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Abstract

With growing popularity of the machine learning methods, there have been a

great number of machine learning methods proposed for graph analytics. In this

thesis, we design three machine learning based models for the popular graph

analysis tasks such as node classification, graph representation learning, graph

interaction prediction and subgraph matching.

Firstly, we design a binarized graph neural network to efficiently obtain the

vector representations for vertices and graphs. Recently, there have been some

breakthroughs in graph analysis by applying the Graph Neural Networks (GNNs)

following a neighborhood aggregation scheme, which demonstrate outstanding

performance in many tasks. However, we observe that the parameters of the

network and the embedding of nodes are represented in real-valued matrices in

existing GNN-based graph embedding approaches which may limit the efficiency

and scalability of these models. It is well-known that binary vector is usually

much more space and time efficient than the real-valued vector. This motivates

us to develop a binarized graph neural network to learn the binary represen-

tations of the nodes with binary network parameters following the GNN-based

paradigm. Our proposed method can be seamlessly integrated into the existing

GNN-based embedding approaches to binarize the model parameters and learn

the compact embedding. Extensive experiments indicate that the proposed bina-

rized graph neural network, namely BGN, is orders of magnitude more efficient

in terms of both time and space while matching the state-of-the-art performance.

Secondly, we first design a graph of graphs neural network for entity interac-

tion prediction, and then extend the model to support the graph classification

task with more expressive representations. Entity interaction prediction is essen-

tial in many important applications such as chemistry, biology, material science,

and medical science. The problem becomes quite challenging when each entity is
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represented by a complex structure, namely structured entity, because two types

of graphs are involved: local graphs for structured entities and a global graph to

capture the interactions between structured entities. We observe that existing

works on structured entity interaction prediction cannot properly exploit the

unique graph of graphs structure. In this thesis, we propose a Graph of Graphs

Neural Network, namely GoGNN, which extracts the features in both struc-

tured entity graphs and the entity interaction graph in a hierarchical way. We

also propose the dual-attention mechanism that enables the model to preserve

the neighbor importance in both levels of graphs. Based on GoGNN, we further

propose a Powerful Graph Of graphs neural Network, namely PGON, which has

3-Weisfeiler-Lehman expressive power and captures the attributes and structural

information from both structured entity graphs and entity interaction graph hi-

erarchically. Extensive experiments are conducted on real-world datasets, which

show the superior performance of GoGNN and PGON compared to other state-

of-the-art methods on both graph classification and graph interaction prediction

tasks.

Thirdly, we design a reinforcement learning based query vertex ordering

model for subgraph matching. Subgraph matching is a fundamental problem

in various fields that use graph structured data. Subgraph matching algorithms

enumerate all isomorphic embeddings of a query graph q in a data graph G. We

apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs)

techniques to generate the high-quality matching order for subgraph matching

algorithms. Instead of using the fixed heuristics to generate the matching order,

our model could capture and make full use of the graph information, and thus de-

termine the query vertex order with the adaptive learning-based rule that could

significantly reduce the number of redundant enumerations. With the help of the

reinforcement learning framework, our model is able to consider the long-term
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benefits rather than only consider the local information at current step.
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