phases of XGBoost was find out in the previous works of (Chen
and Guestrin 2016; Gusain et al. 2018).

3.2. GA for global optimization

GA (Goldberg 1989) is a stochastic approach and widely used by several research
group of people. The algorithm for this model is based on the idea of organisms’ nat-
ural selection and genetic processes. In this model for better identification of individ-
uals, several phenomena of reproduction, crossover and mutation in nature are
simulating and compete with each other among the group of solutions candidates
(Kilinc and Caicedo 2019). Individuals with better fitness combine their genetic fea-
tures to generate new candidate solutions. Here, the whole process is repeated in sev-
eral times until the criterion of stopping is satisfied. The operation of the GA is
demonstrated in Table 4. More details about GA approach has been found in recent
established works (Amjad et al. 2018; Mirjalili et al. 2020). In this study, the GA is

Table 3. Details about the data sources used in the research study.

Conditioning factors
Data
source Time (year)

Spatial
resolution/scale

Elevation, slope, plan
curvature, convergence
index, drainage density
(DD), stream power index
(SPI), topographic wetness
index (TWI), topographic
position index, distance
to stream, drainage density

ALOS PALSAR DEM (Alaska
Satellite Facility)

2012 12.5 m

Rainfall Iran Meteorological Organization
(IMO) (http://www.weather.ir/)

1986 to 2016 –

Distance to road Google earth image 2019 1:40,000
Geomorphology,
Lithology

Geological Survey of Iran (GSI)
(http://www.gsi.ir/), Landsat OLI
8 satellite image

2016 1:10,00,000

NDVI,
Land use

Landsat OLI 8 satellite image
(USGS)
(https://earthexplorer.usgs.gov/),
www.ngo-org.ir, Google earth image

2019 30 m

Soil type, soil depth,
soil EC

http://esfahan.areeo.ac.ir/ 2019 1:10,00,000
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applied to optimize the hyper-parameters of the aforementioned XGBoost model used
for gully erosion prediction.

3.3. Benchmark models

3.3.1. Random forest (RF)
The RF, proposed in (Breiman 2001), is a type of decision tree ensemble. This
method is used to an overall classifier by combining various individual trees. Its
structure can be boiled down to few important steps. From a gully dataset made of
gully erosion/no-gully, erosion instances associated to a set of conditioning factors.
RF starts by sampling with replacement one subset of the data upon which a classifi-
cation tree will be applied.

Notably, the initial number of predictors of individual trees is kept constant and
the tree is allowed to grow to its largest extent. Each leaf of a tree is made of a pre-
dictor’s binary split which best fits the data. This operation ensures that each tree in
the forest can learn or differentiate substantially from the others. This fact helps to
reduce the tendency of decision trees to over fit the data. The aggregation among all
trees is then computed via a majority vote which is achieved by combining the learn-
ing outcomes of all the weak tree based learners (Deng et al. 2019). Successful imple-
mentation of the RF model has been demonstrated in previous works on spatial
mapping of natural hazards (Chen et al. 2018; Arabameri, Yamani, Pradhan, et al.
2019; Dang et al. 2019).

3.3.2. Support vector machine (SVM)
Vapnik (1998) proposed the algorithm of support vector machine, is a classification
model which has its root from the statistical learning theory. The main task of SVM
algorithm at hand is to develop a decision surface that separates the data instances
into two classes: No-gully and gully erosion. The generalized from of a SVM model
in decision surface is to set of training data points fxk, ykgNk¼1 along with the input
data of xk 2 Rn and a group of class labels represent by yk 2 f�1, þ 1g: Notably,
nonlinear mapping function and kernel techniques is used to deal with nonlinear
classification problems, through increases the data structure within the SVM model
(Hamel 2011). Accordingly, a hyper-plane is constructed in the high dimensional
space and used for data classification. Several research paper related to this work indi-
cates that SVM is very much appropriate; thus, here we have selected SVM is a
benchmark method (Tehrany et al. 2015; Ngoc Thach et al. 2018; Abedini
et al. 2019).

Table 4. The genetic algorithm.
Define population size (Pop Size), number of searched variable (D)
Generating initial population Pop
Compute the fitness value of each member
While stopping criterion is not satisfied
Selecting parent members based on fitness values
Create new members based on crossover and mutation process

End While
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3.3.3. Logistic regression (LR)
The LR is a very popular statistical method that employs a logistic function to model
a binary dependent variable. This machine learning method establishes a division
boundary that classified the data structures into two classes of binary values i.e. 0 and
1, which indicates negative and positive class, respectively (Agresti 2003). The advan-
tages of the LR are straightforward learning phase and transparent model structure.
To identify the model structure of a LR model, the loss function of log likelihood
and fast iterative methods such as the stochastic gradient descent can be used
(Gormley et al. 2016). Although being simple, this classifier has been shown to
achieve acceptable prediction accuracy in various recent studies (Lombardo and Mai
2018; Abedini et al. 2019; Hoang et al. 2019).

4. Proposed EG-XGBoost ensemble model for predicting gully
erosion potential

4.1. Gully erosion database

The understanding of spatial distribution and forms of gullies is most important pre-
requisite for the preparation of GESM, and it is show by the gully erosion inventory
map (GEIM; Conoscenti et al. 2014). To prepare the GEIM various resources were
used in this research work:

i. Gully erosion points were identified by the published map from the (http://esfa-
han.areeo.ac.ir/) website.

ii. Interpretation and verified them from Google Earth images satellite image.
iii. To identify exact location of gullies, extensive field surveys were carried out by

using a GPS (Global Positioning System).

A total of 529 gully locations were recognized throughout this study area.
Thereafter, this total gully head cut points were randomly classified into two groups
of 70/30 ratio for training (370 gullies) and validating (159 gullies) purposes. Also, an
equal amount of gully absence locations were created by random point generation
tool in ArcGIS platform to support the calibration and validation procedures
(Kornejady et al. 2017). Figure 3 demonstrates the field photograph in this field
of research.

As mentioned earlier, 18 variables namely elevation, slope, PC, CI, SPI, TWI, TPI,
distance to stream, drainage density, distance to road, rainfall, NDVI, soil type, soil
depth, soil EC, geomorphology, LULC and lithology are employed as erosion influ-
encing factors. These factors are integrated into a GIS database which is illustrated in
Figure 4.

4.2. Multicollinearity (MC) diagnosis and feature selection

MC is defined as the linear relationship among the two or more variables (Alin
2010). Basically, in a regression model, MC analysis has been carried out when two
or more variables are correlated among each other (Chowdhuri et al. 2020; Chen,
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Chen, Tsangaratos, et al. 2020; Chen and Li 2020). The result of traditional statistical
method in feature selection procedure has ambiguity and affected by extreme values
because of the presence of large dataset (Pal et al. 2020; Chen, Chen, et al. 2021;
Chen, Li, et al. 2021). Thus, in GESM, analysing the collinearity among the gully
related conditioning factors is very important because the presence of collinearity
decreases the model’s predictive performance (Arabameri, Rezaei, et al. 2018).
Variance inflation factor (VIF) and tolerance (TOL) are commonly used statistical
techniques for collinearity analysis among the independent variables by many
researchers (Band, Janizadeh, Chandra Pal, Saha, Chakrabortty, Shokri, et al. 2020;
Roy et al. 2020; Chen, Zhao, et al. 2020) and are employed in the present study. The
threshold value of TOL is < 0.1 and VIF is > 10 can indicates collinearity present
among the variables (Oh et al. 2017). Therefore, first we have extracting the values of
gully and non-gully points from several conditioning factors used in this study and
finally VIF and TOL values were calculated by using SPSS 16 package. The following
equations were used to calculate TOL and VIF (Arabameri, Karimi-Sangchini, et al.
2020; Band, Janizadeh, Chandra Pal, Saha, Chakrabortty, Melesse, et al. 2020).

TOL ¼ 1� R2
j (3)

VIF ¼ 1
TOL

(4)

where, R2
j indicate the regression of coefficient.

4.3. The GA optimized XGBoost model

The hyper-parameters to be set appropriately in the construction phase of the
XGBoost model. These hyper-parameters include:

Figure 3. Ground photograph of gullies in the study area of Kohpayeh-Sagzi watershed.
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i. Maximum tree depth (MTD): this parameter strongly affects the model accuracy
as well as complexity. Generally, trees with shallow depths may to under fit the
data; meanwhile, large values of MTD can lead to over fitted models.

ii. Learning rate (g): This parameter used to prevent the over fitting problems
through the step size shrinkage phase.

iii. Minimum split loss (c): This parameter governs the data partition on a leaf
node of the tree.

iv. Regularization coefficient (a): The parameter a affects the model regularization.
Therefore, it helps to alleviate over fitting.

v. The subsample ratio (r): The parameter r affects the number of data columns
when each decision tree is constructed.

vi. The number of decision trees (TN): This is the maximum number of individual
decision trees in the ensemble.

Thus, the proper selection of the above hyper-parameters is very much necessary
for the analysis of training and prediction outcome of the XGBoost model. In add-
ition, due to the presence of infinite number of candidate solutions, it is a challenging
task to identifying a suitable set of the hyper-parameters in XGBoost model. Because
an optimization problem has been formulated during the hyper-parameter selection
task (Sayed et al. 2018; Xiong et al. 2018; Deng et al. 2019; Lu, Tian, et al. 2019; Lu,
Liao, et al. 2019), this study employs the GA metaheuristic to optimize the model
construction phase of the XGBoost.

The general concept of the GA optimized XGBoost is presented in Figure 5(a). At
the first generation (g¼ 0), all of the model hyper-parameters are initialized ran-
domly. The GA gradually evaluates the fitness of each population member to identify
robust candidates during the searching of optimization within the model. After the
optimization process terminates, the optimized XGBoost model used for gully erosion
prediction can be constructed as illustrated in Figure 5(b).

Figure 4. The established GIS database.
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Moreover, an objective function is necessary to described for exhibit the suitability
of each solution. The objective function (OF) of the EG-XGBoost algorithm is
described as follows:

OF ¼ 1
N

XN

n¼1

ðYA � YPÞ2 (5)

where, YA indicates actual output, YP indicates predicted output and N refers to the
number of training data samples.

4.4. Validation and accuracy assessment

The validation and accuracy assessment in modelling is crucial for its proper evalu-
ation in management studies (Chao et al. 2018; Wang et al. 2020). Without valid-
ation, the evaluation of machine learning models output result has less significance in
reality. In the current study, several statistical indexes namely classification accuracy

Figure 5. The proposed EG-XGBoost for predicting gully erosion potential: (a) model construction
phase and (b) model prediction phase.
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(CAR), sensitivity, specificity, receiver operating characteristics (ROC) curve, Kappa
coefficient and many were used to validation and accuracy assessment of the model’s
result. The classification accuracy (CAR) is computed as follows:

CAR ¼ RC

RA
� 100 %ð Þ (6)

where, RC represents the sample numbers being classified correctly and RA denote
the total number of samples.

Beside CAR, another validation performance tools i.e. the ROC curve (Moayedi
et al. 2019; Nguyen et al. 2019) and Cohen’s kappa coefficient (McHugh 2012) are
also employed to express the overall performance of a classifier. Furthermore, the
specificity, sensitivity and ROC-area under curve (AUC) are also widely employed for
model assessment and the respective equations are as follows:

Specificity ¼ TN
TN þ FP

(7)

Sensitivity ¼ TP
TP þ FN

(8)

AUC ¼ ðPTP þP
TNÞ

ðP þ NÞ (9)

where, TP refer to the true positive; TN denotes the true negative; FP represents the
false positive and FN is the false negative (van Erkel and Pattynama 1998).

5. Experimental results

The results of the multicollinearity analysis on the relevance of gully erosion condi-
tioning factors are reported in Table 5. As stated previously, collinearity among the
predictors are investigated by VIF and TOL. It is worth reminding that TOL values is
< 0.1 and VIF is > 10 indicate collinearity problems among the variables (Oh et al.
2017). As can be seen from the analysis outcomes, TOL and VIF values of the
employed variables do not exceed such thresholds.

Moreover, the relevancy of conditioning factors is presented by using the
Information Gain Ratio. Based on the results, highest Information Gain Ratio occu-
pied by soil depth, followed by soil type TWI, lithology and NDVI. Influencing fac-
tors of geomorphology, elevation, plan curvature, slope, TPI and drainage density
feature moderate values of Information Gain Ratio. Distance to stream and SPI has
comparatively low relevancy. Notably, convergence index has a null value of
Information Gain Ratio. Thus, this variable is excluded from the construction phase
of the gully erosion prediction model.

Additionally, the performance of the newly constructed EG-XGBoost is bench-
marked with those of the RF, SVM and LR. These benchmark models are constructed
in Python. The grid search method (Hoang and Bui 2018) is used to identify the
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hyper-parameters within the SVM model. In addition, the tuning parameters of RF
and LR are set based on the authors’ experience and trial-and-error processes.

The model performances are presented in Tables 6 and 7 for training and testing
phases, respectively. From the output result, it was noticed that the newly developed
GE-XGBoost model has attained the most preferred accuracy for training (CAR ¼
95.69%) and testing (CAR ¼ 89.56%) data predictions, followed by RF (testing CAR
¼ 87.03%), SVM (testing CAR ¼ 83.54%) and LR (testing CAR ¼ 77.22%).
Moreover, the ROCs of the prediction models are illustrated in Figure 6. Based on
the overall results of training and testing dataset, it is stated that GE-XGBoost is the
best fit model for gully erosion prediction analysis.

In the next step of the current research, the proposed GE-XGBoost and other
benchmark model are utilized to calculate the GES within this study area. The calcu-
lated susceptibility is then transformed to a grid format and opened in ArcGIS 10.4
package. By using the aforementioned MLA models, the GES maps (Figure 7) are
obtained and each map classified into five categories for better understanding the
variation. These five groups of classes are found from very high to very low. It is
noted that the thresholds for categorizing these measured indices into the five classes

Table 5. Multicollinearity diagnosis using VIF, TOL and Information Gain Ratio.
No. Influencing factor VIF TOL Information gain ratio

1 Soil depth 2.513 0.398 0.1779
2 Soil type 1.644 0.608 0.1683
3 TWI 1.362 0.734 0.1653
4 Lithology 1.739 0.575 0.1549
5 NDVI 1.271 0.787 0.1405
6 Geomorphology 1.395 0.717 0.1188
7 Elevation 5.419 0.185 0.1103
8 Plan curvature 1.994 0.502 0.1095
9 Slope 2.671 0.374 0.1094
10 TPI 2.339 0.428 0.1089
11 Drainage density 1.775 0.563 0.1074
12 Rainfall 3.237 0.309 0.0968
13 Landuse/Landcover 1.567 0.638 0.0859
14 Distance to road 1.098 0.911 0.0792
15 Soil EC 1.57 0.637 0.0649
16 Distance to stream 1.265 0.791 0.0287
17 SPI 1.484 0.674 0.0173
18 Convergence index 1.443 0.693 0

Table 6. Goodness-of-fit of the proposed GE-XGBoost, RF, SVM and LR model using the train-
ing dataset.
Statistical index GE-XGBoost RF SVM LR

True positive 346 329 301 275
True negative 364 362 342 308
False positive 25 42 70 96
False negative 7 9 29 63
Positive predictive value (%) 93.26 88.68 81.13 74.12
Negative predictive value (%) 98.11 97.57 92.18 83.02
Sensitivity (%) 98.02 97.34 91.21 81.36
Specificity (%) 93.57 89.60 83.01 76.24
Classification accuracy (%) 95.69 93.13 86.66 78.57
MSE 0.061 0.126 0.099 0.150
Kappa 0.914 0.736 0.733 0.571
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mentioned above were reached by using the natural break classification system of
Jenk mentioned in Bednarik et al. (2010).

6. Discussion

Among the several types of water induced soil erosion, gully erosion is the most
destructive form, in terms of its negative impact on humankind throughout the world
(Arabameri, Asadi Nalivan, et al. 2020). The water induced gully erosion is respon-
sible for several natural causes but recently, human interventions on the environment
and associated changes of the equilibrium of ecosystem also influences the formation
and development of gullies (Chaplot et al. 2005; Band, Janizadeh, Chandra Pal, Saha,
Chakrabortty, Shokri, et al. 2020). This type of erosion is responsible for destroying
the environment in two ways: first, it causes extensive land degradation through sur-
face and sub-surface soil erosion and associated result i.e. sedimentation into the
downstream area, degradation of agricultural land and adverse effect on human’s life;
second, the gradual reduction of groundwater recharge as the rate of surface runoff
increases (Kou et al. 2016). Extensive literature study has shown that gullies exist in
most semiarid and arid landscapes around the world, with substantial morphological
activities and dynamics (Arabameri, Yamani, Pradhan, et al. 2019; Gayen et al. 2019).

Table 7. Prediction performances of the proposed GE-XGBoost, RF, SVM and LR model using the
testing dataset.
Statistical index GE-XGBoost RF SVM LR

True positive 136 130 120 114
True negative 147 145 144 130
False positive 22 28 38 44
False negative 11 13 14 28
Positive predictive value (%) 86.08 82.28 75.95 72.15
Negative predictive value (%) 93.04 91.77 91.14 82.28
Sensitivity (%) 92.52 90.91 89.55 80.28
Specificity (%) 86.98 83.82 79.12 74.71
Classification accuracy (%) 89.56 87.03 83.54 77.22
MSE 0.095 0.135 0.123 0.16
Kappa 0.791 0.684 0.671 0.54
AUC 0.969 0.933 0.886 0.870

Figure 6. ROCs of the prediction models.
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In comparison, semi-arid climate and precipitation regimes promote soil erosion
through low vegetation cover and recurring heavy rainfall events. Therefore, the
adverse effect of climatic conditions is very much significant for large scale land deg-
radation in the form of gully formation and development. Keeping in view the
adverse damages of our environment due to gully erosion, several research works has
been conducted to find out the responsible factors of gully erosion and prepared the
map of susceptible areas. Hence, it is indeed necessary to manage the adverse effect
of gully induced soil erosion through sustainable measurement techniques.

The present study area of Kohpayeh-Sagzi watershed, Iran having several problems
related to gully erosion; therefore, it is the main obstacle for sustainable land uses practi-
ces and associated land management strategies. Thus, it is very much necessary to use
suitable models for optimal prediction of GES and apply several suitable measurement
techniques for soil and water management. In this regard, here we used machine learn-
ing algorithm (MLA) of XGBoost, GA, RF, SVM and LR for modelling GES.

Given the shortcomings and limitations of each of the stand alone models (Li
et al. 2019; Feng et al. 2020; Qian et al. 2020; Qu et al. 2020; Shi et al. 2020), scien-
tists have proposed and developed integrated methods to overcome their disadvan-
tages and increase their efficiency (Cao, Dong, et al. 2020; Peng et al. 2020; Liu et al.
2021). In this research, A novel ensemble of GE-XGBoost was proposed for better
prediction analysis of gully erosion than the stand-alone model. In this study, 18 con-
ditioning factors was used which is responsible for gully erosion based on several
geo-environmental conditions. To accurately represent the output result here, we
used multicollinearity test of VIF and TOL techniques and information gain ratio
(IGR) to proper understand the relationship among the variables. The result of VIF,
TOL and IGR indicates that there is no multi-collinearity problem among the varia-
bles as all the variable’s value is within the threshold value of multicollinearity. In
VIF, among the 18 variables, rainfall is the highest value of 3.237 and distance to
road is the low value of 1.265. In the case of TOL, distance to road and rainfall con-
sist of the highest and lowest value of 0.911 and 0.309, respectively. On the other
side, the result of IGR is shown that soil depth has high priority with the value of
0.1779 and followed by soil type (0.1683), TWI (0.1653) and lithology (0.1549) and
zero value has been found in convergence index factor. Thus, in the current study
area soil play an important role for the occurrences and further development of gul-
lies, as the soil texture determine the rate of infiltration, associated surface runoff and
soil resistance (Deng et al. 2015). The hydrological process of a terrain is quantify
through TWI and determine the erosive power of water and greatly influences on
gully erosion (Rahmati, Pourghasemi, et al. 2016). Whereas, the characteristics of lith-
ology determine the water percolation rate and significantly influences on gully initi-
ation and extension (Band, Janizadeh, Chandra Pal, Saha, Chakrabortty, Shokri, et al.
2020). The same result i.e. soil characteristics, hydrological and lithological properties
has been highlighted by others established research work. Alongside, elevation
(0.1103), slope (0.1094), drainage density (0.1074), rainfall (0.0968) and LULC
(0.0859) also play significant role for development of gullies and associated land deg-
radation problems.
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Several statistical indices have been used for prediction performance of the model’s
output. In this study, we have carried out goodness-of-fit and prediction performance
of several models used for gully erosion modelling. The goodness-of-fit among the
four models of GE-XGBoost, RF, SVM and LR, statistical index of true positive, true
negative, positive predictive value, negative predictive value, sensitivity, specificity,
classification accuracy, MSE and kappa with their highest value of 346, 364, 93.26,
98.11, 98.02, 93.57, 95.69, 0.061 and 0.914, respectively, is shows GE-XGBoost is the
best fit model, in the training phase. In the case of false positive and false negative
with their highest value of 96 and 63 indicates LR is the goodness-of-fit model. The
result of predictive performance in all the models have shown high accuracy, but the

Figure 7. Gully erosion susceptibility maps: (a) using the GE-XGBoost, (b) using the RF, (c) using
SVM and (d) using LR.
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ensemble of GE-XGBoost is the top most optimal with the AUC value is 0.969 and
followed by RF (AUC ¼ 0.933), SVM (AUC ¼ 0.886) and LR (AUC ¼ 0.870) in the
testing phase. The other statistical indices used in this study for validation and accur-
acy assessment has also shows that GE-XGBoost is the best prediction model for GES
flowed by RF, SVM and LR. However, false positive and true positive has shown that
LR is the best model with their value of 44 and 28, respectively, followed by SVM,
RF and GE-XGBoost. Finally, it is concluded that assessment of gully erosion in
proper way always faced uncertainties due to lack of knowledge regarding physical
condition, complex function of the model and spatial inconsistency (Arabameri,
Pradhan, and Rezaei 2019b). It is also very much difficult to proper validation of the
model in an accurate way. It has also been stated that the framework of the model,
the input data structure are accurate and proper validation techniques is used than

Figure 7. (Continued).
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the uncertainty of the prediction result will be reduced (Rojas et al. 2010). Thus, the
novel ensemble of GE-XGBoost with their proper validation performance resolved
the problems related to gully erosion in various regions of the world.

The worldwide soil erosion phenomena and associated loss of soil fertility has
been gradually decreasing the sustainability of environment and national economy
(Lal 2003). Therefore, measurement of soil sustainability is an important goal among
the farmers and decision makers (Novara et al. 2021). Several kinds of soil erosion
control strategies should be implemented in various scale and regions to optimal
solution for this type of devastating problems. Various literature studies have been
shown that cover crops have positive impact in the control of soil erosion and has
been considered for soil erosion management in several regions across the world
(L�opez-Vicente et al. 2020; Rodrigo-Comino et al. 2020; Novara et al. 2021). In gen-
eral, cover crops protected the soil surface from direct falling of raindrop and reduced
the runoff velocity and associated erosional activities. Alongside, vegetation cover is
also improved the soil quality and play a key role to reduced soil losses through plant
cover and root system (Van Hall et al. 2017). Hence, in this study area also vegetation
coverage, construction of small check dams and proper land use planning should be
implemented to mitigate and control the soil erosion problem.

7. Conclusion

The present research work has been carried out by using a new methodology of GIS
technology, remote sensing and MLA for spatial mapping of gully erosion hazard.
GIS technology and remote sensing are employed to detect erosion locations and con-
struct a database containing erosion influencing factors. The GIS database established
in the present study takes into account the historical cases of gully erosion events and
18 conditioning factors. Elevation, slope, PC, CI, SPI, TWI, TPI, distance to stream,
drainage density, distance to road, rainfall, NDVI, soil type, soil depth, soil EC, geo-
morphology, lithology and LULC are utilized as predicting variables used to deter-
mine the status of non-erosion or erosion for a certain area within the study region.

A novel machine learning ensemble method that combined the XGBoost and GA,
named as GE-XGBoost, is developed in the study. The division of gully from non-
gully was carried by construction of decision boundary through XGBoost. In addition,
GA is used to optimize the performance of the XGBoost method. Experimental out-
comes demonstrate that the hybrid method can deliver predictive performance which
is superior to those of RF, SVM and LR. Therefore, the proposed GE-XGBoost can
be an effective model to assist local authorities in establishing effective countermeas-
ures against gully erosion and proper planning of land-use.

The novel ensemble model of GE-XGBoost which is used in this study area can
also be extended in future for predicting gully erosion in several parts of the world
and spatial modelling of other natural hazards such as landslide or flash flood.
Hence, every research study has some limitations, thus this study also not included
the hydrological modelling for gully system analysis and we need emphasize the same
for future studies. Moreover, the proposed method’s performance used in this work
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can be improving enhancing with other advanced metaheuristic optimization algo-
rithms for an appropriate potential research direction.
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