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Abstract

Together with the rapid development of digital information and the increase in

amount of data, machine learning (ML) algorithms have been developed and evolved

constantly to discover new information and knowledge from different data sources.

The use of hyperbox fuzzy sets as fundamental representational and building blocks

in learning algorithms forms an important branch of ML. Hyperbox-based algo-

rithms have a huge potential for high scalability and incremental adaptation to ap-

plications working in the dynamically changing environments. Additionally, learning

algorithms based on hyperbox representations can form interpretable models, which

are highly desirable for areas with the requirement of safety and trust. This study

aims to develop and expand robust, scalable, and transparent learning algorithms

for hyperbox-based classification models with a specific focus on a general fuzzy

min-max neural network (GFMMNN).

First of all, a comprehensive survey on hyperbox-based machine learning mod-

els together with empirical assessments of the GFMMNN on pattern classification

problems were conducted. Next, a new online learning algorithm was proposed for

the GFMMNN and improved the robustness of the whole family of GFMMNN learn-

ing algorithms to work effectively with mixed-attribute data by introducing a new

learning mechanism for categorical features. In terms of scalability, the main steps

of the learning algorithms were reformulated so they can be effectively executed on

graphics processing units using matrix operations, simultaneously proposing math-

ematical lemmas to reduce the redundancies of hyperbox candidates in the learning

process. This thesis also proposed a novel method to enhance the transparency of

classifiers while maintaining a good classification performance by using hierarchi-

cal granular representations from hyperbox fuzzy sets. The last contribution was

a simple but powerful ensemble model built from many individual hyperbox-based

classifiers trained on random subsets of both sample and feature spaces. Extensive

empirical analyses indicated that the proposed solutions are highly competitive with

other evaluated learning algorithms.
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