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Thesis Abstract 

 Species of the genus Alexandrium are one of the most studied dinoflagellates due to their 

production of the neurotoxins, Paralytic Shellfish Toxins (PSTs). PST-associated Harmful 

Algal Blooms (HABs) appear to be increasing around the world. The appearance of species of 

Alexandrium is now frequent in coastal waters of Australia, particularly in Tasmania and New 

South Wales. The East Australian Current (EAC) flows southward along the coasts of eastern 

Australia and has been reported as a global ‘climate change hotspot’. Despite such potent 

neurotoxin production, the ecology, toxicity and population dynamics of Alexandrium species 

are little known in Australia.  

In this thesis, I have investigated the first record of PST above the regulatory limit of 0.8 mg/kg 

produced by Alexandrium pacificum in the commercial aquaculture area of south-eastern 

Australia. During this unprecedented event, the maximum reported PST concentration in 

mussel tissue was 7.2 mg/kg STX equivalent. A comparative differential gene expression study 

was conducted to understand the gene regulation of PST related genes in Alexandrium 

pacificum. In this study, experiments were performed in the presence and absence of the 

copepodamide-synthesizing copepod Parvocalanus crassirostris. Using Nanostring gene 

technology, results identified the up-regulation of the key PST-related gene sxtA, in particular, 

one paralogue each of domains of sxtA1 and sxtA4. An increased rate of PST production in the 

two PST-producing strains in the presence of copepods was identified, however it did not 

influence gene related transcript abundance. This indicated that post-transcriptional regulation 

processes may be important in regulating PST production in Alexandrium pacificum. In this 

thesis, the population structure of Alexandrium pacificum was examined in different Australia 

boundaries currents – the East Australian Current (EAC) and the Leeuwin Current (LC). This 

study was conducted using Single Nucleotide Polymorphisms (SNPs) as genetic markers and 

represents the first time the population structure of a phytoplankton species has been examined 

in Australian waters. Strains from South Australia and Western Australia clustered as a group, 

and were separated from the strains isolated from the EAC region, indicating the presence of 

genetic isolation of A. pacificum strains in Australian waters. It suggests that A. pacificum is 

more likely to represent a long resident population, and it is not a recent bioinvasion in Western 

Australian waters. 
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The results identified during this study significantly advance the understanding of 

Alexandrium, especially their abundance, diversity, population structure and the regulation of 

the PST-related genes. 
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