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ABSTRACT 

Mobile telematics is an emerging technology that collects data on human 

behaviour using smartphones. All smartphones have internal sensors with the 

capability to record and transmit data to an external server. This emerging technology 

is easy to use, the initial cost is very low, and generates a massive amount of data 

which are noisy, complex, and uncertain. This opens many opportunities for data-

driven decision making such as driving behaviour risk analysis, usage-based insurance, 

remote sensing, and fleet management. Traditional decision-making techniques are 

not able to work with this type of unstructured and complex data. Thus, new 

techniques are needed based on advanced analytics to analyze mobile telematics 

streams.  

This research develops a big data-driven decision support system (DSS) for mobile 

telematics. The research relies on the capabilities of advanced analytics techniques, 

machine learning, and fuzzy logic. The research presents an innovative analytical 

system for mobile telematics which consists of four major components: 1) a data 

preparation component that prepares a trajectory dataset to a new and ready-for-

analysis format; 2) a driving style pattern recognition that extracts hidden human 

patterns in mobile telematics using unsupervised learning and unlabelled data; 3) a 

fuzzy risk assessment is proposed to assess risk of drivers by fuzzy logic using extracted 

patterns by unsupervised learning; and 4) a missing data imputation component which 

is a novel Choquet Fuzzy Integral Vertical Bagging (CFIVB) algorithm to classify 

large labelled mobile telematics stream datasets. 

The proposed models were evaluated on two real-world mobile telematics 

datasets, namely an unlabelled dataset collected by a usage-based insurance company 
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containing 500,000 journeys of 2500 drivers, and an anonymized driving behaviour 

dataset consisting of streaming data of 408 trips of 310 unique drivers. Various 

validation measures were used to evaluate the performance of the proposed models. 

The area under a curve (AUC) and accuracy are used to evaluate the classification 

algorithms and the Davis-Boulding index, the Calinski-Harabasz index, execution 

time, and mean square error are utilized to evaluate clustering algorithms and find the 

optimal number of clusters. The sensitivity analysis results show the proposed model 

is consistent across different variations of the model. 

The proposed DSS can be applied on all stream data risk assessments. Moreover, 

29 unique driving styles were extracted from mobile telematics data and these patterns 

can be applied as labels for supervised learning modelling. In addition, performance 

measures depict the CFIVB algorithm performs well in this domain, and it can be 

applied for similar problems.  
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Chapter 1:  

INTRODUCTION 

1.1 BACKGROUND 

Technological improvements in mobile application development, sensor technologies, 

the Internet of Things (IoT), and the processing of IoT data have led to a wide range of 

applications that enhance our lives, including smart homes, healthcare systems, vehicle 

monitoring, and a greater awareness of environmental problems. IoT applications enable 

hardware devices to connect with their surrounding environment and each other to report 

on or accomplish a task. Moreover, they generate huge amounts of data that are useful for 

behavioural and environmental analytics. Further, growth in the use of smartphones, as one 

type of interconnected device, is likely to further increase the number of useful IoT 

applications developed in future years (Wahlström, Skog & Händel 2017). 

Telematics, which involves integrating sensors, computer systems, and communications 

to gather information about a vehicle’s operations, is one such IoT application. However, 

this technology requires different kinds of velocity and acceleration sensors to be installed in 

the vehicle, which is expensive and difficult to develop. To overcome this problem, Malalur, 

Balakrishnan & Madden (2013) invented a new kind of telematics, known as mobile 

telematics, which uses the sensors in smartphones to record and track driving behaviour. 
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Because most people own a smartphone, mobile telematics offers a new, low-cost alternative 

for collecting data about driving behaviour (Wahlström et al. 2019). 

All smartphones contain at least one component which is capable of measuring position 

by connecting to a fixed communication system, such as a cellular radio station, WiFi access 

point, or GPS receiver. Smartphones can also contain a three-axis accelerometer, a 

gyroscope, and/or a compass. These internal sensors give mobile telematics apps a wide scope 

to gather driving-style data. The apps are easy to use, and the initial hardware cost is either 

very low or free if the user already has a smartphone (Desyllas & Sako 2013). Further, the 

massive amounts of data they collect benefit a range of analytical uses like road safety (Zhao 

2002), intelligent transportation systems (Zhao 2000), usage-based insurance (Bowne et al. 

2013), and others. Perhaps more importantly, these apps can help people assess and improve 

their own driving behaviour by providing feedback on their driving styles with incentives to 

change bad habits (Malalur, Balakrishnan & Madden 2013). Thus, it is unsurprising that one 

of the biggest beneficiaries of mobile telematics is the insurance industry. With mobile 

telematics apps, insurers no longer need to rely on expensive in-vehicle sensor installations 

to take advantage of driver monitoring. As a result, many insurers are specifically targeting 

drivers who are willing to use mobile telematics with their marketing campaigns (Desyllas & 

Sako 2013).  

All these benefits, however, are predicated on good definitions of driving. Thus, driving 

behaviour detection methods typically fall into two main groups (Wahlström, Skog & Händel 

2017). The first is rules-based detection, which identifies risky habits by defining different 

thresholds for dangerous and normal behaviour (Song et al. 2019). The rules and thresholds 

are usually developed by transportation experts in autonomous driving, driving simulation, 

behavioural risk assessment, and similar fields (Guo et al. 2013). The second approach again 

relies on transportation experts, this time with a set of predefined templates that describe 

different driving styles ranging from normal to dangerous. A set of pattern matching 

algorithms and machine learning models are then used to classify a driver’s behaviour 

according to the most similar patterns (Wahlström, Skog & Händel 2017). Yet, developing 



Chapter 1: Introduction   3 
 

 

 

good definitions of something so fluid and dynamic as driving behaviour is difficult, even for 

experts.  

Further, although extensive research has been undertaken on driving style analytics, to 

the best of our knowledge, only a few studies have investigated decision support systems for 

mobile telematics. Moreover, much of the research on driving style analysis up to now has 

been conducted using data collected from questionnaires, site investigations, or laboratory 

simulations. However, driving behaviour in the real world is completely different from the 

simulated behaviour in generated data. We believe the dynamic properties of human 

behaviour mean that simulated data cannot reflect all driving habits.  

1.2 RESEARCH PROBLEMS 

The main goal of this research is to develop an up-to-the-minute big data-driven decision 

support system based on mobile telematics, which is a cheaper, easier alternative to in-vehicle 

data recorders, and one that leverages the current state-of-the-art in machine learning. Even 

though mobile telematics hold a great deal of promise, there are several challenges to 

overcome: 

 The lack of research on a practical analytical framework to model a decision 

support system to analyze mobile telematics big datasets is the first obstacle. 

Modelling this kind of decision support system is very costly and time-consuming 

because of the behavioural research issues and data collection. 

 The availability of labelled data is critical for any machine learning algorithm, and 

these models minimize their cost functions according to the labelled data, while 

the labelled data is not available in some domains for mobile telematics big 

datasets.  

 Mobile-telematics-generated data is big with a very complex structure. These 

data are generated by various IoT devices in real-time, and the volume of these 

generated data is huge. Also, the collected data is transformed using wireless 
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network, which is noisy and reduced the quality of these data and makes them 

noisy, inconsistent, and incomplete (Hariri, Fredericks & Bowers 2019).  

 Mobile telematics is unable to provide the driver’s demographic features such as 

gender and age range and applying mobile telematics in business without this 

information is problematic.   

In light of the aforementioned issues, the main objective of this research is to propose a 

big data-driven decision support system for mobile telematics, which uses the capabilities of 

fuzzy logic and advanced analytical techniques such as supervised and unsupervised learning 

models for driving style analysis and risk assessment in mobile telematics and the big data 

environment. The proposed decision support system has been applied in a domain, which is 

provided for the usage-based insurance sector to assess the performance of the proposed 

framework.  

This section explains the main issues which significantly motivates this study and presents 

the research questions: 

1) Most decision support systems have been defined on a particular business 

problem. All business managers agree that a well-defined business problem can 

be solved much more easily than a poorly defined problem. In addition to 

problem definition, alternative identification is another critical component of 

developing a decision support system. This creative step needs special 

consideration and brainstorming to generate a large number of ideas, alternatives 

and criteria  (Power 2002). Therefore, to propose a new decision support system, 

firstly we should have a well-defined business problem and all alternatives, DSS 

components and criteria of the problem should be created innovatively. This 

process is very challenging and time-consuming.   

2) Emerging technologies such as IoT, social media, and sensor technologies in 

particular mobile telematics generate a massive amount of data with a complex 

structure. The data generated by these devices are noisy, inconsistent, and 

incomplete (Hariri, Fredericks & Bowers 2019). Therefore, proposing a data 
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decision support system, which can consider the uncertain situation within this 

complex structure with a high level of precision is problematic. 

3) Machine learning is the most prominently applied theory for big data analytics. 

The characteristics of  mobile telematics big data is completely different from 

relational data, so traditional machine learning algorithms do not have a practical 

application in this environment (Zhu et al. 2018). Therefore, proposing a 

supervised machine learning and artificial intelligence model to extract hidden 

patterns from data for decision making in mobile telematics domain is difficult.  

4) In addition, supervised learning algorithms have very good performance when 

there is a good source of labelled data. These algorithms however are not effective 

without labelled data. The complex structure of mobile telematics is very 

challenging when developing an unsupervised learning model. Various automatic 

and manual feature extraction techniques need to be proposed (Liu, Taniguchi, 

et al. 2017). Hence, proposing an unsupervised learning technique which 

considers the complex structure of mobile telematics as a kind of  big unstructured 

data is a major issue. 

5) Risk assessment is a process that examines the exposure of a planned activity and 

includes a broad range of tasks. A risk assessment process helps decision makers to 

understand the exposure associated with particular activities and prioritize them 

according to risk level. Different quantitative and qualitative methods have been 

proposed for risk assessment. Quantitative methods aim to provide a numeric 

score that estimates the risk level of incidents, while qualitative methods evaluate 

the risk of events based on some qualitative measures or expert opinions 

(Sengupta et al. 2016).  Defining useful criteria for decision making in an 

uncertain situation such as mobile telematics is a difficult task, and various domain 

experts with the support of IT professionals should work on a project to define 

events and criteria and assess their probability and severity.  
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6) Mobile telematics provides a rich source of behavioural data, but it is unable to 

find the answer to declarative features as users do not provide this information by 

self-reporting through complementary mobile apps. Therefore, the mobile 

telematics domain has a big gap in relation to declarative data.  

 

Based on the aforementioned challenges, the research questions of this study are as follows: 

 Research question 1: How can we define an analytical decision support system 

framework for mobile telematics to address the challenges in this domain to help 

decision makers reach a decision?  

 Research question 2: What are the characteristics of a practical analytical model 

in the mobile telematics environment? What components should be included? 

 Research Question 3: How can we prepare a mobile telematics trajectory dataset 

to analyze driving behaviours? How can we detect driving behaviour which exhibits 

significant changes? 

 Research Question 4: How can we propose an autonomous risk assessment 

support system for the mobile telematics domain in uncertain situations using massive 

data streams? How can we evaluate the proposed decision support system? 

 Research Question 5: How can we define a pattern recognition methodology 

using unsupervised learning to automatically extract the decision-making criteria 

from driving patterns? What are the characteristics of an efficient clustering 

algorithm?  

 Research Question 6: How can we solve the data quality problem in mobile 

telematics? How can we propose a supervised learning algorithm using labelled data 

to improve the quality of data?  

1.3 RESEARCH OBJECTIVES 

Based on these research problems, the following six research objectives are formulated: 
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Research objective 1: The first research objective corresponds to the first and second 

research questions to propose an analytical framework for the mobile telematics big data 

environment. The framework embeds the general risk assessment components required for 

analysing mobile telematics, including data preparation, driving style pattern recognition, and 

fuzzy risk assessment. In addition, the framework uses the capabilities of supervised learning 

to provide an estimation of null data in mobile telematics.  

Research objective 2: The second research objective corresponds to the third research 

question. To address this objective, we propose a data preparation component to prepare the 

trajectory data collected by mobile telematics so it is ready for analysis. This component 

transforms trajectory data to a new format which shows the driving characteristics. Moreover, 

a change detection algorithm is applied in the proposed component to find the most 

significant driving events in driving streams.  

Research objective 3: The third research objective corresponds to the fourth research 

question. To address this objective, a decision support system is proposed to learn the hidden 

driving patterns in big data for decision making. In addition, the proposed decision support 

systems are evaluated using a sensitivity analysis on a real-world dataset collected by a 

European insurance company.  

Research objective 4: The fourth research objective will address the fifth research 

question and proposes a pattern recognition framework to extract unknown patterns from 

mobile telematics big data using unsupervised learning. Thus, an unsupervised learning 

algorithm is proposed to categorize big data streams into similar groups. The algorithm 

extracts criteria for the decision-making problem.  

Research objective 5: Corresponding to the sixth research question, a new supervised 

learning algorithm is proposed to improve the missing data problem in mobile telematics 

using labelled data. To achieve this goal, a novel Choquet Fuzzy Integral Vertical Bagging 

algorithm is proposed to detect the gender of drivers from the driving data. In addition, a 
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feature extraction methodology is used to transform unstructured driving data into features 

that are understandable by machines. 

1.4 RESEARCH CONTRIBUTIONS 

According to the research objectives, the research contributions of this study are 

summarized as follows: 

(1). The most important contribution of this research is to propose an analytical framework 

for mobile telematics to support the analytical requirements for risk assessment in this 

domain with a huge amount of unstructured data. The proposed framework uses the 

advantage of artificial intelligence, machine learning, unsupervised learning, and fuzzy 

logic.  

 

(2). A data preparation component is proposed to prepare mobile telematics data for 

analytics. This component transforms trajectory data to a time-series of driving 

characteristics. The proposed solution offers a new way of detecting important driving 

events using the abrupt change detection algorithm. Also, a feature extraction technique 

is proposed to extract useful features from driving streams. To the best of our 

knowledge, no study has considered the proposed data preparation techniques for 

mobile telematics. 

 

(3). An autonomous fuzzy decision support system for mobile telematics risk assessment 

using the advantages of artificial intelligence, machine learning and fuzzy logic is 

proposed. The proposed decision support system learns autonomously from big data and 

the decision support system is evaluated using sensitivity analysis to assess the risk of 

drivers according to the extracted driving patterns and the probability and severity of 

these extracted patterns. 
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(4). An empirical analysis of mobile telematics data is developed to propose a novel 

unsupervised learning framework specifically for mobile telematics data that extracts 

significant patterns in lieu of labels. A self-organizing map to reduce the complexity of 

data, and a deep auto-encoder architecture with nine layers that automatically extracts 

features from driving characteristics are used to prepare the data for partitive clustering.  

In addition, an empirical assessment of five partitive clustering algorithms is undertaken 

to find the best algorithm in the mobile telematics domain.  

 

(5). A new supervised learning algorithm in the mobile telematics big data environment is 

proposed. We introduce a novel Choquet fuzzy integral vertical bagging classification 

algorithm with a new application with mobile telematics data. For the first time, we use 

the driving style dataset collected by mobile telematics devices to detect a demographic 

feature of a driver using the proposed algorithm.   

1.5 RESEARCH METHODOLOGY 

Research methodology is the “collection of problem solving methods governed by a set 

of principles and a common philosophy for solving targeted problems” (Gallupe 2007). 

Several research methodologies, such as case studies, field studies, design research, field 

experiments, laboratory experiments, surveys, and action research have been proposed and 

applied in the domain of information systems. The methodology of this research is planned 

according to the practice of design research (Kuechler Jr & Vaishnavi 2011; Niu, Lu & Zhang 

2009), which has been proposed and applied in information systems. 

1.5.1 GENERAL RESEARCH METHODOLOGY 

Figure 1-1 depicts the five stages of the design research methodology (DRM). This 

research methodology was applied by (Niu, Lu & Zhang 2009) 

(1). Awareness of the problem: In this first step, the limitations of the existing applications 

are analyzed and the significant research problems are acknowledged. The research 
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problems reflect a gap between the existing applications and the expected status. 

Research problems can be identified from different sources: industry experience, 

observations on practical applications and literature reviews. A clear definition of the 

research problem provides a focus for the research throughout the development process. 

The output of this phase is a research proposal for new research effort.  

 

 

Figure 1-1 - General Research Methodology 

 

(2). Suggestion: This phase follows the identification of the research problems where a 

tentative design is suggested. The tentative design describes what the prospective 

artefacts will be and how they can be developed. Suggestion is a creative process during 

which the new concepts, models and functions of artefacts are demonstrated. The 

resulting tentative design of this step is usually one part of the research proposal.  

(3). Development: This phase considers the implementation of the suggested tentative 

design artefacts. The techniques for implementation are based on the artefact to be 

constructed. The implementation itself can be simple and does not need to involve 

novelty; novelty is primarily in the design not the construction of the artefact. The 

development process is often an iterative process in which an initial prototype is first 

built and then evolves as the researcher gains a deeper comprehension of the research 

problems. Thus, the output of the suggestion step is also feedback on the first step, 
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whereby the research proposal can be revised. This step includes the following sub-steps 

to create the prototype (Niu, Lu & Zhang 2009): a) planning, b) analysis, c) design, d) 

development, e) testing, f) implementation, and g) maintenance.  

(4). Evaluation: This phase considers the evaluation of the implemented artefacts. The 

performance of the artefact can be evaluated according to criteria defined in the research 

proposal and the suggested design. The evaluation results, which might or might not 

meet expectations, are fed back to the first two steps. Accordingly, the proposal and 

design might be revised and the artefacts might be improved. 

(5). Conclusion: This is the final phase of a design research effort. However, there are still 

deviations in the behaviour between the suggested proposal and the artefacts that are 

actually developed. A design research effort concludes as long as the developed artefacts 

are considered to be ‘good enough’ wherein the anomalous behaviour may well serve 

as the subject of further research. 

1.5.2 THESIS RESEARCH PROCESS  

This research was planned according to the general research methodology (GRM), which 

Figure 1-2 shows steps of this research.  

Step 1: According to the GRM, the first step is defining the research problem by focusing 

on the limitations of the existing methods and the major industrial problems. The research 

problem can arise from observations, from personal interest, or from the current literature. 

The selected research problem was chosen based on the previous literature and industrial 

experience on the real-world project in data-driven decision support systems. Then, the 

current studies on this topic were reviewed to find the existing gaps in this area.   After 

identifying the research gaps, we defined the research problems to address the gaps extracted 

from the current literature. We also devised the various research questions for this research 

project. 

Step 2: The lack of an analytical method for mobile telematics leads us to propose a 

decision support system in this domain to help decision makers in relation to risk assessment 
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and to cover the gap in declarative data. In this research, we propose an analytical DSS 

framework with five components to analyze driving behaviour using fuzzy logic and 

supervised and unsupervised learning techniques.  

Step 3: Data preparation is the first component in the proposed system that prepares data 

for analytics. This component removes unnecessary data using a change detection algorithm 

and feature extraction techniques. In the following steps, the data prepared with this 

component is used for supervised and unsupervised learning tasks.   

Step 4: One of the main objectives of this research is to propose an autonomous decision 

support system which extracts criteria for decision making automatically using artificial 

intelligence and machine learning. Therefore, firstly, we an empirical analysis on driving 

characteristics using information collected by mobile telematics devices to find an efficient 

clustering algorithm in this domain with an optimal number of clusters. Moreover, driving 

behaviours are categorized into similar groups using this algorithm.  

Step 5: After extracting the criteria for decision making from the driving patterns, we 

propose an autonomous data-driven decision support system with the ability to extract 

criteria from decision making automatically using fuzzy clustering. In this step, we propose a 

novel fuzzy DSS that innovatively assesses the risk of driving events using fuzzy logic 

according to the extracted patterns that learn from big data.  

Step 6:  As the missing data problem is a major issue in the mobile telematics domain, the 

missing data imputation component is proposed to improve the quality of data. A supervised 

learning algorithm is proposed to impute the unknown variables from driving behaviours to 

provide managerial insights for decision makers. In this case, a novel Choquet fuzzy integral 

vertical bagging algorithm is introduced to classify driving patterns and driving characteristics.  

Step 7: After proposing new frameworks and algorithms, we evaluate the proposed 

methods in the mobile telematics datasets. Our proposed methodology may have unexpected 

results so we should review and revise our methodology to achieve suitable results. Different 

validation methods for each are proposed for each part of the model.  
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1.6 THESIS STRUCTURE 

 This thesis comprises nine chapters as shown in Figure 1-2. The research problems, 

background, questions, objectives and contributions, and the research methodology are  

introduced in Chapter 1. Chapter 2 reviews the literature on mobile telematics, driving style 

analytics and related works. Chapter 3 explains the big-data driven decision support system 

for mobile telematics. Chapter 4 proposes the data preparation component.  

 

 

Figure 1-2- Thesis Structure 
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Chapter 5 proposes an unsupervised learning framework to extract driving patterns from 

mobile telematics data. Chapter 6 introduces a fuzzy risk assessment component for driving 

style risk assessment. Chapter 7 proposes the missing data imputation, which improves data 

quality, and finally chapter eight presents the conclusion and future research direction of this 

study.  
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(2). M. Siami, M. Naderpour and J. Lu, “Risk Assessment Through Big Data-An 

Autonomous Fuzzy Decision Support System” submitted to IEEE 
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Chapter 2:

LITERATURE REVIEW

INTRODUCTION

To gain a better understanding of this thesis, this chapter reviews current literature on

mobile telematics, driving style analytics and decision support systems related to this study. 

Moreover, I have provided some background regarding used algorithms and related works 

for this research. 

MOBILE TELEMATICS

A telematics device is a kind of in-vehicle data recorder that includes a GPS sensor with 

the ability to transmit data to a remote server. It is a hardware device that can be incorporated 

into a vehicle and can record the characteristics of driving habits. These devices have been 

introduced to track the behaviour of drivers and generate a dynamic risk profile according to 

their driving characteristics. Mobile telematics is an easy to use and inexpensive alternative to 

the telematics which are available today through smart phones.

Duri et al. (2002) provide an overview of telematics applications in the automotive 

industry. Each car is equipped with sensors and communication devices and a computer with 

enough storage space and processing capabilities to run embedded applications. The 
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computer interface collects different data generated from a global positioning system (GPS) 

on car location and car engine performance for future processing. 

In-vehicle data recorders were very expensive, so in recent years there has been a 

tendency to use mobile telematics instead of vehicle telematics. This monitoring technology 

uses embedded velocity and acceleration sensors together with a GPS in mobile hardware to 

transmit data on driving characteristics to an external server, which stores the data for future 

analytics. In-vehicle data recorders were difficult to implement and very expensive to install, 

therefore an inexpensive version of telematics was introduced by (Malalur, Balakrishnan & 

Madden 2013). Mobile telematics has all the capabilities of telematics in-vehicle data 

recorders but is cheaper to implement.  

All smartphones contain at least one instrument capable of measuring position by 

connecting to a fixed communication system, such as a cellular radio station, Wi-Fi access 

point, or GPS receiver. Smartphones can also contain a three-axis accelerometer, a 

gyroscope, and/or a compass. These internal sensors give mobile telematics apps a wide scope 

to gather driving style data. The apps are easy to use, and the initial hardware cost is either 

very low or free if the user already has a smartphone (Desyllas & Sako 2013). Further, the 

massive amounts of data they collect benefit a range of analytical uses like road safety (Zhao 

2002), intelligent transportation systems (Zhao 2000), usage-based insurance (Bowne et al. 

2013), and others. Perhaps more importantly, these apps can help people assess and improve 

their own driving behaviour by providing feedback on their driving styles with incentives to 

change bad habits (Malalur, Balakrishnan & Madden 2013). Thus, it is unsurprising that one 

of the biggest beneficiaries of mobile telematics is the insurance industry. With mobile 

telematics apps, insurers no longer need to rely on expensive in-vehicle sensor installations 

to take advantage of driver monitoring. As a result, many insurers are specifically targeting 

drivers who are willing to use mobile telematics in their marketing campaigns (Desyllas & 

Sako 2013).  
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MOBILE TELEMATICS AND USAGE-BASED INSURANCE

An insurance agreement is an arrangement that transmits the risk of accident from car 

owner to the insurance company by paying a fee, but each person has a different level of risk 

based on their claim frequency and severity. According to (Ohlsson & Johansson 2010), an

insurance premium is calculated as follows:

Insurance premium = claim frequency * Claim severity

where claim frequency is the probability of claims being made and severity is the size (amount 

of money) which is claimed by the customer. The proposed equation is useful for insurers to 

calculate the risk of their customers based on historical data and as a result, a driver might pay 

less for an insurance policy because he has not made any claims, however a major problem 

for insurers is that they are unable to make a decision based on driving style. In recent years,

telematics devices have provided a new opportunity for insurance companies to calculate the 

risk of each policyholder based on their driving styles. 

There is a relatively small body of literature on usage-based-insurance (UBI) which 

considers the value of telematics and mobile telematics devices. Table 2-1 overviews the most 

important ones from the current studies which collected data from telematics and used these

for insurance and accident risk prediction.

The first sample of usage-based insurance using telematics was proposed by Vaia et al. 

(2012) . This product was the result of cooperation between Unipol, one of the largest 

insurers in Italy and Octo Telematics as a technology provider. They described the advantages 

of using this technology for all the involved parties. They proposed a two-stage methodology 

for calculating the premium for customers in the first year based on typical parameters such 

as mileage and total travelling time. They only introduced a telematics device as a technology 

for gathering data, but they could not propose a methodology to use these data for risk 

assessment based on driving styles. Azzopardi & Cortis (2013) provided a SWOT analysis for 

the application of telematics-based insurance to compare this new approach with the 

traditional one. Their results indicate that telematics could improve fleet management and 
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also manage insurance risk and the adoption of this technology in the insurance area would 

impress the industry. An overview of a technical solution for telematics systems which takes 

into account collecting, communicating, managing and analysing problems of usage-based 

insurance was proposed by (Husnjak et al. 2015). They also introduced the social, economic 

and environmental benefits of UBI for insurance service providers and users and provided 

some measures for premium calculation and the billing process of car policyholders based on 

their raw geospatial data. Jun, Guensler & Ogle (2011) developed a way to find the velocity 

patterns of crash involved and crash not-involved drivers. They evaluated the speed of 

different drivers from GPS data from light-duty vehicles. They found that most drivers who 

were involved in a crash had more high-speed experiences than drivers without a crash 

experience. Their results also indicate that drivers with crash had many instances of driving 

over the speed limit. 

Table 2-1 - Usage-Based Insurance and Mobile telematics 

Study Study 
purpose Sample Measures/techniques Relevant findings 

(V
ai

a 
et

 a
l. 

20
12

) 

A Novel 
telematics-
based usage- 
based 
insurance  

-- 

Number of excessive 
speed events per 100 
miles 

Number of hard braking 
events per 100 miles 

New usage-based 
insurance with 
telematics 

 

Offer premium based 
on driving styles and 
data 

 

First year and other 
years 

 

Describes benefits for 
all stakeholders in 
insurance ecosystem 

 

New opportunities for 
IT service providers 
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Study Study 
purpose Sample Measures/techniques Relevant findings 

(A
zz

op
ar

di
 &

 
C

or
tis

 2
01

3)
 

SWOT 
analysis 

25 
insurance 
stakeholders 

-- 

Advantages and 
disadvantages of the 
adoption of 
telematics-based 
insurance 

(H
us

nj
ak

 e
t a

l. 
20

15
) 

New billing 
method 

Survey of 
22 drivers 

Location of the vehicle 
(a GPS point) 

Excessive forces acting 
on the vehicle 

70% of 22 participants 
indicate a positive 
impact on their driving 
score. 

UBI could reduce the 
average claim 
frequency after 1 year 
by up to 30% 

(A
F 

W
åh

lb
er

g 
20

04
) Accident risk 

and driving 
behaviours 

125 bus 
drivers 

Correlation analytics 
between acceleration 
and accident risk 

Sample is too small 

(T
ol

ed
o,

 M
us

ic
an

t &
 L

ot
an

 
20

08
) Driver 

behaviour 
monitoring 

191 drivers 
Poisson regression on 
speed, acceleration and 
location 

New methodology for 
detecting manoeuvres  

Risk calculation based 
on detected 
manoeuvres  

There is a correlation 
between risk score and 
drivers’ crash records 

(B
ae

ck
e 

&
 B

oc
ca

 
20

17
) 

The value of 
vehicle 
telematics 
data in 
insurance risk 
selection 
processes 

6984 
vehicles  

(age < 30) 

Logistic regression 

Artificial neural 
networks 

Random forest 

Computational 
intelligence risk 
prediction model for 
telematics data 

H
an

de
l e

t a
l. 

(2
01

4)
 

Studying the 
advantages of 
smartphone 
data for data 
gathering in 
insurance 

40-minute 
drive with 
different 
smart 
phones with 
different 
operating 
systems 

Assessing the quality of 
the data gathered by 
smartphones in terms of 
accuracy, integrity, 
availability, and 
continuity of service 

Polynomial regression 

HDOP monitoring 

Position-speed time 
residual 

Sample time variation 

Highlighted technical 
challenges of UBI 
with telematics 
devices 

 

Introduced a new way 
of measuring driving 
characteristics with 
smartphones 
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Study Study 
purpose Sample Measures/techniques Relevant findings 

(D
on

g 
et

 a
l. 

20
16

; D
on

g 
et

 a
l. 

20
17

) 
Driver 
identification 
and risk 
assessment 
with deep 
learning 

200 trips of 
more than 
2500 
drivers 

Convolutional Neural 
Networks (CNNs) 

Recurrent Neural 
Networks (RNNs) 

Auto-encoders 

 

New deep learning 
architecture to identify 
driving style 

Estimating the number 
of drivers with deep 
autoencoder 

Li
u,

 T
an

ig
uc

hi
, e

t a
l. 

(2
01

7)
 

A novel 
visualization 
method to 
connect 
driving styles 
to colours in 
an RGB 
colour model 

12958 
frames of 
driving 
behaviour 
data in total 
at a 
frame rate 
of 10 fps. 

 

Deep sparse auto 
encoder 

Accelerator opening rate 

Engine speed 

Cylinder pressure 

Longitudinal 
acceleration 

Steering angle 

Speed meter 

Extracting unique 
driving patterns with 
deep sparse auto-
encoder 

 

Telematics devices are very expensive and difficult to implement so Malalur, Balakrishnan 

& Madden (2013) invented a new kind of telematics, known as mobile telematics and  Handel 

et al. (2014) used mobile telematics data which are generated by smartphones for risk 

assessment in usage-based insurance. They indicated that smartphone data could be a suitable 

and less expensive substitute for telematics data.  They also introduced some major attributes 

such as acceleration, braking, speeding, smoothness, swerving, cornering, and etc. These 

attributes can be collected from mobile telematics data and could be applicable for calculating 

the risk of drivers in real-world situations. These attributes are shown in Table 2-2. Then, 

they proposed scoring methodologies to calculate the risk of each driver based on their 

historical data which are extracted from the driver’s smartphones.  
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Table 2-2 - Attributes for Risk Assessment with Smartphone Data

Driving attributes Description
Acceleration Number of rapid acceleration events and their harshness

Braking Number of harsh braking events and their harshness
Speeding (absolute) Amount of absolute speeding
Speeding (relative) Amount of speeding relative to a location-dependent

limit
Smoothness Long-term speed variations around a nominal speed

Swerving Number of abrupt steering manoeuvres and their 
harshness

Cornering Number of events when turning at a too-high speed and 
their harshness

Eco-ness Instantaneous or trip-based energy consumption or
carbon footprint

Elapsed time Time duration of the trip
Elapsed distance Distance of the trip

Time of day Actual time of day when making the trip
Location Geographical location of the trip

FUZZY DECISION SUPPORT SYSTEM

The first time that the application of fuzzy logic and fuzzy set theories were applied to

decision analysis and decision support systems was in the early 1970s (Zimmermann 1998). 

Since that time, various applications of fuzzy logic have been proposed to handle uncertain 

situations in decision-making processes.  Lu et al. (2019) divided decision support systems 

into two categories, namely traditional decision support systems and data-driven decision 

support systems. Firstly, traditional decision support systems have been applied over the years 

for decision making. Multi-criteria decision-making (MCDM) is one of the first in model-

driven DSSs. In an MCDM, various decision-making techniques have been applied to find 

the best alternative, such as simple linear weighing; the technique for order of preference by 

similarity to ideal solution (TOPSIS); analytic hierarchy process (AHP); etc. (Bao, Wu & Li 

2018).  The fuzzy version of these techniques has been used to model the uncertainty of the 

environment in complex situations (Dincer et al. 2016). A risk-based fuzzy DSS is proposed 
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by Seiti et al. (2019) using a fuzzy MCDM approach to assess the failure of components and 

equipment because of the lack of available information to apply quantitative models. They 

used fuzzy numbers to explain reliability, associated risks, and error for analyzing metrics. 

They evaluated the effectiveness of the proposed method across different scenarios in a steel 

plant case study, and the results gave flexibility and confidence to decision-makers to handle 

the risk of uncertain situations. In another study proposed by Zhu, Hu & Ren (2020), the 

uncertainty during the decision-making process was suitably handled (Zhu, Hu & Ren 

2020). They presented a fuzzy rough number for design concept evaluation and used this 

concept in two methodologies, namely fuzzy AHP and fuzzy TOPSIS. The results showed 

that the fuzzy rough number had an outstanding performance for group decision making. 

These traditional forms of decision-making require a set of options and criteria to rank 

alternatives according to the goal of a decision-maker. Moreover, multiple criteria should be 

defined, experts and stakeholders should answer the related questions, and finally, numerical 

values are processed to select or classify one choice (Mulliner, Malys & Maliene 2016). 

The second category is the data-driven decision support system. By integrating diverse 

operational databases with data warehouse technology in the late twentieth century, 

structured data has been widely used to support decisions (Shim et al. 2002). This integrated 

data contains invaluable information about the future to make better data-driven decisions. 

This data stores both internal and external information that is available through transactional 

systems or the Internet in an integrated data warehouse, which plays an important role in 

data-driven decision making (Huber et al. 2019). Fuzzy risk assessment is widely used to apply 

data-driven decision support systems for risk evaluation. Namvar et al. (2018) proposed a 

data-driven decision support system to assess the risk of lenders in financial service companies. 

They proposed a machine learning framework in a peer-to-peering lending environment. 

Their results show that supervised learning machine learning models could help decision-

makers in relation to risk assessment in banking and automatic credit risk scoring. Another 

study (Naderpour, Lu & Zhang 2014), proposed an intelligent situation awareness support 
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system to manage abnormal situations, including hardware failure and human error. They 

assessed the risk of abnormal events using Bayesian networks and fuzzy logic in a safety-

critical environment.

Recent advancements in information systems and big data on one hand, and 

advancements in artificial intelligence and machine learning algorithms on the other hand, 

provide new opportunities for decision-makers to use big-data-driven decision support 

systems in more innovative ways. Sensor data is noisy, and the analytical results produced 

from this data will be more sensitive to errors due to the increase in the volume, velocity, and 

variety of data. Currently, most of the studies on big data-driven DSSs that have been 

proposed are based on the capabilities of the supervised learning algorithms and labelled data 

(Chan et al. 2017), but labelled data is not easily accessible in real-world problems. Moreover, 

according to the study by (Lu et al. 2019), using unsupervised learning techniques in a data-

driven decision support system is still a source of concern. In addition, according to the study 

of Shukla, Muhuri & Abraham (2020), although extensive research has been carried out on 

big data-driven decision support systems, few studies exist on the application of fuzzy logic 

to reduce the uncertain situation of big data. Therefore, to cover the aforementioned gaps, 

in this study, we propose an autonomous fuzzy decision support system using the advantage 

of the unsupervised learning algorithm and fuzzy logic for risk assessment through big data.

DRIVING STYLE ANALYTICS

Wahlström, Skog & Händel (2017) divided the practical applications of mobile telematics 

into seven categories: navigation, transportation mode classification, cooperative intelligent 

transportation systems, mobile cloud computing, driver behaviour classification, and 

monitoring road conditions. Our focus is on driving style analytics and, within this, driver 

behaviour classification and pattern recognition. 

According to the study of Wahlström, Skog & Händel (2017), driving behaviour

classification methods typically follow one of two approaches. The first is to define driving 

behaviour according to one or more thresholds. For example, “safe acceleration” might be 
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defined as when the norm of acceleration or deceleration is less than 2 𝑚
𝑠2⁄ ;  velocity 

changes beyond this threshold would be classified as extreme events (Fazeen et al. 2012). The 

second approach is to define a range of templates that represent different driving behaviours. 

For example, a harsh cornering event might be defined in a template by an acceleration value 

on the x and/or y-axis during a specified time window. Harsh cornering events by drivers are 

then identified by calculating the similarity of their behaviour to the template definition.  

However, technological advancements, and particularly the integration of  machine 

learning into pattern matching algorithms, now provide opportunities to classify driving styles 

more acutely than ever before (Saiprasert, Pholprasit & Thajchayapong 2017; Shou & Di 

2018). For instance, Wang & Xi (2016) proposed a binary classification solution to distinguish 

aggressive driving patterns from moderate ones. Their method involves a support vector 

machine (SVM) and k-means clustering to decrease execution times and improve prediction 

accuracy. The k-means clustering algorithm first reduces the complexity of the input data, 

then SVM distinguishes between normal and abnormal driving styles. Cross-validation 

experiments show the approach to be faster and more accurate than SVM alone. In another 

study, Henriksson introduced a pattern recognition framework to identify driving contexts 

from vehicle-generated data. City driving styles were compared to open road driving by 

finding the hidden relations between driving attributes in these two contexts. In a comparison 

between SVM and a hidden Markov model, the results show SVM to be more reliable.  

Using a driving behaviour monitoring system, Yu et al. (2017) categorized unusual 

driving behaviours into six groups: weaving, swerving, sideslipping, fast U-turns, turning 

with a wide radius, and sudden braking. Their method not only distinguishes between normal 

and abnormal driving patterns but also specifies the type of dangerous driving behaviour. In 

a comparison between SVM and a neural network as a training algorithm for the classification 

model, the neural network model was better able to detect dangerous driving patterns. 

Driver identification is another research area in driving style analytics. To date, researchers 

have applied several artificial intelligence and machine learning algorithms to identify who is 
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behind the wheel. A data transformation method was proposed by Dong et al. (2016) to 

transform trajectory data into information that is usable in deep learning. They used a 

convolutional neural network (CNN) and a recurrent neural network (RNN) to distinguish 

drivers from passengers in a real-world dataset collected by a European insurance company. 

In a subsequent study, Dong et al. (2017) proposed another model based on an auto-encoder 

regularized network (ARNet) to estimate the total number of drivers using one vehicle. The 

algorithm contains multiple levels of neural networks, including a gated recurrent unit 

(GRU), an auto-encoder, and logits. Insurance companies can take particular advantage of 

these models because underwriters are very interested in how many people are actually 

driving a car, especially when policies and premiums are linked to the age and number of 

drivers. In another study, a driver identification methodology was proposed by Moreira-

Matias & Farah (2017) using trip-based historical datasets collected by in-vehicle data 

recorders to identify the category of driver behind the wheel. They took the advantage of 

driver-labelled trip data to build a pattern of different drivers in different categories using 

various supervised learning algorithms.  

The aforementioned methods are all supervised learning techniques that have shown 

outstanding performance in comparison to traditional methods of driving analytics. In fact, 

most current studies on driving style analytics with machine learning techniques are 

conducted in supervised learning scenarios. Only a few consider unsupervised methodologies 

for driving style analytics. One study by Liu, Taniguchi, et al. (2017) maps driving style 

patterns into three-dimensional data so as to visualize each pattern as a different colour . A 

deep auto-encoder framework reduces the data streams into three-dimensional data. Each 

dimension is then mapped to either red, green, or blue – one colour for each unique 

behaviour – and the auto-encoder extracts the features from the behaviours. However, using 

their framework in real-world scenarios is somewhat challenging because they used synthetic 

data to train the deep learning model. In the real world, many data are uncharacteristic and 

completely different from the data generated in a laboratory. Lee & Jang (2017) also proposed 
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an unsupervised learning framework to characterize driving style patterns, this time with data 

generated by in-vehicle data recorders. However, their study did not extend to exploring the 

performance of different clustering algorithms for driving style extraction. Moreover, the 

correlation between their results and driving styles described in the literature was not fully 

investigated. These issues, combined with the problem of in-vehicle data, warrant further 

study in a mobile telematics setting. Shouno (2018) incorporated a variational auto-encoder 

into a deep unsupervised learning framework for the purposes of reducing the input 

dimensions down to a two-dimensional space. Driving styles were then characterized 

according to a topological map. He tested his framework on a Honda driving simulator with 

59 drivers, which again, is simulated data and completely different from those found in the 

real-world. 

CHANGE DETECTION ALGORITHM

The change detection algorithm is an algorithm to find time windows of major change 

within time-series data – most commonly through statistical techniques. Change detection 

algorithms have a wide range of applications, e.g., signal segmentation (Basseville & 

Nikiforov 1993), climate change detection (Itoh & Kurths 2010), and driving behaviour

analytics (Lee & Jang 2017). 

Let us consider 𝒴(𝑡) ∈ 𝑅𝑑 as time-series data with d dimensions at time t, and 

𝑦(𝑡) = [𝑌(𝑡)𝑇, 𝑌(𝑡 + 1)𝑇, … , 𝑌(𝑡 + 𝑘 − 1)𝑇]𝑇 ∈ 𝑅𝑑𝑘 is a consecutive time window of 

length k at time t. Following Liu et al. (2013) strategy, the dissimilarity between 𝑦(𝑡) and 

𝑦(𝑡 + 𝑛) is calculated from the equation below, and the result is used as a change score to 

reflect the amount of change between two time windows. 

𝐶ℎ𝑎𝑛𝑔𝑒𝑆𝑐𝑜𝑟𝑒 = 𝐷(𝑝𝑡||𝑝𝑡+𝑛) + 𝐷(𝑝𝑡+𝑛||𝑝𝑡) (2-1)

where 𝑝𝑡 and 𝑝𝑡+𝑛 are the probability distributions of 𝓎(𝑡) and 𝓎(𝑡 + 𝑛) . For 

simplicity, hereafter, we denote this dissimilarity as 𝐷(𝑝||𝑝′) instead of 𝐷(𝑝𝑡||𝑝𝑡+𝑛).

To calculate the dissimilarity measure between two different time segments, Liu et al. 

(2013) proposed the relative unconstrained least-squares importance fitting (RuLSIF) 



Chapter 2: Literature Review 28

algorithm. RuLSIF calculates the change between two consecutive time windows with a 

density-based dissimilarity measure:

𝐷(𝑝||𝑝′) = −
𝛼

2𝑛
∑ �̂�(𝑌𝑖)

2𝑛
𝑖=1 −

1−𝛼

2𝑛
∑ �̂�(𝑌𝑖

′)2𝑛
𝑖=1 +

1

𝑛
∑ �̂�(𝑌𝑖)
𝑛
𝑖=1 −

1

2
(2-2)

where n is the window size and 𝑌𝑖 𝑎𝑛𝑑 𝑌𝑖′ are two consecutive time windows in d-

dimensional time-series data. 𝑔 is the density-ratio estimation of the data samples and α is a 

constant variable.

This algorithm plays an important role for data preparation component in this thesis. We 

used this algorithm for removing unrequired driving data to improve the quality of data for 

machine learning. 

DEEP AUTO-ENCODER

The deep auto-encoder algorithm is a type of artificial neural networks which efficiently 

codes a dataset for dimension reduction. In recent years, the auto-encoder has been used in 

many research fields and it has an outstanding outcome. According to (Liu, Wang, et al. 

2017), the structure of AE is similar to MLP with the following certain similarities and 

differences:

 AE consists of a one hidden layer feed-forward neural network such as MLP.

 MLP predicts the target value but AE reconstruct the input values

 AE has identical nodes in the input and output layers 

The AE uses a weight matrix ω to convert the input vector x into a hidden h in the coding 

process. Then, in the next step AE decodes h to the �̃� by using the ω’ matrix which should 

be the transpose of ω. AE decreases mean square errors (MSEs) which is the difference 

between 𝑥 𝑎𝑛𝑑 �̃�. 

A deep auto-encoder model is a group of several auto-encoders that are arranged in a 

neural network architecture. A simple auto-encoder has two parts, an encoder and a decoder. 

An example of a deep auto-encoder is shown in Figure. 2-1. 
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In the encoding layer, the encoder function ℎ = 𝑓(𝑊𝑥 + 𝑏) is used for each layer to 

encode the input data. The encoding stage continues up to the middle layer, at which point

a decoder function ℎ = 𝑓(𝑊′𝑥 + 𝑏′) begins to reconstruct the encoded input data. Sigmoid, 

tanh, soft sign, and ReLU functions are the most prominent activation functions for encoder 

and decoder functions (Zhang et al. 2018). 

The set of parameters for a basic auto-encoder comprises 𝑊𝑙,𝑊′𝑙′, 𝑏𝑙, 𝑏′𝑙′ . These 

parameters are trained to minimize the loss function by 

𝑙𝑜𝑠𝑠 =
1

𝑁
∑ (𝑦𝑖 − 𝑥𝑖)

2𝑁
𝑖=1 (2-3)

The training procedure is unsupervised and the middle layer represents the encoded 

version of input data (Zhang et al. 2018). In this PhD research, we use a deep auto-encoder 

to automatically extract the features from the driving style data. 

FUZZY CLUSTERING

The fuzzy and k-means clustering algorithms are very similar and they achieve

outstanding performance for pattern recognition. K-means clustering provides a discrete 

clustering result, which means each member is part of only one cluster, while fuzzy clustering 

offers more information in comparison to k-means by providing a range score between zero 

and one, which is the similarity between members and clusters (Heil et al. 2019). This 

characteristic is very useful for the pattern recognition of driving style, where most driving 

Figure 2-1- A Deep Auto-Encoder With Many Layers
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behaviours are similar to each other, thus making it difficult for transportation experts to easily 

specify a discrete cluster for each different driving behaviour. Therefore, in this research, we 

use fuzzy clustering for the pattern recognition of driving style.

Let 𝑋 = {𝑋1 , 𝑋2 , … , 𝑋𝑛} as a multidimensional input dataset. Fuzzy clustering 

categorizes n items into c clusters by developing an optimization process with the following 

objective function (Gionis, Mannila & Tsaparas 2007): 

𝐽𝑚
(𝐹𝐶𝑀)(𝑈, 𝑉) = ∑ ∑ 𝑢𝑖𝑗

𝑚‖𝑥𝑗 − 𝑣𝑖‖2
2𝑛

𝑗=1
𝑐
𝑖=1 (2-4)

where 𝑢𝑖𝑗 is a membership function, ∀ 𝑗 = 1,… , 𝑛. ∑ 𝑢𝑖𝑗
𝑐
𝑖=1 = 1 . 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑐}

represents the center of clusters. The 𝑚 is a fuzzy factor and should be 𝑚 > 1 and usually is 

set as 2. FCM uses the following optimization steps to reach the optimal situation:

𝑈(𝑡+1) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽𝑚
(𝐹𝐶𝑀)

{𝑈, 𝑉(𝑡)} (2-5)

𝑉(𝑡+1) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽𝑚
(𝐹𝐶𝑀)

{𝑈(𝑡+1), 𝑉} (2-6)

where the number of iteration steps is represented by t. 𝑉(0) and  𝑈(0) are initiated 

randomly and their values are updated through the optimization procedure. The membership 

function values and the vector of cluster centers are calculated using the following equations:

𝑢𝑖𝑗
(𝑡+1)

=

(
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(𝑡+1)
)
𝑚
𝑥𝑗

𝑛
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∑ (𝑢𝑖𝑗
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)
𝑚

𝑛
𝑗=1

FUZZY SETS AND FUZZY LOGIC SYSTEMS

The fuzzy set theory was first introduced by Zadeh (1965). He proposed this logic to 

simulate uncertain situations in the human brain using a membership function between zero 

(2-7)
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and one. The significant difference between fuzzy logic and a crisp concept is the Boolean 

concept that a particular object could have a specific value or not, but in fuzzy logic, a 

particular value is given a range from zero to 1. This membership function helps experts to 

define linguistic variables for the input and output of their systems. 

 

Definition 2-1. Fuzzy set Zadeh (1965): A is a fuzzy set and represents a universal set X 

by a membership function. ∀ ∈ 𝑋, 𝜇𝐴(𝑥) ∈ [0,1], 𝑖. 𝑒. 𝐴: 𝑋 → [0,1].  

 

Definition 2-2. α-cut Zadeh (1965).: The α-cut or α-level set of the fuzzy set A is the 

crisp set Aα defined by: 

𝐴𝛼 = {𝑥𝜖𝑋 |𝜇𝐴(𝑥) ≥ 𝛼} 
 

Definition 2-3. Fuzzy number Zadeh (1965).: A fuzzy set A in ℝ satisfies the following 

conditions: 

 A is normal, 

 Aα is a closed interval for every α ∈ (0,1], 

 The support of A is bounded. 

 

Definition 2-4. Fuzzy logic system (FLS) (Siami et al. 2018). A simple fuzzy logic system 

consists of three phases:  

1) Fuzzification,  

2) A fuzzy interface engine, 

3) Defuzzification.  

In the first step, crisp inputs and variables are transformed to fuzzy sets. Then, a fuzzy 

interface engine defines the relationship between fuzzy input and output variable and finally, 

the fuzzy output variable is transformed into a crisp output in the defuzzification process. 



Chapter 2: Literature Review 32

PARTITIVE CLUSTERING

Partitive clustering is an unsupervised learning technique that clusters unlabeled input data 

into a number of partitions, i.e., members are grouped according to distance-based similarity. 

Partitive clustering algorithms assume that the input data can be categorized into prototypes; 

thus, they are also known as prototype-based clustering algorithms. The main goal is to 

compress the data into these prototypes. Each partitive clustering algorithm has different 

methods of defining the prototypes for the input data. For example, one of the most famous 

partitive clustering algorithms, k-means, uses the K-means++ algorithm to find the initial 

prototypes (Xiao & Yu 2012). Partitive clustering algorithms have been used in a wide range 

of applications, from big data clustering (Fahad et al. 2014) for customer segmentation (Lu et 

al. 2014; Namvar, Ghazanfari & Naderpour 2017), to weather prediction (Wang et al. 2018), 

to biomedical health (Khanmohammadi, Adibeig & Shanehbandy 2017), and many others. 

The main steps of a partitive clustering algorithm are outlined in Algorithm 2-1.

Algorithm 2-1 - Partitive Clustering Algorithm (Xiao & Yu 2012)

SELF-ORGANIZING MAP

A self-organizing map (SOM) is a special type of unsupervised learning algorithm that 

generates a discretized map of an input space. SOMs have become a common technique in a 

wide range of applications, such as data visualization, dimension reduction, and vector 

quantization (Kohonen 1990). The main advantage of SOM is that they reduce computation 

Input: Dataset and K number of prototypes, M max 
iteration

Output: data points with a cluster label

1. Initialize K data points from the input data as initial 
cluster prototypes.

2. Assign each data point to the closest prototype using a 
distance function.

3. Recalculate the center of each cluster with these new 
data points.

4. Repeat steps two and three if the clusters do not change 
significantly.
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costs, which is particularly valuable if clustering is part of one’s strategy. Given the complexity 

of calculating distances within multi-dimensional data, most clustering algorithms are 

computationally greedy, even with a small number of records. SOM decreases computation 

costs by abstracting a prototype of the input data. A clustering algorithm can then be used to 

classify the abstracted data instead of the full dataset (Vesanto & Alhoniemi 2000). Another 

advantage of SOM is its ability to tolerate noise. Each node in a SOM represents a group of 

input data, so it is less sensitive to  data generated in noisy environments (Du et al. 2015). In 

contrast, one of the greatest weaknesses of SOMs is detecting outliers. By definition, outliers 

are rare data points and therefore, SOMs have difficulty generating a suitable prototype to 

represent those data (Mangiameli, Chen & West 1996).  

The gist of these algorithms is to map the input data into a topographical map with N 

nodes on a regular two-dimensional rectangular or hexagonal grid, where each node has d 

number of features with a weight ω𝑖  =  [ω𝑖1, ω𝑖2, … , ω𝑖𝑑]𝑇. The algorithm is iterative. In 

each iteration step t, a data sample x(t) is randomly selected from the training data, and the 

distances  are calculated between x(t) and all the nodes. The most similar node to x(t) is 

selected with 

𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑑𝑖𝑠𝑡(𝑥(𝑡), 𝜔𝑖),     ∀ 𝑖 𝑖𝑛 [1,2,… ,𝑁]          (2-8) 

where 𝑑𝑖𝑠𝑡(𝑥(𝑡), 𝜔𝑖) is equal to the distance of the sample x(t) with the ith node.  

After a “winning” neuron has been selected, it and its neighboring neurons are updated 

with a weight updating rule: 

𝜔𝑘(𝑡 + 1) =  {
𝜔𝑘(𝑡) +  𝛾(𝑡)ℎ𝑘𝑐(𝑡). (𝑥(𝑡) − 𝜔𝑗(𝑡)) , ∀𝑘 ∈ 𝑁𝑐

𝜔𝑘(𝑡),                                                                  𝑒𝑙𝑠𝑒
 (2-9) 

where Nc is the winning neuron’s neighbors, and 𝛾(𝑡) is the learning rate, which is 

reduced in each iteration (t) with the following equation:  

𝛾(𝑡) = 𝛾0. 𝑒𝑥𝑝 (−𝛼.
𝑡

𝜏
)   (2-10) 
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where 𝛾0 is the initial learning rate, 𝛼 is the exponential decaying constant, and 𝜏 is the 

maximum number of iterations. ℎ𝑘𝑐(𝑡) is a neighborhood kernel function that indicates the 

distance of the kth neuron to the winning neuron c, as calculated by

ℎ𝑘𝑐 = exp (−
[(𝑥𝑘−𝑥𝑐)

2+(𝑦𝑘−𝑦𝑐)
2]

2(𝜎(𝑡)2)
) (2-11)

where 𝜎(𝑡) is equal to the width of the neighborhood function and decreases in each 

iteration t by

𝜎(𝑡) = 𝛾0. exp (−
𝑡

𝜏
. log(𝜎0)) (2-12)

where 𝜎0 is the initial width (Zhang, Chow & Wu 2016).

DANGEROUS DRIVING BEHAVIOUR

The behaviour of a driver is described by two fundamental parameters which are velocity 

and acceleration. These variables are closely interrelated and the permitted value for 

acceleration depends on the instantaneous velocity. Eboli, Mazzulla & Pungillo (2016) 

proposed a methodology to detect whether a particular car drivers’ behaviour is safe or not. 

Each vehicle has an acceleration vector in lateral and longitudinal directions and the value of 

the acceleration norm is calculated by the following equation:

|a̅| = √𝑎𝑥2 + 𝑎𝑦2 (2-13)

where 𝑎𝑥 is acceleration over x-axis and 𝑎𝑦 is acceleration over y-axis.

The second law of Newton is proved that the Fs stimulus force is equal to the mass of the 

vehicle and the value of acceleration according to the following equation:

𝐹𝑠 = 𝑚. |a̅| (2-14)

where 𝐹𝑠 is stimulus force defined by newton and 𝑚 mass amount of object per KG.

The second law of Newton proves that the Fs stimulus force is equal to the mass of the 

vehicle and the value of acceleration according to the following equation:

𝐹𝑅 = 𝑚. 𝑔. 𝜇 (2-15)
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where 𝑚 mass amount of object per KG, 𝑔 is g-force acceleration due to the gravity, and μ 

is the coefficient of side friction.  

In this way, without considering superelevation, and when the vehicle is in the 

equilibrium mode, the Fs is equal to FR and based on the value of FR and Fs, we have three 

driving conditions: 

1) The driving condition is safe when Fs<FR 

2) The driving condition is safe when Fs = Fr 

3) The driving condition is unsafe when Fs>Fr 

 To find a threshold value for acceleration to find the safe limit for velocity and 

acceleration, we should start working on the Fr = Fs. 𝐹𝑠 = 𝐹𝑟 →  𝑚. |�̅�| = 𝑚. 𝑔. 𝜇 →

|�̅�| = 𝑔. 𝜇, which can be written: 

√𝑎𝑥2 + 𝑎𝑦2 = 𝑔. 𝜇  (2-16) 

By squaring both members: 

𝑎𝑥
2 + 𝑎𝑦

2 = (𝑔. 𝜇)2  (2-17) 

According to the previous equation, acceleration level is related to the side friction 

between the road surface and tyre and the coefficient value depends on speed and meteoroidal 

condition. There are two kinds of side frictions: longitudinal side friction (μx), in the same 

direction of the motion, and lateral side friction (μx), perpendicular to the direction of the 

motion. According to Lamm, Psarianos & Mailaender (1999), the maximum value of friction 

over a longitudinal direction for a rural road is equal to: 

𝜇𝑥𝑚𝑎𝑥 = 0.214. (
𝑉
100⁄ )

2
− 0.640. (𝑉 100⁄ ) +  0.615 

𝜇𝑦 = 0.925. 𝜇𝑥 (2-18) 

𝜇𝑦𝑚𝑎𝑥 = 0.198. (
𝑉
100⁄ )

2
− 0.592. (𝑉 100⁄ ) +  0.569 

 
 

 The following ellipse equation is valid which is well-known as the ‘ellipse of adherence: 

(
𝜇𝑦

𝜇𝑦𝑚𝑎𝑥
)
2

+ (
𝜇𝑥

𝜇𝑥𝑚𝑎𝑥
)
2

≤ 1  (2-19) 
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Figure 2-2 illustrates this equation in a visual form and additional information is as follows: 

 μy and μx represent the components of side friction over the x and y axis 

 μxmax is the maximum friction factor in the longitudinal direction 

 μymax is the maximum friction factor in the lateral direction 

 

Figure 2-2 -Visualizing μmax Calculation 

 
Because of the importance of μ(μmax) in this thesis, this value is replaced in the 

corresponding equation to calculate the limit value for acceleration: 

𝑎𝑥
2 + 𝑎𝑦

2 = (𝑔. 𝜇𝑚𝑎𝑥)
2 (2-20) 

Because we want to calculate the limit value for acceleration, we consider the ellipse 

adherence to circle according to the assumption that μx= μy (Figure 2-2 ). Hence, we have 

two modules which are the same for global side friction in two different directions. According 

to this assumption, all points of the border are the same distance from the centre. 

By considering the proposed assumption, we have the following equations: 

√𝑎𝑙𝑎𝑡
2 + 𝑎𝑙𝑜𝑛𝑔

2 = 𝑔. (0.198. (𝑉 100⁄ )
2
− 0.592. (𝑉 100⁄ ) +  0.569) (2-21) 

Or 

|�̅�| = 𝑔. [0.198. (𝑉 100⁄ )
2
− 0.592. (𝑉 100⁄ ) +  0.569] (2-22) 

 

For example, according to Figure. 2-3, the safe driving area for acceleration when the 

speed is close to zero is ±6 m/s2 and when the norm of this value is larger than this value, the 

driver behaves dangerously.  
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Figure 2-3- Safe Driving Area

SUMMARY

Mobile telematics is a cheap alternative to in-vehicle data recorders and has various 

applications in industry and academia. Driving behaviour is complex, nuanced, and dynamic, 

and understanding driving behaviour using synthetic data which relies on a good definition 

does not adequately measure the behaviour of drivers in the real-world. In addition, the lack 

of labeled data is a challenge, as highlighted in (Nguyen et al. 2019). To the best of our 

knowledge, much of the research until now has been conducted on data gathered from either 

questionnaires, site investigations, or laboratory simulations. We believe that the dynamic 

properties of human behaviour cannot be fully reflected in simulated data. Moreover, our 

literature review shows that driving style pattern recognition using mobile telematics data has

not been studied in any great detail. 

In addition, to the best of our knowledge, the application of unsupervised learning 

algorithms in data-driven decision support systems is still questionable, and few studies exist 

on the application of fuzzy logic to reduce the uncertain situation of big data in this domain. 

Therefore, in this study, we proposed a big data-driven decision support framework for

mobile telematics environment to assess the risk of drivers and cover the aforementioned gaps

in this domain.
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Chapter 3: 

BIG DATA-DRIVEN DECISION SUPPORT 

SYSTEM FRAMEWORK 

3.1 INTRODUCTION 

Decision support systems are  computerized systems that help decision makers find the 

best option from a range of alternatives by learning and analyzing historical and current data 

(Lu et al. 2019). Multiple types of decision support systems (DSS) such as model-driven, data-

driven, and knowledge-driven systems have been widely applied in different domains and 

they have become more prevalent in recent years (Power & Sharda 2007). Model-driven 

DSSs are complex decision systems, which help decision makers arrive at a decision from a 

range of alternatives and a set of options. Data-driven decision support systems use 

information extracted from databases and data warehouses to find the answers to business 

questions. The knowledge-driven decision support system is the third type of decision 

support systems. This type of DSS builds knowledge from data to support managers for 

decision making. 

Data-driven decision support systems provide managerial insights for decision makers in 

various applications such as risk assessment. Risk refers to “the possibility of something bad 

happening”, and risk assessment refers to “the process of examining the risks involved in a 
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planned activity” (Audi 1999). Risk assessment involves a broad range of activities that assess 

the probability and severity of an accident in the future. This procedure either qualitatively 

or quantitatively evaluates the risk level of different activities that may cause dangerous or 

hazardous situations. A risk assessment process helps decision makers to understand the 

exposure associated with particular activities and prioritizes them according to risk level. 

Different quantitative and qualitative methods have been proposed for risk assessment. 

Quantitative methods aim to provide a numeric score that estimates the risk level of incidents, 

while qualitative methods evaluate the risk of events based on some qualitative measures or 

expert opinions (Sengupta et al. 2016).  

Modeling a DSS is very costly and time-consuming because of behavioural research issues 

and data collection (Power & Sharda 2007). Traditional DSSs are developed based on the 

information collected by decision makers using surveys, discussions and brainstorming (Zhou 

et al. 2020), while in recent years, the data collection procedure has changed significantly. 

Technological improvements in database engineering, information technology, and the 

Internet of Things (IoT) has increased the volume, variety, and velocity of data 

(Ghasemaghaei & Calic 2019), and recent advancements in artificial intelligence and 

advanced analytical techniques provide new opportunities for decision-makers to create 

unimaginable value from big data for decision making (Chen & Zhang 2014).  In many real-

world situations, the risk of events is assessed based on the likelihood and severity of each 

event. Over the years, many qualitative and quantitative risk assessment techniques have been 

developed which are used in different situations and there is no universal technique. The 

choice of techniques mainly depends on the objective, availability of data, life-cycle stage, 

and available resources. In era of big data, data-driven risk assessment is a must. 

These rapid developments in data technology, particularly in mobile telematics, motivate 

us to explore the possibility of proposing a big data-driven decision support system 

framework for mobile telematics. The main purpose of this study is to use driving behaviours 

to provide a decision support system for risk assessment and missing data imputation.  
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This chapter details the proposed framework and elaborates its components. In this 

chapter, the proposed DSS and its components are proposed. This DSS uses the data collected 

by mobile telematics devices to understand driving behaviour using the capability of machine 

learning and advanced analytical techniques. 

DECISION SUPPORT SYSTEM FRAMEWORK

Wahlström, Skog & Händel (2017) proposed an architecture for mobile telematics to 

show the internal information flow in smartphone-based vehicle telematics. Figure 3-1

illustrates this architecture. The users drive a car or change the position of their smartphones

while they are driving. The smartphone collects behavioural information using its internal 

computing sensors such as the accelerometer, gyroscope, etc. The collected data is transferred 

to a server to store all the data collected by the smartphones in mobile telematics data storage. 

The stored big data can be applied on various applications and useful business models can be 

developed on a mobile telematics infrastructure.

Figure 3-1- Smartphone-Based Vehicle Telematics (Wahlström, Skog & Händel 2017)

The DSS is based on this idea to develop an up-to-the-minute big data driven decision 

support system on mobile telematics, which is the cheaper, easier alternative of telematics, 

using machine learning, advanced analytics and fuzzy logic. Figure 3-2 illustrates the model 

and its related components. The main goal of this system is to use driving behaviour data to 

provide insights to help decision makers in relation to risk assessment and reducing null data 

points. The system uses advanced analytical techniques and machine learning algorithms, and 
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DSS has five major components including a data preparation, driving style pattern 

Figure 3-2- Mobile Telematics Big data Decision Support System 
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recognition, fuzzy risk assessment, and missing data imputation. Each component directly or 

indirectly supports decision makers through the information provided by the information 

pipeline.  

3.2.1 DATA PREPARATION 

Data preparation is an essential step in any data mining and knowledge discovery project. 

Hence, the primary goal of this component is to clean the data, reduce its complexity, and 

prepare them for analytics. Different industries face various challenges when applying big data 

to decision making, so understanding big data and its challenges for analytics is critical. Firstly, 

big data and its characteristics should be defined clearly to use it effectively. There are five 

dimensions of big data (Gandomi & Haider 2015) which are described as follows: 

Volume: volume refers to the magnitude of data and the size of the data stored in the 

databases. The volume of stored data is reported as multiple terabytes and petabytes. The 

definition of big data based on volume has changed over time due to increased storage 

capabilities. Katal, Wazid & Goudar (2013) state that the word ‘big’ in the term big data 

defines volume. They also state that the volume of data will increase to zettabytes in the near 

future and the role of social networks in generating this huge amount of data is undeniable. 

Websites such as Facebook, Twitter, YouTube etc. connect different people to each other 

and also capture the daily interaction of people as digital information (Tan et al. 2013). 

Variety: Variety refers to the structural heterogeneity in a dataset. Data can be structured, 

semi-structured or unstructured. Innovative methods need to be used to extract useful 

knowledge from these data. For example, clickstream data provides new opportunities for 

companies to extract knowledge from new datasets and apply this knowledge to cross-selling 

and up-selling marketing (Gandomi & Haider 2015). 

Velocity: refers to the rate at which data are generated and the speed at which it should 

be analyzed and acted upon The increased number of digital devices such as smartphones and 

sensors has increased the rate of data generation  (Chi et al. 2016). For example, Walmart 

processes more than one billion transactions per day. The data generated by technological 
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devices such as mobile apps, sensors, and wearable devices provide helpful information on 

customers, their personal preferences and buying habits. The role of agility in decision 

making is very important and various tools and applications can be used  to help managers 

make proper decisions in a timely manner  (Hofmann 2017).  

Value: refers to the economic value of various data which varies significantly for 

organizations. Companies should focus on the value they will gain from data before investing 

in big data. Kaisler et al. (2013) expressed the usefulness of data for decision making and the 

importance of extracting knowledge from data for analysis. 

Veracity: the quality of data is another concern in big data analytics. Organisations should 

have adequate knowledge of the quality and accuracy of data. The veracity or quality 

assurance of data has been investigated by practitioners and researchers in healthcare. Data 

veracity is critical in the area of healthcare because a decision which is based on incorrect data 

could endanger the health of patients, for example, doctors’ poor handwriting is the most 

well-known form of inaccurate data. 

Mobile telematics data collected by smartphones creates very large databases with high 

volume data, time series and unstructured trajectory data. These data are generated by devices 

in a short time and increase in volume in real time. These data can provide huge value for 

businesses but their complexity should be decreased using data pre-processing and data 

cleansing tasks.  

Smartphones record the position of a vehicle as geolocation coordinates, e.g., latitude and 

longitude on a map. This component transforms these unstructured data to time-series data 

such as speed and acceleration.  

Once the trajectory data is transformed to a new format, which shows the driving 

characteristics each second, a data pre-processing method is developed to decrease the 

complexity of data and change the data structure.  Data pre-processing includes two change 

detection and feature extraction techniques, as explained in Chapter 4. The output of this 
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component is fed into the missing data imputation and driving style pattern recognition 

components. 

3.2.2 DRIVING STYLE PATTERN RECOGNITION 

Analysing driving behaviour using unsupervised learning and pattern recognition 

algorithms is a challenging task. An empirical analysis should be undertaken to compare the 

performance of different unsupervised algorithms. The driving style pattern recognition 

component discovers unique driving patterns from mobile telematics big data. This 

component is developed based on the capabilities of unsupervised learning algorithms. The 

proposed component has three main parts: a self-organizing map, a nine-layer deep auto-

encoder, and partitive clustering algorithms. The SOM algorithm reduces the complexity of 

the data, the deep auto-encoder extracts the features, and the clustering algorithm groups 

driving events with similar patterns into behaviours. Further, given that clustering with 

mobile telematics data is an under-researched area, an empirical comparison of five well-

known clustering algorithms has been undertaken to determine the strengths and weaknesses 

of each method and which is best suited to categorizing driving styles. The results of this 

component provide a basis for feeding to the next fuzzy risk assessment component. 

3.2.3 FUZZY RISK ASSESSMENT 

Generally, risk assessment techniques are proposed based on qualitative measures 

according to subject matter experts’ opinion. Fuzzy set theory introduced by Zadeh (1965 

helped decision makers use fuzzy logic to simulate uncertain situations in the human brain 

through a membership function. The proposed component uses a pattern recognition 

algorithm to extract driving patterns from smartphone-generated data, which are mostly 

unlabelled. The model learns from mobile telematics big data and extracts unique driving 

patterns from the huge amount of driving streams to extract unique driving categories. Each 
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driving category has a different risk level, thus it is necessary to propose a risk assessment 

methodology to estimate their risk score. 

Therefore, this component has two main steps: first, it learns innovatively from big 

data using the capabilities of unsupervised learning algorithms and fuzzy clustering. Second, 

a fuzzy risk assessment model evaluates the risk of previous events and calculates the risk of 

new events according to their similarity to previously assessed events. The fuzzy membership 

functions are used in this study to simulate uncertain situations in real-world risk assessment 

problems and the big data environment. The final result of the DSS is a risk score which is 

calculated using the fuzzy inference system and unsupervised learning. The score can be used 

by the final decision maker for risk evaluation. 

3.2.4 MISSING DATA IMPUTATION 

Mobile telematics devices usually collect trajectory data that show driving behaviour. 

These devices are not able to collect demographic features of drivers such as age, gender, 

home location, etc. These features play an important role in risk assessment and many 

insurance companies rely upon them. For example, the insurance premium for young drivers 

is much higher than older drivers, in addition, gender could impact the cost of insurance for 

policyholders.  

The main purpose of the missing data imputation component is to improve data quality 

in mobile telematics data. This is a supportive component to help decision makers increase 

their insight into declarative features. The component contains a novel supervised learning 

algorithm, i.e. a new a Choquet fuzzy integral vertical bagging classifier, which learns from 

driving characteristics to estimate the missing fields.  

Demographic data gap in mobile telematics is very big and missing, and missing data 

imputation component helps us to reduce this gap using a provided supervised learning 

algorithm. We used the hidden knowledge of mobile telematics for based on the available 

knowledge to impute the value of missing data and features. For example, in this thesis we 
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detected gender of drivers based on driving behaviour. This use case is only one of the 

applications of the proposed algorithm.

3.2.5 INFORMATION PIPELINE

Mobile telematics has so far been used in a number of road safety applications (Zhao 

2002), intelligent transportation systems (Zhao 2000), and usage-based insurance (Bowne et 

al. 2013), but applying this technology in real-world businesses is problematic. According to 

the usage-based insurance industry experts’ opinion,  driver risk is only one variable to 

consider in relation to premium calculation and providing a risk score from driving style is 

not enough to make a comprehensive decision based on mobile telematics, thus the risk score 

should be merged with other variables to provide useful managerial insights.

Figure 3-3 illustrates two major outcomes provided in this study, the risk score and 

the imputed value. The risk score is calculated by a fuzzy risk assessment model and the 

imputed value is provided by missing data imputation. For example, new customers use their

smartphone while driving their car, the mobile telematics devices collect their information 

and submit this to the insurance company data warehouse, the insurance company uses this 

Figure 3-3- Information Pipeline 

Missing data imputation 
model

Fuzzy risk assessment
model

Imputed 
value

Risk 
score

Information pipeline

New customer data



Chapter 3: Big Data-Driven Decision Support System Framework 47

data to assess their risk, but the insurance premium calculation depends on other variables 

such as gender, age range, day/night parking location, living and working suburbs etc. Most 

of this declarative information is not provided by new customers, thus the missing data 

imputation model uses the collected data to provide an estimation about the missing fields. 

In this study, the missing data imputation component is applied to detect the gender 

of the driver from the driving data using the Choquet fuzzy integral vertical bagging classifier. 

This component can be applied for other declarative variables such as the suburb in which 

they live, age range etc. Figure 3-4 provides an example of the information pipeline cross 

Figure 3-4- Information Pipeline Cross Table. 

The example shows the information pipeline capability to reduce the data gap in the mobile telematics 
domain. RS is the risk score calculated by the fuzzy risk assessment component, k is the total number 
of drivers, MD is the missing data domain, i is the total number of domains in which missing data 
imputation is used. The missing data imputation component can be applied on various missing data  
domains such as gender detection, which is the only domain that is proposed in this study. The 
imputed value (IV) is an estimation of missing data and can be merged by other variables and scores. 
The final cross-table can be applied for decision making. 
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table. The information pipeline merges the capabilities of fuzzy risk assessment and missing 

data imputation to provide business value for decision makers. 

SUMMARY 

This chapter proposed a framework for the decision support system which is used for 

risk assessment and missing data imputation using mobile telematics data. The framework 

consists of four components, namely data preparation, driving style pattern recognition, fuzzy 

risk assessment, and missing data imputation. 

The data preparation component prepares data for analytics by proposing change data 

transformation and data pre-processing techniques. The driving style pattern recognition 

component, which evaluates the performance of various unsupervised learning algorithm for 

driving style pattern recognition. The fuzzy risk assessment component evaluates the risk level 

of driving behaviour using fuzzy logic in an uncertain situation. Missing data imputation 

improves the quality of data by proposing a novel supervised learning algorithm, and finally 

the information pipeline merges all the information together and provides a comprehensive 

report on driver risk and the imputed variables. 
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Chapter 4:

DATA PREPARATION

4.1 INTRODUCTION

Data preparation is the first step for any data-related project as data quality is critical to the 

final result. Therefore, various data manipulation techniques such as data transformation, 

feature extraction and abrupt change detection were undertaken to improve data quality. 

This chapter introduces the proposed data preparation component as the first component. 

Figure 4-1 shows the proposed component and its related items.

Figure 4-1- Data Preparation Component
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4.2 MOBILE TELEMATICS DATA 

Mobile telematics devices collect human behaviour using the mobile’s GPS and its 

internal devices, thus mobile telematics data principles need to be explained. The following 

preliminary definitions explain the mobile telematics data principles.

Definition 4-1 (Dong et al. 2016). The position of a vehicle in a 2D coordinate space at 

time t is Pt. A driver starts each trip at time 0 from location P0 = [0, 0]

Definition 4-2 (Zhou et al. 2016). Mobile telematics devices generate a series of GPS 

data for each trip (tr) 

𝑡𝑟 = 𝑃0 𝑃1 …  𝑃𝑖 …  𝑃𝑖

The starting point of a trip is P0 and the end point is Pi. The trips associated with each 

driver occur at different times, day or night. 

Figure 4-2 shows one short trip with length three. The car’s position is recorded each 

second using mobile telematics devices and stored by a remote server. 

Figure 4-2- A Sample Driver’s Trips

The example shows that the car started the trip at P0 = (0,0),  then moved to the second and third 
positions which are P1 = (-1.5,-2.5) and P2 = (-3,1) respectively, and finally the trip finished at P3 = 
(2,3). The mobile telematics devices transfer these data to a remote server and driving characteristics 
such as velocity and acceleration are extracted from them.
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ISO 8855 ((ISO) 2011-12) explains the technical definitions of road vehicle dynamics to 

provide a common language for designing and modelling moving objects. This definition is 

used to define objects’ movements into one, two, or three dimensions. In this study, a two-

dimensional coordinate system is used to model mobile telematics movements.  

In line with international standard ISO 8855 , a two-dimensional coordinate system is 

considered to calculate driving characteristics. The coordinate system is depicted in Figure 4-

3. The forward and backward directional movements of the car are plotted on the x-axis, 

and the left and right directional movements of the car are plotted on the y-axis.  These 

assumptions are used to calculate the value of instantaneous velocity and acceleration. 

Therefore, changing the position of the vehicle in a forward or backward direction indicates 

x-axis movement and movement in a left or right direction indicates y-axis movement.  

4.3 DATA TRANSFORMATION 

In general, the collected mobile telematics data is a group of trajectory points. These data 

are not understandable to supervised and unsupervised learning algorithms, so various data 

manipulation techniques need to be developed to transform the data to a new format which 

is usable for analytical tasks.  

The main purpose of this part is to transform trajectory data into a new format. The new 

format is a time-series stream that shows the value of driving characteristics at time t. 

 
Figure 4-3- Two-Dimensional Vehicle Coordinate System (ISO 8855) ((ISO) 2011-12) 
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Therefore, the following definitions explain how data transformation techniques help to 

transform telematics data into driving characteristic streams.   

 

Definition 4-4. Let |𝑉�̅�|  be the instantaneous velocity of the vehicle at time t, 

calculated by: 

|𝑉�̅�| =  √(𝑣𝑥𝑡)
2
+ (𝑣𝑦𝑡

)
2
  (4-1) 

where 𝑣𝑥𝑡 and 𝑣𝑦𝑡show the instantaneous velocity of the vehicle at time t over the x and y 

axes. These are calculated by 𝑣𝑥𝑡 =
Δ𝑥

Δ𝑡
 and 𝑣𝑦𝑡 =

Δ𝑦

Δ𝑡
 , respectively.  

Definition 4-5. |𝐴𝑡̅̅ ̅| is the norm of an acceleration/deceleration event at time t, 

calculated by: 

|𝐴𝑡̅̅ ̅| =  √(𝑎𝑥𝑡)
2
+ (𝑎𝑦𝑡)

2
 (4-2) 

where 𝑎𝑥𝑡 is the value of the instantaneous acceleration at time t over the x-axis, which is 

equal to Δ𝑣𝑥
Δ𝑡

. Similarly, the instantaneous acceleration over the y-axis is 𝑎𝑦𝑡= Δ𝑣𝑦
Δ𝑡

. 

 

Definition 4-6. ω𝑥 is the value of the vehicle’s angular speed around the x, y, or z-

axis at time t, calculated by 

𝜔 = 
𝑑𝜃

𝑑𝑡
 (4-3) 

where 𝑑𝜃 is the value of the angular displacement at time t. The name for this measure over 

the z-axis is the yaw rate, over the y-axis is the pitch rate, and over the x-axis is the roll rate.  

4.4 DATA PRE-PROCESSING 

In this study, two different data pre-processing techniques are used to improve data 

quality. Firstly, a change detection algorithm is used to detect the most important driving 
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events. Secondly, a feature extraction algorithm is used to extract useful features from 

unstructured driving streams.  

4.4.1 CHANGE DETECTION 

The data streams generated from mobile telematics do not arrive ready for analysis as 

smartphones record data without any knowledge of the mechanical features of the vehicle 

(Foresti, Farinosi & Vernier 2015). For example, if a driver stops for a long time, these data 

are recorded, even though they are useless for our purposes. So, to ensure these types of data 

do not decrease the performance of the model, they must be identified and removed. 

The implemented version of the change detection algorithm developed by Liu et al. 

(2013) is used in this study. Driving characteristics are the input variables for this algorithm 

and the change score is the output.   

The change detection algorithm is formulated by considering 𝑉(𝑡), 𝐴𝒙(t), and 𝐴𝑦(𝑡) as 

the three dimensions which are velocity V(t), x-axis acceleration 𝐴𝒙(t) , and y-axis 

acceleration 𝐴𝑦(𝑡) respectively. Here, 𝑉(𝑡), 𝐴𝒙(t), and 𝐴𝑦(𝑡) are three time windows with 

a length of k, which are: 

 𝑉(𝑡) = [𝒱(𝑡)𝑇 , 𝒱(𝑡 + 1)𝑇 , … , 𝒱(𝑡 + 𝑘 − 1)𝑇]𝑇 ∈  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦;  

𝐴𝒙(t) = [𝒜𝓧(𝑡)
𝑇 , 𝒜𝓧(𝑡 + 1)

𝑇 , … , 𝒜𝓧(𝑡 + 𝑘 − 1)
𝑇]𝑇 ∈ 𝑥 − 𝑎𝑥𝑖𝑠 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛; 

𝐴𝒚(t) = [𝒜𝓎(𝑡)
𝑇 , 𝒜𝓎(𝑡 + 1)

𝑇 , … ,𝒜𝓎(𝑡 + 𝑘 − 1)
𝑇]
𝑇
∈  𝑦 − 𝑎𝑥𝑖𝑠 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 , 

where T is the transpose. Let  Y(t) = [𝑉(𝑡), 𝐴𝒙(t), 𝐴𝒚(t)] be the three-dimensional input 

data at time t, and 𝓎(𝑡) be a group of n retrospective subsequences of input data at time t, 

which is:  

𝓎(𝑡) = [𝑌(𝑡), 𝑌(t + 1),… , Y(𝑡 + 𝑛 − 1)] 
𝓎(𝑡) and 𝓎(𝑡 + 𝑛) are treated as two consecutive segments of the data stream. Figure 4-4 

illustrates an example of n retrospective consecutive segments in one-dimensional time-series 

data (Kawahara & Sugiyama 2012). The strategy is to calculate a dissimilarity score for these 

two segments using Eq. 4-1 as the measure of change. We selected the relative unconstrained 
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least-squares importance fitting (RuLSIF) algorithm as the change detection and scoring 

algorithm. RuLSIF is extremely good at detecting driving style changes (Lee & Jang 2017), 

human activity sensing (Liu et al. 2013), and smart home signal processing (Aminikhanghahi, 

Wang & Cook 2018) in data streams. RuLSIF calculates a change score using a density-based 

dissimilarity measure from two consecutive time window using Eq 4-4:   

𝐶ℎ𝑎𝑛𝑔𝑒𝑆𝑐𝑜𝑟𝑒 =  𝐷(𝑝𝑡||𝑝𝑡+𝑛) + 𝐷(𝑝𝑡+𝑛||𝑝𝑡)   (4-4) 

where 𝐷(𝑝𝑡||𝑝𝑡+𝑛) is a dissimilarity measure between 𝑝𝑡 and 𝑝𝑡+𝑛. 

Liu et al. (2013) proposed “RuLSIF” to calculate the dissimilarity measure between two 

different time segments. It calculates the change between two consecutive time windows 

with a density-based dissimilarity measure: 

𝐷(𝑝||𝑝′) = −
𝛼

2𝑛
∑ �̂�(𝑌𝑖)

2𝑛
𝑖=1 −

1−𝛼

2𝑛
 ∑ �̂�(𝑌𝑖

′)2𝑛
𝑖=1 +

1

𝑛
∑ �̂�(𝑌𝑖)
𝑛
𝑖=1 −

1

2
  (4-5) 

 
Figure 4-4 – Change Detection Sample 

A sample of change detection with one-dimensional time-series data. 𝓎(𝑡) is the input data at time t, 
𝑌(𝑡) denotes k subsequences, and 𝑦(𝑡) is a group of retrospective subsequences. The value of 𝑛 is 
equal to the window size, and 𝑘 is the length of subsequence. In this example, k=3 is presented, but it 
is possible for this value to be larger. 
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where n is the window size, and 𝑌𝑖  𝑎𝑛𝑑 𝑌𝑖′  are two consecutive time windows in d-

dimensional time-series data. 𝑔 is the density-ratio estimation of the data samples, and α is a 

constant variable. 

4.4.2 FEATURE EXTRACTION 

Extracting useful features from big data streams is another technique that is used in this 

study. The data generated by smartphones are unstructured and are not comprehensible by 

machine learning algorithms. It is therefore necessary before starting analytics to transform 

these data into a new form by cleaning them, removing outliers, and extracting and selecting 

features.  

Human activity recognition (HAR) is one of the applications of data collected from 

human behaviour. Researchers in this domain use the behavioural data collected by IoT 

devices and wearable sensors to recognize human activity. They used machine learning 

algorithms to detect human behaviour according to the signals provided by wearable sensors 

(Hassan et al. 2018; Lara & Labrador 2013). The data collected by wearable sensors is very 

similar to mobile telematics-generated data, thus the feature extraction technique provided 

by (Hassan et al. 2018; Lara & Labrador 2013) is used in this research.  

 The driving streams have been divided into time windows of lengths of 256 and sliding 

windows of 256, after which the statistical features from each time window are extracted.  14 

statistical features including minimum, maximum, mean, median, first and third quantile, 

standard deviation, average absolute deviation, skewness, entropy, kurtosis, auto-correlation, 

zero crossing, and energy are used to extract meaningful features from big data stream, using 

the following equations: 

1) Minimum: the smallest number for each time frame: 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = min(𝑤𝑖𝑛𝑑𝑜𝑤) (4-6) 

 



Chapter 4: Data Preparation  56 
 

 

 

2) Maximum: the highest value for the selected time frame: 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = max (𝑤𝑖𝑛𝑑𝑜𝑤) (4-7) 

 

3) Mean: the average value of all values in the selected time frame: 

𝑀𝑒𝑎𝑛 = 1 𝑛⁄ ∑ 𝑤𝑖
𝑛
1   (4-8) 

 

4) Median: the middle value for each time window, which is each equal to: 

𝑀𝑒𝑑𝑖𝑎𝑛 = {
n+1

2
}
𝑡ℎ
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑤 (4-9) 

where n is the length of the sliding window.  

 

5) First quantile: the top 25% value for each time window, which is each equal to: 

𝑀𝑒𝑑𝑖𝑎𝑛 = {
n+1

4
}
𝑡ℎ
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 (4-10) 

where n is the length of the sliding window.  

6) Third quantile: the top 75% value for each time window, which is each equal 

to: 

𝑀𝑒𝑑𝑖𝑎𝑛 = {3 (
n+1

4
)}
𝑡ℎ
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 (4-11) 

where n is the length of the sliding window.  

 

7) Standard deviation: the following equation is used to calculate standard 

deviation: 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √1 𝑛⁄ ∑ (𝑤𝑖 − �̅�)
2𝑛

1   (4-12) 



Chapter 4: Data Preparation  57 
 

 

 

where 𝑤𝑖 is the ith member in the time window, and �̅� is the mean 

value of all members.  

8) Mean absolute deviation: this measure for each time window is calculated by: 

𝑀𝐴𝐷 = 1 𝑛⁄ ∑ |𝑤𝑖 − �̅�|
𝑛
1   (4-13) 

 

9) The skewness which shows symmetry in data distribution.  

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1
𝑛⁄ ∑ (𝑤𝑖−�̅�)

3𝑛
1

𝑠𝑑3
  (4-14) 

 

10) Entropy level of each time frame is calculated by: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 1/3∑𝑐𝑖

𝑛

1

𝑙𝑜𝑔 (𝑐𝑖) 

𝑐𝑖 =
𝑤𝑖

∑ 𝑤𝑗
𝑛
1

 (4-15) 

11)Kurtosis: 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1
𝑛⁄ ∑ (𝑤𝑖−�̅�)

4𝑛
1

𝑠𝑑4
  (4-16) 

 

12)Auto correlation : 

𝑀𝐴𝐷 = 1 𝑛⁄ ∑ (𝑤𝑖 − �̅�)(𝑤𝑖−𝑘 − �̅�)
𝑛
𝑖=𝑘+1   (4-17) 

                     where k is lag and it is equal to one in this study.  

13)Zero Crossing: 

𝑍𝐶(𝑊) =  ∑ 𝑆(𝑛−1
𝑖=1 𝑤𝑖 , 𝑤𝑖+1) (4-18) 

𝑆(𝑥, 𝑦) =  {
1, 𝑖𝑓 (𝑥. 𝑦) < 0

0, 𝑖𝑓 (𝑥. 𝑦) > 0
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14)Energy 

𝐸𝑛𝑒𝑟𝑔𝑦 = 1 𝑛⁄ ∑ 𝑤𝑖
2𝑛

1  (4-19) 

4.4.3 FEATURE SELECTION  

After extracting useful features from driving streams and providing structured data from 

unstructured streams, the useful features are selected using feature selection and correlation 

analysis. Statistical correlation analysis is used in this study to find the critical features which 

have the highest chance of increasing the accuracy of the final prediction model using the 

selected features.  

The correlation between two different variables such as X and Y can be calculated using 

linear correlation analysis. In this study, the correlation coefficients between the extracted 

features, mobile telematics stream and the output label, are calculated by (An et al. 2020): 

𝑟 =  
𝐶𝑂𝑉(𝑋,𝑌)

𝜎𝑋 𝜎𝑌
 (4-20) 

𝐶𝑂𝑉(𝑋, 𝑌) = 1 𝑁⁄ ∑(𝑋 − �̅�)(𝑌 − �̅�)

𝑁

𝑖=1

 

where 𝐶𝑂𝑉(𝑋, 𝑌)  is the covariance between X and Y and 𝜎𝑋  and 𝜎𝑌 are the standard 

deviation of variables X and Y respectively. �̅� is the average value of X and �̅� is the average 

value of Y, and N is the total number of records.  

According to the formula for linear correlation calculation, the correlation coefficient can 

have a positive or negative value. Positive r depicts a positive correlation between X and Y 

and a negative correlation is depicted by the negative correlation coefficients.  

4.5 IMPLEMENTATION 

This component is a supportive element for other components in this study. The 

implementation results of this component are thoroughly explained in the following chapters. 

The change detection algorithm is applied by driving style pattern recognition and fuzzy risk 

assessment components to prepare data for driving style risk assessment. The feature 
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extraction and feature selection techniques, which are explained above, are used in the 

missing data imputation component to reduce the complexity of mobile telematics big 

datasets. These two techniques are usually used for classification and supervised learning 

algorithms.  

4.6 SUMMARY 

Data preparation is the first component that prepares data for analytics. Mobile telematics 

data is big, unstructured, and noisy, thus various techniques need to be developed to improve 

the quality of data. Change detection, feature extraction, and feature selection are three 

techniques that are used in this chapter. The abrupt change detection algorithm is proposed 

to remove unnecessary time windows from mobile telematics data by selecting time frames 

with the highest change score. Feature extraction is used to create statistical meaningful 

features from unstructured data streams and feature selection is used to find features with the 

highest correlations among extracted features.  
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Chapter 5: 

DRIVING STYLE PATTERN RECOGNITION 

5.1 INTRODUCTION 

Driving patterns are a useful source of knowledge for proposing a big-data-driven 

decision support system for risk assessment. The main purpose of this component is to 

develop an empirical analysis on mobile telematics data to find the best alternative for 

extracting driving patterns using unsupervised learning techniques and one the most state-

of-the art machine learning techniques, such as deep auto-encoders. Deep learning is one of 

the current state of the art techniques which is proposed in this study. We evaluated the 

performance of deep auto-encoder in comparison to other unsupervised learning methods. 

In order to propose this component, an unsupervised learning pattern recognition 

framework is proposed. The proposed framework has three phases. First, it decreases the 

complexity of the prepared data using a self-organizing map (SOM) and a deep auto-encoder. 

Second, an empirical study is undertaken on five of the most well-known and commonly-

used partitive clustering algorithms in the field of pattern recognition to reveal the strengths 

and weaknesses of each, and to determine whether there is one best choice overall for 

categorizing driving styles from mobile telematics data, and also the optimal number of 
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clusters is found using a quantitative method. Finally, all the extracted clusters are investigated 

according to the transportation research to find a suitable name for each driving category. 

Figure 5-1- The Driving Style Pattern Detection Framework

BIG DATA-DRIVEN DECISION SUPPORT SYSTEM
FRAMEWORK

Mobile telematics
data storage

Driving style pattern recognition

Fuzzy risk 
assessment

Data transformation 
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Pre-processing
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Clustering

Driving patterns
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Figure 5-1 illustrates the proposed driving style pattern recognition framework in this 

chapter. This component helps us to find the best option to cluster driving data. This 

component uses prepared data from the data preparation component, and then it evaluates 

the performance of various unsupervised learning algorithms for driving style pattern 

recognition. 

The rest of this chapter is organized as follows. Sections 5.2 – 5.4 present the details of 

the proposed driving style pattern recognition component. Section 5.5 details the 

implementation and experiment results. Section 5.6 describes the various extracted driving 

patterns. Finally, Section 5.7 summarizes the chapter and describes the next step. 

5.2 TWO-STAGE CLUSTERING  

This component uses the prepared data from the data preparation component, which 

is explained in Chapter 4.  

After preparing the data, a two-stage clustering algorithm categorizes the selected time 

windows into groups with similar characteristics. In this stage, a SOM and a deep auto-

encoder are implemented to make a choice between them for clustering in the next step. 

5.2.1 SOM  

The SOM is a lattice output space with a rectangular topology. In SOM, the first step 

is to generate an initial SOM according to the number of input records. SOM iteratively 

maps the input records to the closest neuron in the hidden layers of the feature map. This 

neuron is known as the best matching unit (BMU). Then, the weight vector of each neuron 

is updated according to this change. The process is repeated until no remarkable change in 

the data is detected. The advantage of using the SOM algorithm for stream data clustering is 

that data generated from sensors is usually large in scale and noisy. A dimension reduction 

method decreases both the computational cost and the impact of noise  (Vesanto & Alhoniemi 

2000). 
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5.2.2 DEEP AUTO-ENCODER 

The deep auto-encoder component consists of a number of neural networks with 

randomly generated weight and bias vectors, which are optimized during the training phase. 

Following Liu, Taniguchi, et al. (2017), we designed a deep network with five encoder 

layers. The number of nodes in each layer are: 45 → 22 → 11 → 5 → 3 → 5 → 11 → 22 →

45. Therefore, the network extracts the features using the encoder layers 45 → 22 → 11 → 

5 → 3. The gradient descent optimizer is used to minimize reconstruction errors.  

The driving characteristics are denoted as 𝑋 ∈ ℝ 𝐷 ×𝑇, where 𝐷 is the dimension of 

the input data, and T is the length of the time window. For example, a driving event at time 

(t) is: 

𝑋𝑡 = (𝑉1, … , 𝑉𝑇 , 𝐴𝑥1, … , 𝐴𝑥𝑇 , 𝐴𝑦1, … , 𝐴𝑦𝑇) 

The activation function is a hyperbolic tangent so the value of the input variables 

should be in the range (−1,1). Obviously, the raw velocity and acceleration values will not 

fall within this range, so the data needs to be normalized before running the deep auto-

encoder. We performed minimum and maximum normalization to transform the value of 

each dimension into (−1,1). 

The input data for the first layer of the deep auto-encoder is denoted as 𝑋𝑡, and the 

encoder function is 

ℎ𝑡
𝑙 = tanh(W𝑒𝑛

𝑙  𝑋𝑡+𝑏𝑒𝑛
𝑙 ) 

where W𝑒𝑛
𝑙  is a weight matrix for the encoder at the lth layer and 𝑏𝑒𝑛𝑙  is the bias vector 

for the lth encoder layer.  

The decoder function is a tanh function:  

𝑟𝑡
𝑙 = tanh(W𝑑𝑒

𝑙  ℎ𝑡+𝑏𝑑𝑒
𝑙 ) 

where W𝑑𝑒
𝑙  is the weight matrix and 𝑏𝑑𝑒𝑙  is the bias vector.  

(5-1) 

(5-2) 

(5-3) 
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An assumption during the encoder-decoder process is that the output value of 𝑟𝑡𝑙 is 

equal to 𝑥𝑡𝑙. Thus, the objective function needs to calculate the reconstruction error between 

𝑟𝑡
𝑙 and 𝑥𝑡𝑙:  

𝑂(𝑉𝑙) =  
1

𝑁𝑉
∑‖ 𝑟𝑡

𝑙 − 𝑥𝑡
𝑙‖
2

2

𝑁𝑉

𝑡=1

 

where 1

𝑁𝑉
∑ ‖ 𝑟𝑡

𝑙 − 𝑥𝑡
𝑙‖
2

2𝑁𝑉
𝑡=1  is the average value of the squared error between the 

reconstructed data and the input data.  

A gradient descent optimizer with a learning rate of 𝜆  helps to minimize the 

reconstruction errors. Finding the best learning rate for a deep auto-encoder is typically very 

difficult and time-consuming. Hence, we opt for a linear grid search, where the first learning 

rate considered is 𝜆∗ and the search distance is 𝜃, which is very small. This results in a learning 

rate of 𝜆+ = 𝜆∗ + 𝜃+. 𝜃 is updated with  

𝜃+ = {
𝜃                  𝑂(𝑉𝑙) ≥ 𝑂+(𝑉𝑙)

−0.5 × 𝜃   𝑂(𝑉𝑙) < 𝑂+(𝑉𝑙)
 

The search stops when the change in the construction error between 𝑂(𝑉𝑙) and 

𝑂+(𝑉𝑙) falls below a set threshold.  

The features extracted through this deep auto-encoder process are then carried 

forward for use in the partitive clustering step.  

5.2.3 CLUSTERING 

The SOM and deep auto-encoder algorithms have reduced the data to an abstract 

subspace. However, there will still be too many points to analyze directly, so they need to be 

clustered into similar groups. As mentioned in the introduction, no research has been 

undertaken to determine the best option for clustering unlabelled telematics data. Therefore, 

we conducted an empirical study on this issue with a range of different partitive clustering 

(5-4) 

(5-5) 
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algorithms to find the most suitable choice for clustering mobile telematics data and finding 

the optimal number of clusters in this domain.  

5.3 IMPLEMENTATION 

The proposed component is implemented in Python 2.7 on an Intel® Xeon® 3.01 

GHz CPU, 64 GB of RAM, and running a Linux operating system. The software platform 

is Anaconda 2.7. The specific version of the SOM library by Saraee, Vahid Moosavi & 

Rezapour (2011) and the RuLSIF library proposed by Liu et al. (2013) are used for 

implementation. The Tensorflow is used for deep auto-encoder implementation.  

A large-scale dataset collected by a European insurance company containing trip data 

for over 500,000 journeys from more than 2500 drivers is used in this study. The 

computational cost to process this entire dataset would be extremely high. But, according to 

Dong et al. (Dong et al. 2016), each person has their own driving patterns so no new useful 

information would be gained by analyzing more than a few trips per driver. We selected the 

20 longest trips per driver to include in the analysis. Thus, the final dataset contained 50,000 

journeys (20 trips × 2500 drivers). Table 5-1 provides brief details about the data used.  

Table 5-1 - Selected Dataset 

Trips Drivers 
Journeys 

per 

driver 

Traveling time (minute) 

Min Average Max 

50,000 2,500 20 23:21 26:13 30:00 

 

To extract the driving characteristics from the trajectory data, we split the data into 

three streams. The first stream is velocity, which is the speed of a vehicle during a trip at any 

given time. The second and third streams are acceleration over the x and y axes. These streams 

are used to assess hard braking, sharp starts (Lee & Jang 2017), and cornering behaviour 

(Fazeen et al. 2012; Handel et al. 2014).   
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To remove useless data, we divided the data into time windows of approximately 15 

seconds with a slide in steps of 1 second because, according to Zhang, Zhao & Rong (2014), 

it takes at least 15 seconds to complete a single driving event. The RuLSIF-based change 

detection scores were then calculated for each time window. Figure 5-3 shows the input and 

output of the RuLSIF change detection algorithm with velocity, x-acceleration, and y-

acceleration as the three input variables. Figure 5-3 shows the change score for the 

corresponding time frame. Approximately 7.9 million time windows were assessed. 

Following Lee & Jang (2017), we selected the 5% with the highest RuLSIF scores to represent 

the most significant changes, and further selected all windows with a change score greater 

than a threshold of 68.598. This left 394,833 windows, each representing one driving event 

with 15 seconds of data.  

 

 

 

Figure 5-2 – Change Detection Scores 

The five shaded blue columns indicate a detected driving behavior that exceeds the change threshold 
(in this case 68.60). All of these events have significant changes in driving behavior over velocity, x-
acceleration, and/or y-acceleration. For example, the driver in Event 1 is driving at high and radically 
varying speeds, with many variations in y-axis acceleration. Event 4 displays high variations in all the 
variables.  
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5.3.1 TWO-STAGE CLUSTERING 

After preparing the data and selecting the time windows with highest change score, 

using the data preparation component, the events were ready to analyze their driving 

characteristics. As aforementioned, we used SOM to reduce the complexity of data and a 

deep auto-encoder to extract the features. Figure 5-3 illustrates two stages in the two-stage 

clustering algorithm. Firstly, SOM defines a map with an appropriate number of nodes. The 

number of nodes is crucial because when 𝑛 is small, the prototype is very generic and when 

𝑛 is very large, the prototype is very detailed. Therefore, to define an optimal number of 

nodes, we followed Céréghino & Park (2009) and identified a number of nodes equal to 5 ×

√𝑛 where 𝑛 is the total  number of selected events. With 394,833 events, the optimal number 

of nodes was 2814. The next challenge was defining an appropriate map size for the input 

data. We selected a map size of 21×134 based on the eigenvalues and eigenvectors (Vesanto 

& Alhoniemi 2000). 

 

 

 

Figure 5-3 – Two-Stage Clustering 
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The second step in a two-stage clustering algorithm is partitive clustering. In this step, 

we used various partitive clustering algorithms to find the best clustering algorithm with the 

highest performance (Algorithm 5-1). A key concern in developing a partitive clustering 

algorithm is finding the optimal number of clusters. However, because the number of clusters 

is generally unknown in real-world problems, we developed Algorithm 5-2 to address this 

issue. In brief, the algorithm applies the sum of square error (SSE) and a bootstrapping 

technique to find a robust result. 

5.3.2 PERFORMANCE EVALUATION 

To determine the optimal clustering algorithm for the framework, and for mobile 

telematics data in general, we compared five different partitive clustering algorithms against 

three metrics with a five-fold cross-validation method and the performance validation 

algorithm. The details follow.  

The five algorithms we chose for comparison were k-means (Arthur & Vassilvitskii 

2006), MINIbatch k-means (Sculley 2010), agglomerative clustering (Kurita 1991) , spectral 

clustering (Von Luxburg 2007), and BIRCH clustering (Zhang, Ramakrishnan & Livny 

1996). After preparing the data for clustering using the SOM and DAE, we used the test 

samples to compare the performance of the five models in terms of execution time, the 

Calinski-Harabasz and the Davis-Boulding indexes. 

1) Execution time is the total time to determine the results – smaller values are 

better. 

 

2) Calinski-Harabasz (CH) is a score calculated by assigning N data objects 

𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑛} to K different clusters 𝐶 =  {𝑐1, 𝑐2, … , 𝑐𝑛} using the 

following equation (Caliński & Harabasz 1974): 



Chapter 5: Driving Style Pattern Recognition  69 
 

 

 

CH(k) =
𝑇𝑟(𝑆𝐵)

𝑇𝑟(𝑆𝑊)
×
𝑁 − 𝑘

𝑘 − 1
 

𝑇𝑟(𝑆𝐵) =∑𝑁𝑖‖𝑚𝑖 −𝑚‖
2

𝐾

𝑖=1

 

𝑇𝑟(𝑆𝑤) = ∑ ∑ ‖𝑥𝑗 −𝑚𝑖‖
2𝑁𝑖

𝑗=1
𝐾
𝑖=1     

where k  is the number of clusters, i is the number of items in a cluster ni, and 

mi is the centroid of cluster i. Tr(SB) shows the sum of between-cluster 

distances, and Tr(Sw) is the sum of within-cluster distances. 

3) Davies-Boulding (DB) is another performance index that evaluates the 

clusters based on the sum of within-cluster scatters and between-cluster 

separations (Davies & Bouldin 1979):  

𝐃𝐁𝐈 =  
𝟏

𝒏
∑ 𝒎𝒂𝒙

𝒏

𝒊=𝟏,𝒊≠𝒋

(
𝝈𝒊 + 𝝈𝒋 

𝒅(𝒄𝒊, 𝒄𝒋)
) 

where n is the number of clusters, 𝜎𝑖 is the average distance of all members of 

the i-th cluster to the center of the j-th cluster, and 𝜎𝑗 is the average distance 

of all members of cluster j to the center of the i-th cluster. d(ci,cj) is the 

distance between the center of the two clusters i and j (Halim et al. 2017; 

Maulik & Bandyopadhyay 2002). 

Algorithm 5-1 - Performance Validation Algorithm 

Input: selected events from change detection 
Output: performance results 
 
1. X = data from change detection 
2. X_SOM =training SOM model 
3. X_DEA = training Deep Auto-encoder 
4. Clustering_methods = [K-means, MinibatchKM, Spectral, Agglomerative, birch] 
5. For fold in 5-fold cross validation for (X_SOM, X_DEA) 

5.1. For clustering in Clustering methods 
5.1.1. Finding optimal number of clusters for clustering by using training data 

with algorithm 5-2 
5.1.2. CH[clustering , fold] = the value of Calinski Harabasz for current fold 

by using test data 

(5-6) 

(5-7) 
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Algorithm 5-2 - Finding optimal number of clusters algorithm 

5.3.3 EXPERIMENTAL RESULTS 

The results of the comparison follow, starting with the Davis Boulding index in Table 

5-2. As shown, SOM performed better than the deep auto-encoder with all five clustering 

algorithms. For SOM, the performance from best to worst was k-means, Birch, 

5.1.3. DB[clustering , fold] = average value of Davis Boulding for current  fold 
by using test data 

6. CH[clustering] = average of CH value in all folds for all clustering_methods 
7. BD[clustering] = average of BD value in all folds for all clustering_methods 

Input: low complexity data, max number of clusters C, max iterations n 
Output: optimal number of clusters 
1. X = data from SOM nodes  

1.1. For k = 2 to C 
1.1.1. For i = 1 to n 
1.1.2. Di = Random under sampling for 80% 
1.1.3. Clustering Di into k clusters   
1.1.4. SSEi =Sum of Square errors  

2. SSEk = 1 𝑁⁄ ∑𝑆𝑆𝐸𝑖 
3. k = the first k which has the amount of improvement rather than previous k is less 

than 1% 
 

Table 5-2 – Davis-Boulding Index Results 

Feature 

extraction 
Clustering Average Minimum Maximum std 

SO
M

 

K-means 0.120 0.112 0.130 0080. 

MINIbatchKM 0.140 0.116 0.177 0.023 

Spectral 0.172 0.125 0.305 0.075 

Agglomerative 0.140 0.107 0.162 0.025 

Birch 0.132 0.114 0.155 0.017 

D
ee

p 
A

ut
o-

en
co

de
r

 

K-means 0.154 0.148 0.160 0.005 

MINIbatchKM 0.165 0.142 0.189 0.018 

Spectral 0.204 0.158 0.317 0.064 

Agglomerative 0.169 0.138 0.199 0.028 

Birch 0.159 0.140 0.184 0.019 
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MINIbatchKM, agglomerative, and spectral clustering. Similarly, k-means clustering 

achieved an outstanding performance in DAE in comparison to the others. Notably, k-means 

had the lowest standard deviation and was also the most stable in different folds with both 

SOM and the deep auto-encoder. Therefore, from a Davis-Boulding point of view, SOM + 

k-means is the optimal choice. 

The results against the Calinski-Harabasz index are shown in Table 5-3. Again, k-

means clustering had the highest average CH score with a reasonable standard deviation with 

both SOM and the deep auto-encoder. In this case, DAE+k-means clustering placed first, 

followed by SOM+k-means. The SOM+Spectral clustering is the third method with a high 

CH score, but the standard deviation for this model is very high. From a deeper analysis of 

each fold, we found this algorithm was always unstable. 

Table 5-4 shows the execution times. Efficiency is an important factor since data on 

driving characteristics tends to be very large-scale and unsupervised learning algorithms are 

prone to long runtimes. 

 

Table 5-3 – Calinski-Harabasz Index Results 

Feature 

extraction Clustering Average Minimum Maximum std 

SO
M

 

K-means 17,375.60 16,754.93 17,891.93 475.62 

MINIbatchKM 15,136.85 14,784.21 15,765.54 381.08 

Spectral 17,040.31 15,191.46 19,364.84 1962.88 

Agglomerative 14,871.24 14,714.06 15,010.68 138.09 

Birch 14,753.34 14,528.51 15,171.88 255.69 

D
ee

p 
A

ut
oe

nc
od

er
 

K-means 18,242.75 17,248.70 18,967.43 640.11 

MINIbatchKM 16,266.25 15,744.51 16,813.88 480.94 

Spectral 16,292.00 14,336.08 18,900.63 1671.52 

Agglomerative 15,582.44 15,178.67 16,010.59 408.40 

Birch 15,522.14 15,035.29 16,199.02 457.58 
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As the results show, SOM had much faster running times with all clustering methods 

than the deep auto-encoder. The most important reason for this difference is that, with a 

deep auto-encoder, one record corresponds to one point while, with SOM, one point equals 

an abstracted group of records. 

 

Across all three metrics, the optimal clustering choice for driving style pattern 

recognition is clear – SOM + k-means, firstly because it had a very low DB index in 

comparison to other methods, which means that the extracted clusters with SOM+k-means 

are unique and they are less similar to other clusters in comparison to other techniques (Liu 

et al. 2010). In addition, the CH index in a deep auto encoder is slightly better than SOM+k-

means, and this difference is not large enough to encourage us to select this algorithm as the 

selected method as its computation cost is very high and BD index is very low.  

5.4 EXTRACTED DRIVING PATTERNS 

From the three tests in the previous section, we determined that k-means in tandem 

with SOM was the best overall algorithm to recognize driving style patterns. The next step 

is finding the optimal number of clusters. We used Algorithm 5-2 to determine the optimal 

number of clusters using the SOM+k-means clustering algorithm. We found that the optimal 

number of clusters was 29. Figure 5-4 illustrates the sum of square errors for different numbers 

of clusters in each iteration, showing 29 as the optimum number of clusters, because 29 

clusters does not exceed the defined threshold of 1%, nor does it meet the stopping condition 

of less than 1% improvement.  

Table 5-4 - Execution Time Results (Minutes) 

 SOM Deep Auto-
encoder 

K-means 40.87 180.93 
MINIbatchKM 33.47 66.99 

Spectral 82.35 250.70 
Agglomerative 41.03 199.38 

Birch 41.30 190.73 
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Hence, we extracted 29 unique driving behaviours from our data set. Each cluster is a 

group of time-series data and raw numbers. In relation to the results, however, raw numbers 

do not mean much to transportation experts, so we need to understand each driving pattern 

and find a meaningful name for each cluster. We followed a matching method to find a 

suitable label for each driving behaviour. In this algorithm, first, we reviewed various driving 

behaviours introduced by top-ranked, highly cited publications and selected three papers to 

review: (Chen et al. 2015; Fazeen et al. 2012; Yu et al. 2017). Second, we developed a 

 

Figure 5-4 - Sum Of Square Error Per Number Of Clusters For SOM + K-Means Clustering 
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descriptive analytics to understand each category using average, minimum, maximum, and 

standard deviation across velocity, acceleration, x-axis and y-axis acceleration. Then, we 

compared the similarity between the extracted driving patterns and current driving 

behaviours in the literature. We then selected the most similar pattern in the literature as a 

representative of each category. Finally, we named each cluster to reflect the name of the 

most similar driving behaviour found in the literature. 

After implementing the matching method, we understand the characteristics of all 29 

clusters. For example:  

 Cluster 17 represents those who drive at very low speed with low acceleration and 

accounts for 16.5% of the events. This behaviour shows that these drivers have a 

tendency to stop the vehicle.  

 Cluster 29, the y-acceleration is close to zero and the x-acceleration is higher than 

zero for a short period of time, which is similar to the cornering behaviour described 

by Fazeen et al. (2012).  

 Cluster 13, is normal driving behaviour, i.e., standard speeds with very low 

acceleration, few changes, and a small standard deviation. Yu et al. (2017) describe this 

type of driving as “normal driving behaviour”.  

 Cluster 8 exhibits swerving behaviour as described by Chen et al. (2015). The value of 

both the x-axis and y-axis acceleration has a high peak value with a high standard 

deviation.  

 Drivers in Cluster 2 exhibit weaving behaviour at high speeds. They have a very high 

variation between x- and y-axis acceleration. The standard deviation of acceleration 

is very high, and the mean value of acceleration is high (Yu et al. 2017).  

 Cluster 6 reflects sudden braking and accounts for 4.3% of the driving events. x-

acceleration remains unchanged while y- acceleration significantly decreases, and the 

standard deviation of the y-acceleration is high (Chen et al. 2015).  
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 Cluster 26 is characterized by high variations in both x- and y-acceleration. The 

velocity range is medium, and the standard deviation of acceleration is high with low 

acceleration.  

 In the above, we explained the top clusters that account for the 50% of driving events 

to describe how the clustering results are matched with a corresponding name in the 

transportation research. Additional information on the other clusters, along with the 

statistical results for each group, are provided in Tables 5-5 to 5-8. 

Algorithm 5-3 - The Matching Method 

Input: Extracted driving behaviour, current driving behaviour in the literature  

Output: Corresponding driving patterns in the literature, and the name of all 
clusters 

1. DB = 29 extracted driving behaviours by SOM + k-means 

2. DB_lit = various driving behaviours in the current literature 

3. For each driving_behaviour in DB: 

3.1.  Developing descriptive analytics with minimum, maximum, average, and 

standard deviation across all input variables 

3.2. Corresponding_patterns[driving_behaviour] = the most similar pattern in the 

literature for driving_behaviour 

3.3. Names[driving_behaviour] = finding a suitable name according to the 

corresponding driving behaviour 

3.3.1. DB[clustering , fold] = average value of Davis Boulding for current  fold 

by using test data 

4. Return Corresponding_patterns, names 
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Table 5-5 - Frequent Driving Behaviors - Part I 

C
lu

st
er

 n
um

be
r 

Fr
eq

ue
nc

y 
Pe

rc
en

ta
ge

 (%
) 

A
ve

ra
ge

 sp
ee

d 
(k

m
/h

) 

A
ve

ra
ge

 a
cc

el
er

at
io

n 
(m

/s
2 ) 

A
cc

el
er

at
io

n 
std

 

N
am

e 

Patterns of behavior 

17
 

16
.4

9%
 

1.
96

1 

-0
.1

08
 

0.
08

8 

W
ar

m
 

st
op

pi
ng

 

Drivers in this group drive at low speeds with low 
deceleration and are prone to stopping. 

29
 

9.
08

%
 

45
.8

08
 

0.
35

3 

0.
20

2 

C
or

ne
rin

g 
w

ith
 m

ed
iu

m
 

sp
ee

d During cornering behavior, y- acceleration is close to 
zero. x-acceleration is high with significant standard 
deviation (Fazeen et al. 2012). 

13
 

6.
68

%
 

50
.5

50
 

0.
33

3 

0.
02

2 

D
riv

in
g 

at
 

no
rm

al
 sp

ee
d 

Drivers proceed at normal speed with very low 
acceleration and standard deviation. 

8 

5.
18

%
 

39
.1

30
 

0.
01

1 

1.
28

8 

Sw
er

vi
ng

 a
t 

m
ed

iu
m

 
sp

ee
d While swerving, x- and y-acceleration both have a high 

peak and high standard deviation (Chen et al. 2015). 

2 

4.
96

%
 

80
.9

25
 

0.
00

2 

2.
22

5 

W
ea

vi
ng

 a
t 

hi
gh

 sp
ee

d There is high variation between x- and y-acceleration. 
y-acceleration is very smooth over an extended period. 
The standard deviation of acceleration is high, but with 
a low mean (Yu et al. 2017). 

11
 

4.
59

%
 

87
.6

21
 

0.
11

14
 

0.
16

3 

C
or

ne
rin

g 
at

 
hi

gh
 sp

ee
d During cornering, speeds are high and x-acceleration 

increases rapidly over a short period of time, while y- 
acceleration is almost zero (Yu et al. 2017). 

2
7

 

4
.5

4
%

 

7
0

.7
8

4
 

-0
.6

2
5

 

0
.1

7
6

9
 

Si
d

es
lip

p
in

g 

w
it

h
 h

ig
h

 

sp
ee

d
 y-axis acceleration fell sharply, the minimum and 

average value of y-axis acceleration is negative and x-

axis acceleration is not near to zero (Chen et al. 2015). 

2
3

 

4
.4

9
%

 

7
6

.2
1

 

0
.0

3
1

5
 

2
.2

2
9

6
 

w
ea

vi
n

g 
w

it
h

 

h
ig

h
 s

p
ee

d
 There is high variation between x- and y-acceleration. 

y-acceleration is very smooth over an extended period. 

The standard deviation of acceleration is high, but with 

a low mean (Yu et al. 2017). 

6
 

4
.3

7
%

 

6
1

.2
0

7
 

-2
.2

5
8

 

1
.2

5
7

 

Su
d

d
en

 

b
ra

ki
n

g 
fr

o
m

 

a 
h

ig
h

 s
p

ee
d

 During sudden braking, x-acceleration remains 

unchanged, and y- acceleration decreases significantly. 

Standard deviation in y-acceleration is very high (Chen 

et al. 2015). 

 



Chapter 5: Driving Style Pattern Recognition  77 
 

 

 
 

Table 5-6 - Frequent Driving Behaviors - Part II 
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Table 5-7 - Frequent Driving Behaviors -Part III 
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5.5 SUMMARY 

Understanding driving patterns with unsupervised learning techniques is an 

underexplored area of research and finding the best clustering algorithm with the highest 

performance and the optimal number of clusters is still problematic in this domain. In this 

chapter, we proposed an empirical analysis on driving characteristics using information 

collected by mobile telematics devices to find an efficient clustering algorithm in this domain 

with an optimal number of clusters. Moreover, driving behaviours are categorized into 

similar groups using this algorithm. The experiment results show that SOM + K-means 

clustering algorithm is the best choice for this domain. 

In the next chapter, we propose a decision support system which automatically extracts 

criteria for risk assessment from mobile telematics big data. To ensure the system is 

comprehensive and effective, we design a risk assessment framework that can evaluate the 

probability and severity of each pattern and calculate a risk score for each unique behaviour. 

Table 5-8 - Frequent Driving Behaviors - Part IV 
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These tables show the 29 clusters extracted with SOM+ K-means, which represent the driving patterns within our dataset. 

The average speeds and acceleration values are the means of the velocity and instantaneous acceleration figures for all 

driving patterns in each group. The names for each group were derived from the patterns and values at each cluster 

center with reference to previous studies in transportation. 
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In addition, we utilize the most important findings in this to provide a reliable clustering 

algorithm for driving style pattern recognition.  
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Chapter 6: 

FUZZY RISK ASSESSMENT 

6.1 INTRODUCTION 

The risk of the occurrence of unwanted situations or events is traditionally calculated 

based on probability and severity, and risk assessment is a process to estimate these two 

elements. This chapter relies on these principles and proposes a fuzzy risk assessment 

component as illustrated in Figure 6-1. The component has two main parts. First, the risk 

factor identification part extracts the decision-making criteria from mobile telematics data 

and provides a fuzzy risk modelling for driving events. Second, the risk of driving events is 

calculated by the fuzzy expert system provided in the risk factor identification part.  

The prepared data is used by the unsupervised learning algorithm to extract hidden 

driving patterns from driving styles. These driving events play the role of criteria for decision 

making and a fuzzy risk model is provided according to the extracted driving events from this 

expert system. Finally, a risk score is calculated for driving events according to the knowledge 

extracted from mobile telematics. This chapter explains the related parts of this component 

in the following subsections. 
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Figure 6-1 – Fuzzy Risk Assessment Component
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6.2 RISK FACTOR IDENTIFICATION 

This part uses the data prepared by the data preparation component which is explained 

in Chapter 4, mines the risk factors using unsupervised learning according to the empirical 

analysis in Chapter 5, and estimates the risk level of each category by providing a fuzzy risk 

assessment model.  

6.2.1 RISK FACTOR MINING 

Defining criteria for decision-making is a critical step for any risk assessment and 

decision support system. A complete list of all risk and success criteria should be defined 

according to the previous literature and expert judgment. This process is costly and time-

consuming (Ahmadabadi & Heravi 2019). In order to remove this process and decrease the 

processing time, the risk factor mining model proposes an unsupervised learning model to 

extract decision-making criteria from mobile telematics data. In this part, according to the 

empirical study in Chapter 5, a two-stage clustering algorithm using SOM and fuzzy k-means 

clustering is proposed to extract unique patterns from data. These unique patterns play the 

role of criteria in the proposed decision support system.  

 Self-organizing map 

The SOM algorithm is explained in Chapter 5. This algorithm is used to reduce the 

complexity of data and prepare the data for clustering.  

 Fuzzy clustering  

Mobile telematics stream data is very similar to each other and one stream of data is 

similar to more than one group of data. Thus, the fuzzy k-means clustering is used to calculate 

one score to find the similarity between stream data and selected clusters  (Shen et al. 2019). 

Fuzzy clustering is one of the widely used clustering algorithms. SOM has reduced the 

stream data into an abstract subspace. However, there will still be too many points to analyze 
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directly, so they need to be clustered into similar groups. Therefore, we utilized a fuzzy 

clustering algorithm to extract the unique patterns from the streams. In fuzzy clustering, the 

following objective function is used to cluster abstract data 𝑋 from SOM. 

𝑂 = ∑ ∑ 𝑢𝑖𝑘
𝑚‖𝑥𝑘 − 𝑣𝑖‖

2𝑁
𝑘

𝑐
𝑖=1  (6-1) 

where the square weighted distance is calculated by: 

‖𝑥𝑘 − 𝑣𝑖‖
2 = ∑

(𝑥𝑘𝑗−𝑣𝑖𝑗)
2

𝜎𝑗
2

𝑛
𝑗=1   (6-2) 

where 𝑚 is the fuzzification coefficient which is greater than 1, 𝜎𝑗  is the standard 

deviation of the jth feature. The input data X has n records and we want to cluster them to c 

number of clusters, and 𝑈 is the partition matrix with the shape of c×n. V is the center of 

clusters. Algorithm 6-1 explains the fuzzy clustering algorithm.  

The fuzzy clustering provides a partition matrix U, which depicts the coefficient of 

each record to the clusters. The clustering results will be used in the next step for risk 

modelling. 

Algorithm 6-1 - Fuzzy Clustering Algorithm (Shen Et Al. 2019) 

Input: Data set X and c number of clusters, ε very small 
threshold 

Output: data points with cluster label 

1) Set the number of clusters as an input parameter. 

2) Initialize Uc×n as the partition matrix  

3) Do 

 𝒗𝒊𝒋 = 
∑ 𝒖𝒊𝒌

𝒎𝒙𝒌𝒋
𝑵
𝒌=𝟏

∑ 𝒖𝒊𝒌
𝒎𝑵

𝒌=𝟏

   

 𝒖𝒊𝒋 = 𝟏 ∑ (
‖𝒙𝒌−𝒗𝒊‖

‖𝒙𝒌−𝒗𝒔‖
)
𝟐
𝒎−𝟏⁄

𝒄
𝒔=𝟏⁄    

While ‖𝑼𝑰𝒕𝒆𝒓 −𝑼𝒊𝒕𝒆𝒓−𝟏‖ <  𝜺  
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6.3 FUZZY RISK MODELLING 

After extracting the unique patterns from the driving streams using SOM + fuzzy 

clustering, these patterns are used in the proposed fuzzy risk assessment model as criteria for 

risk assessment. The fuzzy risk modelling uses these criteria and provides a risk score. Finally, 

the extracted criteria with their risk score are stored in the risk factor knowledge-base.  

The risk modelling is done through an FLS which is able to handle uncertain and vague 

variables and simulate human reasoning. The FLS takes into account the factor probability 

and severity estimations and produces a risk level. The probability of all events is calculated 

using predictive analysis. We estimate the likelihood of all events using statistical analysis 

based on the frequency of previously occurred events. On the other hand, assessing the 

severity of an event mainly depends on a business problem, and a number of domain experts 

should conduct an investigation process to assess the severity of an event. In this study, we 

calculated the severity of the events using previous research conducted in the transportation 

field (Eboli, Mazzulla & Pungillo 2017; Siami et al. 2018). 

To estimate the risk level of the factors, the FLS needs to use membership functions. 

A number of membership functions can be used to determine fuzzy linguistic variables, such 

as triangular, trapezoidal, and Gaussian. Selecting a suitable membership function 

fundamentally depends on the characteristics of the variable, the available information and 

expert knowledge. We assume that the parametric (trapezoidal/triangular) functions are good 

enough to capture the vagueness of the variables. Therefore, a combination of trapezoidal 

and triangular functions are used (Naderpour, Lu & Zhang 2013). The relations between the 

input and output variables are defined using a risk matrix. Mamdani’s fuzzy interface method 

is described to implicate each rule and aggregate input variables to risk output. Finally, the 

fuzzy output variable of risk is converted to a crisp variable during the defuzzification process. 
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6.4 RISK ASSESSMENT 

 After finding the risk score of all the extracted criteria using the fuzzy clustering 

algorithm, we provide a methodology to assess the risk of new events according to the 

knowledge offered from big data.  

6.4.1 EVENT DETECTION 

Event detection is a part of the fuzzy risk assessment component that detects the most 

similar patterns in the knowledge-base. In this part, fuzzy clustering provides a U partition 

matrix for all new events according to their similarity to the previously known events. Let U 

be the partition matrix from fuzzy clustering: 

𝐶1 𝐶2 ⋯ 𝐶𝑗          

𝑈 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 =
𝐷1
⋮
𝐷𝑖

[

𝑈11 ⋯ 𝑈1𝑗
⋮ ⋱ ⋮
𝑢𝑖1 ⋯ 𝑢𝑖𝑗

]                (6-3) 

where Di is a multidimensional stream data. Cj is the list extracted clusters.  𝑢𝑖𝑗 is the similarity 

score of ith input stream to the jth clusters. The fuzzy clustering algorithm is responsible for 

providing these fuzzy scores.  

6.4.2 STREAM RISK CALCULATION 

Stream risk calculation is the final part in the fuzzy risk assessment component. Each 

stream contains many fixed-length windows, so in this part, we calculate the total risk per 

event according to the following equation:  

𝑅𝐸𝑖 = ℱ𝑘(∑ 𝑅𝑗𝑢𝑖𝑗
𝐶
𝑗=1  ), (𝑖 = 1,2,3,… ,𝑁, 𝑘 = 1,2,… , 𝑐) (6-4) 

where ℱ is the function which is used to calculate the top k similar events. N is the total 

number of events for which we want to calculate the risk. c is the total number of criteria, 

which is extracted using the clustering algorithm. R is the risk score of the event and 𝑢𝑖𝑗is 

the similarity score which is calculated by fuzzy clustering.  
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The total risk score per driving stream entirely depends on the events’ risk (𝑅𝐸𝑖) for all 

sub-streams, thus the total risk per streams will be obtainable using the following equation: 

𝑅𝑖𝑠𝑘 𝑂𝑓 𝑆𝑡𝑟𝑒𝑎𝑚 = 𝒜ℱ(𝑅𝐸𝑖 ), (𝑖 = 1,2,3,… ,𝑁)  (6-5) 

where 𝒜ℱ is the aggregation function which could be optimistic, pessimistic or neutral. This 

aggregation function depends on the business problem and business strategy. For example, 

the total risk score in the optimistic strategy can be equal to the minimum score of all events. 

In a pessimistic strategy, the maximum value can be considered as the total risk. Finally, for a 

neutral strategy, the average value of all events is regarded as the total risk value of the stream. 

6.5 IMPLEMENTATION 

To evaluate the performance of our proposed system, we implemented it in a real case 

study to assess the risk of drivers according to their driving behaviours.  

We implement the fuzzy risk assessment component in Python 2.7 on an Intel® 

Xeon® 3.01 GHz CPU, 64 GB of RAM, running a Linux operating system. The software 

platform was Anaconda 2.7. We used the implemented versions of SOM (Saraee, Vahid 

Moosavi & Rezapour 2011), scikit-fuzzy, and change detection libraries (Liu et al. 2013). 

As explained in Chapter 4, the stream data has been divided into 15-second fixed-

length time windows with a one-second sliding step because each single driving event can 

be completed in 15-second. Then, the RuLSIF-based change detection scores were applied 

to remove unnecessary data from the streams. According to the score extracted from the 

change detection algorithm, the most important time frames are selected. Therefore, 394,833 

windows are selected according to the outcome of the data preparation component. 

6.5.1 RISK FACTOR MINING 

After completing the data preparation and removing the unnecessary time frames by 

selecting the time windows with the highest change score, the analytical process is started to 
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extract risk criteria from driving behaviours. A two-stage unsupervised learning framework 

is proposed to extract driving patterns from big data. Chapter 4 explains the optimal number 

of nodes for SOM according to the input samples and identifies a number of nodes equal to 

5 × √𝑛 where 𝑛 is the total number of selected events. With 394,833 events, the optimal 

number of nodes is 2814. In addition, we selected a map size of 21×134 based on the 

eigenvalues and eigenvectors (Vesanto & Alhoniemi 2000). 

After reducing the complexity of data using SOM, we clustered the data points using 

fuzzy clustering. Finding the optimum number of clusters is crucial for any partitive clustering 

algorithm; thus the empirical analysis which is undertaken in Chapter 5 shows that 29 clusters 

is the optimal number of clusters for this study. Table 6-1 summarizes the information on the 

extracted clusters from the data. 

Table 6-1 - Fuzzy Clustering Result  
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17 16.493% 12 3.388% 15 1.803% 

29 9.082% 18 3.101% 7 1.706% 

13 6.682% 16 2.872% 1 1.629% 

8 5.179% 3 2.428% 5 1.496% 

2 4.955% 28 2.345% 19 1.371% 

11 4.594% 22 2.200% 24 1.287% 

27 4.545% 14 1.947% 4 0.978% 

23 4.495% 9 1.875% 20 0.960% 

6 4.369% 10 1.822% 21 0.728% 

26 3.863% 25 1.808%   
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The clustering results of the selected dataset are summarized in the Table 6-1. These 

clusters are extracted patterns from the driving style database and they play the role of 

decision-making criteria in our proposed decision support system. 

6.5.2 FUZZY RISK MODELLING 

After extracting the unique driving patterns from the driving streams, the risk of these 

patterns needs to be assessed using fuzzy logic. In order to do this, the probability and severity 

of each driving pattern is calculated, then the risk score of each driving pattern is calculated 

using the risk matrix. 

1) The probability estimation   

According to the criteria mining step, 29 possible driving patterns are extracted from 

the driving dataset. These patterns are unique with different likelihoods of occurrence. The 

probability of each driving pattern is calculated using the following equation: 

𝑃(𝐸𝑖) =  
𝑛(𝐸𝑖)

∑ 𝑛(𝐸𝑖
𝑐
𝑖=1 )

  (6-6) 

where 𝑛(𝐸𝑖) is equal to the number of times that the ith driving pattern occurs, which is 

divided by the total number of driving events.  

The probability score of all driving events is calculated and the results show that these 

scores are in a range between 0.7% and 16.5%. Thus, the min-max transformation is used to 

normalize data in a range between zero and one. 

2) The severity estimation  

 Assessing the severity of an event depends on the case study and is usually conducted 

by an investigating process with a number of experts in risk assessment. In this case,  severity 

analysis is undertaken using previous research conducted by domain experts in the 

transportation field (Eboli, Mazzulla & Pungillo 2017; Siami et al. 2018).  
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In this study, the research of Eboli, Mazzulla & Pungillo (2016) is followed to find the 

severity of each driving pattern. They explored the relationship between velocity and 

acceleration to distinguish dangerous driving conditions. They found a correlation between 

dangerous driving patterns, instantaneous velocity and acceleration. Based on their findings, 

a driver’s behaviour is risky when the value of acceleration is larger than the defined threshold 

in the following equation. 

|�̅�| = 𝒈. [𝟎. 𝟏𝟗𝟖. (
𝑽

𝟏𝟎𝟎
)
𝟐
− 𝟎. 𝟓𝟗𝟐. (

𝑽

𝟏𝟎𝟎
)
𝟐
+ 𝟎. 𝟓𝟔𝟗]  (6-7) 

where |�̅�| is the instantaneous acceleration norm, and V is the value of velocity (km/h).  g 

denotes gravity, which is equal to 9.18 (m/s2). According to this equation, when the value of 

acceleration is more than |�̅�|(m/s2), the driver is engaging in risky behaviour. 

This equation is used to find the percentage of the abnormal acceleration value for 

each driving event. The severity of driving events in mobile telematics data skews the 

distribution; thus, log transformation and min-max transformation is used to standardize these 

average number of dangerous events per second in a range between zero and one.  

3) Event risk estimation 

The FLS uses the developed membership functions as shown in Figure 6-2 and 

detailed in Tables 6-2 to 6-4 to calculate the risk levels. The relation between probability 

and severity variables with risk are shown in Table 6-5. For example, if the probability is U 

and the severity is M, then the risk is TA. Mamdani’s fuzzy inference method is used to 

calculate the output risk score. Table 6-6 describes the functions used to obtain the fuzzy 

outcome from the input variables. Finally, the defuzzification process is used to transform the 

fuzzy risk set to a crisp risk score.  
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Table 6-2 - Probability Linguistic Variables 

Fuzzy set Linguistic term 
α cut 

Level 1 Level 0 

VU Very Unlikely 0,0.1 0.3 

U Unlikely 0.3 0.1,0.5 

E Even 0.5 0.3,0.7 

L Likely 0.7 0.5,0.9 

VU Very Unlikely 0.9,1 0.7 

 

 

 

 

Figure 6-2 - Fuzzy Membership Functions Of Probability, Severity, And Risk 
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Table 6-3 - Severity Linguistic Variables  

Fuzzy set Linguistic term 
α cut 

Level 1 Level 0 

N Negligible 0, 0.1 0.3 

MI Minor 0.3 0.1,0.5 

M Medium 0.5 0.3,0.7 

MA Major 0.7 0.5,0.9 

C Catastrophic 0.9,1 0.7 

Table 6-4 - Risk Linguistic Variables 

Fuzzy set Linguistic term 
α cut 

Level 1 Level 0 

A Acceptable 0 0.3 

TA 
Tolerable 

Acceptable 
0.3 0,0.6 

TNA 
Tolerable not 

acceptable 
0.6 0.3,0.9 

NA Not Acceptable 0.9,1 0.6,0.9 

Table 6-5 - Risk Matrix 

  Severity 

  N MI M MA C 

Probability
 

VL TNA TNA NA NA NA 

L TA TNA TNA NA NA 

E A TA TNA NA NA 

U A A TA TNA NA 

VU A A TA TNA TNA 
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Table 6-6 - Mamdani Model (Mamdani 1977) 

Operation Operator Formula 

Union (OR) MAX 𝜇𝑐 = max (𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) 

Intersection (AND) MIN 𝜇𝑐 = min (𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) 

Implication MIN 𝜇𝑐 = min (𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) 

Aggregation MAX 𝜇𝑐 = max (𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) 

Defuzzification CENTROID 𝐶𝑂𝐸 = 𝑍∗ = 
∫ 𝑧 𝜇𝑐 (𝑧)𝑑𝑧

∫ 𝜇𝑐 (𝑧)𝑑𝑧
 

We developed the proposed fuzzy risk estimation model to calculate the risk score of 

all driving events. Table 6-7 shows the calculated risk score for each driving category. The 

results show that cluster numbers 20 and 21 have the top two dangerous driving events. 

Cluster 20 is a very high-risk cluster and accounts for 0.96% of all driving events. This cluster 

represents those who drive dangerously during cornering. The other high-risk cluster is 

Cluster 21. This cluster reflects the behaviour of reckless drivers who drive faster than the 

speed limit without any significant changes. On the other hand, driving behaviours in Cluster 

29 pose a low risk and the behaviour in this group shows changing lanes with low speed.  

6.5.3 STREAM RISK CALCULATION 

 After calculating the risk score of all the extracted driving patterns using fuzzy logic, 

we calculate the risk score of new driving events according to the provided knowledge. Table 

6-8 shows the calculation procedure of one trip. In this table, the columns show the list of all 

the extracted driving behaviours in our decision support system, and the rows show the list 

of detected driving events in one trip. The cells show the similarity score between driving 

events in the trip and the extracted driving patterns in the knowledge-base.  
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Table 6-7 - Calculated Risk Scores 

Cluster 

Number 

Probability 

Score 

Severity 

Score Risk Score 

Cluster 

Number 

Probability 

Score 

Severity 

Score Risk Score 

1 0.19 0.75 0.600 16 0.26 0.5 0.300 

2 0.31 0.33 0.265 17 0.54 0.17 0.351 

3 1.00 0 0.600 18 0.50 0.08 0.187 

4 0.28 0.83 0.666 19 0.31 0.58 0.415 

5 0.59 0.08 0.326 20 0.33 1 0.857 

6 0.46 0.08 0.180 21 0.29 0.92 0.795 

7 0.27 0.58 0.406 22 0.52 0.08 0.259 

8 0.43 0.17 0.277 23 0.51 0.17 0.300 

9 0.43 0 0.110 24 0.38 0.42 0.408 

10 0.53 0.17 0.333 25 0.00 0.67 0.494 

11 0.42 0.42 0.455 26 0.14 0 0.104 

12 0.32 0.33 0.288 27 0.33 0.17 0.197 

13 0.24 0.5 0.300 28 0.27 0.25 0.102 

14 0.58 0.08 0.324 29 0.21 0.67 0.483 

15 0.09 0.42 0.286     

 

Table 6-8 shows the calculation process for a selected trip. A short trip is selected. The 

trip has 31 detected events according to driver behaviour. The similarity score is calculated 

for all events with all risk factors which are extracted from our knowledge base. Afterwards, 

the risk score of each event was calculated according to the most similar driving behaviour 

risk score. Finally, the risk score of the selected trip according to the optimistic, pessimistic, 

and neutral strategies is 0.192, 0.646, and 0.318 respectively.  
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EVALUATION 

Evaluation is a critical step to assess the confidence of the proposed fuzzy risk 

assessment model. The model proposed in this chapter has been evaluated using sensitivity 

analysis through a usage-based insurance risk assessment case study in the big data 

Table 6-8 - Trip Risk Calculation Process

E\RF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 RE

1 0.002 0.025 0.050 0.002 0.001 0.003 0.038 0.019 0.129 0.029 0.059 0.057 0.175 0.006 0.071 0.015 0.030 0.003 0.033 0.030 0.014 0.002 0.018 0.008 0.004 0.089 0.005 0.007 0.074 0.219

2 0.002 0.058 0.022 0.002 0.001 0.003 0.033 0.011 0.170 0.016 0.031 0.026 0.058 0.004 0.091 0.009 0.016 0.003 0.076 0.016 0.009 0.002 0.011 0.006 0.003 0.033 0.004 0.005 0.280 0.342

3 0.001 0.196 0.014 0.001 0.001 0.002 0.036 0.008 0.046 0.012 0.015 0.016 0.033 0.003 0.094 0.006 0.011 0.002 0.246 0.010 0.006 0.002 0.007 0.004 0.003 0.020 0.003 0.004 0.197 0.445

4 0.002 0.235 0.015 0.001 0.001 0.002 0.070 0.008 0.027 0.015 0.012 0.016 0.034 0.004 0.119 0.007 0.012 0.002 0.281 0.011 0.007 0.002 0.008 0.005 0.003 0.021 0.003 0.004 0.075 0.347

5 0.002 0.070 0.023 0.002 0.001 0.003 0.289 0.011 0.027 0.025 0.014 0.023 0.059 0.004 0.178 0.009 0.018 0.003 0.093 0.016 0.009 0.002 0.011 0.006 0.003 0.034 0.004 0.005 0.057 0.360

6 0.002 0.029 0.045 0.002 0.001 0.003 0.201 0.018 0.031 0.053 0.019 0.043 0.148 0.006 0.109 0.014 0.034 0.003 0.038 0.027 0.013 0.002 0.016 0.008 0.004 0.077 0.005 0.006 0.042 0.361

7 0.002 0.012 0.103 0.001 0.001 0.003 0.056 0.026 0.022 0.114 0.020 0.084 0.109 0.006 0.035 0.018 0.067 0.003 0.015 0.047 0.017 0.002 0.023 0.009 0.004 0.169 0.005 0.007 0.021 0.196

8 0.002 0.009 0.135 0.001 0.001 0.003 0.026 0.032 0.021 0.082 0.026 0.098 0.083 0.006 0.022 0.021 0.084 0.003 0.011 0.067 0.020 0.002 0.028 0.010 0.004 0.176 0.005 0.007 0.016 0.319

9 0.001 0.005 0.230 0.001 0.001 0.003 0.014 0.037 0.012 0.059 0.017 0.157 0.030 0.005 0.011 0.022 0.112 0.002 0.006 0.094 0.020 0.002 0.032 0.009 0.003 0.097 0.004 0.006 0.009 0.474

10 0.003 0.014 0.097 0.002 0.001 0.005 0.028 0.038 0.039 0.053 0.060 0.085 0.103 0.009 0.032 0.027 0.067 0.004 0.016 0.068 0.025 0.003 0.035 0.014 0.006 0.124 0.007 0.011 0.026 0.192

11 0.002 0.014 0.090 0.002 0.001 0.004 0.029 0.031 0.067 0.037 0.068 0.144 0.080 0.008 0.034 0.023 0.048 0.004 0.018 0.053 0.021 0.003 0.028 0.012 0.005 0.124 0.006 0.009 0.034 0.203

12 0.003 0.015 0.099 0.002 0.002 0.005 0.061 0.035 0.026 0.104 0.024 0.084 0.077 0.009 0.038 0.026 0.077 0.004 0.019 0.057 0.024 0.003 0.032 0.013 0.006 0.111 0.007 0.011 0.025 0.214

13 0.002 0.007 0.087 0.002 0.001 0.005 0.020 0.056 0.012 0.195 0.016 0.056 0.031 0.009 0.014 0.037 0.153 0.004 0.008 0.087 0.034 0.003 0.050 0.016 0.006 0.058 0.007 0.012 0.010 0.341

14 0.002 0.003 0.048 0.001 0.001 0.004 0.007 0.174 0.007 0.038 0.012 0.034 0.013 0.010 0.006 0.088 0.111 0.003 0.004 0.130 0.076 0.002 0.150 0.021 0.005 0.024 0.007 0.013 0.005 0.288

15 0.002 0.002 0.028 0.001 0.001 0.004 0.005 0.208 0.005 0.021 0.010 0.022 0.008 0.010 0.004 0.138 0.053 0.003 0.003 0.075 0.116 0.002 0.209 0.024 0.005 0.015 0.007 0.014 0.004 0.289

16 0.002 0.003 0.039 0.002 0.001 0.005 0.006 0.184 0.007 0.025 0.016 0.032 0.012 0.012 0.006 0.114 0.065 0.004 0.004 0.104 0.100 0.003 0.171 0.027 0.006 0.022 0.009 0.017 0.005 0.288

17 0.004 0.010 0.080 0.003 0.002 0.007 0.017 0.067 0.031 0.037 0.103 0.082 0.039 0.015 0.018 0.050 0.066 0.006 0.011 0.093 0.047 0.005 0.062 0.024 0.009 0.063 0.012 0.019 0.018 0.646

18 0.003 0.017 0.073 0.002 0.002 0.005 0.027 0.031 0.097 0.032 0.128 0.095 0.075 0.009 0.036 0.024 0.043 0.004 0.021 0.049 0.023 0.004 0.029 0.013 0.006 0.091 0.007 0.011 0.041 0.306

19 0.002 0.035 0.046 0.002 0.001 0.004 0.062 0.018 0.099 0.030 0.037 0.053 0.135 0.006 0.108 0.014 0.029 0.003 0.047 0.028 0.013 0.003 0.017 0.008 0.004 0.077 0.005 0.007 0.105 0.294

20 0.002 0.038 0.034 0.001 0.001 0.003 0.105 0.013 0.051 0.027 0.021 0.036 0.151 0.004 0.216 0.010 0.022 0.002 0.053 0.020 0.010 0.002 0.012 0.006 0.003 0.060 0.004 0.005 0.089 0.291

21 0.002 0.053 0.031 0.002 0.001 0.003 0.070 0.013 0.063 0.025 0.025 0.032 0.134 0.005 0.202 0.011 0.021 0.003 0.074 0.020 0.010 0.002 0.013 0.007 0.003 0.052 0.004 0.005 0.113 0.291

22 0.002 0.079 0.020 0.001 0.001 0.003 0.038 0.010 0.097 0.015 0.023 0.022 0.055 0.004 0.117 0.008 0.014 0.002 0.108 0.014 0.008 0.002 0.009 0.005 0.003 0.030 0.003 0.005 0.300 0.427

23 0.001 0.203 0.014 0.001 0.001 0.002 0.037 0.008 0.044 0.012 0.014 0.015 0.033 0.003 0.096 0.006 0.011 0.002 0.264 0.010 0.006 0.002 0.007 0.004 0.003 0.020 0.003 0.004 0.174 0.350

24 0.001 0.507 0.006 0.001 0.000 0.001 0.020 0.003 0.014 0.006 0.006 0.006 0.014 0.002 0.044 0.003 0.005 0.001 0.293 0.004 0.003 0.001 0.003 0.002 0.001 0.008 0.001 0.002 0.041 0.320

25 0.001 0.563 0.005 0.001 0.000 0.001 0.017 0.003 0.012 0.005 0.005 0.005 0.012 0.001 0.037 0.002 0.004 0.001 0.268 0.004 0.002 0.001 0.003 0.002 0.001 0.007 0.001 0.001 0.035 0.314

26 0.000 0.641 0.004 0.000 0.000 0.001 0.012 0.002 0.009 0.004 0.004 0.004 0.009 0.001 0.028 0.002 0.003 0.001 0.229 0.003 0.002 0.001 0.002 0.001 0.001 0.005 0.001 0.001 0.028 0.305

27 0.000 0.702 0.003 0.000 0.000 0.001 0.010 0.002 0.007 0.003 0.003 0.003 0.007 0.001 0.022 0.002 0.003 0.001 0.195 0.002 0.001 0.000 0.002 0.001 0.001 0.004 0.001 0.001 0.021 0.298

28 0.000 0.750 0.003 0.000 0.000 0.000 0.009 0.002 0.006 0.002 0.002 0.003 0.006 0.001 0.019 0.001 0.002 0.000 0.164 0.002 0.001 0.000 0.001 0.001 0.001 0.004 0.001 0.001 0.018 0.292

29 0.000 0.740 0.003 0.000 0.000 0.000 0.009 0.002 0.006 0.003 0.003 0.003 0.006 0.001 0.019 0.001 0.002 0.000 0.171 0.002 0.001 0.000 0.001 0.001 0.001 0.004 0.001 0.001 0.019 0.293

30 0.000 0.879 0.001 0.000 0.000 0.000 0.004 0.001 0.003 0.001 0.001 0.001 0.003 0.000 0.009 0.001 0.001 0.000 0.082 0.001 0.001 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.008 0.278

31 0.000 0.881 0.001 0.000 0.000 0.000 0.004 0.001 0.003 0.001 0.001 0.001 0.003 0.000 0.008 0.001 0.001 0.000 0.081 0.001 0.001 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.008 0.278
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environment. We closely monitored all the used parameters of the models and assessed their 

impact on the risk score provided by the fuzzy risk assessment model.  

The result of this step shows the confidence of the proposed model.  The proposed 

model is based on a fuzzy clustering algorithm which extracts various criteria for decision 

making and the fuzzy risk matrix which is used for risk score calculation. 

To validate the system proposed in this study, a sensitivity analysis is developed on 

various trips with different risk levels. The sensitivity analysis shows how much the model 

result can be affected by the uncertainty in input parameters. A partial validation using 

sensitivity analysis on these drivers is proposed with the following conditions: 

 Condition 1: selecting top k similar driving patterns, where all possible values 

for k have been considered.  

 Condition 2: defining three different aggregation strategies, namely 

optimistic, pessimistic, and neutral.    

Three trips are selected with different risk levels and their risk is assessed according to 

the proposed fuzzy risk assessment model and the parameters are considered to assess the 

confidence of the proposed model.  

6.3.1 SENSITIVITY ANALYSIS 

Three trips are selected with three risk levels, namely Trips A, B, and C, which are 

low, medium and high risk respectively. The risk score of these trips is calculated using the 

proposed fuzzy risk assessment model. We tested the models’ output by changing the input 

parameters. Figures 6-3 to 6-5 illustrate the risk score of these trips by considering three 
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different strategies. In these figures, the x-axis shows the number of k, and the y-axis shows 

the risk score.  

Figure 6-3 - Sensitivity Analysis Optimistic Strategy Risk

Figure 6-4 - Sensitivity Analysis Pessimistic Strategy Risk

Figure 6-5 - Sensitivity Analysis Neutral Strategy Risk
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An examination of this model in light of the three strategies using all possible values 

for k reveals that the calculated risk score for a dangerous trip is larger than a medium-level 

trip, and a safe trip has a lower risk level in comparison to the others. In addition, by increasing 

the value of k, the risk score becomes stable with less variations. For the optimistic strategy,

the risk score has a very low domain and the difference between the minimum and maximum 

value is low, while for the pessimistic strategy, the domain is larger and the extracted value is 

more reliable. 

The optimistic strategy in Figure 6-3 shows that by increasing the number of k, the 

risk value is increasing but it is more stable with less variation. On the other hand, the 

pessimistic strategy has different behaviour, and by increasing the value of k, it is decreasing 

and the risk value is not changed significantly. The neutral strategy behaviour is completely 

different from the others, and the risk score for a safe trip is increasing, while the score for 

other trips is decreasing. The sensitivity analysis shows that changing the parameters of the 

model does not have any impact on the final result because trip C is always dangerous 

regardless of the input parameters for the possible value for k in all strategies.

SUMMARY

In this chapter, the fuzzy risk assessment component with its sub-models are explained. 

We proposed a new fuzzy risk assessment methodology for the mobile telematics 

environment. We introduced an autonomous fuzzy decision support system using the 

capabilities of artificial intelligence and machine learning algorithms to extract decision-

making criteria and the risk factors from mobile telematics data automatically. The proposed 

fuzzy risk assessment system extracted different patterns from big data streams automatically, 

and we proposed the fuzzy expert system to assess the risk of extracted criteria in an uncertain 

situation. Finally, we evaluated the performance of our proposed framework using a mobile 

telematics case study. Our results using sensitivity analysis show that the proposed decision 
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support system is consistent across various input parameters and optimistic, pessimistic and 

neural strategies.
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Chapter 7: 

MISSING DATA IMPUTATION 

7.1 INTRODUCTION 

Mobile telematics has been used in a number of road safety applications (Zhao 2002), 

intelligent transportation systems (Zhao 2000), and usage-based insurance (Bowne et al. 

2013), but applying this technology in real-world businesses is problematic. According to the 

experts’ opinion, risk assessment using driving style data is only one part of applying mobile 

telematics in real-world problems. There is a huge data gap in business-related data in mobile 

telematics. In particular, for the UBI industry, the premium calculation not only depends on 

the driving style risk score but also relates to other variables such as age range, gender, suburb 

in which they live, and etc. Mobile telematics is unable to fill these data gaps alone, thus 

missing data imputation is proposed to help decision makers to prepare an accurate calculation 

for customer premium in insurance.  

The main purpose of the missing data imputation component is to decrease the rate of 

missing data in mobile telematics to help decision makers estimate the null fields in mobile 

telematics. For example, the gender of users is one of these unknown features, and in 

particular, the gender of drivers is an important feature for premium calculation. To the best 
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of our knowledge, mobile telematics has so far been unable to reliably answer this question: 

what is the gender of the driver behind the wheel, male or female?   

The missing data imputation component is a new classification algorithm, which is 

proposed for the first time in this study. The proposed algorithm is the Choquet fuzzy integral 

vertical bagging classifier. The proposed algorithm is new and we have applied this algorithm 

to detect gender from mobile telematics data.  

Figure 7-1 illustrates the proposed component. This component extracts the gender of 

drivers according to their driving styles to give some insights to decision makers for their 

decision making.  

In this chapter, first we explain the fuzzy integral in Section 7.2. Section 7.3 describes the 

implementation process for data preparation. The Choquet fuzzy integral vertical bagging 

classifier is introduced in Section 7.4. Finally, Section 7.5 presents the experiment results of 

the proposed classifier.  

7.2 DATA PREPARATION  

The data preparation component has been explained in the previous chapters, but as 

the implementation process for labelled data is different from unlabelled data, this section 

provides complementary explanations regarding the data preparation process for the missing 

data imputation component. Table 7-1 introduces the driving characteristics stream data used 

by this component.  

Table 7-1- Stream Data Introduction 

Name of feature Description 

Speed The value of the instantaneous velocity of the vehicle stored by 
a smartphone 

Acceleration (x,y) Two different stream data of a car’s acceleration over x and y 
axis. 

Yaw rate The value of the vehicle’s angular speed around its vertical axis. 

Pitch rate The lateral motion of a car is called the pitch rate. The pitch rate 
value shows the up or down forward tilt of the vehicle. 

Roll rate The longitudinal axis movement of the car shows the 
characteristics of the road. 

GPS heading The compass direction measured in degrees from north. 
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The sample rate of the input data is equal to 15 Hz. This sample rate is high for our 

methodology, thus we downsampled the data to one sample per second because our 

investigations revealed that one sample per second produces the best information for our 

analytics. As explained above, a windowing procedure is developed to select a driving time 

window, then the time windows are summarized using statistical features from the stream 

data for each time window. 14 statistical features including minimum, maximum, mean, 

median, first and third quantile, standard deviation, average absolute deviation, skewness, 

entropy, kurtosis, auto-correlation, zero crossing, and energy are calculated for each stream 

data feature. We calculated these features for all seven stream data, extracting 7×14 features 

for each time window. 

 In addition to feature extraction, feature selection techniques are performed on the 

extracted features to find the features with the highest correlation with class labels. Features 

with low variation and low correlation are removed from the data using the data preparation 

component. 

7.3 CHOQUET FUZZY INTEGRAL VERTICAL BAGGING 

CLASSIFIER 

The vertical bagging model is similar to traditional bagging, the difference being in the 

method of creating sub-models. In traditional bagging, sub-models are generated from sub-

samples of data with the same attributes. In contrast, the sub-models in the vertical bagging 

models are trained by various combinations of predictive attributes with similar sample data 

(Zhang et al. 2010). In this chapter, we combine multiple random forest classifiers with the 

Choquet fuzzy integral to propose the Choquet fuzzy integral vertical bagging classifier. The 

maximum number of features (F) and the maximum number of iterations are the input 

parameters for training the algorithm.   
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Figure 7-1- Missing Imputation Component (Choquet Fuzzy Integral Vertical Bagging)

BIG DATA-DRIVEN DECISION SUPPORT SYSTEM FRAMEWORK

Missing data imputation 
(Choquet Fuzzy Integral Vertical Bagging Classifier)

Fuzzy Integral

Mobile telematics
data storage

Data transformation 

Data preparation

Pre-processing

Rough Set Theory

Preliminarily Fuzzy Densities 

Random Forest 1

Adaptive Fuzzy Measures

Choquet Fuzzy Integral

…Random Forest 2 Random Forest 1

Imputed 
value



Chapter 7: Missing Data Imputation  104 

 

 

 

Using rough set theory (Pawlak 1998), k training subsets Tr1, Tr2…. Trk were 

generated from the input training data. The maximum number of features (F) is equal to the 

total number of features in each Tr subset and k is equal to the maximum number of 

iterations. Random forest (RF) (Breiman 2001) classifiers were trained for each training 

subset. All RF models were sorted according to their performance in the training dataset, and 

the top three models were selected. In the next step, the top random forest classifiers were 

merged using the Choquet fuzzy integral which achieves outstanding performance in 

merging different classifiers (Namvar & Naderpour 2018). 

7.3.1 FUZZY INTEGRAL  

 Classification results are not usually precise or certain, so fuzzy theory is useful for 

merging different classifiers into one prediction result. Fuzzy integral methods such as  

Sugeno and Choquet are popular and practical methods which have been used in a wide 

range of domains including mathematics, economics, machine learning and pattern 

recognition (Wang et al. 2015).  

Although both of these integral methods are fuzzy and popular, Choquet fuzzy integrals 

have been more widely applied than Sugeno integrals (Krishnan, Kasim & Bakar 2015). A 

Choquet integral is an aggregation method that simultaneously considers the importance of 

a classifier and its interaction with other classifiers (Li, Wang & Chen 2015). It relies on the 

concept of fuzzy measures first introduced by Sugeno (1974). The definitions of Choquet 

integrals and fuzzy measures according to (Murofushi & Sugeno 1989) are as follows.  

  Assume X is a set of classifiers and the power of X is denoted by P(X). 

Definition 5-1: The fuzzy measure of X is a set function 𝑔: 𝑃(𝑋)  →  [0,1]. This 

function satisfies the following conditions:  

1) The boundary of  g is : g () = 0, g(X) = 1 

2) For each A, BP(X) and AB then g(A)  g(B)  
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where 𝑔(𝑘)  is the grade of the subjective importance of the classifier set k. The fuzzy 

singleton measure values for each classifier are 𝑔 (𝑥𝑖 ) =  𝑔𝑖  and are commonly called 

densities. Not only must the worth of each singleton be calculated, but also the value of 

function g for any combination of classifiers. The Sugeno λ-measure and fuzzy densities are 

used to calculate the fuzzy measure of any combination of classifiers. This measure is defined 

by the values of the fuzzy densities. The λ-measure has the following additional property: 

{
𝒈𝝀(𝑨 ∪ 𝑩) = 𝒈𝝀(𝑨) + 𝒈𝝀(𝑩) + 𝝀𝒈𝝀(𝑨)𝒈𝝀(𝑩)

∀ 𝑨, 𝑩 𝝐 𝑷(𝑿), 𝑨 ∩ 𝑩 = 𝝓                                  
          (7-1) 

where 𝜆 can be calculated by Eq. 7-2. 

𝝀 + 𝟏 = ∏ (𝟏 +𝒏
𝒊=𝟏 𝝀𝒈𝒊), 𝝀 > −𝟏                     (7-2) 

Definition 5-2: g is the fuzzy measure of 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}. Eq. 7-3 shows the 

Choquet integral function of 𝑓: 𝑋 → 𝑅 and its relation to g: 

𝑪𝒈(𝒇) = ∑ 𝒇𝒊 [ 𝒈(𝑨𝒊
𝒏
𝒊=𝟏 ) − 𝒈(𝑨𝒊−𝟏)]                (7-3) 

A permutation of X is indicated by (i), and 𝑓(𝑥(1)) ≤ 𝑓(𝑥(2)) ≤ ⋯ ≤ 𝑓(𝑥(𝑛)) also 

𝐴𝑖 = {𝑥(𝑖), 𝑥(𝑖+1), … , 𝑥(𝑛)} , 𝐴0 =  𝜙. 

The prediction result of classifier 𝑥𝑖, is denoted by 𝑓𝑖, and  [𝑔(𝐴𝑖) − 𝑔(𝐴𝑖−1)] depicts 

the relative importance of the classifier 𝑥𝑖.  The fuzzy integral of f with respect to g is the 

integration result. 

7.3.2 PRELIMINARY FUZZY DENSITIES:  

 In the previous step, the top three random forest classifiers with the highest 

performance in the training data were selected and the confusion matrix for each classifier 

was determined. Eq. 7-3 is used to calculate the Choquet fuzzy integral on the fuzzy measures 

(g), reflecting the importance of each classifier and classifier combinations. Equation 7-1 is 

used to calculate the value of any combination of classifiers. These parameters are crucial in 
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the fuzzy integral vertical bagging classifier, and they play an essential role in the practical 

application of fuzzy integral in this algorithm and information fusion. 

The confusion matrix of the i-th classifier is defined as  

𝐶𝑀𝑖 = [
𝑛11
𝑖 ⋯ 𝑛1𝑀

𝑖

⋮ ⋱ ⋮
𝑛𝑀1
𝑖 ⋯ 𝑛𝑀𝑀

𝑖
]      𝑖 =  1,2, … , 𝑃 

where 𝑗1 = 𝑗2, 𝑛𝑗1𝑗2
𝑖  depicts the number of samples in class 𝑐𝑗1 which are correctly 

classified as 𝑐𝑗1 by the i-th classifier. On the other hand,  𝑗1 ≠ 𝑗2, 𝑛𝑗1𝑗2
𝑖  represents the number 

of samples with class label 𝑐𝑗1, but they have been misclassified as 𝑐𝑗2 by classifier i. Therefore, 

the probability of items which have been correctly classified is calculated by Eq. 7-5 for each 

classifier and class label.  

𝑝𝑗1𝑗
𝑖 = 𝑝(𝑠𝑘 ∈  𝑐𝑗1|𝐸𝑖(𝑠𝑘) = 𝑐𝑗) =

𝑛𝑗1𝑗
𝑖

∑ 𝑛𝑗1𝑗
𝑖𝑀

𝑗=1

 

(𝑗1 = 1,2,… ,𝑀; 𝑗 = 1,2, … ,𝑀) 

where i is the i-th classifier, M is the number of classes, and the probability matrix is  

𝑃𝑀𝑖 = [
𝑝11
𝑖 ⋯ 𝑝1𝑀

𝑖

⋮ ⋱ ⋮
𝑝𝑀1
𝑖 ⋯ 𝑝𝑀𝑀

𝑖
]  𝑖 = 1,2, … , 𝑃 

The 𝑝𝑗𝑗𝑖  elements in 𝑃𝑀𝑖  represent the percentage of items which are classified 

correctly by the 𝐸𝑖  classifier. Let  𝑔𝑗𝑖  = 𝑝𝑗𝑗𝑖 , then 𝑔𝑗𝑖  depicts the preliminary fuzzy density 

value for the j-th class with respect to the i-th classifier. The fuzzy density value of each 

classifier and the different class labels is the output of this step.   

7.3.3 ADAPTIVE FUZZY MEASURES:  

The classification results of random forest differ according to the feature set. Some 

classifiers may have better performance than others, and one classifier may be more robust 

than others for classifying certain types of items or classes. Merging classifiers by a voting 

strategy or by assigning an equal value to all classifiers is therefore not an efficient approach, 

(7-6) 

(7-5) 

 

(7-4) 
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and the fuzzy density measure (𝑔𝑗𝑖) needs to be properly adjusted by considering all classifiers 

and all classes. 

After the correct classification rates and misclassification errors within the classifiers 

have been calculated, the values are used to update the fuzzy densities. The fuzzy densities 

are then updated by considering the pairwise proportion of wrongly classified items between 

the selected classifiers and the others. The fuzzy density parameters can be updated using Eq. 

7-7 (Pham 2002):  

𝑔𝑗
∗𝑖 = 𝑔𝑗

𝑖  ∗ (∏𝛿𝑗
𝑖 𝑚⁄

𝑚

)

𝑤1

∗  (∏𝛾𝑗
𝑖 𝑚⁄

𝑚

)

𝑤2

 

where 𝑔𝑗∗𝑖 is the updated fuzzy density for the i-th classifier for class j; {𝛿𝑗
𝑖 𝑚⁄ } , 0 <

𝛿𝑗
𝑖 𝑚⁄ < 1, and  {𝛾𝑗

𝑖 𝑚⁄ } , 0 <  𝛾𝑗
𝑖 𝑚⁄ < 1 are the sets of updated parameters. 𝑔𝑗∗𝑖 is calculated 

for all classes. Each set of updated parameters could have a different impact on the final 

outcome, so to add flexibility to the final result, 𝑤1 and 𝑤2  in Eq. 7-7 are used in the 

updating process.  

𝛿𝑖 𝑚⁄  is used to update the initial fuzzy density when the output of two different 

classifiers do not have the same result. The initial fuzzy density of the classifier will be 

decreased by increasing the number of misclassified objects, while the correctly classified 

items will increase the power of the classifier using Eq. 7-8.  

𝛿𝑗
𝑖 𝑚⁄ =  𝑓(𝑥) = {

1                               , 𝑘𝑖 𝑖⁄ = 𝑘2 𝑚  ⁄  

𝑝𝑗 𝑖⁄ ,𝑗 𝑖  ⁄
𝑖 − 𝑝𝑘 𝑖⁄ ,𝑗 𝑚  ⁄

𝑖

𝑝𝑗 𝑖⁄ ,𝑗 𝑖  ⁄
𝑖

, 𝑘1 𝑖⁄ ≠ 𝑘2 𝑚  ⁄
 

where 𝑘1 i⁄ , and  𝑘2 m  ⁄ show that class 𝑘1 is given by classifier Ei  and class 𝑘2 is given 

by classifier Em. When 𝑘1 i⁄ = 𝑘2 m  ⁄ , this means that two classifiers have identified samples 

in similar classes. 𝑘1 i⁄ ≠ 𝑘2 m ⁄   means that two different classifiers have categorized a 

sample into two different classes. One sample may be correctly classified by Ei in class C1 but 

misclassified by classifier 𝐸𝑚. The proportion of objects correctly classified by  𝐸𝑖 for class j is 

(7-7) 

(7-8) 
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depicted by 𝑃𝑗 𝑖⁄ ,𝑗 𝑖  ⁄
𝑖 , but the number of items correctly classified by other classifiers is 

𝑝𝑘 𝑖⁄ ,𝑗 𝑚  ⁄
𝑖 . The training dataset is used to obtain both 𝑃𝑗 𝑖⁄ ,𝑗 𝑖  ⁄

𝑖 and  𝑝𝑘 𝑖⁄ ,𝑗 𝑚  ⁄
𝑖 . Once the 

number of items misclassified by 𝐸𝑖    have increased, the corresponding fuzzy density measure 

of the 𝐸𝑖   classifier will be decreased.  

The reason for updating the parameters 𝛾𝑗
𝑖 𝑚⁄   is that the initial fuzzy density of a 

classifier should be reduced when error 𝐸𝑖 is more than classifier 𝐸𝑚, but the fuzzy density 

value is not changed if classifier 𝐸𝑖 has the same or fewer mistakes than classifier 𝐸𝑚. This 

concept is developed by Eq. 7-9.   

𝛾𝑗
𝑖 𝑚⁄ =

{
 
 

 
 1                      ∶  𝑝𝑘 𝑖⁄ ,𝑞 𝑚⁄

𝑖 ≤ 𝑝𝑘 𝑖⁄ ,𝑞 𝑚⁄
𝑚

𝑝𝑘 𝑖⁄ ,𝑞 𝑚⁄
𝑚

𝑝𝑘 𝑖⁄ ,𝑞 𝑚⁄
𝑖             ∶ 𝑝𝑘 𝑖⁄ ,𝑞 𝑚⁄

𝑖 > 𝑝𝑘 𝑖⁄ ,𝑞 𝑚⁄
𝑚

휀                    ∶          𝑝𝑘 𝑖⁄ ,𝑞 𝑚⁄
𝑚 = 0 

     (7-9) 

where 휀 is a very small value which prevents 𝛾𝑗
𝑖 𝑚⁄  from being zero.  

 Adjusted fuzzy density is the output of this step, which updates the importance of each 

classifier in the training dataset by considering its performance in the training dataset by 

classifying items correctly or misclassifying them. The fuzzy measures are calculated to depict 

the weight of all classification algorithm that we want to merge them together in a fuzzy 

concept. Therefore, these measures are defined to provide a more robust weight for models 

by considering models accuracy and confusion matrix.  

7.3.4 CHOQUET FUZZY INTEGRAL  

 The performance of each classifier in the vertical bagging RF is variant. Some RF 

classifiers have insufficient power to predict the result correctly, while another RF model 

may achieve excellent performance on the same samples. We propose the Choquet fuzzy 

integral vertical bagging random forest to take advantage of different random forest models. 

The Choquet fuzzy integral fuses the results of multiple classifiers and provides a robust 

classifier with more consistent results. 
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Suppose in a sample data space S, data are divided into two classes by a classifier (E). A 

classifier index is specified by (𝑖 =  1, … , 𝑃); j is the class index (𝑗 =  1, … ,𝑀); and k is the 

instance index( 𝑘 =  1, … ,𝑁).  For the k-th sample, the prediction result by the i-th classifier 

is [ℎ𝑖1(𝑘), ℎ𝑖2(𝑘),… , ℎ𝑖𝑀(𝑘)]  where ℎ𝑖𝑗(𝑘)  is the probability result of the ith classifier, 

which shows the probability of k-th data belonging to class j. [ℎ1𝑗(𝑘), ℎ2𝑗(𝑘),… , ℎ𝑃𝑗(𝑘)]𝑇 

is defined as ℎ𝑗(𝑠𝑘) which can be interpreted as : 

ℎ𝑗: 𝑆 → [0,1] ,ℎ𝑗(𝑠𝑘) = [ℎ1𝑗(𝑘), ℎ2𝑗(𝑘), … , ℎ𝑃𝑗(𝑘)]𝑇   for sample sk , we obtain a 

value for ℎ𝑗(𝑠𝑘) as degree of support provided by each classifier with respect to the j-th class 

for sample 𝑠𝑘. 

In addition to ℎ𝑗(𝑠𝑘), the Choquet fuzzy integral operates on the fuzzy measures (g). 

Fuzzy measures include fuzzy densities and the fuzzy measure of any combination of 

classifiers, which are calculated by Eqs. 7-8 and 7-1. 

 By calculating the Choquet integral of ℎ𝑗(𝑠𝑘),  g, we can provide the degree of 

support given by the ensemble classifier with respect to the j-th class for sample sk.  The 

output class 𝑐𝑗 for sample 𝑠𝑘 is the class with the largest integral value:  

𝑐𝑗 = 𝑎𝑟𝑔 (𝑚𝑎𝑥
1≤𝑙≤𝑀

∫ℎ𝑙(𝑠𝑘)𝑑𝑔) 

A summary of the Choquet fuzzy integral vertical bagging classifier is as follows: 

Algorithm 7-1 - Choquet Fuzzy Integral Vertical Bagging (CFIVB) Classifier 

Input: Data, maximum number of features (F), maximum iteration (K) 

Output: imputed value 

1) Generate a list of important features in feature engineering step 
2) For k in [1,2, … K] as iteration: 
 Train RF with F number of random features 
 Validate RF with training dataset 
 End for k  

3) Select top three RF models for fusion with training dataset  
4) Construct the confusion matrix for each selected classifier (Eq. 7-4), with training 

dataset 
5) For each j in [1,2] as [male/female]: 
 For each i in [1,2,3] as top RF classifiers: 

 Calculate initial fuzzy densities by Eq.7-5. 
 Update parameter [𝜹𝒋

𝒊 𝒎⁄ ] by Eq. 7-8. 

(7-10) 

 

 

 

) 
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 Update parameter [𝜸𝒋
𝒊 𝒎⁄ ] by Eq.7-9. 

 Update the initial fuzzy densities by Eq.7- 7.  
 End for i 

 Compute the 𝒈𝝀- fuzzy measures with updated fuzzy densities 
 Compute the fuzzy integral each class with Eq. 7-3.  
 End for j 

6) Use Eq. 7-10 to detect the gender of a driver.  

7.4 EXPERIMENT RESULTS 

The primary goal of this section is to examine the prediction results of the 

methodology for gender detection from smartphone-generated data. We used almost 1 GB 

data containing the anonymized driving behaviour of 301 unique drivers. These data were 

collected by a usage-based insurance company in real-world conditions. The dataset consists 

of the streamed data of  408 trips. Each trip contains at least 15 minutes of driving data from 

301 unique drivers, some of whom feature in more than one trip. The number of male drivers 

is 161 and the number of female drivers is 140. A brief description of the final dataset is 

summarized in Table 7-2. 

Table 7-2- Data Description 

Number of 
trips 

Number of 
unique drivers 

Total driving 
distance 

Total driving 
time Male Female 

408 301 9898 km 202 hours 161 140 

The experiment started by decreasing the stream data sample rate. We found that the 

best sample rate in our data for gender detection was one sample per second, which is the 

average of all 15 samples in one second. After decreasing the sample rate, we developed a 

windowing process. We segmented the driving characteristics into time windows which 

were equal to 512 seconds, then extracted all the proposed features listed in Section III for 

each time window. Features with very low variance were removed, and we developed a 

correlation analysis between the extracted features and gender of the driver to find the features 

of highest importance. We selected features which had a correlation greater than 0.1. The 

correlation analysis report is depicted in Table 7-3.   
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Table 7-3- Correlation Analysis Results 

Feature name Correlation 
Speed mean -0.19708638 
Speed_Q3 -0.19611402 

Speed energy -0.19610685 
Pitch_rate_Q1 -0.19027125 
Speed median -0.1869981 

Speed_Q1 -0.18227661 
Pitch rate standard deviation 0.17657519 

Speed max -0.17616991 
Pitch rate energy 0.1666721 
Pitch rate kurtosis -0.16354984 

Pitch rate average absolute 
deviation 0.1609966 

Pitch_rate_Q3 0.13283702 
Acceleration lon zero-

crossing -0.11766974 

Speed skewness 0.11405972 
Yaw rate zero-crossing -0.10055166 

 

After selecting the most valuable attributes from the extracted features, we had a clean 

data source ready for analytics containing 15 features of 2048 windows for 1119 males and 

929 females. We used these data to validate our proposed classifier. We developed a 

comparison analysis with three base classifiers: random forest, gradient boosting classifier, and 

logistic regression. Our model was trained by setting the maximum number of iterations to 

100; the maximum number of features in rough set theory is 10. In addition to the input 

parameters for the vertical bagging classifier, we defined the exponential weights for w1 and 

w2 in Eq. 7-7 as W1=0.9 , W2=0.6 (Namvar & Naderpour 2018). The value of ε in Eq. 7-

9 was set to 0.0001.  

In order to assess the performance of each clustering methodology, we used a well-

known cross-validation methodology. This kind of validation helps to prevent over-fitting 

and under-fitting in the model performance evaluation (Malekipirbazari & Aksakalli 2015). 

In this research, we applied 5-fold cross-validation and we divided the total number of 

records which are 394,833 into five sets of data. In the first step, we selected the first 4 slices 
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of data for training the model and the last set of records for testing the model. In the next 

iteration, we selected the second slice for testing the model and the remaining slices for model 

training. This procedure is repeated 5 times. This process is illustrated in Figure 7-3.  

To calculate the final performance of the model, different statistical measures are 

calculated based on the performance of each fold.  

 

5-fold cross-validation is developed to evaluate the performance of the proposed 

model. Accuracy and area under the curve (AUC) are two performance measures in this 

research. AUC shows the area under the ROC curve, and the accuracy score reflects the 

proportion of correct items in relation to all items. We compared our model performance 

with three other classifiers and the results are depicted in Table 7-4. We selected these three 

algorithms because of the following reasons: Logistic Regression is the most simple 

classification model. Our model is the improved version of random forest, so we should 

 

Figure 7-2 - 5-Fold Cross-Validation  
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compare its performance with RF, and Gradient Boosting is one of the state of the art 

algorithm, which is mostly used recently.  

Table 7-4- Results 

 AUC Accuracy 
Our model 72.44 71.67 

Random Forest 68.23 64.16 

Logistic Regression 60.32 55.85 

Gradient Boosting Classifier 66.16 62.51 

 

The results in Table 7-4 indicate that the Choquet fuzzy integral vertical bagging 

classifier achieves the best performance in terms of accuracy and AUC compared to the 

selected alternative algorithms. These results show that the final model not only improves the 

performance of the base classifier, random forest, but it also achieves better performance than 

logistic regression and gradient boosting.   

In terms of accuracy, the proposed model achieves the best result for detecting gender. 

The accuracy score of the Choquet fuzzy integral vertical bagging classifier is 71.67, which is 

significantly higher than that of the classifiers selected for comparison. In addition to the 

accuracy score, we calculated the AUC score for each classifier. Our proposed model 

achieved 72.44, which is higher than the other three comparison models. The logistic 

regression classifier returned the worst results for both accuracy and AUC score for gender 

detection compared to the other methods. 

 To gain a comprehensive view of the performance of our model and to prevent 

overfitting or underfitting, we conducted 5-fold cross-validation. Figure 7-2 shows the 

performance of all four models for each run. The results show that our model achieves the 

highest performance in all folds.  
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7.5 SUMMARY 

The application of mobile telematics for business is not limited to driving style risk 

assessment as the risk score is only one variable, hence decision makers need more variables 

to make a suitable decision in different domains. For example, in the UBI industry, 

demographic variables such as gender play an important role for the premium calculation 

process, but mobile telematics is unable to provide this information when these variables are 

not declared by the users. In this chapter, a new machine learning model is proposed to detect 

the gender of drivers from driving style data. The proposed model plays the role of missing 

data imputation in the proposed decision support system in this study.  

A novel Choquet fuzzy integral vertical bagging classifier is proposed to detect the 

gender of the driver from smartphone-generated data. In addition, to the best of our 

 

 

Figure 7-3 - Choquet Fuzzy Integral Vertical Bagging  
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knowledge, this is the first model that uses smartphone data to detect the gender of a driver. 

The model uses randomly generated features to create several random forest models. Then, 

the Choquet fuzzy integral aggregates the results of the top classifiers to find the final result. 

The validation results show that the vertical bagging classifier with Choquet fuzzy integral 

achieves the best accuracy and AUC score for gender detection compared to the other 

classifiers.  
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Chapter 8: 

CONCLUSION AND FUTURE WORK 

8.1 CONCLUSIONS 

This research has been motivated by the fact that mobile telematics devices can collect 

a huge amount of data which reveals human behaviour. These devices can provide useful 

applications for decision making. Thus, proposing a decision support system for mobile 

telematics using the capabilities of advanced analytical techniques and machine learning 

algorithms can help decision makers make better decisions in the mobile telematics 

environment.   

The proposed DSS has superior performance in comparison with traditional forms of 

decision support systems. Traditional decision makers typically overlook the relationships 

among the involved criteria and are not able to identify the imprecise reasoning embedded 

in their criteria. Rule-based risk assessment methods are also time-consuming and 

challenging as they are heavily reliant on experts’ knowledge, which also make them very 

subjective. The system proposed in this thesis relies upon new advancements in artificial 

intelligence and machine learning to provide new opportunities for mobile telematics data 

analytics to use supervised and unsupervised learning and automatic rule extraction 

algorithms to a build decision support system for risk assessment in mobile telematics. In this 
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study, we proposed an analytical platform to analyze mobile telematics data for risk assessment 

and also a novel supervised learning algorithm is proposed to apply to mobile telematics 

analytics once the labelled data is available.  

The availability of labelled data is a major concern for modelling a supervised learning 

model in mobile telematics. The neural networks rule extraction, random forest classification 

algorithm, and deep learning models all achieve outstanding performance once the labelled 

data is available, but these models are not suitable to help analytical experts in the absence of 

true labels. 

Because of the aforementioned weaknesses, in addition to the proposed supervised 

learning model, we introduced an unsupervised learning model for mobile telematics pattern 

recognition to understand the hidden patterns in large and complex datasets. These models 

try to cluster unlabeled data into groups. In addition, we provided a fuzzy risk assessment 

method to assess the risk of drivers by combining the capabilities of fuzzy inference systems 

and advanced machine learning techniques.  

The proposed system can provide an outstanding contribution to mobile telematics 

data analytics and the big data environment. However, using this model in the practical sector 

needs a particular big data platform with a cloud computing feature, and all the capabilities of 

the proposed system will be available by implementing it on distributed computing platforms. 

One of the most important limitation of this study is availability of labelled data which 

is suitable for research domain to assess the performance of the models using supervised 

techniques and model. The labelled data is rare in driving style analysis techniques, hence we 

proposed unsupervised assessment techniques.  

This research makes the following main contributions: 

 First, a decision support system is proposed to analyze driving behaviour for 

decision making using various advanced analytical techniques, including fuzzy 

logic, artificial intelligence and advanced analytics. The proposed framework 
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has four major components: 1) data preparation, 2) driving style pattern 

recognition, 3) fuzzy risk assessment, and 4) missing data imputation. 

 Second, a risk assessment methodology which learns from big data is proposed. 

Most of the studies in the field of big data risk assessment only focus on 

supervised learning techniques, however this study aims to contribute to this 

growing area of research by exploring unlabeled data for automatic risk 

assessment using unsupervised learning and fuzzy logic. While the framework 

is proposed for risk assessment in mobile telematics risk assessment, it is still 

general and can also be used for other multi-criteria decision making. 

 Third, an unsupervised learning framework is proposed to extract different 

risk factors for decision making automatically. The lack of labeled data is a 

fundamental challenge for all machine learning and artificial intelligence 

algorithms. Thus, in this study, we deal with the current challenges of 

unlabeled data in the big data domain which still remains an open problem. 

The proposed algorithm is a two-step clustering algorithm incorporating a 

self-organizing map (SOM) and fuzzy clustering. The SOM reduces the 

complexity of the data and fuzzy clustering categorizes the input dataset.   

 Fourth, a fuzzy decision support system using the capability of a fuzzy 

inference system to handle uncertainty and the lack of confidence in the noisy 

data is proposed. Big data generated by digital devices, social media, and sensor 

technologies contain noise, and analyzing them can impair the analytical 

result, hence by increasing the volume, velocity, and variety of data, the final 

result will be more sensitive to noise. Therefore, we use fuzzy logic to decrease 

the uncertainty and lack of confidence in the data.  

 Fifth, we evaluated the proposed framework using sensitivity analysis on big 

data collected by smartphones to assess the risk of car journeys for usage-based 
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insurance. We evaluate the results using sensitivity analysis to show the 

confidence of the final results. 

 Sixth, an empirical assessment is made of five partitive clustering algorithms 

on SOM and deep auto-encoder results by the Davis Boulding and Calinski 

Harabasz indexes as well as execution time. The performance results show that 

a  self-organizing map and k-means clustering are the best combination of the 

two-stage clustering of similar driving patterns into a set of driving behaviours. 

 Seventh, an approach to identify the driving events with the highest rate of 

change according to three key characteristics, velocity, x-axis acceleration, 

and y-axis acceleration, using relative unconstrained least-squares importance 

fitting (RuLSIF) is proposed as data preparation.  

 Eighth, a Choquet fuzzy vertical bagging classification algorithm is proposed 

to extract driving patterns from big data automatically using labelled data. The 

algorithm is completely new and combines the capability of the random forest 

algorithm with the Choquet fuzzy integral. Moreover, we proposed a new 

application for this algorithm to detect the gender of drivers from mobile 

telematics driving patterns.  

8.2 FUTURE WORKS 

The future directions of this research can be summarized from the following 

perspectives: 

 One of the major contributions of this research is extracting driving behaviour 

from mobile telematics data using advanced analytics and unsupervised 

learning methods. We extracted 29 unique clusters of driving behaviours. 

These clusters can be used as a starting point for researchers in the field of 

transportation.  
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 Proposing a supervised learning algorithm for driving identification, risk 

assessment and behaviour detection is the next step for this research. The lack 

of labelled data was a significant challenge in this project. The labels provided 

in this research can be applied to other studies to provide new classification 

algorithms. Moreover, one of the most vexing challenges with using machine 

learning techniques for driving style analytics is the lack of labeled data. Thus, 

researchers in the field of transportation and road safety could also use this 

framework to label unlabelled datasets. Once labelled, the data could be used 

with a supervised learning technique with most state-of-the-art machine 

learning algorithms for various applications. 

 The Choquet fuzzy vertical bagging classifier is a new algorithm with many 

opportunities to apply it in different domains. This algorithm is proposed for 

the first time and it has a wide range of applications in other areas of research. 

The performance of the Choquet fuzzy integral vertical bagging classifier is 

much higher than other classification algorithm, so the contribution is great.  

 Many of the traditional decision support systems are proposed based the 

experts’ opinion and they are very expensive and time-consuming. This 

research proposed an autonomous big data-driven decision support system for 

risk assessment. We applied this methodology for risk assessment in the mobile 

telematics environment. Other researchers can apply this methodology in 

other domains such as financial risk assessment in stock market time series data 

and transaction analysis for fraud detection.  

 In addition to the practical application of the proposed models in other 

domains, the Choquet fuzzy integral vertical bagging classifier has great 

potential in improving  other techniques. The performance of the  algorithm 

can be improved using automatic feature extraction such as deep auto-
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encoder and convolutional neural networks algorithms. Moreover, 

performance tuning and sensitivity analysis is another goal to evaluate the 

proposed algorithm. For example, the effects of variations in input variables, 

such as the maximum number of features and the maximum number of 

iterations, on the model’s performance can be evaluated to assess model 

sensitivity. 

 Fuzzy measures proposed in this study has great performance for merging 

classification results together. This concept and choquet fuzzy can be applied 

in other bagging and boosting classifiers such as random forest to improve the 

performance of them.  

 XAI is one of the key areas of work being looked at in recent years. Working 

towards XAI is another future study for this research in trying to make the 

black box models in a more white box based approach.  
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APPENDIX: ABBREVIATIONS 

AggC Agglomerative Clustering 
ACC Accuracy 
AHP Analytic Hierarchy Process 
AI  Artificial Intelligence 
ANN Artificial Neural Networks 
AUC Area Under Curve 
ARNet Auto-encoder regularized network 
BirC Birch Clustering 
BTS  Base Transceiver Station  
CFIVB Choquet Fuzzy Integral Vertical Bagging 
CHI Calinski-Harabasz index 
CM Confusion Matrix 
CNN Convolutional Neural Networks 
COV Covariance 
D3M Data-Driven Decision making 
DAE Deep Auto-Encoders 
DBI  Davis-Boulding index 
DM Decision making 
DSAE Deep Sparse Auto-Encoders 
DSS Decision Support System 
DT Decision Tree 
FCM Fuzzy C means clustering 
FDSS Fuzzy Decision Support System 
FE Features Extraction 
FI Fuzzy Integral 
FLS Fuzzy Logic System 
FN False Negative 
FP False Positive 
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GBC Gradient Boosting Classifier 
GBM Gradient Boosting Machine 
GPS Geographic position system 
IV Imputed Value 
IVDR In-Vehicle Data Recorder 
LR Logistics Regression 
MADM Multi-Attribute Decision Making 
MBK-means Mini-Batch K-means Clustering  
MCDM Multi-Criteria Decision Making 
MAD Mean Absolute Deviation  
MD Missing Data 
ML  Machine Learning 
MSQ Mean Squared Error 
PCA Principal Component Analysis 
RF Random Forest 
RNN Recurrent Neural Networks 
ROC Receiver Operating Characteristic 
RS Risk Score 
RST Rough Set Theory 
RuLSIF Relative unconstrained Least-Squares Importance 

Fitting 
ParC Partitive Clustering 
SD Standard Deviation 
SpeC Spectral Clustering  
SME Subject Matter Expert 
SOM Self-Organizing Map 
SSE Sum of Squares Error 
SVM Support Vector Machine 
TN True Negative 
TP True Positive 
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VB Vertical Bagging 
Wi-Fi Wireless Local Area Network 
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