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Abstract

Together with the rapid development of digital information and the increase in

amount of data, machine learning (ML) algorithms have been developed and evolved

constantly to discover new information and knowledge from different data sources.

The use of hyperbox fuzzy sets as fundamental representational and building blocks

in learning algorithms forms an important branch of ML. Hyperbox-based algo-

rithms have a huge potential for high scalability and incremental adaptation to ap-

plications working in the dynamically changing environments. Additionally, learning

algorithms based on hyperbox representations can form interpretable models, which

are highly desirable for areas with the requirement of safety and trust. This study

aims to develop and expand robust, scalable, and transparent learning algorithms

for hyperbox-based classification models with a specific focus on a general fuzzy

min-max neural network (GFMMNN).

First of all, a comprehensive survey on hyperbox-based machine learning mod-

els together with empirical assessments of the GFMMNN on pattern classification

problems were conducted. Next, a new online learning algorithm was proposed for

the GFMMNN and improved the robustness of the whole family of GFMMNN learn-

ing algorithms to work effectively with mixed-attribute data by introducing a new

learning mechanism for categorical features. In terms of scalability, the main steps

of the learning algorithms were reformulated so they can be effectively executed on

graphics processing units using matrix operations, simultaneously proposing math-

ematical lemmas to reduce the redundancies of hyperbox candidates in the learning

process. This thesis also proposed a novel method to enhance the transparency of

classifiers while maintaining a good classification performance by using hierarchi-

cal granular representations from hyperbox fuzzy sets. The last contribution was

a simple but powerful ensemble model built from many individual hyperbox-based

classifiers trained on random subsets of both sample and feature spaces. Extensive

empirical analyses indicated that the proposed solutions are highly competitive with

other evaluated learning algorithms.
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Chapter 1

Introduction

We are living in the world with the rapid development of digital information, where

the data volume generated by humans and machines is growing exponentially. In the

era of big data, a question of how different data sources can be consumed and trans-

formed into valuable, actionable knowledge has become critically important. Over

the last few decades, many data mining methods have been studied and expanded

aiming to invent an effective way for discovering meaningful knowledge and informa-

tion from raw data. These techniques have contributed to mining diverse patterns

hidden in data repositories (Zakaryazad and Duman 2016). By comprehending the

knowledge underlying data, one can make important decisions more accurately in

numerous fields ranging from business, finance, medicine to manufacturing sectors.

There have been a large number of studies conducted on the subjects of data mining,

data analytics, as well as predictive modeling over the last 50 years with remarkable

enhancements of the computing equipment and the algorithms (Gabrys et al. 2005).

Within all these studies, many machine learning algorithms have been developed

with an emphasis on pattern clustering and classification.

Machine learning is a field of research concerned with the formulation and de-

velopment of algorithms which provide the machine with the capability of learning

and evolving their behaviors based on data coming from a variety of sources such as

sensors or databases. Mitchell (Mitchell 1997) gave a formal definition of machine

learning algorithms, which are software programs being able to do some tasks T by

learning from experience E and their performance assessed by P . Therefore, when

designing a new machine learning algorithm, one needs to think of what data to

collect (E), what decisions the algorithm must generate (T ), and what metrics are

used to assess its performance (P ).



2

Learning algorithms using hyperboxes as fundamental representational and build-

ing blocks are a branch of machine learning methods. These algorithms have enor-

mous potential for high scalability and online adaptation of predictors built using

hyperbox data representations to the dynamically changing environments. This the-

sis focuses on developing and extending the learning algorithms for a specific type

of universal hyperbox-based classifiers, i.e., general fuzzy min-max neural network.

1.1 Background and Motivation

Most prevalent classes of machine learning techniques for pattern classification

are various types of Artificial Neural Networks (ANNs) (Mukhopadhyay et al. 2002)

because of their ability to learn from different types of input data, immunity to

noise, generalization capability, and relatively high accuracy (Kim et al. 2011; Mo-

hammed and Lim 2017b). It has also been observed that the traditional machine

learning models are trained and their parameters are tuned on a given set of train-

ing data, and then the best model is deployed for dealing with specific problems

without performing any updates afterward until the maintenance phase (Fontama

et al. 2015). With the exponential growth of digital content and information lead-

ing to the rise in data volume, such conventional batch learning or offline learning

techniques face many limitations because they adapt poorly to the rapid changes of

data and suffer from costly re-training when adaptation is needed. It is desirable

to develop robust and scalable machine learning algorithms with the aim of robust

adaptation to evolving data and changing environments. Learning algorithms need

to provide the models with the ability to capture the new features of data for de-

creasing the loss of predictive performance. One of the main issues with respect

to the ANNs and conventional classifiers using both incremental and batch learn-

ing is catastrophic forgetting also known as stability-plasticity dilemma (McCloskey

and Cohen 1989), which relates to the inability of the classifier to retain previously

learnt patterns when new patterns are absorbed by that classifier (Polikar et al.

2001). Hence, classifiers frequently forget learned information while learning new

information (Grossberg 2013). To tackle this issue, a classifier has to be able to re-

main plastic enough to absorb new information and simultaneously be stable enough
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to maintain previously acquired knowledge while learning new information (Gross-

berg 2013). Resolving the stability-plasticity dilemma problem is especially essential

when using online learning for classifiers (McCloskey and Cohen 1989; Yang et al.

2004).

In addition to online learning, the effective machine learning model should pos-

sess several properties as follows (Simpson 1992):

• Non-linear separability: This is ability to construct non-linear class boundaries

(Sonule and Shetty 2017).

• Overlapping region: The model is capable of formulating non-linear decision

boundary to minimize the misclassification error for all overlapping classes.

• Soft and hard decisions: The algorithm should offer both soft and hard deci-

sions. The hard decision allocates a sample to a single class, while the soft

decision outputs the degree-of-fit of that pattern to a given class.

• Training time: The learning algorithm to train the model should be fast and

have the ability to learn arbitrarily complex class decision boundaries.

• Verification and validation: This property imposes that each machine learning

model should have the mechanisms to verify and validate its performance.

• Adjusting parameters: The model should have as few parameters that need to

be adjusted during the training process as possible.

The online learning ability of the effective learning systems with above properties

is highly expected to deal with the huge amount of data. With an increasing in

computing power and the availability of the huge amount of data, it is now feasible

and even expected to build robust algorithms and systems leveraging all available

resources and performing intelligent tasks, such as language understanding, adaptive

pattern recognition, reasoning with uncertainty, and many others (Gabrys et al.

2005). Such a system can develop and modify its functionality and architecture

in a continuous, self-organized, adaptive, and interactive manner (Kasabov 2019;
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Gabrys et al. 2005). Seven major characteristics of smart adaptive systems (SAS)

were proposed in (Kasabov 2019):

1. Capability of fast learning from a vast amount of data with one-pass learning

mode or beginning from little or no prior knowledge.

2. Having an evolving, open, and adjustable architecture. Particularly, the sys-

tem can add new input and output variables as well as evolving or changing

connections among components and modules during the operation in an in-

cremental way.

3. The system should adapt and accommodate the new data in a real-time, online,

and incremental approach.

4. Active interaction with other learning systems and the working environment in

the multi-modular or hierarchical ways is employed to enhance the performance

of the system

5. Representing both time and space in their different scales, long and short-term

memory, forgetting, age of data, etc.

6. Having the ability of self-improvement, self-assessment in terms of behaviors,

analyzing its own performance, and explaining learned knowledge.

7. Data learning and knowledge representations are performed by comprehensive

and flexible mechanisms ranging from supervised and unsupervised learning,

evolving clustering, forgetting/pruning to fuzzy rule insertion and extraction.

The system should deploy a memory-based method to facilitate adding, re-

trieving, and eliminating individual pieces of data and information.

Such a system can be built based on multi-dimensional hyperbox fuzzy sets. Hy-

perboxes can be used to deal with the pattern classification and clustering problems

effectively by partitioning the pattern space and assigning a class label or cluster

associated with a degree of certainty for each region. Each fuzzy min-max hyperbox

is represented by minimum and maximum points together with a fuzzy membership
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function. The membership function is employed to compute the degree-of-fit of each

input sample to a given hyperbox. Meanwhile, the hyperboxes are continuously ad-

justed during the training process to cover the input patterns. The idea of using

hyperbox fuzzy sets for building machine learning models was proposed in the fuzzy

adaptive resonance theory neural networks (Carpenter et al. 1991), and then it was

enhanced to formulate the fuzzy min-max neural network (FMNN) in Simpson’s

work for classification (Simpson 1992) and clustering (Simpson 1993). Since then,

many studies have focused on enhancing this type of neural network, in which a gen-

eral fuzzy min-max neural network (GFMMNN) (Gabrys and Bargiela 2000) was a

big improvement and generalization of the FMNN combining both classification and

clustering in a single framework. This study aims to develop and extend learning

algorithms using hyperbox fuzzy sets as basic representational units inspired by the

GFMMNN. Therefore, the main algorithms using hyperbox representations will be

reviewed in this study to identify the open problems in this field of research.

Existing hyperbox-based machine learning algorithms have addressed some as-

pects of smart adaptive system requirements mentioned above. However, there are

still a plethora of issues needing to be tackled to formulate a real smart adaptive sys-

tem. This study is built on the general fuzzy min-max neural network and principles

of developing classifiers with good generalization performance discussed in Gabrys

(2004). The main purpose of this study is to formulate robust and scalable learning

algorithms, which form a solid base to be able to construct a real smart complex

adaptive system in the near future.

Robustness. Jen (2003) defined that robustness refers to the feature persistence

of systems against perturbations. A robust predictive machine learning algorithm

can result in the same performance even when a small perturbation occurs in the

data or internal parameters. Robustness provides a general framework to study the

coupling between the behavior and organizational architecture of the system and

dynamically changing environment. Robustness prevents systems from deteriorat-

ing too much in their performance when there are some changes in data by some

factors such as noise. As a result, the learning algorithms using hyperbox repre-
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sentations proposed in this study will be less affected by noise and disturbance of

data. The definition of robustness can also be expanded in the direction that learn-

ing algorithms need to maintain a good performance for input patterns with both

continuous and categorical features and data with high dimensionality.

In terms of learning from data with mixed-attribute, current learning algorithms

of the GFMMNN only work well on data with continuous features. However, the

data generated by many real-world applications are usually in the form of mixed-

type features. For example, the mixed-attribute data are more and more popular

in a wide range of applications from the credit approval data to medical diagnostic

data (Huang et al. 2019). Hence, to apply the GFMMNN to such problems, it is

necessary to extend its current learning algorithms so that they can deal effectively

with mixed-attribute data. This is one of the motivations to make the current

learning algorithms of the GFMMNN become more robust and flexible in this study.

It is difficult to build a good classifier in high dimensional spaces because of

the decrease in the generality and representativeness of training samples when the

number of dimensions increases (Domingos 2012). Certainly, the hyperbox-based

classifiers also face such curse of dimensionality problem. One of the solutions to

build a high performing model in the high dimensional space is the use of ensemble

learning, in which base learners are trained on a subset of feature spaces. Ensemble

models help to reduce variance of individual learners while only slightly increasing

bias of the final model (Domingos 2012). Therefore, ensemble models are usually

more reliable than individual models. This is another motivation to construct an

ensemble model from many hyperbox-based classifiers.

Scalability. Nowadays, the rapid increase in both amount and dimensionality

of data imposes new challenges on data-driven machine learning models. Learning

algorithms should have the capability of dealing effectively with large-sized and/or

very high dimensional datasets. Therefore, scalability is a crucial issue affecting the

applicability and usage of every learning model to real-world applications. As a

result, the parallelism abilities and processing in many cores/GPUs or clusters are

considered when designing learning algorithms. The computational performance of
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the algorithms can be significantly improved by adding more resources to handle

the problems in parallel. The different techniques to accelerate learning algorithms

for the GFMMNN are also sources of motivations for this study.

Interpretability and Transparency. In addition to robustness and stability,

transparency is one of the crucial factors leading to the applicability of machine

learning algorithms in the practical applications (Rudin 2019). Transparency of

a model means that both experts and non-experts may easily comprehend its pa-

rameter values, representations, assumptions, workflow, and predictive outcomes

(Sampson et al. 2019). Nauck (2005) claimed that the transparency characteristic

is essential for a predictive model operating in the following situations: supporting

human in making decisions in critical fields with a need for explaining and taking

responsibility for those decisions such as health-care or criminal justice; verifying the

changes in knowledge used as a base for prior analytics; interpreting the predictive

results for non-experts. In a recent study, Rudin (2019) has highlighted that there is

a high demand for interpretable models to substitute black-box models in assisting

decision-makers in areas with the requirement of high safety and trust. Most of the

current high performing models use ANNs and deep learning mechanisms for pat-

tern recognition problems. However, the main disadvantage of these ANNs is that

they do not have the capability of giving explanations of their predictive results

to humans explicitly. This drawback restricts the widespread use of the ANNs for

critical domains such as health-care and criminal justice. In contrast, one of the

advantages of using hyperbox representations for classifiers is that it can lead to

interpretable models. However, model accuracy is usually reduced when increasing

model transparency (Nauck 2003). As a result, this thesis proposes a method of

maintaining accuracy in an acceptable range while reducing the complexity of the

predictive model. This method is suitable for applications with a high need for

transparency and accuracy.

In summary, this thesis researches methods of constructing classifiers based on

hyperbox representations, in which the characteristics of scalability, robustness, and

transparency are considered.



8

1.2 Research Aims and Objectives

The overall aim of this study is to build robust and scalable classifiers towards

forming smart adaptive systems based on and using hyperboxes as fundamental

building blocks and representations. To achieve this overall aim, this thesis focuses

mainly on addressing the particular objectives as follows:

1. Conducting a comprehensive survey and empirical assessment of

existing hyperbox-based learning algorithms. Recognizing and evalu-

ating the existing methods is a very important step to develop novel solu-

tions. Hence, this objective is to perform an assessment of existing learning

algorithms and categorize them in a meaningful manner. Completing this ob-

jective will create a solid foundation to develop new learning algorithms in

further studies.

2. Development of new online learning algorithms for single GFMM

models. This objective is to build new robust learning algorithms for the

GFMMNN aiming to address the weak points identified in the literature and

empirical analyses. The results of this objective contribute to formulating

learning algorithms more robust for the GFMMNN on datasets with different

types of features, e.g., mixed attributes, as well as noisy data. The robustness

of the algorithms will be analyzed in detail via many datasets.

3. Investigation of solutions to accelerate the current learning algo-

rithms of the GFMMNN. This objective is to address the long training

time of learning algorithms for the GFMMNN. Different techniques related

to the changes in the learning steps and parallel implementation mechanisms

need to be developed and assessed on variety of large-sized datasets.

4. Development of methods to increase the transparency of hyperbox-

based classifiers but still maintaining an acceptable accuracy. This

objective is motivated by the practical demands for simplification of data to-

wards being consistent with human abstract thinking and problem solving as
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well as tolerance of uncertainty. This objective is to propose a method of con-

structing more interpretable learning models using hyperbox fuzzy sets. The

effectiveness and robustness of the method will be analyzed across experiments

on synthetic and real-world datasets.

5. Development of robust ensemble models using hyperbox represen-

tations. As mentioned in the background section, redundant or irrelevant

features usually make a negative impact on the model performance. Addi-

tionally, the ensemble model is usually more robust and high-performing than

single models. Therefore, this objective is to construct robust ensemble models

from many single hyperbox-based models.

1.3 Original Contributions

This thesis contains a number of key contributions as highlighted below and

expanded upon in the following chapters:

• A comprehensive survey on hyperbox-based machine learning al-

gorithms. This contribution focuses on reviewing and categorizing existing

algorithms in terms of theory and application. This thesis also analyzes in

depth the advantages and disadvantages of each algorithm. Through analyses

and evaluations, the potential research directions in this field of research is

identified. (Chapter 2). This is linked to Objective 1.

• Conducting a comparative study of performance influencing factors,

advantages, and drawbacks of the GFMMNN on pattern classifi-

cation problems. This study is built on the learning principle of the gen-

eral fuzzy min-max neural network. Therefore, it is necessary to assess the

impact of user-defined hyper-parameters on classification performance of the

GFMMNN. This contribution also compares the performance of GFMMNN

to other FMNNs and prevalent machine learning models. Empirical outcomes

have informed potential research directions of this class of machine learning

algorithms in the future. (Chapter 3). This is linked to Objective 1.
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• Proposing a new online learning algorithm for the GFMMNN work-

ing properly on continuous features. This contribution proposes an im-

proved version of the current online learning algorithm for the GFMMNN to

tackle existing issues concerning expansion and contraction steps as well as

the way of dealing with unseen data located on decision boundaries. The

proposed approach eliminates the contraction process in the original online

learning algorithm, which is more likely to increase the error rate as shown

in the literature when using high values of hyperbox sizes. This contribu-

tion enables to build the learning models robust to the disturbance of internal

parameters. (Chapter 4). This is linked to Objective 2.

• Proposing a new online learning algorithm for the GFMMNN able

to work on mixed-attribute data. One of the downsides of the original

learning algorithms for the GFMMNN is the inability to handle and learn

from the mixed-attribute data. The existing approaches in the literature for

handling mixed-attribute data are not suitable for online learning algorithms

working in the dynamically changing environments without ability to retrain

or access full historical data, which are usually required for many real world

applications. Hence, this contribution builds an extended version of the pre-

viously proposed online learning algorithm. The proposed method can handle

the datasets with both continuous and categorical features. It uses the change

in the entropy values of categorical features of the samples contained in a

hyperbox to determine if the current hyperbox can be expanded to include

the categorical values of a new training instance. An extended architecture of

the original GFMMNN and its new membership function are also introduced

for mixed-attribute data. Important mathematical properties of the proposed

learning algorithms are also presented and proved. (Chapter 5). This is linked

to Objective 2.

• Proposing the approaches to accelerating training algorithms of

GFMMNN. One of the problems of learning algorithms for the GFMMNN is

a long training time even when the number of samples is relatively low because
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the time complexity of the learning algorithms is proportional to the number

of dimensions of samples. This is a quite common problem shared by many

prototype-based methods requiring frequently repeated distance or similarity

calculations. Therefore, the first solution is the use of matrix operations and

GPUs to accelerate learning algorithms for very high dimensional datasets.

It redefines the learning algorithms to facilitate the parallel execution on the

GPUs by taking advantage of intrinsic parallelization characteristics of the

GFMMNN. Another problem related to the current learning algorithms is the

redundancy of the selected hyperbox candidates in the learning steps, which

also lead to the increase in training time. Hence, the second solution is to

propose and prove mathematical lemmas to reduce significantly the considered

hyperboxes during the learning algorithms of the GFMMNN. (Chapter 6).

This is linked to Objective 3.

• Building a new data classification model based on the multi-resolution

of granular data representations in combination with the online

learning ability of the GFMMNN. This contribution introduces a method

of constructing classifiers from multi-resolution hierarchical granular represen-

tations using hyperbox fuzzy sets. The proposed approach forms a series of

granular inferences hierarchically through many levels of abstraction. There-

fore, it can reuse the learned knowledge from the lowest abstraction level to

construct new classifiers at higher abstraction levels with the low trade-off

between the simplification and accuracy. In addition, the proposed approach

can reduce the data size significantly as well as handle the uncertainty and

incompleteness associated with data in real-world applications. (Chapter 7).

This is linked to Objective 4.

• Developing a simple yet powerful ensemble classifier, called Random

Hyperboxes, constructed from individual hyperbox-based classifiers

trained on the random subsets of sample and feature spaces of the

training set. A generalization error bound of the proposed classifier based on

the strength of the individual hyperbox-based classifiers and the correlation
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among them is also proved. The effectiveness of the proposed classifier is ana-

lyzed using a carefully selected illustrative example and compared empirically

with other popular single and ensemble classifiers. (Chapter 8). This is linked

to Objective 5.

A summary of research motivation, research objectives, and contributions is

presented in Figure 1.1.

Large amount of data
CONTEXT

Quick learning and adaptation

High performing

Uncertainty & incompleteness in data

Transparent learning

High demand for robust, scalable, 
interpretable learning algorithms

Smart complex 
adaptive systems

Explainable Machine Learning

OBJECTIVES

Development of Robust and Scalable Hyperbox based Machine Learning Algorithms
Hyperbox Fuzzy Sets Scalability Robustness Interpretability

Hyperbox-based learning algorithms: 
background review and empirical evaluations

(Objective 1)

Proposing new online learning algorithms
(Objective 2)

Accelerating
learning algorithms

(Objective 3) Increasing the 
transparency of GFMMNN

(Objective 4)

Building ensemble models
(Objective 5)

CONTRIBUTIONS

Continuous features
Chapter 4

Mixed-attribute data
Chapter 5

Improved online learning algorithms

A comprehensive survey
Chapter 2

An empirical evaluation of GFMMNN
Chapter 3

Solutions to accelerate learning 
algorithm for GFMMNN
Chapter 6

Parallelization & GPUs

Mathematical lemmas

Random hyperboxes
Chapter 8

A classifier using 
hierarchical granularities
Chapter 7

Figure 1.1 : A summary of motivation, objectives, and contributions in this thesis.

1.4 Thesis Organization

The organization of this thesis is shown in Figure 1.2. This introduction chapter

has described motivation, aims, objectives, and contributions of my Ph.D. project.
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The main content of next chapters is organized as follows.

Chapter 2: This chapter reviews the progression of hyperbox-based machine

learning algorithms and their applications to real-world problems. A taxonomy

of existing learning algorithms using hyperbox representations as basic building

blocks has been conducted. For each group, main characteristics of algorithms are

summarized. Main drawbacks of current learning algorithms and open research

directions are also identified in this chapter.

Chapter 3: This chapter presents a comprehensive empirical study of perfor-

mance influencing factors, advantages, and shortcomings of the GFMMNN on pat-

tern classification problems. The subjects of this chapter include (1) the impact

of maximum hyperbox size, (2) the influence of the similarity threshold and mea-

sures on the agglomerative learning algorithm, (3) the effect of data presentation

order, (4) comparative performance evaluation of the GFMMNN with other types

of fuzzy min-max neural networks and prevalent machine learning algorithms. This

chapter also indicates potential research directions for this class of machine learning

algorithms in the future.

Chapter 4: This chapter proposes an improved version of the current online

learning algorithm for the GFMMNN to overcome existing issues regarding expan-

sion and contraction steps, as well as the problem of unseen data located on decision

boundaries. These shortcomings decline the classification performance of the cur-

rent online learning algorithm, thus its improved version is proposed in this chapter

to address the above limitations. In order to reduce the sensitivity to the training

samples presentation order of the new online learning algorithm, an simple ensemble

method is also proposed in this chapter.

Chapter 5: This chapter reviews different methods of handling mixed-attribute

data for classification problems using the GFMMNN. A disadvantage of most of the

current learning algorithms for the GFMMNN is that they can handle effectively

numerical valued features only. Therefore, this chapter provides some potential ap-

proaches to adapting GFMM learning algorithms for classification problems with

mixed-type or only categorical features as they are very common in practical ap-
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plications and often carry very useful information. From the obtained experimen-

tal outcomes, this chapter proposes an extended online learning algorithm for the

GFMMNN. The proposed method can handle the datasets with both continuous

and categorical features.

Chapter 6: This chapter shows the solutions to accelerate the learning algorithms

for the GFMMNN. The first solution aims to reformulate and represent the learning

algorithms in a format allowing for their parallel execution and subsequently lever-

aging the computational power of the GPUs. Therefore, the original implementation

of the GFMMNN is modified by matrix computations to be executed on the GPUs

with respect to the very high-dimensional datasets. The second solution reduces the

unsuitable hyperboxes selected as the potential candidates of the expansion step to

cover a new input pattern in the online learning algorithms or candidates of the hy-

perbox aggregation process in the batch learning algorithms. This method is based

on the mathematical formulas to form a new solution aiming to eliminate the hy-

perboxes which are certain not to satisfy expansion or aggregation conditions, and

in turn decreasing the training time of learning algorithms.

Chapter 7: This chapter presents a method to build simple hyperbox-based clas-

sifiers while still maintaining a good classification performance using learning from

different granularity levels. The proposed approach forms a classifier from a series

of granular inferences hierarchically through many levels of abstraction. Therefore,

it can achieve a high accuracy at a high degree of abstraction thank to reusing

the knowledge learned from lower levels of abstraction. This chapter also analyzes

and assesses the effectiveness and efficiency of the proposed method on variety of

synthetic and real-world datasets.

Chapter 8: This chapter presents a method to build a simple but effective ensem-

ble model, called Random Hyperboxes, in which base learners are hyperbox-based

classifiers trained on random subsets of samples and features. This chapter also de-

scribes a generalization error bound of the proposed classifier based on the strength

of the individual hyperbox-based classifiers as well as the correlation among them.

The effectiveness of the proposed classifier is analyzed and compared empirically
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with other popular single and ensemble classifiers using a variety of datasets.

Chapter 9: This chapter concludes the thesis by discussing the key findings and

potential research directions for further studies.

Chapter 1

Introduction Motivation
Aims and 

Objectives
Contributions

Chapter 2

Related Work Applications
Problems and 

Drawbacks
Potential 
Directions

Chapter 3

Introduction of GFMMNN
Empirical Assessment of

Learning Algorithms

Chapter 4
An Improved Online Learning Algorithm for General Fuzzy 

Min-Max Neural Network

Chapter 6
Accelerated Learning Algorithms for General Fuzzy 

Min-Max Neural Network

Chapter 5
Mixed-Attribute Data Classification using General Fuzzy

Min-Max Neural Network

Chapter 7
Learning at Different Granularity Level using Hyperbox 

Representations

Chapter 8

Ensemble Learning using Hyperbox-based Classifiers

Chapter 9
Conclusions Future Research Directions

Figure 1.2 : Thesis structure
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Chapter 2

Literature Review

This chapter shows a summary of the taxonomy and description of main hyperbox-

based machine learning algorithms. In particular, it describes the background knowl-

edge of machine learning models using the hyperbox representations. The overview

of the architecture and main content of types of fuzzy min-max neural network and

its improved versions are also detailed. The descriptions of hybrid models based on

hyperboxes and other hyperbox-based machine learning techniques are presented in

this chapter as well. This chapter concludes with a discussion on the main char-

acteristics of hyperbox-based machine learning algorithms and potential research

directions. The content of this chapter is taken from the paper (Khuat et al. 2021b):

• Thanh Tung Khuat, Dymitr Ruta, and Bogdan Gabrys, “Hyperbox based

machine learning algorithms: A comprehensive survey,” Soft Computing, vol.

25, pp. 1325–1363, 2021.

2.1 Introduction

Motivated by all of the issues regarding the construction of robust learning mod-

els overcoming the drawbacks of the traditional ANNs as mentioned in Section 1.1

in Chapter 1, Simpson (1992) suggested deploying hyperbox fuzzy sets to generate

and store information as hidden units in the form of a neural network architecture.

He introduced two kinds of hyperbox-based fuzzy min-max neural networks, i.e.,

one supervised learning technique for sample classification (Simpson 1992) and one

model for data clustering (Simpson 1993). Due to the benefits of the fuzzy min-max

neural network (FMNN), a great deal of its improved variants have been proposed

such as general fuzzy min-max neural network (GFMMNN) (Gabrys and Bargiela

2000), weighted fuzzy min-max neural network (Kim et al. 2004), an adaptive res-
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olution fuzzy min-max neural network (Rizzi et al. 2002), an inclusion/exclusion

fuzzy hyperbox classification network (Bargiela et al. 2004), a fuzzy min-max neural

network classifier with compensatory neurons (Nandedkar and Biswas 2004, 2007a),

a data-core-based fuzzy min-max neural network (Zhang et al. 2011), and a multi-

level fuzzy min-max neural network (Davtalab et al. 2014). Fuzzy min-max neural

networks include many hyperboxes, each one covers an area determined by its mini-

mum and maximum coordinates in the n-dimensional sample space. Each hyperbox

is associated with a fuzzy membership function calculating the goodness-of-fit of

an input sample to a certain class. From the original version proposed by Simp-

son (1992), learning algorithms of the fuzzy min-max neural networks have been

significantly enhanced with the emergence of algorithms combining supervised and

unsupervised learning such as the GFMMNN (Gabrys and Bargiela 2000) and the

general reflex fuzzy min-max neural network (GRFMN) (Nandedkar and Biswas

2009). Other improvements of the FMNN have been related to the construction of

algorithms dealing with missing data and operating on observable subspaces without

missing values imputation (Gabrys 2002c; Castillo and Cardenosa 2012) or combi-

nation of multiple hyperbox classifiers at a model level taking advantage of ensemble

performance while reducing impact of user-defined parameters (Gabrys 2002b).

The traditional neural networks are considered as black boxes due to the fact

that they are not able to explain their predicted results. When it comes to data

analysis, one of the salient properties is the ability to extract explanatory rules for

inference from data samples (Cheng and Miao 2011). Therefore, machine learning

models should offer a useful explanatory mechanism of their outcomes to the user.

One of such models is the decision tree (Seera et al. 2015). Fuzzy min-max neural

networks can generate explanation based on the rules deduced from the hyperbox

min–max values, but it cannot form a compact rule set interpretable for end-users

because the number of hyperboxes can be large. Therefore, instead of extracting

rules directly from the individual hyperbox level, decision trees have been adopted

to obtain rules at the global level. As a result, many researchers have introduced

hybrid models in combination of hyperbox-based machine learning algorithms with
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decision trees or other rule extractors to increase the ability to explain the results

for single models such as an enhanced FMNN with an ant colony optimization

based rule extractor (Sonule and Shetty 2017), a hybrid model of FMNN and the

classification and regression tree (Seera et al. 2012; Seera and Lim 2014), a fuzzy

min-max based clustering tree (Seera et al. 2016), a fuzzy min-max decision tree

(Mirzamomen and Kangavari 2016), and combining multiple decision trees using

the GFMMNNs (Eastwood and Gabrys 2011).

Apart from combination of the fuzzy min-max neural networks and other classi-

fication techniques, several researchers have introduced other methods to construct

base hyperboxes and evolve them using optimization algorithms such as a differ-

ential evolution (Reyes-Galaviz and Pedrycz 2015) and an ant colony optimization

(Ramos et al. 2009).

It is noted that in the literature, there have been other min-max machine learn-

ing methods which build and evolve the architectures of learning models as training

samples. These methods have constructed using fundamental building blocks other

than hyperboxes. For example, hypersphere methods, where minimum and maxi-

mum radii are defined or evolved in an online mode, were used for implementation of

evolving connectionist systems such as dynamic evolving neural-fuzzy inference sys-

tem (Kasabov and Song 2002) and evolving fuzzy neural networks (Kasabov 2001).

However, these classes of learning algorithms are beyond the scope of this study. Sev-

eral hypersphere-based machine learning methods can be found in Kasabov (2007).

The main focus of this thesis is the machine learning algorithms using hyperboxes

as fundamental representation blocks. This study seeks to classify and clarify the

properties of machine learning models based on the hyperbox representations, learn-

ing algorithms, as well as their enhancements. In other words, this chapter aims to

provide a comprehensive survey of literature on hyperbox-based machine learning

algorithms. The core ideas and key descriptions of typical algorithms, their expan-

sions, as well as their real-world applications are presented in detail. It is expected

to clarify issues as follows:

1. How to group the machine learning models using hyperbox representations.
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2. What was the development trajectory of the original fuzzy min-max neural

networks in the last two decades.

3. What methods have been deployed to generate hybrid models between different

types of FMNN and other classification or clustering techniques.

4. Apart from network structures, what other methods have been used to design

and evolve hyperbox-based models.

5. Identifying research gaps in the current hyperbox-based machine learning al-

gorithms and propose new future research directions.

Regarding the fuzzy min-max neural networks, which is part of this study, there

have been several previously published surveys. Jambhulkar (2014) compared the

multi-level fuzzy min-max neural networks with the original FMNN and its four

different variants. However, that survey mentioned only six types of fuzzy min-max

neural networks, and it did not yet analyze the limitations of existing types of net-

works. To overcome these drawbacks, Jain and Kolhe (2015) analyzed more details

from some additional variants of the original FMNN, and they concluded that multi-

level fuzzy min-max neural networks are the best one among the discussed methods.

However, the survey was only limited to seven types of fuzzy min-max networks,

and the authors used the classification accuracy of training samples as a comparison

criterion for fuzzy min-max classifiers. The high accuracy on the training sample

does not guarantee the good performance of the constructed classifiers because it

may reflect overfitting and the loss of generality. In another study, Kulkarni and

Honwadkar (2016) reviewed different types of fuzzy neural networks for classifica-

tion and clustering. They categorized the networks to three groups consisting the

ones for classification, clustering, and hybrid models for both classification and clus-

tering. However, they not only focused on fuzzy min-max networks but also other

types of fuzzy neural networks such as hypersphere and hyperline ones. These three

surveys have not yet clarified the still existing limitations and applications of the

fuzzy min-max neural networks to real-world problems. Recently, there has been a

survey on the fuzzy min-max neural networks for pattern classification until 2017
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introduced by Sayaydeh et al. (2019). Authors classified the types of fuzzy min-max

neural networks into two groups, i.e., ones with and without contraction process.

They summarized the use of different types of fuzzy min-max neural networks in

tackling real-world applications. Nonetheless, the paper did not present in depth

the reasons for the proposals of variants of the original fuzzy min-max classifier and

their improvements compared to previously proposed versions. The research direc-

tion part only mentioned a small aspect regarding the potential of the family of fuzzy

min-max neural networks. This study is not restricted to the fuzzy min-max neural

networks but expands to general hyperbox-based machine learning algorithms, the

combination of hyperbox fuzzy sets and tree-based algorithms, ensembles of multiple

hyperbox-based models, the use of hyperbox fuzzy sets to deal with missing data,

and learning algorithms based on hyperboxes without forming the neural network

structure.

2.2 Overview and Taxonomy of Hyperbox-based Learning

Algorithms

Hyperbox-based machine learning models are constituted by hyperboxes associ-

ated with their membership functions which are utilized to generate fuzzy subsets

of an n-dimensional sample space (Simpson 1992). Each hyperbox occupies a re-

gion in the feature space and is defined by pairs of minimum and maximum points.

Figure 2.1 represents an example of a three-dimensional hyperbox together with its

minimum point and maximum point. Based on new incoming data samples, the

learning model generates a number of hyperboxes incrementally to establish new

classes/clusters or tune the existing hyperboxes to cover new samples. It is possible

to produce hyperboxes covering an arbitrary value range in each dimension, but

the range from 0 to 1 is widely used for each dimension to make the computations

simpler. Therefore, each hyperbox is usually determined by a set of minimum and

maximum vertices in the n-dimensional unit cube (In).

Formally, each hyperbox fuzzy set is given by an ordered set

Bi = {X, Vi,Wi, bi(X, Vi,Wi)} (2.1)
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Min point: Vi

Max point: Wi

Hyperbox in R3

Figure 2.1 : 3-D Hyperbox

where Bi is the i
th hyperbox fuzzy set, X = (x1, x2, . . . , xn) ∈ In is the input sample,

Vi = (vi1, vi2, . . . , vin) and Wi = (wi1, wi2, . . . , win) are minimum and maximum

vertices of the hyperbox Bi respectively, and the membership function of Bi is

represented by 0 ≤ bi(X, Vi,Wi) ≤ 1.

The membership function is a crucial component in the fuzzy min-max classi-

fication and clustering techniques. It is utilized to measure the degree to which

the input pattern X belongs to the hyperbox Bi defined by the minimum point Vi

and the maximum point Wi. When the sample is completely contained within the

hyperbox, the degree of membership of X is one, and it decreases when X moves

away from the hyperbox Bi.

For a trained hyperbox-based learning model, to classify or cluster an input

sample, it is required to compute the membership value for each class/cluster ck

by accumulating the membership functions of all the hyperboxes representing this

class/cluster as follows:

ck =
⋃
i∈K

bi (2.2)

where K is the set of hyperboxes associated with class/cluster ck. It is noted that

fuzzy union operator in this equation is usually the maximum of its membership

values. Then, the input pattern is assigned to a corresponding class/cluster with

the highest membership value.
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Figure 2.2 : A taxonomy of hyperbox-based learning algorithms

This study classifies the hyperbox-based machine learning algorithms into three

groups. The first group comprises studies that construct a neural network architec-

ture from hyperbox fuzzy sets. Learning algorithms are designed to adjust the place-

ment of hyperboxes to cover the training samples in the input space. In the process

of expanding hyperboxes to include new training patterns, hyperboxes belonging to

different classes are likely to overlap with each other. There are two methods to deal

with this overlapping problems. While several studies have introduced specialized

hyperboxes to handle overlapping areas, other researchers have used the contraction

procedure to avoid overlapping regions or not allow to overlapping areas appearing

when building and expanding existing hyperboxes. Therefore, fuzzy min-max neural

networks can be divided into two sub-groups depending on the employed mechanism

for handling overlapping hyperboxes. The second group of hyperbox-based machine

learning models consists of ones that integrate the strong points of various fuzzy min-

max neural networks and tree-based classification techniques or the combination of

base models to build the ensembles. The last group includes the models without
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being connected by network structures. Hyperboxes in these machine learning mod-

els are constructed and evolved using different approaches such as mathematical

formulas or optimization algorithms. The illustration of the proposed classification

method for models based on the hyperbox representation is shown in Figure 2.2. It

is easily seen that most hyperbox-based machine learning algorithms are organized

in the form of neural networks. Several main types of machine learning algorithms

based on hyperboxes have been summarized in Table 2.1.

2.3 Fuzzy Min-Max Neural Network Architectures

Fuzzy min-max neural network (FMNN) is a special type of a hybrid neuro-fuzzy

system built using hyperbox fuzzy sets, and it is very competitive with other machine

learning methods in terms of accuracy of the classification or clustering results and

online adaptation ability (Joshi et al. 1997). Learning process in the fuzzy min-max

neural network is realized by properly constructing and tuning hyperboxes in the

sample space. Figure 2.3 illustrates a resulting model with hyperboxes and their

decision boundaries after applying the learning algorithm for the fuzzy min-max

classification neural network.

Figure 2.3 : A demonstration of a hyperbox-based classification model.
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Table 2.1 : Summary of the main hyperboxed-based machine learning algorithms

ID Model Year Type

2-pHC Two-phase hyperbox classifier (Bortolan and Pedrycz 2007) 2007 classification

2lv-

CSWCE

Two-level classification system with testing in dynamically changing

environment (Gabrys and Bargiela 1999)

1999 classification

ARC Adaptive resolution min-max neural network classifier (Rizzi et al.

1998)

1998 classification

DCFMN Data-core-based fuzzy min-max neural network (Zhang et al. 2011) 2011 classification

EFMMDT An evolving fuzzy min–max decision tree (Mirzamomen and Kan-

gavari 2017)

2017 classification

EFMNN Enhanced fuzzy min-max neural network (Mohammed and Lim 2015) 2015 classification

EFMNN-

ACO

Enhanced fuzzy min–max neural network with ant colony optimiza-

tion (Sonule and Shetty 2017)

2017 classification

EFMNNC Enhanced fuzzy min-max neural network for clustering (Seera et al.

2015)

2015 clustering

EFMNN-II Enhanced fuzzy min-max neural network with K-nearest hyperbox

expansion rule and pruning (Mohammed and Lim 2017b)

2017 classification

EFMNN-

UL

Evolved fuzzy min-max neural network for unknown labeled data (Ma

et al. 2021)

2021 classification

EFMNWSM Extended Fuzzy min-max neural network with symmetric margin

(Forghani and Yazdi 2015)

2015 classification

EMILP A enhanced version of mixed integer linear programming model-based

hyperbox classifier (Maskooki 2013)

2013 classification

Esb-

GFMMNN

Ensemble of neuro-fuzzy classifiers (Gabrys 2002b) 2002 classification;

clustering

FMCN Fuzzy min-max neural network with compensatory neuron (Nanded-

kar and Biswas 2004, 2007a)

2004;

2007

classification

FMNN Fuzzy min-max classification neural network (Simpson 1992) 1992 classification

FMNN-clu Fuzzy min-max clustering neural network (Simpson 1993) 1993 clustering

FMM-

CART

Offline and online fuzzy min–max neural network and classification

and regression trees (Seera et al. 2012; Seera and Lim 2014)

2012;

2014

classification; re-

gression

FMM-CT Fuzzy min-max clustering neural network with the clustering tree

(Seera et al. 2016)

2016 clustering

FMM-GA Fuzzy min-max neural network with genetic algorithms (Azad and

Jha 2016)

2016 classification

FMMDT Fuzzy min–max neural network based decision tree (Mirzamomen and

Kangavari 2016)

2016 classification

FMM-ECT Fuzzy Min–Max neural network with an ensemble of clustering trees

(Seera et al. 2018)

2018 clustering

FMM-PSO Fuzzy min-max neural network with the particle swarm optimization

(Azad and Jha 2017)

2017 classification

FMNWSM Fuzzy min-max neural network with symmetric margin (Forghani and

Yazdi 2015)

2015 classification

GFMMNN General fuzzy min-max neural network (Gabrys and Bargiela 2000;

Gabrys 2002a)

2000;

2002

classification and

clustering
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Table 2.1 : Summary of the main hyperboxed-based machine learning algorithms

GFMMNN-

CD1

General fuzzy min–max neural networks for categorical data (Castillo

and Cardenosa 2012)

2012 classification

GFMMNN-

CD2

Enhanced general fuzzy min–max neural networks for categorical data

(Shinde and Kulkarni 2016)

2016 classification

GRFMN General reflex fuzzy min-max neural network (Nandedkar and Biswas

2009)

2009 classification;

clustering

HACO Hyperbox based clustering with ant colony optimization (Ramos et al.

2009)

2009 clustering

HACO2 Hyperbox classifier with ant colony optimization (Ramos et al. 2008) 2008 classification

HFC Hyperbox fuzzy classifier (Abe and Ming-Shong 1995) 1995 classification

HNN Hyperbox neural network algorithm (Palmer-Brown and Jayne 2011) 2011 classification

IEFMN Inclusion/Exclusion fuzzy min-max neural network (Bargiela et al.

2004)

2004 classification

KNEFMNN Enhanced fuzzy min-max neural network with K-nearest hyperbox

expansion rule (Mohammed and Lim 2017a)

2017 classification

MDCFMN Modified data-core-based fuzzy min–max neural network with new

learning mechanism (Ma et al. 2012)

2012 classification

MEFMNN Modified-enhanced fuzzy min–max neural network (Upasani and Om

2019)

2019 classification

MFMC Modified fuzzy min–max neural network for data clustering (Liu et al.

2017)

2017 clustering

MFMNN Modified fuzzy min-max neural network for two-stage pattern classi-

fication (Quteishat and Lim 2008)

2008 classification

MFMNN-

GA

Modified fuzzy min-max neural network with genetic algorithms

(Quteishat et al. 2010)

2010 classification

MILP Mixed integer linear programming model-based hyperbox classifier

(Xu and Papageorgiou 2009)

2009 classification

MLF Multi-level fuzzy min-max neural network (Davtalab et al. 2014) 2014 classification

MMM-BL Modified fuzzy min-max neural network with a new batch learning

algorithm (Meneganti et al. 1998)

1998 classification

RFMNN Refined Fuzzy Min-Max Neural Network (Al Sayaydeh et al. 2020) 2020 classification

RMILP Refined mixed integer linear programming model-based hyperbox

classifier (Yang et al. 2015)

2015 classification

SFMN Stochastic fuzzy min-max neural network (Likas and Blekas 1996;

Likas 2001)

1996;

2001

classification; re-

inforcement

SS-FMM Semi-supervised classification method based on fuzzy min–max neural

network (Liu et al. 2020)

2020 semi-supervised

classification

TDFMM Top down fuzzy min-max neural network (Tagliaferri et al. 2001) 2001 classification

TDFMMR Top down fuzzy min-max regressor (Tagliaferri et al. 2001) 2001 regression

TEH-

GFMMNN

Tree ensemble hyperboxes via general fuzzy min-max neural network

(Eastwood and Gabrys 2011)

2011 classification

WFMM Weighted fuzzy min-max neural network (Kim et al. 2004; Kim and

Yang 2005; Kim et al. 2006)

2004-

2006

classification; fea-

ture extraction
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To better address the stability-plasticity dilemma, the family of adaptive res-

onance theory (ART) neural networks with the incremental learning ability was

proposed by Carpenter et al. (1991, 1992). This type of neural network adapts the

learned prototype only if the input pattern is similar enough to the prototype. An

input sample which deviates too much in comparison with all existing prototypes is

considered a new one, and the ART network will generate a new category with the

input sample being the prototype. Inspired by the learning paradigm of the ART

networks and to overcome their observed limitations, Simpson (1992) proposed the

FMNN, which is a classification technique capable of generating nonlinear bound-

aries for splitting the input variables space into classes with any size and shapes

(Gabrys 2002a). The training phase can be carried out with only one pass through

the training samples, and it might be employed for pattern classification tasks (Simp-

son 1992; Davtalab et al. 2014). There are three main steps in the learning algorithm

of the FMNN, i.e., hyperbox expansion, hyperbox overlap test, and hyperbox con-

traction. The details of the learning algorithm to build the FMNN can be found

in Simpson (1992, 1993); Khuat et al. (2021b). This section only focuses on the

analysis of its drawbacks and its improved versions.

2.3.1 Analysis of the Original Fuzzy Min-Max Neural Network

In the FMNN, the maximum size of hyperboxes (θ) is the most essential factor

determining the number of generated hyperboxes. In general, the larger the value

of θ, the fewer hyperboxes produced, and the network may show higher general-

ity, but the overlapping regions increase, and the capability of capturing nonlinear

boundaries between classes decreases. This also lowers the predictive accuracy of the

trained network. A smaller θ leads to a larger number of generated hyperboxes and

potential overfitting, thus reducing the generalization ability (Gabrys and Bargiela

2000; Davtalab et al. 2014). Hence, there is a trade-off between the generality and

predictive accuracy of these networks.

Generally, the learning process of the FMNN is based on an online adaptation of

the hyperboxes (Simpson 1992; Gabrys and Bargiela 2000). In other words, online

learning provides the FMNN with the ability to create new classes and adjust the
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existing classes without, generally, influencing information already captured in the

network. In principle, this capability allows the FMNN to add new classes and adjust

the existing ones without the demand for retraining (Gabrys and Bargiela 1999).

Online adaptation is the main feature in a neural network learning to address the

stability-plasticity dilemma (Grossberg 1980). Nevertheless, the traditional FMNN

has not yet dealt with several issues as follows:

• Expansion problem. The winner expandable hyperbox in the conventional

fuzzy min–max learning algorithms is randomly identified in the case of exist-

ing several winner hyperboxes

• Hyperbox boundary problem. Though an overlap eliminating process has been

proposed, two newly contracted hyperboxes are still possible to be overlapped

on the boundary edge due to the nature of the contraction formulas

• Problem of contraction process. The contraction approach inadvertently re-

moves from the two overlapping hyperboxes some unambiguous part of the

sample space, while simultaneously retaining some contentious part of the

sample space in each hyperbox (Bargiela et al. 2004). This weakness should

be analyzed in detail in subsection 2.3.2.

• Data representation order problem. The training step conducts a process of

dynamic hyperbox creation, expansion, and contraction in the sample space

when an individual training instance is presented. Therefore, the predictive

accuracy depends on the presentation order of the training samples (Mene-

ganti et al. 1998), and the approach is sensitive to outliers and noise (Gabrys

2002a). As a result, noisy data from real world applications might cause serious

stability issue when deploying the model in practice

• Maximum hyperbox size parameter sensitivity problem. As analyzed above, the

classification performance and generalization ability of the fuzzy min-max neu-

ral networks depends on the user-defined maximum hyperbox size threshold.

This problem can be partly resolved by using an adaptive maximum hyperbox

size mechanism as presented in Gabrys and Bargiela (2000).
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• Membership value problem. The membership function used in the original

learning algorithm assigns a relatively high membership degree to an input

pattern being quite far from the cluster centroid as shown in Gabrys and

Bargiela (2000). It is necessary to build a membership function that mono-

tonically decreases with the increase in the distance from the input pattern to

the cluster prototype.

In conclusion, the learning algorithm introduced by Simpson builds the connec-

tions starting by the first example and then adding new hyperboxes by a process

of expansion/contraction. The algorithm faces two main problems: the difficulty to

determine the threshold value and the dependence of classification performance on

the presentation orders of input samples (Meneganti et al. 1998).

2.3.2 Variants Using Specialized Neurons for Overlapping Areas

The contraction manner in Simpson’s FMMNN (Simpson 1992) has a drawback

in which it removes from the two overlapping hyperboxes several zones of the sam-

ple space that was unambiguous while simultaneously maintaining some contentious

part of the pattern space in each hyperbox. For instance, as shown in Figure 2.4,

some part of the original hyperbox B1 now are contained in B2 after the contrac-

tion procedure and likewise the original hyperbox B2 has an overlapping region

with contracted hyperbox B1. Hence, the overlap removal algorithm yields errors

during training process. In some cases, additional hyperboxes can be generated to

include the deleted portions of the original hyperboxes, for example, the use of adap-

tive hyperbox size with multiple data presentations in the GFMMNN (Gabrys and

Bargiela 2000). However, this leads to the increase in the number of hyperboxes

and the reduction in the interpretability of classification results. To tackle these

problems, Bargiela et al. (2004) introduced an inclusion/exclusion fuzzy hyperbox

classification network (IEFCN), where the overlapping regions of the sample space

are explicitly represented as exclusion hyperboxes.

Unlike the classical FMMNN, the inclusion/exclusion fuzzy hyperbox classifica-

tion model employs two kinds of hyperboxes, which are the inclusion and exclusion
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Figure 2.4 : Contraction of hyperboxes B1 and B2 with elimination along one coor-

dinate

ones, and does not use contraction to eliminate overlaps. The inclusion hyperboxes

cover the input samples of the same class, whilst the exclusion hyperboxes contain

other overlapped input samples. By the use of combination of inclusion and exclu-

sion hyperboxes, the learning phase is reduced to two steps (expansion and overlap

test) (Davtalab et al. 2014).

The efficiency of the IEFMN is influenced when the number of exclusion hy-

perboxes is equivalent to that of inclusion hyperboxes, where percentage of data

samples categorized as void class can become unacceptably high (Nandedkar and

Biswas 2007a). Therefore, Nandedkar and Biswas (2004, 2007a) proposed a fuzzy

min-max neural network with compensatory neurons (FMCN), which are generated

dynamically during learning process, to tackle hyperbox overlaps and containment

problems. The FMCN is also known as the Reflex Fuzzy Min Max Neural Net-

work (ReFMN) since the concept of compensatory neurons (CNs) originates from

the reflex system of human brain. The use of compensatory neurons contributes to

removing the contraction process for the labeled hyperboxes and controlling mem-

bership in the overlapped region. The FMCN still maintains a single pass-through

and online learning capability (Nandedkar and Biswas 2007a). The number of nodes

in the input layer of the FMCN is equivalent to the number of dimensions of the

input vector X. The intermediate layer neurons and output layer neurons are sep-

arated into two parts: 1) classifying neuron segment and 2) reflex section. The
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classifying part is used for computing membership values for various classes.

The FMCN eliminates the usage of contraction procedure, thus it avoids errors

resulting from contraction operation. FMCN may maintain the knowledge of the

already trained samples more effectively in comparison with FMNN and GFMMNN

due to the fact that already produced hyperboxes are not contracted. The accuracy

of FMCN is better in single pass through the data (Nandedkar and Biswas 2007a)

as it is able to approximate the complicated structure of data more properly thanks

to the efficient capability of tackling hyperbox overlap and containment. Another

benefit of FMCN is that it can evade the dependency of systems on the learning

parameter compared to FMNN and GFMMNN. Furthermore, the FMCN is also

robust to the noise.

In spite of above strength points, the FMCN also faces the following drawbacks.

It does not implement a suitable membership function for overlap compensatory

neurons, thereby it is unable to precisely classify high percentage of patterns present

in overlapping areas. Furthermore, FMCN only deals with simple and containment

overlaps, so there would be types of overlaps such that the algorithm cannot remove

them, e.g. two hyperboxes crossing each other. Another case is that hyperboxes

including just one point, when contained in any hyperbox representing another class,

will not expand in next steps (Davtalab et al. 2014). In the learning algorithm, if

any overlap between expanded hyperbox and other hyperboxes representing other

classes exists, a compensatory neuron is added to the network. Hence, duplicate

nodes are more likely to be generated. To overcome these disadvantages, Davtalab

et al. (2012) invented a new fuzzy min-max model based on fuzzy min-max neural

network with modified compensatory neurons. This classification model is also an

online, single-pass and supervised learning method, but the authors made several

changes in the structure of FMCN and training phase to reduce time and space

complexity. The new structure reduces generating and storing useless hyperboxes

during the training process, so it results in a faster classifier.

To construct a system being capable of learning from the mixture of labeled

and unlabeled data like the GFMMNN, Nandedkar and Biswas (2006a) introduced
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a modified version of RFMN by adding floating neurons (ReFMN-FN). Like the

original ReFMN, the ReFMN-FN also uses compensatory neurons to uphold the

hyperbox dimensions and control the membership in the overlapping areas among

hyperboxes representing different classes. Floating neurons are added to the network

to keep the unlabeled hyperboxes and stop them from contributing to the classifi-

cation. The ReFMN-FN may be trained by two methods, which are supervised

learning and semi-supervised learning (Nandedkar and Biswas 2006a). To handle

labeled, unlabeled and partly labeled data sets, Nandedkar and Biswas (2007b) pro-

posed a general reflex fuzzy min-max neural network (GRFMN). However, the input

pattern to this network is in numeric form.

In the later studies, Nandedkar and Biswas (2009, 2008, 2006b) extended this

network for both granular data and numeric data by representing input sample as a

hyperbox. GRFMN does not make use of contraction process, but instead, a reflex

mechanism is used to tackle the hyperbox overlap and containment issues. The

GRFMN enables the unlabeled hyperbox to overlap with labeled hyperboxes, and

it only performs a contraction process if there is an overlap between two unlabeled

hyperboxes (Nandedkar and Biswas 2007b). The GRFMN implements the same

contraction method as the GFMMNN (Gabrys and Bargiela 2000) for the overlap

amongst unlabeled hyperboxes, in which overlapped hyperboxes are contracted along

a dimension with minimal overlap.

Zhang et al. (2011) introduced a data core based fuzzy min–max neural network

(DCFMN) with new structure and learning algorithm. Like FMCN (Nandedkar and

Biswas 2007a), DCFMN also removes the contraction procedure to reduce classifi-

cation errors. While FMCN employs the overlapped compensatory neuron and the

containment compensatory neuron to deal with the overlapping region among hy-

perboxes from different classes, only one type of neurons, i.e., overlapping neurons,

is implemented to handle the overlap and containment issue in DCFMN. As for

FMCN, the extended hyperbox is not overlapping with any prior hyperbox of dif-

ferent class, so the number of hyperboxes in FMCN may be large and this results in

a complex network and waste of time. To overcome this drawback, DCFMN allows
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the hyperboxes to be expanded to overlap repeatedly with the previous hyperboxes

(Zhang et al. 2011). Hence, the number of hyperboxes in DCFMN is lower than

that in the FMCN and it uses less computation time. Furthermore, only three kinds

of overlap were handled in FMCN, whereas the DCFMN tackles all kinds of overlap

(Zhang et al. 2011). In addition, the authors proposed a new membership formula of

classification neurons formed based on the characteristics of data and the impact of

the noise which makes DCFMN more robust. A novel training and classifying algo-

rithm was also introduced to make the resulting classifier faster and more accurate.

In spite of these advantages, DCFMN cannot accurately classify high proportion

of patterns being located in the overlapping areas, and also is unable to classify all

learning examples properly either (Davtalab et al. 2014). Moreover, the architecture

proposed by Zhang et al. (2011) can only handle numeric data. This method can

be extended as GRFMN to deal with granular data.

As mentioned above, FMCN and DCFMN deploy compensatory neurons to deal

with the overlapping regions among hyperboxes of different classes. Nonetheless,

these networks are unable to classify a high ratio of patterns positioned in over-

lapping areas accurately and also face several structural issues in their training

algorithms leading to increased complexity but decreased efficiency (Davtalab et al.

2014). To increase the classification accuracy in the boundary areas, Davtalab et al.

(2014) proposed a multi-level fuzzy min-max neural network (MLF) implementing

a multi-level tree structure to construct a homogeneous cascading classifier. Hyper-

boxes with different sizes are yielded in various network levels to tackle the overlap-

ping issue. Each node in the network is a subnet as well as an independent classifier

that can classify patterns belonging to the defined area of sample space. Therefore,

MLF is able to classify samples belonging to boundary regions with a high accuracy.

Experimental results of Davtalab et al. (2014) indicated that MLF is more proper

than original FMNN, GFMMNN, DCFMN, IEFCN and FMCN, and the training

process is faster than that of other types of FMM networks in most cases.

Although FMCN and DCFMN do not use the contraction procedures, they sup-

plement numerous new neurons to the fuzzy neural network, which turns the neural
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network out to be more complex than before. To cope with all issues, Ma et al.

(2012) introduced a modified data-core-based fuzzy min–max neural network (MD-

CFMN) with new learning mechanism. In that algorithm, the contraction process

was removed without adding any new neuron to the network (Ma et al. 2012). The

learning algorithm for the MDCFMN only consists of one procedure: identify if

hyperboxes need to expand or not and compute the center of gravity of data in

the same hyperbox. The modified DCFMN uses a recursive procedure to determine

the average value of data located in a hyperbox. Although the authors indicated

that their proposal does not yield an special node for each overlapped area, they

employed such nodes implicitly (Forghani and Yazdi 2015).

2.3.3 Modified Variants Without Using Specialized Neurons for Over-

lapping Areas

Two main shortcomings of the learning algorithm developed by Simpson are the

sensitivity to the input data presentation order and the difficulty in finding the

maximum hyperbox size. Hence, Meneganti et al. (1998) introduced a novel learn-

ing algorithm while keeping unchanged the structure of the fuzzy min-max neural

network. The algorithm begins with building the minimum size hyperboxes cover-

ing all patterns of the same class, in which each class is represented by only one

hyperbox. Then, a five-step process including partition, decomposition, recomposi-

tion, removal, and expansion is used to minimize the number of hyperboxes while

maximizing their dimensions. Authors also proposed a new method to split inter-

secting hyperboxes, which represent different classes, based on the similarity. A new

membership function using Gaussian function was introduced to evaluate the sim-

ilarity level of each pattern against each hyperbox. This learning algorithm makes

the classification performance independent from the sample presentation, and the

algorithm does not employ any threshold. In the later study, Tagliaferri et al. (2001)

claimed a top-down fuzzy min-max (TDFMM) classifier by simplifying the complex-

ity of the hyperbox splitting approach proposed by Meneganti et al. (1998). Based

on the TDFMM algorithm, they developed a top-down fuzzy min-max regressor

to deal with the regression problem. First of all, clustering methods are deployed
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to assign the labels to input patterns. Next, the TDFMM algorithm is utilized to

build hyperboxes. However, these are batch learning algorithms, and so they cannot

accommodate the new patterns in real time.

The original Simpson’s training algorithm for the FMMNN depends excessively

on pattern presentation order and on position as well as size of the hyperboxes gen-

erated during training. These parameters impose the same condition on covering

resolution in the whole input space. This results in reducing the generalization abil-

ity of the neural model. Aiming to tackle these inconveniences, two new learning

algorithms were introduced by Rizzi et al. (1998), i.e., the adaptive resolution classi-

fier (ARC) and pruning ARC (PARC) algorithms. In the improved version of these

algorithms, Rizzi et al. (2000, 2002) suggested a feasible enhancement of the train-

ing process by utilizing a new cutting strategy in order to handle recursively hybrid

hyperboxes, namely R-ARC/R-PARC. However, the hyperbox cutting and fusion

operations are time-consuming. Hence, a method to improve the ARC algorithm is

reduction of the total number of nets created during training. Rizzi et al. (1998)

introduced a pruning version of ARC with two subsequent actions: doing an ARC

operation without the fusion procedure and doing a pruning procedure.

The first significant extension of the original FMNN is a general fuzzy min-

max neural network (GFMMNN) designed by Gabrys and Bargiela (2000). The

GFMMNN is built on the basis of expansion and contraction concepts, and it can

deal with both labeled and unlabeled data in a single algorithm. The architecture

of GFMMNN almost resembles the original fuzzy min-max neural network topology

except for two main alterations (Gabrys and Bargiela 2000). The first change is

that the number of nodes in the input layer has been extended from n to 2n. Pri-

marily, it allows an input to be a hyperbox rather than a point in the n-dimensional

space. The second modification is that the output layer has been added an extra

node to represent all the unlabeled hyperboxes from the intermediate layer. This

helps GFMMNN to deal with both supervised learning and unsupervised learn-

ing. Other changes in the GFMMNN comprise a new fuzzy hyperbox membership

and adaptive modification of the maximum hyperbox size. Two different algorithm
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types have been proposed to train the GFMMNN (Gabrys 2004): an incremental

learning (Gabrys and Bargiela 2000) and an agglomerative learning (Gabrys 2002a).

The incremental (online) learning is a dynamic hyperbox expansion and contraction

procedure where hyperboxes are generated and tuned in the sample space after ev-

ery presentation of a training instance (Gabrys 2002a). Nevertheless, this learning

strategy, at all incremental learning approaches, results in the input-output map-

ping depending on the order of presentation of the training input samples, and the

algorithm is sensitive to outliers and noise. The overlapping hyperboxes are also

another undesired result derived from the dynamic feature of the algorithm. The

agglomerative learning introduced in Gabrys (2002a) is an alternative and a com-

plimentary method to the incremental learning for an off-line training process done

on a finite training sets. While the incremental learning is more appropriate for on-

line adaptation and is able to tackle large training data sets, agglomerative learning

represents robust behaviour in presence of outliers and noise as well as insensitivity

to the order of training samples presentation (Gabrys 2004). However, a drawback

of the agglomerative learning algorithms is the long training time, especially for the

large-sized training data.

With the aim of generating good classifiers, Gabrys (2004) analyzed five differ-

ent algorithm-independent model generation schemes from the GFMMNN using the

agglomerative learning algorithm. These methods include construction of the pre-

dictive models using full training data set, employing a k-fold and multiple 2-fold

cross-validation along with different pruning procedures, and an ensemble of various

GFMM classifiers at the decision or model level. He claimed that the method of

generating the GFMM model using base learning algorithms without any hyperbox

pruning steps is swift and able to adapt to the changing environment. However, it

is likely to be overfitted and exhibit a poor generalization performance. In the case

that the classifiers can be built in the off-line modes, the techniques based on the

combination of multiple cross-validation and pruning procedures or the ensemble of

base classifiers tend to yield a better classification accuracy.

An interesting property regarding the use of hyperboxes as inputs for the GFMMNN
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is the capability of handling missing values in the data. The replacement of miss-

ing values with estimated values such as the mean of all patterns may make data

set no longer a good representation of the problem and may result in bad solu-

tions (Berthold and Huber 1998). Gabrys (2002c) introduced a method of dealing

with missing data within the classification algorithm automatically by employing

the GFMM neural network model. If the value of the i-th feature is missing, the

lower bound of hyperbox on the i-th dimension is assigned to one and its upper

bound receives a value of zero. This operation makes the hyperbox membership

associated with the missing feature to be one, and so it does not lead to a decrease

in the overall membership value. This substitution also makes sure that the neural

network structure would not be modified when handling missing dimensions. The

only changes of the training algorithm relate to the way of performing the overlap

test and the usage of the assumption that the missing features are possible to get all

values (Gabrys 2002c). The overlap test is conducted after each hyperboxes updat-

ing operation for only hyperboxes in which their value of maximum point is larger

than or equal to their value of minimum point on every dimension.

In another study, Kim et al. (2004); Kim and Yang (2005) proposed a weighted

fuzzy min–max neural network (WFMM) for the sample classification and feature

extraction problems. They introduced a new membership function and expansion

scheme by considering a weight factor for each dimension of a hyperbox. This

improvement makes the WFMM less sensitive to the unusual or noisy features in a

data set in comparison with the FMNN (Kim et al. 2004). Therefore, the WFMM

may handle better data sets containing highly uneven distribution of features or

noisy features (Zhang et al. 2011). The architecture and learning algorithm of

the WFMM are similar to the FMNN except for some changes in the hyperbox

membership function and expansion mechanism. In the later research, Kim et al.

(2006) introduced an enhanced version of the WFMM with changes in the connection

weights of features, membership function, and a new contraction method including

the weight updating mechanism.

With the aim of handling a number of drawbacks of the original FMNN, Mo-
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hammed and Lim (2015) introduced an enhanced fuzzy min–max neural network

(EFMNN). They retained the structure of original FMNN and only modified the

training algorithm. The authors employed a new constraint, in which each dimen-

sion of the i-th hyperbox is examined individually to identify if it is larger than

the maximum hyperbox size θ. This mechanism is the same as that proposed in

the GFMMNN (Gabrys and Bargiela 2000). They introduced nine cases for overlap

test and corresponding contraction operations instead of four cases in the original

FMNN.

In the later study, Mohammed and Lim (2017a) claimed that the expansion rule

limitation has still not been resolved thoroughly in the EFMNN. Based on the anal-

ysis of drawbacks, Mohammed and Lim (2017a) proposed a novel approach, known

as the K-nearest hyperbox expansion rule (KNEFMNN), to decrease the network

complexity by reducing the number of small hyperboxes within the surrounding

areas of the winning hyperbox during the training phase. Besides the K-nearest

hyperbox selection rule, Mohammed and Lim (2017b) introduced a useful strategy

to deal with noise, i.e., pruning. This strategy aims to determine and delete hyper-

boxes giving low accuracy, which are regularly produced because of outliers or noise.

Although the EFMN and its improved versions outperform the original FMNN, the

use of the contraction step for the training process may lead to classification error

as analyzed in subsection 2.3.2.

While the contraction process is more likely to lead to classification errors, the

formulation of a special node for each overlapped region in training stage may lead to

the complexity in the architecture of neural networks and increase in time and space

complexity. There is an interesting finding that the misclassification probability in

the case of both training and test patterns being from identical probability distri-

bution is minimized if the classifier has symmetric margin (Vapnik 2000). However,

none of above methods is capable of classifying patterns positioned in overlapped

regions with symmetric margin. Hence, Forghani and Yazdi (2015) proposed a fuzzy

min–max neural network with symmetric margin (FMNWSM). In that approach,

only hyperbox expansion procedure is carried out in training phase. It does not
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find overlapped regions, does not perform the contraction process to eliminate over-

lapped areas and does not yield any special hyperbox for overlapped regions. Due to

using only expansion procedure, the training time of FMNWSM is lower than that

of kinds of conventional FMNNs such as FMNN, GFMMNN, FMCN, and DCFMN.

In real-world applications, data can be infected by noise, which results in formu-

lating hyperboxes with wrong boundaries. To cope with the impact of noise on

classification results, Forghani and Yazdi (2015) proposed an extended version of

FMNWSM, called EFMNWSM, by constructing a new membership function.

In an attempt to reduce the “black-box” property of WFMM, Kim and Lee (2013)

introduced a rule extraction technique for sign language recognition. Authors used

a combination of the weighted fuzzy min-max model (Kim et al. 2006) and new

rule extraction technique for the pattern classification step. The training process

of modified weighted fuzzy min-min (MWFMM) neural network comprises only two

procedures: creation and expansion of hyperboxes. The connection weights are

constantly updated during the learning phase. These values reflect the relevance

factors between the features and the hyperboxes. Hence, the network can deal with

the hyperbox overlapping problem without performing the hyperbox contraction

process (Kim and Lee 2013).

Though hyperbox fuzzy sets can explain their predictive results based on rules

extracted directly from the min-max values, the interpretability of classification is

usually not friendly for users. It is because the rule sets become extremely com-

plex in case of a large number of hyperboxes and high dimensions. Therefore, it is

desired to construct the rule extraction methods from hyperboxes to form a com-

pact rule set, which is capable of accounting for the predictive results. As a result,

Quteishat and Lim (2008) introduced a two-stage pattern classification system using

a modified FMNN in the first stage and a rule extraction procedure in the second

stage. To enhance the prediction performance, however, in the later work, Quteishat

et al. (2010) conducted several preprocessing steps before extracting rules from the

modified FMNN, i.e., open hyperbox generation and genetic algorithm (GA) rule

selection. This method is abbreviated MFMNN-GA. However, their proposed clas-
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sifiers have lost single pass-through online adaptation power of FMNN (Forghani

and Yazdi 2015).

In another study, Sonule and Shetty (2017) proposed an enhanced fuzzy min–max

neural network model with a rule extractor based on ant colony optimization (EFMNN-

ACO) for classifying the data samples and decision making by rule lists. The output

of the EFMNN (Mohammed and Lim 2015) is used as input of a rule extractor based

on AntMinerPlus algorithm to build a graph. Then, the algorithm will perform a

process of extracting the rule-list and pruning rules by finding the paths on the

graph. The experimental result of Sonule and Shetty (2017) showed that the qual-

ity of rules is consistent and the number of obtained rules is reduced due to the

optimization algorithm. One of the strong points of this method is that it can opti-

mize simultaneously a list of rules instead of separate rules. However, training time

of the system is longer than other classifiers since there are more cases considered

and the construction of graph in the learning algorithm takes a long time.

As mentioned in subsection 2.3.1, the original fuzzy min-max neural network

encounters several problems in the expansion and contractions steps as well as the

overlapped boundary after doing contraction. Hence, Liu et al. (2017) proposed a

modified fuzzy min–max neural network for data clustering (MFMC) to deal with

those issues. Different from the original fuzzy min–max learning algorithms which

only separate the overlapping area into half, Liu et al. (2017) introduced the method

to reserve the hyperboxes with higher performance when performing the contraction

operation. The hyperboxes which include more data with smaller size are regularly

considered to be the ones with higher performance. The reservation ability maintains

the good structure of the whole learning algorithm, avoid disturbing the size of

hyperboxes because of noise, and refine the robustness for the algorithm (Liu et al.

2017). Although the authors made some changes to handle drawbacks of the original

fuzzy min-max clustering neural network, there are still some existing unsolved

problems. The use of only four test cases for the overlapping checking is not adequate

to verify all situations happening in the practice as described in Mohammed and Lim

(2015). The hyperbox selection rule only solves the case of many winner hyperboxes.
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If the ultimate winner hyperbox cannot be expanded, it still creates a new hyperbox

to contain the input training sample. This issues can lead to the generation of

numerous hyperboxes with the small size, which causes the network complexity

problem.

Azad and Jha (2016) argued that the series of expansion and contraction steps

lead to the change in the sizes of hyperboxes and affect the performance of the

predictive model. Hence, authors proposed to use the genetic algorithms to opti-

mize the min-max values of hyperboxes generated by the original FMNN. In later

work, Azad and Jha (2017) used the particle swarm optimization instead of genetic

algorithms, and they obtained a better performance.

To improve the performance of the original FMNN for clustering problems, Seera

et al. (2015) proposed to integrate the centroid information of data samples into each

hyperbox to construct an enhanced fuzzy min-max neural network for data clustering

(EFMNNC). With the use of centroid, the operations of hyperboxes in the learning

process are changed to force the centroid to be inside the hyperbox.

In most recently, there have been several noticeable improvements of the origi-

nal FMNN. Upasani and Om (2019) proposed a modified version of the EFMNN,

denoted by MEFMNN. They used a Manhattan distance measure to deal with the

case that there are many winning hyperboxes with the highest membership values in

the learning process and classification phase. The author also proposed a solution of

using GPUs to accelerate the MEFMNN. In another study, Sayaydeh et al. (2019)

introduced a refined fuzzy min-max neural network (RFMNN) with a new general

formula for the overlap test procedure and a new hyperbox contraction operation.

In many real world applications, one usually faces the lack of labeled data, while

the unlabeled data are often abundant. Hence, Liu et al. (2020) proposed a semi-

supervised learning algorithm based on the GFMMNNN (SS-FMM) to use both the

labeled and unlabeled data to train a classifier. They changed the network structure

of the original FMNN with a staged feedback to label the unlabeled data. Addi-

tionally, the authors designed a hyperbox pruning process to maximize the use of

unlabeled data as well as controlling the number of generated hyperboxes. Similarly,
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Ma et al. (2021) introduced an evolved fuzzy min-max neural network to effectively

learn from unknown labeled data (FMM-ULD) using the MFMC (Liu et al. 2017)

to cluster the unknown data by using a novel threshold function.

An attribute of the fuzzy min–max neural networks mentioned above is that all

the input variables for training and classifying processes are continuous numerical

values (Castillo and Cardenosa 2012). When the categorical variables are presented,

they can be substituted by numerical values and treated as continuous values. How-

ever, there is no meaningful correspondence between the continuous values created

by this method and the original categorical ones (Brouwer 2002). Hence, it is ex-

pected to form a new method for handling categorical variables. Castillo and Car-

denosa (2012) proposed a new method to extend the GFMMNN’s inputs for dealing

with discrete variables (GFMMNN-CD1) by formulating the distance between the

categories of categorical variables. The authors defined a new membership function

for both numerical and categorical variables. They also extended the architecture of

the GFMMNN to include both numerical and categorical inputs. In the later study,

Shinde and Kulkarni (2016) introduced another method to refine the GFMMNN for

categorical input data (GFMMNN-CD2). They proposed a simpler architecture by

adding a set of binary strings, where each binary string represents a given discrete

attribute, to each hyperbox fuzzy set of the network. The authors also introduced a

new membership function with the logical bitwise ‘and’ and ‘or’ operators conducted

on two binary strings for categorical variables. The learning algorithm is similar to

the GFMMNN with only small changes to accommodate discrete data.

2.4 Hyperbox based Hybrid Machine Learning Models

Mirzamomen and Kangavari (2016) proposed a fuzzy min-max decision tree (FM-

MDT), in which each internal node of the decision tree includes a contraction-less

fuzzy min-max neural network (CLFMNN). The strong points of the decision tree

and the fuzzy min-max neural networks are integrated into a hybrid model to mit-

igate the drawbacks of each algorithm. The shortcomings of the FMNN, i.e., the

dependency on the maximum size of hyperboxes and the performance degradation
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due to the contraction process, can be tackled based on the hierarchical structure of

the decision tree. Unlike conventional decision trees where a single attribute is cho-

sen as the split test, by using of the FMNN, each non-leaf node is split non-linearly

based on multiple attributes, and thus it can capture the complicated structures in

the data as well as forming decision trees with much smaller depth. The FMMDT

is grown according to the top-down method starting from the root node containing

all training patterns. Samples in each node are then partitioned recursively until

all or most of the samples are of the same class. Splitting a node in the FMMDT

is performed by training the CLFMNN on the input sample of the node and using

its output for splitting operation. However, the FMMDT constructed according to

this method is a batch decision tree learner for the static context (Mirzamomen and

Kangavari 2017).

To learn from continuous attributes in data streams, which is more challenging

compared to the static context, Mirzamomen and Kangavari (2017) proposed an

evolving fuzzy min–max decision tree (EFMMDT) learning algorithm, where each

decision node of the tree includes a concept adapting contraction less (CACL) fuzzy

min–max neural network. The authors used trainable split checks relied on multiple

attributes for each decision nodes by embedding the CACL fuzzy min–max neural

networks with concept-drift processing mechanisms to it. Hence, the decision tree is

able to be easily adapted to the new concept through employing a forgetting mech-

anism and training on new information (Mirzamomen and Kangavari 2017). The

statistics record constructed on the basis of the sliding window of recent samples

consists of hit rate, which represents the number of times a hyperbox has included

a new sample, and min-max points describing the minimum and maximum coordi-

nates computed from the matched training samples. The statistics-based updating

mechanism frequently shrinks the hyperboxes following the presentation of recent

training patterns. Whenever a new training sample is used, the algorithm traverses

the tree from the root to a leaf to separate the node using Hoeffding bound (Hulten

et al. 2001) for electing the features.

In another study related to combination structures of network and tree, Seera
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et al. (2012) proposed a hybrid model comprising the FMNN and the classification

and regression tree (CART) (Breiman et al. 1984), namely FMM–CART, for fault

detection and diagnosis of induction motors. Although FMNN has online learn-

ing capabilities with one-pass training, it does not have the ability to explain its

predictions in a user friendly form and the capability of handling categorical data.

Meanwhile, CART is able to explain its predictive results with rules as well as

handling both numerical and categorical data, but it is less flexible with regard to

learning from data patterns. The hybrid model can tackle the drawbacks of both

models with the ability to learn from data samples and produce rules for explanation

of its predictions simultaneously. The hyperboxes of FMNN form an input data set

to construct a tree based on the CART procedure. In the later study, Seera and

Lim (2014) extended FMM-CART by proposing modifications of the CART algo-

rithm and FMNN. In the learning algorithm of FMNN, a confidence factor for each

hyperbox is identified. This factor contributes to determining hyperboxes used very

often and being generally accurate in prediction, or hyperboxes seldom employed

but highly accurate. To improve the accuracy of a classification tree, the authors

provided each class of the decision tree with a confidence level, called class weight,

using the values of the FMM hyperboxes’ confidence factors (Seera et al. 2012).

The fuzzy min–max clustering neural network (Simpson 1993) does not require

providing the number of clusters in advance since it offers capability of online learn-

ing, and its number of clusters can be grown incrementally according to the data

distribution. However, the FMM clustering neural network is unable to generate

comprehensible rules to explain its clustering results. In contrast, the clustering

tree (CT) is capable of explaining the underlying cluster structures. Therefore,

Seera et al. (2016) combined the modified fuzzy min-max neural network for clus-

tering (Seera et al. 2015) with the clustering tree to create a new model, called

FMM-CT model, for tackling data clustering problems with the strengths of on-

line learning and rule extraction. To further improve the clustering performance of

FMM-CT, an ensemble model of clustering trees (ECTs) was introduced by Seera

et al. (2018). An ensemble model is able to deal with noise and outliers more effec-
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tively in comparison with individual clustering trees (Fauber and Schwenker 2015).

It is capable of generating a good balance between good and weak models in the

final ensemble model. The authors used the ECT model incorporating multiple CTs

by implementing the bagging method with random feature selection, which may

decrease the variance by sub-sampling the trees and minimize the error rate (Seera

et al. 2018). The majority voting mechanism is then employed to aggregate results

of base clustering tree. To evaluate the validity and quality of constructed clus-

ters, authors employed the Cophenetic Correlation Coefficient metric (Mirzaei and

Rahmati 2010) in combination with the centroid of each cluster.

Ensemble classifiers using bagging are able to significantly enhance the classifica-

tion performance, but it makes the classifier system complex, in which computational

time and a large memory are required for attaining the final classification outcomes.

The classifier ensembles also face loss of transparency the decision making process

since an ensemble of numerous individual classifiers would be much more difficult

to comprehend by users. In order to reduce the final predictor complexity while

preserving good classification performance, Gabrys (2002b) proposed the way of

combining the hyperbox fuzzy sets of base models, i.e., GFMMNNs created during

repeated 2-fold splitting of the training data, rather than their decisions. The com-

bination of hyperboxes is straightforward and has already been implemented in the

agglomerative learning algorithm (Gabrys 2002a). The hyperbox fuzzy sets from

different component machine learning models are incoporated as inputs to the ag-

glomerative training algorithm with the aim of removing the redundant hyperboxes

and adding or refining hyperboxes covering the regions near the class borders or

overlapping areas. The experimental results of Gabrys (2002b) indicated that the

combination at the model level gives much better performance than incorporation at

the decision level or by utilizing individual component classifiers learned from only

part of the training set. However, training time increases compared to combining

at the decision level.

One of the main issues ensemble models encounter is the lack of a simple structure

(Nugent and Cunningham 2005). This can make the classification systems become
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a ‘black box’ model without capability of explaining their predicted results. It

is desired to gain the advantage of incorporating classifiers whilst maintaining a

classifier with a relatively simple architecture. Motivated by this goal, Eastwood

and Gabrys (2011) proposed a way of building a model level combination scheme in

which an ensemble of decision trees is employed to build a set of hyperboxes covering

the input instances. These hyperboxes are then used as inputs to form a single,

relatively simple classifier within the general fuzzy min-max framework (Gabrys and

Bargiela 2000). By constructing the model on robustly labeled hyperbox instances,

instead of directly from the data, the classification accuracy of the final model can

be significantly enhanced on most data sets. Although experimental results showed

that performance of tree ensemble hyperboxes via GFMMNN generally does not

reach that of a full ensemble technique, this approach is still a good choice in cases

when simplicity of model is a desirable factor (Eastwood and Gabrys 2011).

2.5 Other Hyperbox based Machine Learning Models

Abe and Ming-Shong (1995) proposed an effective method to form a fuzzy clas-

sification system by extracting fuzzy rules directly from numerical input and output

data through hyperbox representation. Fuzzy rules are determined by activation

hyperboxes, which represent the existence region of data for a given class, and in-

hibition hyperboxes preventing the existence of data in corresponding activation

hyperboxes. Two kinds of hyperboxes are constructed recursively. However, the

recursive method of forming activation and inhibition hyperboxes to resolve over-

lapping regions between two classes each time can lead to a complicated architecture

for the classifier when tackling difficult classification tasks. Based on the hyperbox

construction method of Abe and Ming-Shong, Thawonmas and Abe (1997) pro-

posed a feature selection approach using the analysis of class regions created by

hyperboxes. The degree of overlap in the different class areas is defined as the ex-

ception ratio to make a measure for feature assessment. The feature with minimum

exception ratio is remove permanently.

To use the FMNN as an action selection network in the reinforcement learning
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problems, Likas and Blekas (1996) introduced a stochastic fuzzy min-max neural

network, where each hyperbox holds a stochastic automaton. The purpose of the

learning process of the stochastic FMM network is to adjust the position and border

of each hyperbox and the probability vector of each stochastic automaton (Mo-

hammed and Lim 2017a). However, this method has several disadvantages. Firstly,

all actions in a randomly generated hyperbox have equal probability of occurring,

hence, it is unable to support a certain specific action. Secondly, there is an imme-

diate transition from stochastic to deterministic when a rewarded action is chosen,

and this may causes several problems as the rewarded action may not be the best

one. Another drawback is that the modification of the action label of a given hy-

perbox is impossible (Likas 2001). Finally, the creation method of a new random

hyperbox within the original hyperbox and the shrinking of both of them to prevent

the appearance of overlapping regions result in the formulation of an immoderate

quantity of small volume hyperboxes and cause the difficulty in the adaptation of

learning algorithm. To cope with these issues, in the extended version, Likas (2001)

proposed an improved stochastic fuzzy min-max network, where all hyperboxes are

taken into account as random ones, and each of them holds a stochastic automaton.

The key role of the automaton is to determine the degree of randomness in the

process of choosing suitable actions.

Xu and Papageorgiou (2009) introduced a mathematical programming-based

classifier modelling classification boundaries as hyperboxes. Training process in

the proposed method tends to construct for each class a number of hyperboxes cov-

ering as many training instances as possible. The optimal position and dimension

of each hyperbox is identified by a mixed integer linear programming model (MILP)

aiming to minimize the total number of misclassifications. In this model, any two

hyperboxes of two different classes are not allowed to overlap because hyperboxes

cover the unique sample of corresponding classes.

In each iteration of the mathematical programming-based classifier, a new multi-

class prediction model needs to be solved regardless of the boundaries of hyperboxes

achieved in the previous iteration. As a result, numerous training instances, which
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are correctly classified, are repeatedly considered to formulate boundaries of hyper-

boxes and generate constraints in every iteration. In addition, a weak point of MILP

models is that the computational time is relatively long, which results in low effi-

ciency when the method is applied for large size data sets. Hence, Maskooki (2013)

proposed a modified version of the training algorithm to significantly reduce the

training time. The idea of their algorithm is to take advantage of the boundaries

gained from previous iterations and remove the correctly classified samples from

the training set in each iteration rather than utilizing whole data set for finding

new boundaries. Hence, several constraints corresponding to accurately classified

patterns are not created and thus the number of binary variables needed to be con-

sidered is decreased through iterations. In this training algorithm of Maskooki, only

the misclassified instances from different classes are passed to the next iteration.

By this method, several constraints are reduced and therefore the number of binary

variables is decreased through each iteration. Another type of improvement for the

MILP model was proposed by Yang et al. (2015), where they aimed to refine the

quality of the formed hyperboxes. They introduced two new proposals to enhance

the performance of the hyperbox based classifier. They firstly extended Xu and

Papageorgiou’s work by incorporating a sample reweighting scheme, where higher

weights are assigned to misclassified patterns included in other hyperboxes to adjust

the model aiming to consider those difficult patterns in the next iteration. Moreover,

to reduce high computational expense of the original model, they proposed a data

space splitting technique to partition the training instances into two disjoint areas.

The model is then resolved in this new space.

Most classical statistical models make assumptions on underlying data, their

distributions, independence, stationarity, etc. However, such assumptions are usu-

ally unrealistic in the real-life applications (Grzegorzewski 2013). Furthermore, the

traditional statistical techniques cannot generate ambiguous outputs if their inputs

exhibit uncertainty, vagueness, imprecision, or fuzziness. Motivated by the practi-

cal demands for simplification, low cost, approximation, and the tolerance of un-

certainty in information processing, the granular computing (Bargiela and Pedrycz
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2003) was proposed with the aim of the construction of intelligent systems with more

human-centric view. Peters (2011) introduced a simple and intuitive method, called

granular box regression analysis, to establish a fuzzy granulation generalization of

a function between several independent variables and one dependent variable in the

context of granular computing by using hyperboxes. Reyes-Galaviz and Pedrycz

(2015) introduced a new technique to form a granular model for clustering in which

information granules are represented as hyperboxes.

Most studies on the construction of hyperboxes are based on the original fuzzy

min-max neural network proposed by Simpson (1992). Hence, hyperboxes are lim-

ited by an allowable maximum size and non-overlapping hyperboxes conditions.

While the maximum size can lead to a complex model with a large number of

small hyperboxes, the contraction process to remove overlaps causes loss of included

data. Therefore, Reyes-Galaviz and Pedrycz (2015) proposed a novel technique for

the construction of hyperboxes, where they deployed conditional Fuzzy C-Means

(FCM) (Pedrycz 1998) to establish direct associations among information granules,

and then utilize them to construct hyperboxes. Experimental results indicated that

the clustering performance of this approach increases when data have the large

number of features and instances compared to the original fuzzy min-max clustering

neural network.

Palmer-Brown and Jayne (2011) proposed a hyperbox neural network (HNN)

algorithm for classification, in which each class is associated with only one hyperbox

and a single neuron. Each hyperbox covers and presents the ranges of attribute

values of samples belonging to the same class. If a new sample falls in only one

hyperbox, it will be classified immediately to the class label of that hyperbox. In

contrast, if the pattern is located in the overlapping region among hyperboxes, the

neurons of these hyperboxes are used to classify the sample. Eastwood and Jayne

(2014) extended the hyperbox neural network by proposing a piece-wise sigmoid

adaptive activation function to substitute the piece-wise linear function in Palmer-

Brown and Jayne (2011). They also introduced a combination of the supervised

hyperbox and neurons with unsupervised clustering. However, the use of only one
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neuron per each class has one potential weakness that it might only express class

distribution within a hyperbox varying in only one single direction (Eastwood and

Jayne 2014). Therefore, Eastwood and Jayne (2014) proposed a change to the

above method, in which they performed clustering on the data belonging to each

hyperbox to form data clusters within each hyperbox. A single sigmoid neuron is

then associated with each cluster and is trained on only the data in that cluster.

Building more than one neuron for each hyperbox based on clusters allows to handle

data sets where the different classes have many overlapping areas, and can model

the class distribution within a hyperbox in more than one direction.

Park et al. (2014) suggested the development of a hyperbox classifier with hierar-

chical two-level structure on domino extension from seed hyperboxes. This classifier

comprises a core structure built on a basis of a set of hyperboxes and secondary

structure constructed on a basis of fuzzy sets. The core structure is formed by the

domino extension of seed hyperboxes. As for the domino method, the feature space

is discretized, and then a hyperbox chosen as a seed in the new space grows up to

formulating a cluster. The secondary structure is built by implementing a Hausdorff

distance (Olson 1998) between a group of hyperboxes and a sample.

The topological information is usually ignored in conventional clustering meth-

ods. This shortcoming is effectively tackled by using clustering techniques based on

hyperboxes to capture the distribution of data on the feature space. Hence, Ramos

et al. (2009) proposed a hyperbox clustering with ant colony algorithm (HACO) for

clustering the unlabeled data by near-optimally placing hyperboxes in the feature

space. Hyperboxes, which are frequently smaller than the number of patterns, are

sought for by using the ACO algorithm (Dorigo and Stutzle 2004) and then clus-

tered utilizing the nearest-neighbor approach. The obtained result from HACO is

a vector of hyperboxes for clustering data which can be used as machine learning

models. To refine this model, Ramos et al. (2008) proposed a second version of

hyperbox-based machine learning algorithm with ACO (HACO2) by deploying the

ant colony algorithm to evolve the geometry of hyperboxes in the feature space to

better cover the data in the class. The output of HACO can be used as input of
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HACO2 to reshape the hyperboxes. Therefore, HACO can be considered as an ap-

propriate initialization step instead of random initialization of hyperboxes so that

HACO2 refines the structure.

2.6 Discussion and Research Directions

2.6.1 Discussion

Hyperbox fuzzy sets possess many attractive characteristics to build highly effi-

cient predictive models. This chapter gave an overview of properties and character-

istics of existing hyperbox-based machine learning algorithms.

The existing studies taking advantage of the hyperbox representations for the

construction of predictive models were categorized into three groups. The first

group is the original FMNN and its variants. The second one is the combination of

the FMNNs and tree-based learning algorithms or the formulation of an ensemble

model. The final group includes models that only use pure hyperboxes to cover

training samples without forming network or tree architectures.

The idea of using hyperbox fuzzy sets for machine learning models was proposed

in the ART neural networks (Carpenter et al. 1991), and then it was improved to

form the FMNN in Simpson’s work. The FMNN has many strong points such as

online learning ability, soft and hard decisions, construction of nonlinear decision

boundaries, etc. However, this type of neural network still faces many drawbacks

such as expansion and contraction problems, the dependence on the data presen-

tation order, parameter sensitivity problem, and issues related to the membership

function.

As a result, several improvements have aimed to form new learning algorithms

for hyperbox-based neural networks such as using new rules to select hyperboxes for

expansion, adding or modifying hyperbox test rules. Building a unified framework

for FMM clustering and classification neural networks as in GFMMNN provided

a significant enhancement to the original version. Many researchers have targeted

eliminating the hyperbox contraction process by implementing inclusion/exclusion
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neurons, compensatory neurons, overlapping neurons, using a multi-level network

structure or some heuristic rules to choose the suitable hyperbox for samples located

in the overlapping region among hyperboxes. To expand the hyperbox-based ma-

chine learning models for dealing with categorical data, several studies have taken

categorical variables into consideration when building new membership functions

and network architectures.

In addition to different types of hyperbox-based neural networks, many studies

have taken advantage of online learning ability of FMNN to combine with rule

extractors such as decision tree, clustering tree, and classification and regression

trees. These types of hybrid models are capable of generating explanatory rules for

their outputs. Some other works have concentrated on evolving and optimizing the

positions of hyperboxes from the initial set of hyperboxes by using nature-inspired

algorithms such as differential evolution, GA or ACO.

2.6.2 Research Directions

In spite of many advancements in existing literature, there are still a number of

open problems having not been fully tackled in current studies on hyperbox-based

machine learning algorithms, and ones which require more efforts on resolving them

in the future work. Some potential research directions which are tackled in this

thesis can be shown as follows. The remainder of potential research directions is

presented in Section 9.2 in Chapter 9.

• Improving the robustness of online learning algorithms. As discussed in subsec-

tion 2.3.2, the contraction process in the learning algorithms of fuzzy min-max

neural networks can lead to the disturbance of existing hyperboxes, and thus

the performance of learning algorithms can dramatically decrease, especially

in the case of building large-sized hyperboxes. Therefore, Objective 2 in this

thesis is proposed to build more robust online learning algorithms for the

GFMMNN. The details of the proposed method are presented in Chapter 4.

• Learning from mixed-attribute data. In the literature, there have been only

two studies aiming to make the FMNNs able to learn from the mixed-attribute
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data. Therefore, Objective 2 in this thesis focuses on developing the effective

learning algorithms for the FMNNs to deal with this issue. It will present a

novel learning algorithm for the GFMMNN to tackle a classification problem

on mixed-attribute data as shown in Chapter 5.

• Accelerating learning algorithms. As will be deeply analyzed in Chapter 3,

current learning algorithms of (general) fuzzy min-max neural networks have

high complexity. Hence, training time of these algorithm is long. Objective 3

of this thesis aims to deal with this issue. Two solutions to speed-up learning

algorithms for the GFMMNN will be proposed in this study based on refor-

mulation of learning steps for the execution of GPUs and using smart ways to

reduce the number of hyperbox candidates based on the mathematical lemmas

in Chapter 6.

• Building simple interpretable hyperbox-based learning algorithms. Transpar-

ent learning models are highly desirable for real work applications, especially

in high-stake areas such as medical diagnostic, trading, and criminal justice.

Although the FMNN and its variants are interpretable models, their trans-

parency and interpretability will be significantly reduced when the complexity

of models increases in the case of using the small value of the maximum hy-

perbox size. As a result, it is desired to propose different solutions to keep the

learning models as simple as possible while still maintaining their high perfor-

mance. Objective 4 in this thesis will deal partly with this issue by proposing

a method to build learning models from different levels of granularity as pre-

sented in Chapter 7.

• Generation of ensemble models. It is really difficult to achieve acceptable

classification results for big data sets with massive dimensions. Therefore,

one may use hyperbox representations to select valuable features and train

classifiers on different training subsets. The results of base classifiers or the

hyperbox components in base predictors are then able to be combined following

a certain method to output the final result or model. An effective way of

generating ensemble models of hyperbox-based classifiers is highly desired,
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which leads to Objective 5 of this thesis. This study will introduce a random

hyperboxes model in Chapter 8, which is a simple and powerful technique to

build the ensemble models from base learners using hyperbox representations.

2.7 Summary

This chapter partly addressed the proposed Objective 1 in Section 1.2 regarding

conducting a comprehensive survey of existing studies on hyperbox-based machine

learning algorithms. One of the interesting features of hyperbox-based models is

their online learning capability, which meets the urgent demand for constructing

effective machine learning approaches for real big data analytics. The hyperbox

representation is especially suitable for big data applications such as image process-

ing because the use of hyperboxes assists the processing and inference in the form

of granules instead of handling individual points. This solution can significantly

decrease computational cost in large systems. The real-world applications usually

exhibit uncertain behaviors, so the input data of the machine learning algorithms are

likely to contain both granular and crisp points or missing values. Hence, effective

algorithms must be able to cope with uncertain and ambiguous data. The hyperbox

representation method in the general fuzzy min-max neural network allows to han-

dle both fuzzy and crisp input samples as well as inputs with missing values. An

interesting characteristic of the general fuzzy min-max neural network is that it uni-

fies both classification and clustering problems in the same framework. This feature

endows the model with the capability of learning from unlabeled, semi-labeled, and

labeled data. Another attribute of the practical systems is the continuous changing

over time, so they require machine learning models capable of evolving to fulfill the

operations without retraining. The hyperbox creation, extension, and contraction

mechanisms using fast Boolean algebra help hyperbox-based machine learning al-

gorithms evolve and adjust to adapt rapidly to the changes in the data. Another

advantage of hyperboxes is that they can be used to build the rule sets for a given

problem. This ability contributes to the increase in the reliability of the predictive

results as well as making the algorithms friendly and transparent to end-users.
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Chapter 3

General Fuzzy Min-Max Neural Network:

Practices and Existing Issues

This chapter presents a comprehensive empirical study of performance influencing

factors, advantages, and drawbacks of the general fuzzy min-max neural network on

pattern classification problems. The subjects of this study include (1) the impact of

maximum hyperbox size, (2) the influence of the similarity threshold and measures

on the agglomerative learning algorithm, (3) the effect of data presentation order,

(4) comparative performance evaluation of the GFMMNN with other types of fuzzy

min-max neural networks and prevalent machine learning algorithms. The main

content of this chapter is taken from the following paper (Khuat and Gabrys 2020):

• Thanh Tung Khuat, and Bogdan Gabrys, “A comparative study of general

fuzzy min-max neural networks for pattern classification problems,” Neuro-

computing, vol. 386, pp. 110-125, 2020.

3.1 Introduction

Pattern classification, which belongs to the class of supervised learning, aims

to discover information and knowledge under data through taking advantage of the

power of learning algorithms (Olivas et al. 2009). It plays a crucial role in many real

world applications ranging from medical diagnostic (Burger et al. 2017), electronic

devices (Alibart et al. 2013) to tourism (Li et al. 2015) and energy (Jokar et al.

2016).

Multi-dimensional hyperbox fuzzy sets can be used to deal with the pattern

classification problems effectively by partitioning the pattern space and assigning

a class label associated with a degree of certainty for each region. Each fuzzy

min-max hyperbox is represented by minimum and maximum points along with
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a fuzzy membership function. The membership function is employed to compute

the degree-of-fit of each input sample to a given hyperbox. Meanwhile, the hyper-

box is continuously adjusted during the training process to cover the input patterns.

Among the hyperbox-based learning algorithms, the GFMMNN is an effective learn-

ing model, which can accept both fuzzy and crisp patterns for the input data. This

characteristic supports the GFMMNN to manage uncertainty in the input samples

explicitly. Another significant modification of the GFMMNN compared to the orig-

inal FMNN is the ability to process both classification and clustering in a single

model. Therefore, the GFMMNN can be deployed to handle many types of real-

world applications, especially problems with uncertain data and the input samples

in the form of intervals.

Learning algorithms of the GFMMNN have a number of user-defined hyper-

parameters, which can have a significant impact on their performance. Hence, a

comparative study which illustrates the influence of hyper-parameters on the predic-

tive accuracy is crucial for researchers to consider the applicability of the GFMMNN

to practical problems. In addition, the study on the influence of factors on the per-

formance of the GFMMNN opens the research directions towards optimizing the pa-

rameters and hyperparameters in an automatic manner. This comparative research

includes assessments of the roles of configuration parameters on the predictive re-

sults of the classifiers, clarifying the efficiency and effectiveness as well as drawbacks

of the GFMMNN in addressing the pattern classification problems, and reviewing

the classification accuracy of the GFMMNN in comparison to other techniques us-

ing robust evaluation approaches. The main contributions in this chapter can be

summarized as follows:

• A comparative study of the GFMMNN for pattern classification problems

has been conducted, making clear the advantages and disadvantages of each

training algorithm and identifying factors influencing the performance of the

GFMMNN. The implementations of learning algorithms for the fuzzy min-

max neural networks as well as benchmark datasets are publicly available at

https://github.com/UTS-AAi/comparative-gfmm

https://github.com/UTS-AAi/comparative-gfmm
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• The GFMMNN has been empirically evaluated in comparison to other types

of fuzzy min-max neural networks using the hyperbox expansion/contraction

mechanism in the learning process as well as popular machine learning al-

gorithms on the benchmark datasets using robust evaluation techniques, i.e.,

density-preserving sampling (DPS) (Budka and Gabrys 2013), parameter tun-

ing by the grid-search method and cross-validation, as well as statistical hy-

pothesis tests.

• Existing issues of the GFMMNN have been identified and discussed in depth.

3.2 General Fuzzy Min-Max Neural Network and Learning

Algorithms

3.2.1 An Overall Architecture

General fuzzy min-max neural network contains three layers as shown in Figure

3.1. The input layer includes 2n nodes, where n is the number of dimensions of

the input pattern. The first n nodes are the lower bounds of the input, while

the remaining n nodes correspond to the upper bounds. These input nodes are

connected to m hyperbox nodes in the hidden layer, in which the connection weights

of the lower bound input nodes are stored in a matrix V and the connection weights

between upper bound input nodes and hyperbox nodes are saved in a matrix W .

These weights correspond to minimum points and maximum points of hyperboxes,

and their values are adjusted during the training process. Each hyperbox node Bi

is associated with an activation function, which is also known as the membership

function defined by Eq. (3.1).

bi(X,Vi,Wi) =
n

min
j=1

(min([1− f(xuj − wj , γj)], [1− f(vj − xlj , γj)])) (3.1)

where f(z, γ) =


1, if zγ > 1

zγ, if 0 ≤ zγ ≤ 1

0, if zγ < 0

is the ramp function, γ = [γ1, . . . , γn] is a

sensitivity parameter describing the speed of decreasing of the membership function,
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Figure 3.1 : An architecture of general fuzzy min-max neural network

and X = [X l, Xu] is an input pattern with lower bounds X l and upper bounds Xu,

which are vectors with values limited in the n-dimensional unit hyper-cube [0, 1]n.

Each hyperbox Bi in the hidden layer is connected to each output (class) node

cj by a binary-valued parameter uij computed using Eq. (3.2). There are p + 1

output nodes corresponding to p classes, where node c0 is linked to all unlabeled

hyperboxes in the hidden layer. The transfer function of cj is determined by the

maximum membership value of all hyperboxes with same class as cj and is shown

in Eq. (3.3).

uij =

1, if hyperbox Bi represents class cj

0, otherwise

(3.2)

cj =
m

max
i=1

bi · uij (3.3)

where m is the number of hyperboxes in the middle layer. The output of each class

node can be a fuzzy value calculated directly from Eq. (3.3) or a crisp value if the

node associated with the highest membership value gets the value of one, and the

others are assigned zero values (Gabrys and Bargiela 2000).

Although the GFMMNN can be applied for labeled and unlabeled datasets, this
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chapter (also this thesis) focuses only on the classification problems. Therefore, the

learning algorithms in the next sections are presented for labeled training data.

3.2.2 Online Learning Algorithm

The incremental (online) learning algorithm, proposed in Gabrys and Bargiela

(2000), adjusts the size of existing hyperboxes or create new hyperboxes to accom-

modate new coming input patterns. There are three main steps in the algorithms

including hyperbox expansion/creation, hyperbox overlap test, and hyperbox con-

traction. The pseudo code of the original online learning algorithm is given in

Algorithm 3.1.

Assuming that each input pattern is represented in the form of X = [X l, Xu, cX ],

where cX is a class label and X l and Xu are lower and upper bounds. The online

learning algorithm first selects all existing hyperboxes with the same class as cX . Af-

ter that, the algorithm performs the computation of the membership values between

these selected hyperboxes and the input pattern X, and then these membership val-

ues are sorted in a descending order (lines 8-9 ). Next, the algorithm traverses in

turn each hyperbox Bi in the list of selected hyperboxes starting from the hyperbox

with the maximum membership value to choose a hyperbox candidate aiming to

expand and cover the input pattern. This process terminates when there is a hyper-

box satisfying the expansion condition or the membership value is one (lines 12-28 ).

Otherwise, a new hyperbox will be created with the same co-ordinates and label as

the input pattern (lines 29-31 ). The expansion condition relates to the maximum

hyperbox size threshold in each dimension as shown in Eq. (3.4).

max(wij, x
u
j )−min(vij, x

l
j) ≤ θ, ∀j ∈ [1, n] (3.4)

If this criterion is met, the hyperbox Bi is extended to accommodate the input

pattern X using Eqs. (3.5) and (3.6).

vnewij = min(voldij , x
l
j) (3.5)

wnewij = max(woldij , x
u
j ), ∀j ∈ [1, n] (3.6)
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Algorithm 3.1 The original online learning algorithm
Input:

• θ: The maximum hyperbox size threshold

• γ: The speed of decreasing of the membership function

Output:

A list H of hyperboxes with minimum-maximum values and classes

1: Initialize an empty list of hyperboxes: min-max values V =W = ∅, hyperbox classes: L = ∅

2: for each input pattern X = [Xl, Xu, cX ] do

3: n← The number of dimensions of X

4: if V = ∅ then

5: V ← Xl; W ← Xu; L ← cX

6: else

7: H1 = [V1,W1,L1]← Find hyperboxes in H = [V,W,L] representing the same class as cX

8: M← ComputeMembershipValue(X,V1,W1,L1)

9: Hd ← SortByDescending(H1,M(H1))

10: Set H1 ← H \H1

11: flag ← false

12: for each h = [Vh,Wh, ch] ∈ Hd do

13: if M(h) = 1 then

14: flag = true

15: break

16: end if

17: if max(whj , x
u
j )−min(vhj , x

l
j) ≤ θ, ∀j ∈ [1, n] then

18: W t
h ← max(Wh, X

u); V th ← min(Vh, X
l)

19: for each hyperbox [Vi,Wi, ci] ∈ H1 do

20: isOver ← OverlapTest(V th ,W
t
h, Vi,Wi)

21: if isOver = true then

22: DoContraction(V th ,W
t
h, Vi,Wi)

23: end if

24: end for

25: flag = true

26: break

27: end if

28: end for

29: if flag = false then

30: V ← V ∪Xl; W ←W ∪Xu; L ← L ∪ cX
31: end if

32: end if

33: end for

34: return H = [V,W,L]

If the expansion step of the hyperbox candidate is carried out, the extended

hyperbox Bi is verified for the overlap with the hyperboxes Bk representing other
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classes. For each dimension j, four following conditions are checked for the overlap

test operation (initially δold = 1):

• vij ≤ vkj < wij ≤ wkj : δnew = min(wij − vkj, δold)

• vkj ≤ vij < wkj ≤ wij : δnew = min(wkj − vij, δold)

• vij < vkj ≤ wkj < wij : δnew = min(min(wkj − vij, wij − vkj), δold)

• vkj < vij ≤ wij < wkj : δnew = min(min(wij − vkj, wkj − vij), δold)

If δnew < δold, then it is set ∆ = j and δold = δnew to show an overlapping area on

the ∆th dimension, and the testing procedure is repeated for the next dimension.

In contrast, there is no overlap region between two considered hyperboxes, and

the hyperbox contraction step will not be performed (∆ = −1). If ∆ 6= −1, the

contraction procedure is applied on the ∆th dimension to remove the overlapping

area between two hyperboxes. The overlapping region is eliminated by tuning the

value of the dimension with the smallest overlap. If ∆ > 0, this dimension is adjusted

according to the four following cases:

Case 1: vi∆ ≤ vk∆ < wi∆ ≤ wk∆ : wnewi∆ = vnewk∆ = (woldi∆ + voldk∆)/2

Case 2: vk∆ ≤ vi∆ < wk∆ ≤ wi∆ : wnewk∆ = vnewj∆ = (woldk∆ + voldj∆)/2

Case 3: vi∆ < vk∆ ≤ wk∆ < wi∆ :

vnewi∆ = woldk∆, if wk∆ − vi∆ ≤ wi∆ − vk∆

wnewi∆ = voldk∆, if wk∆ − vi∆ > wi∆ − vk∆

Case 4: vk∆ < vi∆ ≤ wi∆ < wk∆ :

wnewk∆ = voldi∆ , if wk∆ − vi∆ ≤ wi∆ − vk∆

vnewk∆ = woldi∆ , if wk∆ − vi∆ > wi∆ − vk∆

In addition to setting up a fixed value of θ at the beginning of the learning

algorithm and keeping it unchanged during the training process, another implemen-

tation using adaptive values θ was also introduced in Gabrys and Bargiela (2000).
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In this way, the algorithm starts with a large value of θ, and then this value is

decreased during the presentation of training data. The value of θ is updated after

each iteration as Eq. (3.7):

θnew = ϕ · θold (3.7)

where the coefficient ϕ (0 ≤ ϕ ≤ 1) controls the pace of decrease of θ. The

learning process stops when no training patterns are misclassified or the minimum

user-defined value of θmin has been reached. This chapter will also compare the

GFMMNN with the fixed and adaptive values of the parameter θ.

Time complexity of the Onln-GFMM algorithm. In terms of time com-

plexity, assuming that there are N training samples with n features, the algorithm

will first traverse each input sample and find a list of K hyperboxes with the same

class as the input sample. The time complexity for this operation is constant if

the hashtable technique is used. The membership computation must check all n di-

mensions of K hyperboxes, so the time complexity is O(Kn). K membership values

for each input are obtained, therefore, the time complexity of the sorting operation

is O(K logK). Let R be the number of hyperboxes representing classes different

from the input class in the current iteration, it requires O(R) to collect these R

hyperboxes. In the worst-case, all K selected hyperboxes are traversed to find the

expandable hyperbox (line 12 ). For each hyperbox candidate, the checking of the

expansion condition through n dimensions requires O(n). The overlap test between

the hyperbox candidate andR hyperboxes belonging to other classes requires O(Rn)

for time complexity. Only constant time is required for the process of contraction

or generating a new hyperbox. Hence, the time complexity from line 12 to line 28

in the worst-case is O(KRn). Finally, let K be the average number of hyperbox

candidates for each iteration, R be the average number of hyperboxes representing

classes different from the input class over N training samples, the time complexity

of learning algorithm 3.1 in the worst-case is O(N · K · R · n).
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3.2.3 Agglomerative Learning Algorithm

The online learning algorithm creates or adjusts the size of hyperboxes whenever

an input sample comes in the network. Therefore, its performance depends on

the data presentation order. Gabrys (2002a) proposed an agglomerative learning

algorithm based on the full similarity matrix (AGGLO-SM) to reduce the impact of

the data presentation order on the accuracy of the learning algorithm. In contrast

to the online learning algorithm, the AGGLO-SM algorithm for the classification

problems starts with all of the training samples. The idea is to merge hyperboxes

with the same class, possessing the similarity values larger than a given threshold,

and not generating the overlapping areas with existing hyperboxes representing other

classes. The main steps of the AGGLO-SM algorithm are shown in Algorithm 3.2.

Firstly, the algorithm initializes a matrix V of minimum points and a matrix W

of maximum points using the lower bounds Xl and upper bounds Xu of all training

samples. Next, the algorithm performs a repeated training process of aggregating

hyperboxes starting from the computation of a similarity matrix of hyperboxes for

each class. There are three measures possible to be used to find the similarity value

of each pair of hyperboxes Bi and Bk as follows:

• The first similarity measure is based on maximum points or minimum points

of two hyperboxes. For simplifying, this measure is called as “middle distance”

in this thesis, though the similarity measures are not distance measures:

sik = s(Bi, Bk) =
n

min
j=1

(min(1− f(wkj − wij, γj), 1− f(vij − vkj, γj)))

It can be seen that sik 6= ski, thus the similarity value between Bi and Bk may

receive the minimum or maximum value between sik and ski. If the maximum

value is used, this measure is called “mid-max distance”; otherwise, the name

“mid-min distance” is used.

• The second similarity measure employs the smallest gap between two hyper-

boxes Bi and Bk, namely “shortest distance” in this thesis:

s̃ik = s̃(Bi, Bk) =
n

min
j=1

(min(1− f(vkj − wij, γj), 1− f(vij − wkj, γj))) (3.8)
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Algorithm 3.2 Agglomerative algorithm with full similarity matrix - AGGLO-SM
Input:

• X = [Xl,Xu]: A list of training features

• C: A vector of pattern classes

• θ: The maximum hyperbox size threshold

• γ: The speed of decreasing of the membership function

Output:

A list H of hyperboxes with minimum-maximum values and classes

1: Initialize a list of hyperboxes: min-max values V = Xl,W = Xu, hyperbox classes: L = C

2: loop← true; n← the number of features of X

3: S ← ComputeSimilarityValPairWithinEachClass(V,W,L)

4: while loop = true do

5: loop← false

6: S ← S \ {s ∈ S|s < σ}

7: I,K, S ← SortByDescending(S,V,W,L)

8: for each [i, k, s] ∈ [I,K, S] do

9: if max(wij , wkj)−min(vij , vkj) ≤ θ, ∀j ∈ [1, n] then

10: Wt ← max(Wi,Wk); Vt ← min(Vi, Vk)

11: H1 ← A list of hyperboxes with classes different from ci ∈ L

12: isOver ← IsOverlap(Vt,Wt,H1)

13: if isOver = false then

14: loop← true

15: Vi ← Vt; Wi ←Wt

16: V ← V \ Vk; W ←W \Wk; L ← L \ Lk
17: S ← UpdateSimilarityMatrix(V ,W,L)

18: break

19: end if

20: end if

21: end for

22: end while

23: return H = [V,W,L]

• The third similarity measure is based on the longest possible distance between

two hyperboxes Bi and Bk, called “longest distance” for short, defined as

follows:

ŝik = ŝ(Bi, Bk) =
n

min
j=1

(min(1− f(wkj − vij, γj), 1− f(wij − vkj, γj)))

it can be observed that both s̃ik and ŝik possess the symmetrical property.

From the similarity matrix of hyperboxes with the same class, the algorithm will

merge sequentially hyperboxes by seeking for a pair of hyperboxes with the maximum
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similarity value. It is noted that the algorithm only considers pairs of hyperboxes

with similarity values larger than or equal to a minimum similarity threshold (σ):

sih ≥ σ (line 6 - Algorithm 3.2). Assuming that these two hyperboxes are Bi and

Bk, the following conditions will be checked before aggregating:

(a) Maximum hyperbox size:

max(wij, wkj)−min(vij, vkj) ≤ θ, ∀j ∈ [1, n]

(b) Overlap test. Newly aggregated hyperbox from Bi and Bk does not overlap

with any existing hyperboxes belonging to other classes. The overlap check-

ing conditions between two hyperboxes are shown in subsection 3.2.2. If any

overlapping area exists, another pair of hyperboxes is selected.

If all above constraints are met, the hyperbox aggregation process is carried out

as follows:

(a) Updating the coordinates of Bi so that Bi represents the coordinates of the

merged hyperbox (line 15 ).

(b) Removing Bk from the current set of hyperboxes (line 16 ) and update the

similarity matrix (line 17 ).

This training process is iterated until there are no pairs of hyperboxes to aggregate.

Time complexity of the AGGLO-SM algorithm. The time complexity of

the computation of similarity values at line 3 in Algorithm 3.2 is O(N2n), where

N is the number of training samples and n is the number of features. With N

training samples, a maximum of N(N − 1)/2 hyperbox pairs is obtained. In the

worst-case, all pairs of hyperboxes have to be looped through. At each iteration,

let Y be the number of existing hyperboxes, the filtering step of hyperbox pairs

satisfying the minimum similarity value (line 6 ) requires O(Y2) for time complexity.

Assuming Z pairs of hyperbox candidates for the aggregation process are obtained,

the complexity of the sorting step is O(Z logZ). In the worst-case, all of these
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Z candidate pairs need to be checked for the aggregation process. For each pair,

the checking for the maximum hyperbox size condition requires O(n). The process

of collecting hyperboxes representing classes different from the newly aggregated

hyperbox takes O(Y). The overlap test between the newly aggregated hyperbox and

existing hyperboxes requires O(Yn). The update step of the similarity matrix takes

O(Yn). Therefore, in the worst-case, the process of aggregating a pair of hyperboxes

(lines 6-21 in Algorithm 3.2) requires O(ZYn+Y2) for time complexity. As a result,

let Z be the average number of pairs of hyperbox candidates considered during the

training process and Y be the number of existing hyperboxes in each iteration, the

time complexity for the AGGLO-SM algorithm is O(N2 · (Z · Y · n + Y2
)) in the

worst-case.

3.2.4 Accelerated Agglomerative Learning Algorithm

Training process of the AGGLO-SM algorithm takes a very long time to com-

plete, especially for massive datasets, due to the fact that the similarity matrix for

all pairs of hyperboxes needs to be computed and sorted. To lower the training time

of the AGGLO-SM algorithm, Gabrys (2002a) also introduced the second agglom-

erative algorithm (AGGLO-2) removing the usage of the full similarity matrix when

selecting and merging hyperboxes. The main steps of the AGGLO-2 are shown in

Algorithm 3.3.

The AGGLO-2 algorithm traverses and selects in turn each hyperbox in the

current list of hyperboxes to perform the hyperbox merging process. For the first

selected hyperbox candidate Bi, the similarity values of Bi and the remaining hy-

perboxes with the same class as Bi are computed and sorted (lines 7-9 in Algorithm

3.3). The hyperbox Bk with the highest similarity value is chosen as the second

candidate for the aggregation. The aggregation constraints of Bi and Bk are the

same as in the AGGLO-SM algorithm. If the aggregation conditions are met, the

coordinates of Bi are updated so that it shows the aggregated hyperbox and remove

Bk of the list of current hyperboxes. If Bi and Bk do not meet the constraints, the

hyperbox with the second largest similarity value is selected, and the above checking

and merging steps are repeated until the agglomeration happens. The learning algo-
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rithm stops when no pair of hyperboxes can be aggregated (the variable loop = false

in Algorithm 3.3).

Algorithm 3.3 The agglomerative algorithm version two - AGGLO-2
Input:

• X = [Xl,Xu]: A list of training features

• C: A vector of pattern classes

• θ: The maximum hyperbox size threshold

• γ: The speed of decreasing of the membership function

Output:

A list H of hyperboxes with minimum-maximum values and classes

1: Initialize a list of hyperboxes: min-max values V = Xl,W = Xu, hyperbox classes: L = C

2: loop← true; n← the number of features of X

3: while loop = true do

4: loop← false; i← 1

5: while i ≤ |L| do

6: H1 = [V1,W1,L1]← Find hyperboxes in [V,W,L] representing the same class as ci ∈ L

7: S ← ComputeSimilarityValPair(Vi,Wi,H1)

8: S ← S \ {s ∈ S|s < σ}

9: K,S ← SortByDescending(S,V1,W1,L1)

10: for each [k, s] ∈ [K,S] do

11: if max(wij , wkj)−min(vij , vkj) ≤ θ, ∀j ∈ [1, n] then

12: Wt ← max(Wi,Wk); Vt ← min(Vi, Vk)

13: H1 ← A list of hyperboxes with classes different from li

14: isOver ← IsOverlap(Vt,Wt,H1)

15: if isOver = false then

16: loop← true

17: Vi ← Vt; Wi ←Wt

18: V ← V \ Vk; W ←W \Wk; L ← L \ Lk
19: if i > k then

20: i← i− 1

21: end if

22: break

23: end if

24: end if

25: end for

26: i← i+ 1

27: end while

28: end while

29: return H = [V,W,L]
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Time complexity of the AGGLO-2 algorithm. Assuming that it is given

N training samples with n features, in the worst-case, the training process has to

loop through all N initial hyperboxes. In each iteration, the process of finding the

hyperboxes representing the same class as the considered hyperbox takes constant

time if using the hashtable. Let K be the number of hyperboxes with the same

class as the considered hyperbox in the current iteration, the computation step of

similarity values takes O(Kn). The filtering step of hyperbox candidates satisfying

the minimum similarity value takes O(K). Let Z be the number of pairs of hyperbox

candidate for the aggregation process, the sorting step requires O(Z logZ). In the

worst-case, the aggregation process needs to loop through all Z pairs of hyperbox

candidates. For each candidate pair, the checking step of the maximum hyperbox

size condition requiresO(n). LetR be the number of hyperboxes representing classes

different from the considered pair of hyperbox candidate, it takes O(R) to find these

hyperboxes. The overlap test step (line 14 in Algorithm 3.3) requires O(Rn). The

operation of removing a merged hyperbox requires O(K) but this step only occurs

once among Z pairs of hyperbox candidates. As a result, the time complexity for

the aggregation process (lines 6-26 ) is O(ZRn). In summary, let Z be the average

number of pairs of hyperbox candidates and R be the average number of hyperboxes

belonging to classes different from the class of the considered pair of hyperbox, the

time complexity of the AGGLO-2 algorithm is O(N · Z · R · n) in the worst-case.

3.3 Existing Problems and Motivations

Fuzzy min-max neural networks are universal approximators, which can tackle

both linear and non-linear classification problems. However, these classifiers depend

on the selection of hyper-parameters, such as the maximum hyperbox size. If the

hyper-parameters are set well, the trained model will achieve good performance on

unseen data. Nonetheless, this is a challenging task because of the huge searching

space of parameters. This study is not to optimize the hyper-parameters in an auto-

matic manner. Instead, the impact of hyper-parameters on the performance of the

models for each dataset is assessed. Based on these evaluations, conclusions related

to the important role of the selection of hyper-parameters with regard to predic-
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tive accuracy of models on each training dataset can be drawn. As a result, when

comparing various learning algorithms, the best settings in the range of potential

parameters were chosen based on the performance of classifiers on validation sets,

which are formed by K-fold cross-validation and the density-preserving sampling

method.

To generate a hyperbox-based classifier with good generalization error, besides

independent learning schemes such as cross-validation and resampling approaches

(Gabrys 2004), it also needs to integrate the explicit overfitting prevention mech-

anisms, i.e., pruning procedures, to learning algorithms. Taking decision trees as

an example, if the training process constructs a full tree structure, the model will

overfit the training set. Therefore, to ensure a good generalization error, one usually

applies early stopping and pruning methods. Similarly, if the maximum hyperbox

size is set to a small value, there are many generated hyperboxes for each hyperbox-

based learner. These hyperbox fuzzy sets are more likely to overfit the training data.

An example is shown in Figure 3.2 for Iris dataset with 112 training samples and

two out of its four features. The model is trained using a small value of maximum

hyperbox size (θ = 0.06). It can be seen that the model contains 79 hyperboxes,

and many hyperboxes include only one sample, which is unnecessarily complex.

Figure 3.2 : A hyperbox-based model is trained on the Iris dataset
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To cope with this problem, the training dataset can be split into disjoint training

and validation sets using the DPS method (75 training samples and 37 validation

patterns). The model trained on the training set is shown in Figure 3.3. The number

of generated hyperboxes is lower than in the previous case because a smaller number

of training samples were used, but the accuracy is still the same. This result also

confirms that the DPS method can generate a representative training set from the

original data. After training, the validation set is employed to remove low-quality

hyperboxes, which have predictive accuracy less than 50%. The final classifier is

presented in Figure 3.4. It can be easily observed that both the number of generated

hyperboxes and error rate have been significantly reduced.

Figure 3.3 : A hyperbox-based model is trained on the Iris dataset

The removal of hyperboxes can lead to loss of important information because this

operation is based on only the misclassification error on the validation set. If the

selection of hyper-parameters results in a nearly optimal decision boundary after

the training process, the pruning procedure may increase the error rates since it

will break the optimal structure of the trained model. The experiments in the next

section focus on clarifying the role of the pruning process if the classifier has been

built using the best hyper-parameters. It can be also desirable to find the answer to

the question of whether the impact of noisy data can be reduced through parameter
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Figure 3.4 : A hyperbox-based model is trained on the Iris dataset

settings rather than identifying and removing them through pruning or data editing

(Gabrys 2001).

3.4 Experiments and Results

The experiments in this chapter used 16 relatively small-sized datasets from the

UCI repository (Dua and Graff 2019), which are shown in Table A.1 in Appendix A.

Each dataset was separated into four folds using the density-persevering sampling

technique (Budka and Gabrys 2013), which is a robust and efficient method com-

petitive to cross-validation for error estimation. Three folds were used as training

data, while the remaining fold was selected as a testing set. In common, for each

dataset, experiments were repeated four times with each fold used as testing data

in turn and reported results were average of results on each testing fold.

3.4.1 The Influence of the Maximum Hyperbox Size on the Performance

of the Online Learning based GFMMNN

This experiment is to assess the impact of the maximum hyperbox size pa-

rameter, θ, on the performance of the GFMMNN using the incremental learning

algorithm. Three out of four folds were used for training the network and one



71

0 0.2 0.4 0.6 0.8 1
Maximum hyperbox size

0

2000

4000
Number of hyperboxes

0 0.2 0.4 0.6 0.8 1
Maximum hyperbox size

0

20

40
Training time (s)

0 0.2 0.4 0.6 0.8 1
Maximum hyperbox size

20
25
30

Testing error (%)

Figure 3.5 : The change in the number of hyperboxes, training time, and testing

error of the Waveform dataset

remaining fold for the testing process. The value of θ was increased from 0.01

to 0.99 with the step being 0.01 and the incremental learning was used with the

fixed hyperbox size for each dataset. Entire figures showing the change in the

number of hyperboxes, training time, and testing error of all considered datasets

can be found at https://github.com/UTS-AAi/comparative-gfmm/blob/master/

experiment/hyperbox-size-changing.pdf. A representative example of changing

trend in the number of generated hyperboxes, training time, and testing error is pre-

sented in Figure 3.5 for the Waveform dataset.

It can be seen that the larger value of θ, the fewer the number of hyperboxes in

the model is generated. Generally, the training time also reduces when increasing the

value of θ, and the training time is usually fast and decreases in a stable manner if the

maximum hyperbox size is larger than 0.5. Furthermore, training time frequently

fluctuates and stands at a high value when the value of θ is less than 0.2. Regarding

the testing error, there is no general rule for all datasets when the value of θ gets

larger, but the error rates are frequently high if the θ thresholds are larger than

0.8, except Zelnik6, Thyroid, Iris, and Wine datasets. It is easily observed from the

https://github.com/UTS-AAi/comparative-gfmm/blob/master/experiment/hyperbox-size-changing.pdf
https://github.com/UTS-AAi/comparative-gfmm/blob/master/experiment/hyperbox-size-changing.pdf
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images that the prediction results of the GFMMNN using an incremental learning

algorithm are substantially influenced by the selection of values of θ. It is not

straightforward to choose an optimal value of θ to gain the best performance for

each dataset. Several optimization algorithms can be deployed to find the optimal

value of θ in an automatic manner.
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Figure 3.6 : Average rank of performance on 16 datasets using different values of θ

To remedy the impact of the maximum hyperbox size, the incremental learning

algorithm using the adaptive value of θ was developed as described at the end of

subsection 3.2.2. To compare the performance of GFMMNN using the adaptive

values of θ with the one using the fixed value of θ, θ = 0.26 as selected as an initial

value, and the learning algorithm was repeated until the minimum value of θ being

0.01 was reached out (ϕ = 0.9) in the case of using the adaptive incremental learning

algorithm. The value θ = 0.26 was selected because it gave the lowest average rank

of prediction errors over 16 datasets in comparison to other fixed values of θ as

shown in the above experiment. The average rank of the performance of general

fuzzy min-max neural network using different fixed values of θ over 16 datasets is

given in Figure 3.6.

In this experiment, each dataset was also split into four folds, and each execu-
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tion used a fold for testing and three remaining folds were deployed for training. For

each training dataset, ten runs were performed, and each iteration shuffled training

data randomly. The obtained value for each testing fold is an average of ten execu-

tions. Table 3.1 reports the averaged experimental results concerning the number

of generated hyperboxes, training time, and testing error rate for two strategies of

employing the value of θ on four folds over different datasets.

Table 3.1 : Comparison of fixed and adaptive maximum hyperbox size parameters

(θ = 0.26)

ID Dataset
Fixed value Adaptive value (θmin = 0.01)

No. hy-

perboxes

Training

time (s)

Testing

error (%)

No. hy-

perboxes

Training

time (s)

Testing

error (%)

1 Circle 29.950 0.092 5.240 71.175 3.092 3.530

2 Complex 9 28.275 0.272 1.755 38.350 10.913 0.267

3 Diagnostic Breast

Cancer

113.550 0.302 4.586 118.400 0.740 4.516

4 Glass 42.675 0.060 39.286 75.425 1.220 40.597

5 ionosphere 144.675 0.178 12.229 144.675 0.230 12.229

6 Iris 16.775 0.016 4.683 18.975 0.393 4.491

7 Ringnorm 1411.525 31.666 26.468 2260.450 164.892 27.886

8 Segmentation 230.275 2.970 4.588 246.750 25.998 4.567

9 Spherical 5 2 13.600 0.020 1.274 13.600 0.040 1.274

10 Spiral 26.95 0.102 7.810 42.450 2.902 0.650

11 Thyroid 22.475 0.025 4.268 30.400 0.576 3.988

12 Twonorm 1862.950 44.715 4.932 1926.500 57.923 4.928

13 Waveform 1185.700 24.529 20.688 1622.375 55.546 20.638

14 Wine 75.375 0.056 4.229 75.375 0.074 4.229

15 Yeast 128.900 0.992 67.832 1456.750 137.667 72.062

16 Zelnik6 12.600 0.015 0.212 12.600 0.031 0.212

In several datasets such as Circle, Complex 9, and Spiral, the testing errors fell

sharply when using the adaptive mechanism for θ. Meanwhile, the error rate in

some datasets like Glass, Ringnorm, and Yeast increased slightly in the case of

implementing adaptive values of θ. A reason for this fact is the overfitting in the

trained model. It can be seen this phenomenon in Figure 3.7 for the Ringnorm

dataset, where a large number of hyperboxes were generated and the testing errors

at fixed values of θ < 0.26 are relatively high. In the remaining cases, the error rates
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Figure 3.7 : The change in the number of hyperboxes, training time, and testing

error of the Ringnorm dataset

of the GFMMNN using adaptive values of θ are slightly lower or the same as those

employing the fixed values of the maximum hyperbox size. It can be concluded that

the adaptive hyperbox size based GFMMNN has limited impact in case of using the

starting value of θ being the best value for many datasets. To further evaluate the

performance of the GFMMNN using the adaptive values of hyperbox size, another

starting value of θ away far from the optimal value was chosen. θ = 0.56 was selected

because it leads to the large changing in the average rank of GFMMNN as shown in

Figure 3.6. The outcomes of GFMMNN using fixed value of θ = 0.56 and adaptive

values starting from θ = 0.56 are shown in Table 3.2.

It is easily observed that in most of the datasets the testing errors using adaptive

values of θ are significantly enhanced compared to the cases using the fixed values

of θ. In several datasets such as Yeast, Thyroid, Segmentation, and Ionosphere,

the accuracy of predictive results decreases slightly. In general, the accuracy of

GFMMNN using adaptive values of θ starting from θ = 0.56 is superior to that

employing the fixed value θ = 0.56. However, the number of created hyperboxes and

training time of the algorithm using the adaptive values of θ increased considerably,
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Table 3.2 : Comparison of fixed and adaptive maximum hyperbox size parameters

(θ = 0.56)

ID Dataset
Fixed value Adaptive value (θmin = 0.01)

No. hy-

perboxes

Training

time (s)

Testing

error (%)

No. hy-

perboxes

Training

time (s)

Testing

error (%)

1 Circle 9.65 0.059 15.22 73.275 3.937 3.48

2 Complex 9 11.775 0.234 11.943 37.65 13.256 0.432

3 Diagnostic Breast

Cancer

22.35 0.065 5.733 84.85 1.571 4.994

4 Glass 17.225 0.04 47.983 105.375 1.793 46.062

5 ionosphere 80.825 0.112 13.62 81.625 2.38 13.733

6 Iris 6.875 0.008 6.01 13.125 0.587 3.558

7 Ringnorm 59.25 1.74 21.77 2151.5 593.817 4.768

8 Segmentation 47.725 0.486 17.349 442.9 34.322 17.882

9 Spherical 5 2 5 0.014 0.794 5 0.032 0.794

10 Spiral 8.975 0.084 41.94 52.225 4.068 1.38

11 Thyroid 8.05 0.015 5.196 30.875 0.84 5.206

12 Twonorm 51.55 1.874 13.205 3539.95 561.18 5.27

13 Waveform 47.95 1.508 23.054 3265.75 858.192 19.416

14 Wine 17.7 0.025 3.586 17.775 0.037 3.586

15 Yeast 34.775 0.704 92.507 1933.275 626.437 93.713

16 Zelnik6 7 0.012 6.895 8.475 0.394 1.013

especially in large-sized datasets such as Ringnorm, Twonorm, Waveform, and Yeast

datasets. In addition, the accuracy of GFMMNN in this experiment is lower than

that using adaptive values of the maximum hyperbox size starting from θ = 0.26. In

many datasets, it can be seen that the error rates of GFMMNN using the adaptive

values from θ = 0.56 are higher than those utilizing fixed value θ = 0.26. These

results indicate the impacts of choosing the suitable values of maximum hyperbox

size on the accuracy of predictive results. They also confirm that the incremental

learning algorithm using the adaptive values of the maximum hyperbox size has not

yet been an effective method to tackle the dependence of classification performance

on the selection of the maximum hyperbox size parameter. Hence, to compare the

performance of GFMMNN with other methods, the fixed value of θ that leads to the

minimum error on the validation set in the range of given values for each dataset

was used rather than using the same value of θ for all considered datasets.
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3.4.2 The Influence of the Similarity Threshold on the Performance

of the Agglomerative Learning based GFMMNN using Different

Similarity Measures

This experiment is to evaluate the influence of the similarity threshold on the

performance of AGGLO-2 and AGGLO-SM algorithms using different similarity

measures. For each dataset, a fold was selected for testing data, while three other

folds were used as training data. The maximum hyperbox size θ = 0.26 was

used in this experiment. The minimum similarity threshold values (σ) were moved

from 0.02 to 0.98 with the step being 0.02. The graphs showing the change in

the number of hyperboxes and the testing error through several typical datasets

can be found at https://github.com/UTS-AAi/comparative-gfmm/blob/master/

experiment/similarity-threshold-changing.pdf. An example is presented in

Figure 3.8.

Figure 3.8 : The influence of similarity threshold on the number of hyperboxes and

testing errors for GFMMNN using agglomerative learning on the Thyroid dataset

It can be seen from the figures that the numbers of hyperboxes of both algorithms

on all similarity measures regularly increase when the similarity threshold moves to

one. Especially, they sharply rise when the threshold is larger than 0.8, and they

https://github.com/UTS-AAi/comparative-gfmm/blob/master/experiment/similarity-threshold-changing.pdf
https://github.com/UTS-AAi/comparative-gfmm/blob/master/experiment/similarity-threshold-changing.pdf
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oscillate a little if the similarity value is less than 0.7. It can be seen that the

number of generated hyperboxes in the case of using the shortest distance measure

to compute the similarity degree is lowest, whereas the use of the longest distance

measure results in the highest number of generated hyperboxes among four measures.

For the AGGLO-SM algorithm, the selection of the similarity threshold consider-

ably affects the testing error. Its testing error rates oscillate not following a general

rule. For the AGGLO-2, the testing error fluctuates only if the value of the similarity

threshold is larger than 0.8. Therefore, experiments in the rest of this chapter em-

ployed a similarity threshold σ ≤ 0.8 for the agglomerative learning algorithms. It

can be observed that the best performance of the AGGLO-2 algorithm is frequently

achieved in the case of using the shortest distance measure. It can recognized that

the classification performance of the GFMMNN using the agglomerative learning

algorithms depends on the choice of the similarity measures for each dataset. Of

four similarity measures, there is no measure giving the best results on all datasets.

Hence, the similarity measure, similarity threshold, and maximum hyperbox size are

three hyper-parameters that need to be optimized for each dataset to achieve the

best predictive accuracy.

3.4.3 Comparison of Different Agglomerative Learning Versions of

GFMMNN

This part compares the full similarity matrix based agglomerative learning and

accelerated agglomerative learning algorithms. Each dataset was split into four folds

using the density-preserving sampling method (Budka and Gabrys 2013). Each fold

was used in turn as testing data, while the remaining folds were employed as the

training set. The obtained result of each model is the average result of four testing

folds. For a given training set, experiments were repeated ten times to determine the

average training time. The similarity threshold σ = 0.8 and the maximum hyperbox

size θ = 0.26 were established for both algorithms on all datasets. Table 3.3 shows

the mean values of the number of produced hyperboxes, training time, and testing

error rate of each algorithm through typical datasets.
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Table 3.3 : The comparison of the full similarity matrix based agglomerative learning

and accelerated agglomerative learning, θ = 0.26, σ = 0.8

ID Dataset
AGGLO-2 AGGLO-SM

No. hy-

perboxes

Training

time (s)

Testing

Error (%)

No. hy-

perboxes

Training

time (s)

Testing

error (%)

1 Circle 40.750 0.196 3.200 41 21.998 3.300

2 Complex 9 31.750 0.932 0.165 30.500 229.952 0.231

3 Diagnostic Breast

Cancer

133.500 0.579 5.6252 133.250 20.515 5.622

4 Glass 47.500 0.043 35.500 47.750 0.564 41.125

5 ionosphere 151.750 0.179 11.406 152.250 3.164 11.974

6 Iris 18.250 0.023 4.623 17.500 0.173 4.623

7 Segmentation 243.750 2.237 4.285 240.750 171.512 3.982

8 Spherical 5 2 13.750 0.029 1.197 12.750 0.639 0.397

9 Spiral 28.500 0.169 0.100 24.500 12.132 0

10 Thyroid 26 0.037 5.573 24.500 0.599 4.167

11 Wine 89.250 0.061 5.076 91 0.391 5.076

12 Yeast 144.250 1.295 68.661 139.750 97.463 70.348

13 Zelnik6 12.750 0.031 0.424 12.500 0.681 0

As indicated in the table, the AGGLO-2 algorithm is from one to two orders

of magnitude faster than the AGGLO-SM in almost all datasets. However, the

average number of hyperboxes generated in the AGGLO-2 is slightly higher than

that of hyperboxes created by the AGGLO-SM algorithm. The average testing

error values of the GFMMNN using the AGGLO-2 are slightly higher than those

using the AGGLO-SM algorithm on many datasets except Circle, Complex 9, Glass,

Ionosphere, and Yeast. In general, the predictive results using the GFMMNN trained

by the AGGLO-2 is relatively the same as those implementing the AGGLO-SM while

the training time is much faster. As a result, the AGGLO-2 algorithm significantly

improves the performance of the full similarity matrix based agglomerative learning

algorithm. It is noted that the training time of the AGGLO-SM algorithm for large-

sized training datasets such as Ringnorm, Twonorm, and Waveform is extremely

long (more than two days for each iteration), so they were not reported in this

chapter. The computational expense of the AGGLO-SM is costly because of its cubic

time complexity. This fact prevents the applicability of the AGGLO-SM in tackling
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Table 3.4 : Standard deviation on results of diffirent versions of GFMMNNs due to

the impact of presentation order

ID Dataset
Online AGGLO-2 AGGLO-SM

No. hy-

perboxes

Testing

error (%)

No. hy-

perboxes

Testing

error (%)

No hy-

perboxes

Testing

error (%)

1 Circle 1.687 0.844 1.059 0.627 0 0

2 Complex 9 1.287 0.377 0.994 0.056 0 0

3 Diagnostic Breast

Cancer

3.011 1.188 2.944 0.996 1.054 0.371

4 Glass 1.059 5.031 0.667 3.334 0 0

5 ionosphere 1.430 1.290 1.265 0.804 0 0

6 Iris 0.632 1.140 1.370 1.396 0.949 0

7 Segmentation 5.446 0.364 3.736 0.390 0.516 0

8 Spherical 5 2 1.174 0.502 0.707 0.837 0 0

9 Spiral 1.764 2.892 1.491 0 0 0

10 Thyroid 1.197 1.991 0.816 1.295 0 0.895

11 Wine 1.829 1.174 1.633 0 0 0

12 Yeast 2.058 2.107 2.406 1.222 1.337 0.475

13 Zelnik6 0.667 0 0.422 0 0 0

large-sized datasets. In the rest of this chapter, the AGGLO-2 was implemented for

the next experiments to compare to other classification algorithms.

3.4.4 The Influence of Data Presentation Order on the Performance of

GFMMNN

This experiment is to assess the impact of data presentation order to the classi-

fication performance of incremental learning and agglomerative learning algorithms

of the GFMMNN. For each dataset, one fold was chosen as the testing set, and

three remaining folds were training data. Each experiment was executed ten times,

and each time randomly shuffled the order of samples in the same training set, and

three learning algorithms were trained on the same dataset. The similarity threshold

σ = 0.8 using the shortest distance measure was set for the similarity computation

and the maximum hyperbox size parameter θ = 0.26. Table 3.4 reports the stan-

dard deviation (std) of the number of hyperboxes and testing errors of different

algorithms applied to 13 datasets.
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It is seen that the standard deviation values of the testing errors of the GFMMNN

trained by the AGGLO-SM algorithm are zero on almost all datasets, except Yeast,

Diagnostic Breast Cancer, and Thyroid. Even on these three datasets, the standard

deviation of testing error values is very small (< 0.9%). These figures indicate that

the full similarity matrix based learning algorithm is almost unaffected by the input

data presentation order. In contrast, of three learning algorithms, the incremental

learning version is most affected by the data presentation order since hyperboxes

are adjusted for each input pattern. The AGGLO-2 is also influenced by the data

presentation order because it selects, in turn, each hyperbox to calculate the simi-

larity value with the other ones, but the standard deviation values of testing errors

are quite tiny. This experiment confirms that agglomerative learning algorithms are

stable against the change of presentation order within training data.

3.4.5 Comparison of GFMMNN and Other Types of Fuzzy Min-Max

Neural Networks

This experiment aims to compare the performance of the GFMMNNs to other

types of fuzzy min-max neural networks using the expansion and contraction phases

in the learning algorithm such as the original fuzzy min-max neural network (Simp-

son 1992), the enhanced fuzzy min-max neural network (Mohammed and Lim 2015),

and the enhanced fuzzy min-max neural network with the K-nearest hyperbox se-

lection rule (Mohammed and Lim 2017a).

Through experimental results mentioned above, it can be observed that the per-

formance of fuzzy min-max neural networks depends on the value of maximum

hyperbox size for each dataset. Therefore, the grid search method and 3-fold cross-

validation were used for tuning the maximum hyperbox size of the classification

model on validation sets among values within the list of θ ∈ {0.06, 0.1, 0.16, 0.2, 0.26,

. . . , 0.8}. In addition to the maximum hyperbox size, the KNEFMNN model also

depends on the number of selected hyperboxes (K) for the hyperbox expansion pro-

cess. The searching range of K in the range of [2, 10] was set. As for the AGGLO-2

version, the longest-distance measure was used and the similarity threshold σ = 0

was set so that the GFMM model using this agglomerative learning algorithm is only
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dependent on the value of θ. It is not feasible to exhaustively explore all the possible

values for the maximum hyperbox size value, and the purpose of this chapter is to

compare the performance of the fuzzy min-max classifiers, not on the fine-tuning

approaches, the number of values was limited for each parameter.

Each dataset was split into four folds using the density-preserving sampling

method (Budka and Gabrys 2013). Each fold was selected as testing set in turn,

while three remaining folds were employed as the training and validation data. As-

suming that F1, F2, and F3 are three folds used for parameter-tuned process, F1 and

F2 are employed as training data to construct the fuzzy min-max classifiers for each

value of θ. Then, the error rate on the validation fold F3 is computed. This process

is repeated for F1 and F2 used as the validation set. The value of θ leading to the

lowest averaged prediction error on three folds is selected to build the final fuzzy

min-max classifier on the training set containing all F1, F2 and F3 folds.

The mean values of the number of generated hyperboxes, training time, parameter-

tuned time, and testing error for each learning algorithm on four testing folds using

different datasets were shown in Table A.2 in Appdendix A.

Regarding training time, it is seen that Simpson’s learning algorithm in the

FMNN is fastest, while the AGGLO-2 is slowest. The online version of the GFMMNN

executes more rapidly compared to improved versions of the FMNN such as the

EFMNN or KNEFMNN. It can be seen that the EFMNN using the K-nearest hy-

perbox selection runs faster than the EFMNN in some cases, but in general it is

slower than the EFMNN with optimized parameters. In terms of parameter-tuned

time, the KNEFMNN is slowest in most cases, but on medium-sized datasets such

as Ringnorm, Twonorm, and Waveform, the time to find the best parameters of

AGGLO-2 is longest. Therefore, the current version of AGGLO-2 algorithm should

not be used for tuning parameters in an automatic manner in cases of large-sized

training datasets.

The number of hyperboxes generated by the learning algorithms of the GFMM

is fewest in general, while the EFMNNN and the original FMNN produce the

largest number of hyperboxes. The use of K-nearest hyperbox selection rule in the
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KNEFMNN also helps considerably reduce the number of hyperboxes created by the

EFMNN. It can be observed that the GFMMNN and KNEFMNN generate quite

fewer hyperboxes compared to the FMNN or EFMNN since they consider many

current hyperboxes for the expansion conditions before creating new hyperboxes. K

hyperboxes are taken into account in the KNEFMNN, and as many hyperboxes as

possible are considered in the GFMMNN, whereas the FMNN and EFMNN produce

a new hyperbox when the winner hyperbox does not meet the expansion constraints.

Generally, the KNEFMNN reduces the number of generated hyperboxes and

increases the accuracy of the EFMNN on the considered datasets. The best classifi-

cation performance belongs to the KNEFMNN, and the online version of GFMMNN

and the EFMNN achieve the worst classification results. It can be observed that, on

average, only AGGLO-2 and KNEFMNN refine the accuracy of the original FMNN

using optimal parameter configurations, but their training time increases substan-

tially. Althout the AGGLO-2 is a promising learning algorithm, its running time is

still long on the large datasets. Therefore, many research efforts should be put on

improving this algorithm.

It can be easily observed that the number of generated hyperboxes in fuzzy min-

max classifiers is large because the best performance of models is achieved for a small

value of θ. As shown in the example in Section 3.3, small values of the maximum

hyperbox size result in complex models, which are more likely to overfit the training

data. Therefore, to assess the efficiency of hyper-parameters selected using density-

preserving and cross-validation methods, the models were trained using the same

best parameters returned by grid-search procedure on only two DPS folds instead

of three DPS folds as in the above experiments. The remaining fold was used as a

validation set to conduct the hyperbox pruning. The hyperboxes with the predictive

accuracy on the validation set less than a user-defined threshold (0.5 in this work)

were removed. It is noted that there are several hyperboxes that do not take part

in the pruning process as they have not been used to classify any validation samples

(i.e., they have not been the “winners”). Therefore, there is no information about

their potential predictive accuracy, and they can be pruned or retained. The decision
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of removing or keeping such hyperboxes depends on the misclassification error of the

final model on the validation set. If the removal of these hyperboxes leads to the

lower error rates on the validation set, they will be pruned, and vice versa.

Table A.3 in Appendix A shows results before and after applying the pruning

procedure. The model trained on two DPS folds was verified on the same testing sets

as in the previous experiment. It can be seen that the number of hyperboxes after

performing the pruning operation is significantly reduced. The pruning procedure

contributes to small reduction of the classification errors on four datasets, keeping

the same errors on four datasets, and slightly increasing error rates (< 2%) on

eight datasets. These outcomes show that the learning algorithms using the best

hyper-parameters and training sets generated by the density-preserving sampling

method produced the nearly optimal decision boundaries. In such cases, it has been

observed that the pruning process can have a small negative effect and can lead to

the increase of the testing errors. However, the validation set is also representative

of the underlying data distribution, so the error only grows a little. Only for the

Glass dataset, the error rate increases by around 5% after conducting the pruning

operation. This case can be explained by the unrepresentative of the validation

set. This dataset has a small number of patterns, while it has a high number of

features and classes. Therefore, the samples are sparsely distributed in the input

space, and the DPS method may not find the representative subsets. In general,

the error rates of models trained on two DPS folds are slightly higher than those of

classifiers trained on three DPS folds. These results confirm that the DPS method

generated representative subsets for small datasets to assist the learning algorithms.

The obtained results also indicate that the overfitting phenomenon on the training

set does not always result in the bad predictive performance on unseen data if the

training data are representative patterns of the underlying data distribution.

To better understand the performance of fuzzy min-max neural networks, a rigor-

ous statistical significance test procedure will be employed to interpret the obtained

results on the considered datasets. Statistical testing was only performed for results

of classifiers trained on whole training sets. The null hypothesis is:



84

H0: There is no difference in the performance of different types of fuzzy min-max

neural networks on 16 different experimental datasets

To reject this hypothesis, a “multiple testing” procedure will be used. Two

methods regularly used to test the significant differences among multiple samples

are a parametric analysis of variance (ANOVA) and its non-parametric counterparts

such as the Friedman test. In a survey on the theoretical work of statistical tests,

Demsar (2006) recommended that the Friedman test with a relevant posthoc test

should be utilized in the case of the comparisons conducted on more than two

objects. This chapter employs the Friedman rank-sum test (Eisinga et al. 2017) to

evaluate the classification performance statistically because the testing error values

of predictors do not follow any symmetric distribution. Firstly, the Friedman rank-

sum test ranks the performance of classification algorithms with the best classifier

assigned the first rank, and the second best ranked two, etc. Then, the Friedman

test performs comparisons on the average ranks of classifiers. Table 3.5 shows testing

error ranks over five learning algorithms of different types of fuzzy min-max neural

networks as well as the average rank on 16 datasets.

Let rji be the rank of the j-th model in k models on the i-th dataset of N datasets,

where k is equal to 5 and N is 16 in this experiment. A null hypothesis as mentioned

above states that all algorithms perform similarly, so their average ranks Rj should

be equal, and the Friedman statistic

χ2
F =

12 ·N
k · (k + 1)

[∑
j

R2
j −

k · (k + 1)2

4

]
(3.9)

is distributed according to χ2
F with k − 1 degrees of freedom when N and k are big

enough, i.e., N ≥ 10 and k ≥ 5. Nonetheless, Iman and Davenport (1980) claimed

that Friedman’s χ2
F is undesirably conservative, and they introduced a better new

statistic:

FF =
(N − 1) · χ2

F

N · (k − 1)− χ2
F

(3.10)

This metric is distributed according to the F-distribution with k − 1 and (k − 1) ·

(N − 1) degrees of freedom. If the null hypothesis is rejected, i.e., the performances

of fuzzy min-max neural networks are statistically different, a posthoc test needs
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to be carried out to find the critical difference among the average ranks of those

models.

Table 3.5 : Testing error ranking of the different FMNN variants

ID Dataset Onln-GFMM AGGLO-2 FMNN EFMNN KNEFMNN

1 Circle 2 3 5 1 4

2 Complex9 2.5 2.5 5 2.5 2.5

3 Diagnostic Breast Cancer 5 1 2 4 3

4 Glass 5 4 2 3 1

5 Ionsphere 4 5 3 1.5 1.5

6 Iris 2.5 2.5 1 4.5 4.5

7 Ringnorm 2 1 3 5 4

8 Segmentation 5 4 3 1 2

9 Spherical 5 2 5 1 2 3.5 3.5

10 Spiral 3 3 3 3 3

11 Thyroid 1 5 3 4 2

12 Twonorm 3 2 4 5 1

13 Waveform 2 1 5 4 3

14 Wine 3 4 1 5 2

15 Yeast 4 3 5 2 1

16 Zelnik6 3 3 3 3 3

Average rank 3.25 2.8125 3.125 3.25 2.5625

This chapter uses the 95% confidence interval (α = 0.05) as a threshold to

identify the statistic significance of fuzzy min-max neural networks. Firstly, the

Friedman test calculates the F-distribution:

χ2
F =

12 · 16

5 · (5 + 1)

[
(3.252 + 2.81252 + 3.1252 + 3.252 + 2.56252)− 5 · (5 + 1)2

4

]
= 2.35

FF =
(16− 1) · χ2

F

16 · (5− 1)− χ2
F

=
(16− 1) · 2.35

16 · (5− 1)− 2.35
= 0.5718

With 16 datasets and five classifiers, FF is distributed according to the F-

distribution with 5 − 1 = 4 and (5 − 1) · (16 − 1) = 60 degrees of freedom. The

critical value of F (4, 60) for the significance level α = 0.05 is 2.5252. It is observed

that FF < F (4, 60), so the null hypothesis is not rejected. It means that there

is no statically significant difference in the performance between the general fuzzy

min-max neural network and other types of fuzzy min-max neural networks on the

considered datasets.
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3.4.6 Comparison of GFMMNN and Other Machine Learning Algo-

rithms

This experiment is to compare the classification performance of the GFMMNN

with other prevalent machine algorithms such as Naive Bayes, K-nearest neighbors

(KNN), Support vector machines (SVM), and Decision trees. These algorithms were

implemented by using the scikit-learn toolbox (Pedregosa et al. 2011a) in Python.

Similarly to the above experiments, each dataset was also split into four folds using

the density-preserving sample technique. Experiments were conducted on each fold

as the testing set in turn and three training and validation folds. The validation fold

was used to select the parameters leading to the best performance among a range

of setting values for each dataset. This process was mentioned in subsection 3.4.5.

The configuration parameters for the GFMMNN using incremental and AGGLO-

2 learning algorithms were remained unchanged as shown in subsection 3.4.5. As

for the value K of the KNN classifier, it was attempted to find the best value in

the range of [3, 30]. In terms of decision tree models, the tree depth parameter

(max depth) was adjusted ranging from 3 to 30 and unlimited values. For support

vector machines, a Radial Basis function (RBF) kernel was used. There are two

parameters needing to adjust for RBF kernel ,i.e., the penalty parameter (C) and

the parameter gamma (γ). As shown in Hsu et al. (2003), C ∈ {2−5, 2−3, . . . , 215}

and γ ∈ {2−15, 2−13, . . . , 23} were set. The Gaussian Naive Bayes model has no

hyperparameters, so its default settings in the scikit-learn library were used.

Table 3.6 shows the average values of the testing error of different algorithms on

four testing folds using the best parameter configurations for each learning model,

while Table 3.7 reports the ranks among algorithms.

As indicated in Table 3.7, the best algorithm is SVM, followed by KNN. The

highest testing error values belong to the decision trees. The AGGLO-2 algorithm

outperforms Gaussian Naive Bayes, decision trees, and the incremental learning algo-

rithm, but it cannot overcome the performances of KNN and SVM in general. These

results show that the GFMMNN is competitive to other popular learning models.

However, the training and parameter-tuned time of the online and agglomerative
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Table 3.6 : Comparison of the average testing errors of the GFMMNN with other

machine learning algorithms

ID Dataset
Onln-

GFMM
AGGLO-2 KNN SVM Decision tree Naive Bayes

1 Circle 3.4 3.6 2.8 1.1 4.1 5.7

2 Complex9 0 0 0 0 0.5613 5.279

3
Diagnostic Breast

Cancer
4.7463 2.987 2.2848 2.11025 8.6083 6.5018

4 Glass 30.3985 30.3895 28.5028 24.7643 31.3068 52.3933

5 Ionsphere 12.2585 14.2435 12.2485 4.271 10.8088 11.1025

6 Iris 5.299 5.299 3.325 2.6495 5.3343 4.641

7 Ringnorm 13.0405 9.311 23.2298 1.2703 11.2298 1.3378

8 Segmentation 4.1558 3.9825 3.4628 2.4675 3.3768 20.173

9 Spherical 5 2 1.2033 0.8 2.0033 1.6003 0.3968 1.5875

10 Spiral 0 0 0 0 0.1 34.6

11 Thyroid 2.315 3.7215 4.1758 3.7128 5.1103 2.7868

12 Twonorm 4.527 4.33775 2.3918 2.189 15.1215 2.108

13 Waveform 17.88 17.76 13.9 12.74 23.24 18.96

14 Wine 3.952 4.50725 3.38375 1.12375 10.07575 1.69175

15 Yeast 49.3938 49.25875 40.027 37.938 43.8005 88.342

16 Zelnik6 0.4238 0.4238 1.688 0 0.8405 0

Table 3.7 : Testing error ranking of GFMMNN and other machine learning algo-

rithms

ID Dataset Onln-GFMM AGGLO-2 KNN SVM Decision tree Naive Bayes

1 Circle 3 4 2 1 5 6

2 Complex9 2.5 2.5 2.5 2.5 5 6

3
Diagnostic

Breast Cancer
4 3 2 1 6 5

4 Glass 4 3 2 1 5 6

5 Ionsphere 5 6 4 1 2 3

6 Iris 4.5 4.5 2 1 6 3

7 Ringnorm 5 3 6 1 4 2

8 Segmentation 5 4 3 1 2 6

9 Spherical 5 2 3 2 6 5 1 4

10 Spiral 2.5 2.5 2.5 2.5 5 6

11 Thyroid 1 4 5 3 6 2

12 Twonorm 5 4 3 2 6 1

13 Waveform 4 3 2 1 6 5

14 Wine 4 5 3 1 6 2

15 Yeast 5 4 2 1 3 6

16 Zelnik6 3.5 3.5 6 1.5 5 1.5

Average rank 3.8125 3.625 3.3125 1.6563 4.5625 4.0313
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learning algorithms of the GFMM classifier is costly compared to other machine

learning algorithms. Therefore, the learning algorithms of the GFMM model need

to be enhanced in many aspects to deal with the massive datasets.

Although the average performance ranks of the AGGLO-2 and incremental learn-

ing algorithms are not the best ones among learning models, it is desirable to assess

the level of differences among obtained results in terms of statistical significance.

Similarly to statistical hypothesis tests mentioned above, a null hypothesis in this

experiment can be stated as follows:

H0: There is no difference in the performance of the general fuzzy min-max

neural network and popular machine learning algorithms on 16 different experimental

datasets

The value of F-distribution can be computed as follows:

χ2
F = 22.6722

FF =
(16− 1) · χ2

F

16 · (6− 1)− χ2
F

=
(16− 1) · 22.6722

16 · (6− 1)− 22.6722
= 5.9323

With 16 datasets and six classification algorithms, FF is distributed according to

the F-distribution with 6−1 = 5 and (6−1) · (16−1) = 75 degrees of freedom. The

critical value of F (5, 75) for the significance level α = 0.05 is 2.3366. It is observed

that FF > F (5, 75), so the null hypothesis is rejected at a high level of significance.

Based on these outcomes, it may be stated that there are statistical differences in

the performance of the general fuzzy min-max neural network and popular machine

learning algorithms.

A post-hoc test is implemented to verify the significant differences of the incre-

mental and agglomerative learning algorithms and other machine learning models.

The post-hoc test used in this study is a step down Holm procedure (Holm 1979).

The Holm procedure tunes the value of significance level (α) according to a step-

down method. Let p1, p2, ..., pk−1 be the ordered p-values such that p1 ≤ p2 ≤ ... ≤

pk−1 and H1, H2, ..., Hk−1 be the respective null hypotheses, the Holm procedure

rejects null hypotheses H1 to Hi−1 if i is the smallest integer such that pi >
α
k−i
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(α = 0.05 in this chapter). To find the value of pi for each pair of predictors, the

values of zi in Eq. (3.11) has to be identified.

zi =
Ri −Rj√

k·(k+1)
6·N

(3.11)

where i is the control classifier (AGGLO-2 or Onln-GFMM), and j is the another

classifier used in the comparisons, Ri and Rj are the average ranks of learners i and

j respectively. The probability value of pi is computed from the corresponding value

of zi following the normal distribution N(0, 1). The calculating outcomes of the

Holm procedure are shown in Table 3.8 for the AGGLO-2 algorithm and in Table

3.9 for incremental learning based GFMMNN.

Table 3.8 : Outcomes of Holm post-hoc test for AGGLO-2

i AGGLO-2 vs. zi pi
α

k − i
1 SVM 2.9764 0.0029 0.01

2 Decision tree -1.4174 0.1564 0.0125

3 Naive Bayes -0.6143 0.5390 0.0167

4 KNN 0.4725 0.6366 0.025

5 Onln-GFMM -0.2835 0.7768 0.05

Table 3.9 : Outcomes of Holm post-hoc test for incremental learning based

GFMMNN

i Onln-GFMM vs. zi pi
α

k − i
1 SVM 3.2599 0.0011 0.01

2 Decision tree -1.1339 0.2568 0.0125

3 KNN 0.7559 0.4497 0.0167

4 Naive Bayes -0.3308 0.7408 0.025

5 AGGLO-2 0.2835 0.7768 0.05

From Tables 3.8 and 3.9, it can be observed that i = 2 is the smallest integer

such that pi >
α
k−i . Therefore, H1 is rejected, while null hypotheses H2, H3, H4, and

H5 are retained. Therefore, AGGLO-2 and incremental learning based GFMMNN
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are significantly different from SVM, but there are no statistically significant differ-

ences among AGGLO-2, decision tree, Naive Bayes, KNN, and the online version

of GFMM at an alpha level of 0.05. These outcomes also indicate that SVM using

optimal parameter settings is the best model among considered classifiers. Apart

from SVM, learning algorithms of GFMMNN are competitive to popular machine

learning models.

3.5 Discussion

This part highlights several notable issues when conducting a comparative study

as follows:

• The impact of hyper-parameters: Similarly to other machine learning

algorithms, the performance of the hyperbox-based classifiers is also dependent

on the selection of hyper-parameters, e.g., maximum hyperbox size, etc. Each

training dataset needs specific parameters, and a fixed setting should not be

used for all datasets. The selection of suitable hyper-parameters should be

conducted by combining k-fold cross-validation and sampling methods. The

quality of selected hyper-parameters depends mainly on the quality of the

training and validation sets. In general, the DPS method helps to preserve the

data density and the classes shapes, so the performance of the model trained

on small number of DPS folds is not significantly different in comparison to

one trained on all DPS folds.

• Selection of training and validation sets: Experimental results confirmed

the crucial roles of the choice of training and validation data. If a training set

which is representative of the overall data distribution can be built for a given

problem, a model which overfits on the training sets still performs well on the

testing set. The use of the density-preserving sampling method contributes to

forming such representative training samples with nearly the same distribution

as the whole dataset. The average testing error rates through different density-

preserving sampling folds can be used as the generalization error of the model.



91

Therefore, the hyper-parameters which lead to the lowest error rates on dif-

ferent DPS validation folds may form a trained hyperbox-based classifier with

nearly optimal decision boundaries. It is also noted that a model trained on

many representative patterns usually achieves higher accuracy than the model

trained on a lower number of representative samples. However, if the training

sets do not reflect the data density distribution accurately or the constructed

model is too complicated, one needs to use overfitting prevention methods.

• Overfitting prevention mechanisms: Training model with more relevant

and clean data is one of the approaches to restrict the negative impact of over-

fitting. In practice, however, it is difficult to gather many clean training sam-

ples. For a small number of training patterns such as datasets in this chapter,

cross-validation and density-preserving sampling, which are the most appro-

priate methods, allow us to select the best set of hyper-parameters. In some

cases, the best hyper-parameters can lead to complex models and make gen-

eralization error increase because of its overfitting on the training set. There-

fore, several overfitting prevention techniques such as pruning should be used

to eliminate low-quality hyperboxes. However, this method does not always

work for all cases. If the training set is representative of underlying data distri-

bution and the best-selected hyper-parameters form a nearly optimal decision

boundary, the pruning operation is more likely to cause the loss of some crit-

ical information and increase testing error. In addition, the efficiency of the

pruning procedure mainly depends on the quality of validation sets. In the

case of sparse data with high dimensionality, a high number of classes, and

a low number of samples, the DPS method cannot return the representative

datasets, so the pruning operation can result in considerable increase of the

testing error rates.

3.6 Summary

This chapter partly addressed Objective 1 proposed in Section 1.2 regarding

the assessment of the advantages and drawbacks of the GFMMNN through empir-
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ical results in many benchmark datasets. The impact of setting parameters on the

classification problems was also presented. Experimental results indicated the com-

petitive performance of the GFMMNN compared to other fuzzy min-max systems

as well as popular machine learning algorithms using the best parameter settings

for each algorithm. Nevertheless, the training time of the GFMMNN is a factor

preventing the applicability of this type of neural network for the massive datasets

in real-world applications.
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Chapter 4

Improved Online Learning Algorithm for General

Fuzzy Min-Max Neural Network

This chapter presents an improved version of the current online learning algorithm

for the GFMMNN to tackle existing issues concerning expansion and contraction

steps as well as the way of dealing with unseen data located on decision boundaries.

These drawbacks lower its classification performance, so an improved algorithm is

proposed in this chapter to address the above limitations. The proposed approach

does not use the contraction process for overlapping hyperboxes, which is more likely

to increase the error rate as shown in the literature. In order to reduce the sensitivity

to the training samples presentation order of this new online learning algorithm, an

simple ensemble method is also proposed. The main content of this chapter is taken

from the following paper (Khuat et al. 2020):

• Thanh Tung Khuat, Fang Chen, and Bogdan Gabrys, “An improved online

learning algorithm for general fuzzy min-max neural network,” in Proceedings

of the International Joint Conference on Neural Networks (IJCNN), pp. 1-9,

2020.

4.1 Introduction

The use of a contraction process affects the accuracy performance of the GFMMNN,

as analyzed in Chapter 2 and in Khuat et al. (2021b); Bargiela et al. (2004) as well

as being illustrated in Figure 4.1. As can be seen from Figure 4.1, some data points

such as E and F belong to wrong hyperboxes after performing the contraction pro-

cedure. Other points such as P and Q are moved to outside of the hyperboxes, and

they are more likely to be misclassified. For example, sample P covered by hyper-

box B2 before conducting the contraction procedure is now near to hyperbox B1.
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Therefore, it will be classified to a red class represented by hyperbox B1 because

the membership degree of P in B1 is higher than that of P in B2.
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Figure 4.1 : A drawback of the contraction procedure.

Due to the observed undesired effects of the contraction step, other types of

fuzzy min-max classifiers such as the inclusion/exclusion fuzzy hyperbox classifier

(Bargiela et al. 2004), hyperbox classifier with compensatory neurons (Nandedkar

and Biswas 2007a), data-core-based fuzzy min-max classifier (Zhang et al. 2011),

and multi-level fuzzy min-max neural network (Davtalab et al. 2014) did not use

the contraction phase to resolve the overlapping regions among hyperboxes. Instead,

they deployed specialized neurons to handle the overlapping regions. However, these

mechanisms make the model architecture complex and increase training time. There-

fore, they have been less likely to be applied to large-sized datasets. In this study,

rather than using a special neuron for each overlapping region, the expansion of

hyperboxes has been prevented if this operation leads to the appearance of overlap-

ping zones. This principle was very successfully used in the agglomerative learning

algorithms in Gabrys (2002a), and it is adopted here in the proposed online learning

algorithm. Although the agglomerative learning algorithms are efficient and they

do not face the limitations of the overlap resolving step, they use all of the training

samples to generate and aggregate hyperboxes repeatedly, so their training time is

long. Meanwhile, the online learning algorithm uses a single pass learning mode

through the training data, thus its training time is much shorter. This chapter pro-

poses to use the learning principle of the agglomerative algorithms in a single pass
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learning mode to construct an improved online learning algorithm for GFMMNN,

denoted by IOL-GFMM. A strong point of the proposed method is demonstrated

through an example presented in Figure 4.2.
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Figure 4.2 : A drawback of the current online learning algorithm for GFMMNN.

In this figure, the original online learning version of GFMMNN (Onln-GFMM)

will expand hyperbox A to cover the new input patter D , and then the contraction

process is performed to resolve the overlapping region with hyperbox B . However,

if the IOL-GFMM is used, hyperbox C can join the expansion step to cover the

input sample D because the expansion of hyperbox A causes the overlap with B

representing other class. This process will not lead to any disturbance of the model

due to the contraction phase.

As mentioned in Boucheron et al. (2005), a classifier is considered stable if its

performance is not varied too much with the small perturbations, e.g. noise, in the

training samples. Fuzzy min-max classifiers using online learning algorithms are

sensitive to noise, especially when the value of maximum hyperbox size is large.

Taking the case shown in Figure 4.3 as an example, with a large value of maximum

hyperbox size, hyperbox A will be extended to cover the noisy input patterns C

and D . Then, the contraction process conducted can cause the negative disturbance

in the learned classifier. In the case of using the IOL-GFMM, hyperbox A cannot

expand and the patterns C and D are considered as new hyperboxes without any

disturbance. The robustness of the IOL-GFMM to the noisy data will be verified in

the experimental part.
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Figure 4.3 : An example of hyperbox-based model and noise.

Another existing problem of the current Onln-GFMM is that it does not provide

any additional information to allocate the class for unseen data points locating on

the decision boundary. In this case, there may exist several winner hyperboxes with

the same membership value representing different classes. To cope with this issue, a

solution is the use of a Manhattan measure to compute the distance from the input

pattern to the central point of each winner hyperbox as introduced in Upasani and

Om (2019), and then assigning the input pattern to the winner hyperbox with the

smallest distance. However, the central point is the average value of the minimum

and maximum coordinates of the hyperbox, so it is also sensitive to noise. This

chapter uses a probability equation generated from cardinality information of each

winner hyperbox, as shown in Gabrys (2002c), to decide the suitable class for each

input pattern.

With all of the above reasons, the IOL-GFMM is proposed. The main distinct

point of the proposed method and the original version is that the proposed method

does not use the contraction process. The selected hyperbox is only extended to

accommodate a new input pattern if this operation does not introduce any over-

lapping regions with hyperboxes representing other classes. For the classification

phase, cardinality information is used to classify unseen data points in the case of

existing many winner hyperboxes with the same maximum membership value and

belonging to different classes. However, the IOL-GFMM still depends on the order

of training data presentation but to a lesser extent than the original Onln-GFMM.

With more data seen, the space is becoming more constrained, and new incoming
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patterns located inside the previously created hyperboxes of other classes cannot

be expanded to form hyperboxes. This limitation will be also analyzed in the ex-

perimental section and if all training data are stored, a simple ensemble method to

tackle this drawback is proposed.

The rest of this chapter is organized as follows. Section 4.2 shows the improved

online learning algorithm to address existing downsides of the current learning ap-

proach. Section 4.3 describes empirical results and some discussion of the proposed

method. Section 4.4 summarizes several key findings in this study.

4.2 Improved Online Learning Algorithm

To address the identified drawbacks in the original online learning algorithm

of the GFMM model mentioned in the introduction section, i.e., the problems of

overlap resolving and equal membership degree, this chapter proposes an improved

version of the original training algorithm. The enhanced algorithm eliminates the

contraction process during the training phase, simultaneously using the cardinality

information of each hyperbox to support the classification phase.

4.2.1 Training Phase

Similarly to the agglomerative learning algorithm in Gabrys (2002a), the im-

proved learning algorithm of GFMMNN does not allow the overlap to occur between

the expanded hyperbox and any hyperboxes belonging to other classes, so it does

not need to use the contraction procedure. The learning process contains two main

steps, i.e., expansion/creation of hyperboxes and overlap checking. The details of

the proposed method are shown in Algorithm 4.1. The key difference of this pro-

posed algorithm with the original online learning algorithm shown in Algorithm 3.1

is highlighted in red color. Two main procedures of the algorithm for each input

pattern are described as follows:

Expansion of hyperboxes For each input pattern X, all existing hyperboxes

with the same class as X or being unlabeled are sought. After that, the membership
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values of the input pattern to all of these hyperboxes are computed (lines 7-8 ).

Then, all selected hyperboxes are sorted in descending order of the membership

degrees (line 9 ). If there is any hyperbox of which the membership value is one,

the expansion procedure is not carried out (lines 13-16 ). Otherwise, each hyperbox

candidate is traversed in turns and verified the expansion conditions. If all expansion

conditions are met, the size of the selected hyperbox and the number of samples

contained in that hyperbox are updated , and then the expansion step continues

with next input patterns (lines 17-27 ). If all hyperbox candidates are not satisfied

with the conditions, a new hyperbox is created to cover the input pattern and add

this hyperbox to the current list of hyperboxes (lines 29-31 ). Two conditions need to

be verified, i.e., maximum hyperbox size in Eq. (3.4) and overlap. If the maximum

hyperbox size requirement is met, the non-overlapping condition is then checked as

follows:

Overlap test The overlap checking occurs between the newly expanded hyperbox

and the remaining hyperboxes representing different classes. After expanding the

selected hyperbox, if it overlaps with any hyperboxes of other classes, the next hy-

perbox candidate will be considered. If the extended hyperbox does not overlap with

any hyperboxes belonging to other classes, the selected hyperbox will be updated

with new size, and the learning process continues with another input patterns. The

conditions for the overlap test are the same as in the original GFMMNN presented

in subsection 3.2.2 (Chapter 3).

Note that the overlapping areas happening during the hyperbox extension pro-

cess are not allowed, but if the input pattern is in the form of hyperbox, the overlap

between it and existing hyperboxes representing other classes can still occur. It is

due to the fact that it is directly added to the current list of hyperboxes without

verifying the overlap. However, such hyperboxes cannot be expanded to cover other

patterns because they do not meet the non-overlapping condition. As a result, these

hyperboxes are more likely to be removed if a pruning step is used. If not, the clas-

sification step using additional cardinality information can still classify the unseen
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samples correctly because these hyperboxes contain only one sample, which leads to

the probability to cover the unseen patterns very small.

Algorithm 4.1 The improved learning algorithm of GFMMNN
Input:

• θ: The maximum hyperbox size

• γ: The speed of decreasing of the membership function

Output:

A list H of hyperbox fuzzy sets containing minimum-maximum values and classes

1: Initialize an empty list of hyperboxes: min-max values V =W = ∅, hyperbox classes: L = ∅

2: for each input pattern X = [Xl, Xu, cX ] do

3: n← The number of dimensions of X

4: if V = ∅ then

5: V ← Xl; W ← Xu; L ← cX

6: else

7: H1 = [V1,W1,L1] ← Find hyperboxes in H = [V,W,L] representing the same class as cX or being

unlabeled

8: M← ComputeMembershipValue(X,V1,W1,L1)

9: Hd ← SortByDescending(H1,M(H1))

10: Set H1 ← H \H1

11: flag ← false

12: for each h = [Vh,Wh, ch] ∈ Hd do

13: if M(h) = 1 then

14: flag = true

15: break

16: end if

17: if max(whj , x
u
j )−min(vhj , x

l
j) ≤ θ, ∀j ∈ [1, n] then

18: W t
h ← max(Wh, X

u); V th ← min(Vh, X
l)

19: isOver ← IsOverlap(W t
h, V

t
h ,H1)

20: if isOver = false then

21: Vh ← V th ; Wh ←W t
h

22: ch ← cX if ch is unlabeled and cX is labeled

23: flag ← true

24: Increase the number of samples contained in h

25: break

26: end if

27: end if

28: end for

29: if flag = false then

30: V ← V ∪Xl; W ←W ∪Xu; L ← L ∪ cX
31: end if

32: end if

33: end for

34: return H = [V,W,L]
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4.2.2 Classification Phase

For an unseen input pattern X, the membership values between X and hyper-

boxes of the trained model are computed. Then, the input X is classified to the

hyperbox with the highest membership value. If many hyperboxes representing K

different classes have the same maximum membership value (bwin), an additional

mechanism needs to be applied to find the suitable class. If bwin = 1 and ∃i : ni = 1,

then the prediction class of X is the class of Bi. Otherwise, an additional formula

will be used to find the right class for the input pattern as shown in Eq. (4.1)

(Gabrys 2002c). The final class of an input pattern is the class ck with the highest

value of P(ck|X).

P(ck|X) =

∑
j∈Ikwin

nj · bj∑
i∈Iwin ni · bi

(4.1)

where k ∈ [1, K] and Iwin = {i, if bi = bwin} is a set of indexes of all hyperbox with

the same highest membership value, Ikwin = {j, if class(Bj) = ck and bj = bwin} is

a subset of Iwin with indexes for the k-th class, and ni is the number of samples

contained in the hyperbox Bi.

4.2.3 Time Complexity of the IOL-GFMM Algorithm

It can be seen that the IOL-GFMM is different from the original online learn-

ing algorithm of the GFMMNN in the contraction step only. Therefore, the time

complexity of the IOL-GFMM algorithm is the same as that of the Onln-GFMM

algorithm in the worst-case, i.e., O(N · K ·R ·n), where N is the number of training

samples, n is the number of features, K is the average number of expandable hyper-

box candidates considered during the training process, and R is the average number

of hyperboxes representing classes different from the class of the current training

sample.

4.3 Experiments

Experiments in this part were conducted on popular datasets stored in UCI

repository (Dua and Graff 2019), which are shown in Table B.1 in Appendix B.
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Because these datasets have a small or medium size, the density-preserving sampling

(DPS) method (Budka and Gabrys 2013) was used to split the datasets aiming to

preserve the data density and class shapes for folds employed in training and testing

phases. Each dataset was partitioned into four folds using the DPS approach. Three

folds were used as training data to build the learning model, and the remaining fold

was deployed to evaluate the performance of the trained model. This process was

repeated until all folds were used as testing data. The average testing error rates on

four folds are reported in this chapter.

4.3.1 Comparison of the Performance and Complexity of the Proposed

and Original Learning Algorithms of GFMMNN

This experiment is to assess the performance and complexity between the pro-

posed method and existing learning algorithms of GFMMNN including online learn-

ing (Onln-GFMM) and accelerated agglomerative (batch) learning (AGGLO-2). In

addition to the membership value, the original online learning algorithm does not

use any additional information to support the classification step. Therefore, in the

case that there are many hyperboxes with the same maximum membership degree,

classes of the winner hyperboxes are randomly selected to return as the predicted

class. To strengthen the comparison with the proposed method, in the original

online learning algorithm, the hyperbox central point (the average value of maxi-

mum and minimum coordinates) and a Manhattan distance measure (Onln-GFMM

+ Manhattan) are used to handle the case of many winner hyperboxes as shown

in Upasani and Om (2019). The Manhattan distances from the input pattern to

central points of the winner hyperboxes are calculated. Then, the input pattern will

be assigned the hyperbox with the minimum value of the Manhattan distance. For

AGGLO-2, Eq. (4.1) is used to find the predictive class in the case of many winner

hyperboxes.

This experiment aims to assess the influences of the maximum hyperbox size

parameter (θ) on the classification accuracy, model complexity, and training time of

the proposed and original learning algorithms using different datasets. Three repre-

sentative datasets, i.e., Haberman, Page blocks, and Landsat Satellite, representing
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(c) Error rate on the Page blocks dataset
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Figure 4.4 : The performance and model complexity of the proposed and original

online learning algorithm.
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the diversity in the numbers of samples, features, and classes, were selected for this

purpose. The values of θ were increased from 0.1 to 0.7, and at each threshold, the

models were trained and assessed repeatedly four times on four different training

and testing DPS folds. Figure 4.4 shows the average test error rates and complexity

(the number of generated hyperboxes) of models on three datasets at different values

of θ.

It can be observed that the GFMM classifier trained using the proposed online

learning algorithm produces smaller average testing errors compared to the models

using the original learning algorithms, especially in the case of employing high values

of θ. The use of the Manhattan distance measure contributes to reducing the testing

error rates of the model using the original online learning algorithm. While the

performances of GFMMNN trained by the original online learning algorithm are

severely affected by the increase of maximum hyperbox sizes, the proposed online

learning algorithm only causes a slight increase in the testing error rates of model

when using large values of θ. These facts can be explained by observing the number

of generated hyperboxes at each threshold of θ. At small values of θ, the complexity

of the model using the proposed algorithm is nearly equivalent to that of the classifier

using the original approach. At higher settings of θ, the numbers of generated

hyperboxes of three methods are reduced, but the complexity of the model trained

by the improved algorithm is much higher than the models using the original method.

As a result, knowledge encoded in the classifier using the improved method is still

maintained, so the test accuracy rates are not reduced considerably. In other words,

the proposed learning algorithm is efficient in lowering the misclassification errors

when increasing the maximum hyperbox size. Compared to the batch learning

algorithm AGGLO-2, error rates of the IOL-GFMM are only slightly higher in some

thresholds, while its complexity is usually smaller.

Table 4.1 shows the average training time of the original and proposed learning

algorithms on three datasets. In general, the training time of the IOL-GFMM is

much faster than the original online learning algorithm when the maximum hyperbox

size is small (usually≤ 0.4). It is due to the fact that the proposed learning algorithm
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Table 4.1 : Average training time (in seconds) of GFMMNNs using the original and

improved learning algorithms (smaller values are better and highlighted in bold)

ID Dataset Model θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7

1 Page blocks

Onln-GFMM 3.8717 1.9758 1.3024 1.0879 1.1667 1.0385 1.0290

IOL-GFMM 0.8238 0.4376 0.3484 0.3432 0.3223 0.3306 0.3313

AGGLO-2 15.6012 6.3211 5.1393 5.2248 5.8189 6.2523 6.0002

2
Landsat

Satellite

Onln-GFMM 67.1135 27.5141 7.4381 3.3578 2.2326 1.5856 1.1288

IOL-GFMM 8.1266 2.0505 1.7381 2.1205 2.4473 2.7987 3.2385

AGGLO-2 867.9369 68.8635 46.1044 54.4781 58.4633 66.5776 60.4559

3 Haberman

Onln-GFMM 0.0794 0.0649 0.0547 0.0343 0.0272 0.0371 0.0248

IOL-GFMM 0.0376 0.0290 0.0275 0.0339 0.0313 0.0309 0.0346

AGGLO-2 0.2493 0.1604 0.1219 0.1385 0.1571 0.1869 0.1812

reduces the number of expandable hyperbox candidates as well as without using the

contraction process. In the case that the value of θ is high and the number of data

points in the training set is large such as Landsat Satelite dataset, the training time

of the proposed method is longer than that of the original learning algorithm. This

fact is not surprising since the number of generated hyperboxes at high values of

θ using the proposed method is much larger than that using the original learning

approach (see Figure 4.4-(f)). Hence, the overlap test procedure in the proposed

method has to run on much more hyperboxes, so it increases the training time.

Furthermore, the training time of online learning algorithms is much faster than

that of the agglomerative learning algorithm. These figures show that the IOL-

GFMM algorithm is competitive to the batch learning algorithm while its training

time is much faster.

4.3.2 Evaluation the Robustness of the Proposed Method to Noise

This experiment is to prove the robustness, as shown in the example in Figure 4.3,

of the improved online learning algorithm for GFMM. To evaluate the effectiveness

of the IOL-GFMM and the pruning operation in dealing with noise in the learning

process with single pass through, three representative datasets, i.e., Habermann,

Landsat Satellite, and Page blocks as shown in the subsection 4.3.1, were used.

Each dataset was split into four folds using the DPS method; two folds were used



105

for building the models, one fold for pruning, and one fold for testing. The training

and validation sets were corrupted with 5%, 10%, and 15% of the total number

of samples changed their class labels randomly. The experiments were repeated

four times for four different testing folds to obtain the testing errors before and

after conducting the pruning step. This chapter uses a simple pruning operation,

in which hyperboxes with predictive accuracy lower than 0.5 are eliminated (Khuat

et al. 2021b).

Table 4.2 : Testing errors on noisy datasets in the case of using θ = 0.1

%Noise
GFMM GFMM-Manhattan IOL-GFMM

B. Pra A. Prb B. Pr A. Pr B. Pr A. Pr

Haberman

0 28.460 27.474 30.421 30.712 28.132 31.707

5 30.404 28.777 29.755 29.401 28.448 27.781

10 32.045 32.702 32.698 31.694 31.066 31.037

15 34.330 31.374 35.646 34.3175 32.698 33.672

Landsat Satellite

0 11.313 13.458 11.236 11.064 11.360 11.313

5 12.945 14.080 12.883 12.370 12.681 12.417

10 15.090 15.214 15.027 14.577 14.483 14.918

15 17.250 17.125 17.219 14.266 16.503 14.499

Page blocks

0 4.404 4.824 4.422 6.760 3.874 7.326

5 14.142 13.959 14.306 8.643 4.952 7.875

10 20.263 19.880 20.501 11.565 6.085 8.186

15 27.608 26.768 27.828 15.183 8.240 7.528

aB. Pr: Before pruning; bA. Pr: After pruning

Experiments were conducted using a small value of θ = 0.1 and a large value

of θ = 0.7. Table 4.2 presents the obtained results with θ = 0.1, and Table 4.3 is

testing error results with θ = 0.7. It can be seen that the GFMM models using

the original online learning algorithms with large-sized hyperboxes (θ = 0.7) are

sensitive to noise because the testing error increases significantly at the level of 15%

noise on three considered datasets, while they are less sensitive to noise in the case

of small-sized hyperboxes. Meanwhile, the IOL-GFMM is less affected by noise even

in the case of employing a large value of θ as the error rates only increase < 7%
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Table 4.3 : Testing errors on noisy datasets in the case of using θ = 0.7

%Noise
GFMM GFMM-Manhattan IOL-GFMM

B. Pra A. Prb B. Pr A. Pr B. Pr A. Pr

Haberman

0 28.439 28.439 28.439 39.807 28.777 44.412

5 28.435 28.435 28.435 39.807 30.071 37.239

10 33.002 33.002 33.002 41.554 33.356 38.901

15 47.374 47.374 47.374 37.838 34.638 37.615

Landsat Satellite

0 24.335 24.351 24.195 35.429 14.437 21.322

5 42.269 42.284 42.269 50.210 14.918 21.259

10 56.736 56.643 56.674 59.346 17.124 21.072

15 59.053 58.913 58.960 66.994 20.357 25.409

Page blocks

0 28.360 28.396 28.378 42.878 4.002 28.941

5 64.387 64.478 64.387 9.757 4.532 17.304

10 77.928 77.947 78.001 51.993 5.664 24.795

15 81.328 81.310 81.291 81.602 5.865 24.504

aB. Pr: Before pruning; bA. Pr: After pruning

when there are noisy samples in the training data. In general, the IOL-GFMM is

more stable than the original Onln-GFMM, and this claim is demonstrated via the

Landsat Satellite and Page blocks datasets. It can also be seen that the pruning

procedure contributes to decreasing the error rates of models trained by the original

online learning algorithms in some cases. Nevertheless, it is not effective for IOL-

GFMM, especially when using a high maximum hyperbox size threshold because

it leads to an increase in the testing error. In general, the pruning procedure is

efficient on the model with many small-sized hyperboxes. With a small value of θ

and high rate of noise, the pruning step is very useful as it contributes to a significant

reduction of error rates. However, in the case of using large values of θ, the pruning

step is ineffective for the IOL-GFMM model. This fact confirms that the generated

hyperboxes using the proposed method are highly valuable ones, and the removal of

these hyperboxes leads to the loss of learned knowledge for unusual patterns.
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4.3.3 Comparison of the Performance of the IOL-GFMM to Other Fuzzy

Min-Max Classifiers

This experiment is to compare the performance of the GFMM model using the

improved online learning algorithm to other types of fuzzy min-max neural net-

works such as the GFMMNN using the Onln-GFMM (Gabrys and Bargiela 2000)

and AGGLO-2 (Gabrys 2002a) algorithms, FMNN (Simpson 1992), EFMNN (Mo-

hammed and Lim 2015), and KNEFMNN (Mohammed and Lim 2017a). To conduct

a fair comparison, 3-fold DPS cross-validation and a grid-search procedure were used

to find the best value of θ in the range of [0.1, 0.15, . . . , 0.65, 0.7] for each classifier.

As for KNEFMNN, the value of K was searched in the range of [2, 10]. For each

training dataset including three DPS folds, a fold was used as a validation set, and

two remaining folds were deployed to train the model. Next, the performance of the

trained classifier was assessed on the validation fold. This process was iterated three

times for three different validation folds for each set of parameters. The parameters

which resulted in the lowest average validation error rate were used to train the

final classifier using three DPS folds. Finally, the final model was executed on the

remaining DPS testing fold. This process was repeated four times for four different

DPS testing folds, and the average testing error is reported in Table 4.4.

It can be observed that no method is always superior through all datasets, but

the average testing error of GFMMNN using the proposed method is competitive

among different methods, such as AGGLO-2 and KNEFMNN. In addition, the IOL-

GFMM outperforms other online learning algorithms like Onln-GFMM, FMNN, and

EFMNN. To facilitate the conclusion, the performance of approaches is ranked, in

which the method outputs the lowest error rates on each dataset is ranked first,

the second-best method ranks two, and so on. The average ranks through nine

datasets of models are shown in Table 4.5. It can be easily observed that IOL-

GFMM produces the best average performance compared to other types of online

learning algorithms of the fuzzy min-max models, as well as being competitive to

the batch learning algorithm, i.e., AGGLO-2.
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Table 4.4 : The lowest average testing errors (%) of models on nine experimental

datasets (smaller values are better and shown in bold)

ID Dataset
Onln-

GFMM

Onln-

GFMM

+ Man-

hattan

IOL-

GFMM
AGGLO-2 FMNN EFMNN

KN

EFMNN

1
Blood

transfusion
34.358 33.289 23.797 24.599 30.883 33.289 32.353

2
Breast Cancer

Coimbra
28.448 28.448 32.759 26.724 30.172 37.069 25.862

3 Haberman 31.703 32.032 28.768 31.374 39.833 34.010 30.379

4 Heart 23.326 19.244 22.218 22.597 18.157 19.99 18.882

5 Page blocks 4.550 4.605 3.746 3.910 6.998 4.915 4.440

6
Landsat

Satellite
11.080 11.018 10.816 10.303 17.545 11.826 10.894

7 Waveform 18 18 18.7 17.92 22.2 21.22 20.78

8 Yeast 42.116 42.185 41.850 42.989 51.620 40.834 39.962

9 Spherical 5 2 1.203 1.203 1.203 1.203 1.197 2.407 1.600

Table 4.5 : The average rank of the performance of models through nine datasets

(the best value is highlighted in bold)

ID Model Average rank

1 Onln-GFMM 4.50

2 Onln-GFMM + Manhattan 4.11

3 FMNN 5.0

4 EFMNN 5.5

5 KNEFMNN 3

6 AGGLO-2 2.94

7 IOL-GFMM 2.94

4.3.4 A Simple Ensemble Learning Approach to Tackle the Disadvan-

tages of the IOL-GFMM

Although the IOL-GFMM has shown the effectiveness via experiments, especially

in the case of using large values of θ, it is still sensitive to the presentation order

of training samples like other online learning algorithms. A disadvantage of the

IOL-GFMM algorithm is shown in Figure 4.5. In this case, when samples A and

B with the same class label are presented to the GFMM classifier first, they will
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form a hyperbox. Unfortunately, this hyperbox covers all remaining input patterns

of another class. Therefore, when these remaining patterns, which are denoted

by dots, come to the network, they do not satisfy the non-overlapping condition

between hyperboxes representing different classes. Therefore, all these points form

hyperboxes with only one sample. Consequently, all unseen data points with green

label located inside the hyperbox with the red label will be incorrectly classified.

To overcome this limitation, small-sized hyperboxes should be constructed before

aggregating these hyperboxes with a larger size, as shown in Khuat et al. (2021b). In

addition, if the training data are available, it can be seen an ensemble method with

base learners trained on the same training set but with different data presentation

orders in order to overcome the above limitation. By using different orders of training

data to build an ensemble model, the limitation presented in Figure 4.5 is less likely

to happen on all base learners, so the ensemble classifier is more robust than the

single IOL-GFMM model.
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Figure 4.5 : A limitation of the IOL-GFMM algorithm

In this experiment, each dataset was split into four folds using the DPS method

(Budka and Gabrys 2013). For each execution, three folds were used for training

the model, and then the performance of the trained model was assessed on the

remaining fold. The figures reported in this part are the average values of four

testing folds. For each training set, eleven GFMM models were built using the

original online learning and IOL-GFMM algorithms, each was trained by randomly

shuffling the presentation orders of training data. Next, each model was tested on

the remaining testing fold. The average standard deviation for testing errors of

models using different learning algorithms on four testing folds is shown in Table

4.6. Generally, it can be observed that the standard deviation of models trained by
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the IOL-GFMM is lower than those trained by the Onln-GFMM + Manhattan. The

standard deviations for testing errors of models using IOL-GFMM are usually lower

than 6% and more stable than those using the original online learning algorithm,

especially for Page blocks and Blood transfusion datasets. However, the IOL-GFMM

algorithm is still affected by data presentation orders, especially in the case of using

high values of θ. In the case of using small values of θ, online learning algorithms

of GFMMNN are less influenced by data presentation orders.

Table 4.6 : The average standard deviation (%) of algorithms

ID Datasets Algorithm θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7

1
Blood

transfusion

Onln-GFMM 3.2647 5.4090 9.3228 10.4414 9.8742 8.1452 8.4970

IOL-GFMM 2.7962 3.8013 4.3108 5.1811 5.0234 4.9881 4.5658

2
Breast Cancer

Coimbra

Onln-GFMM 0 3.2960 6.3032 5.8891 6.4826 6.3821 6.4206

IOL-GFMM 0 3.2960 5.1123 5.020 6.0098 5.3864 5.9864

3 Haberman
Onln-GFMM 2.4569 3.8980 5.0810 5.0356 7.1989 10.4423 12.4998

IOL-GFMM 2.4369 3.3359 3.2321 3.5610 3.9824 4.4686 4.3484

4 Heart
Onln-GFMM 0 0 0 0.9722 1.9509 2.1942 1.9381

IOL-GFMM 0 0 0 0.4791 1.5416 1.8697 1.620

5 Page blocks
Onln-GFMM 0.3658 0.5107 2.6319 10.6540 12.5095 15.3907 18.3566

IOL-GFMM 0.4321 0.3701 0.4721 0.4981 0.5522 0.5154 0.5127

6
Landsat

Satellite

Onln-GFMM 0.3221 0.5147 0.9505 1.0422 1.2635 2.3933 3.7008

IOL-GFMM 0.2922 0.4713 0.4986 0.820 0.8033 0.7444 0.7862

7 Waveform
Onln-GFMM 0 0.9443 0.8290 0.7722 0.9021 1.4253 1.5462

IOL-GFMM 0 0.9593 0.7593 0.8792 1.1903 0.9754 1.1182

8 Yeast
Onln-GFMM 1.3597 1.7120 2.5940 2.560 2.7802 3.9750 2.6742

IOL-GFMM 1.4396 1.9833 1.9490 2.7558 2.1458 2.5104 2.6816

9 Spherical 5 2
Onln-GFMM 0.9206 0.8130 0.7029 0 0 0 0

IOL-GFMM 0.8705 0.8130 0.7029 0 0 0 0

To reduce the impact of data presentation orders, it can be built a simple ensem-

ble model of base learners trained on the same training set but with different training

sample orders. After that, the predictive results of base learners are aggregated us-

ing a majority voting method. Table 4.7 shows the average testing errors of eleven

base learners and the ensemble model of these eleven base models trained by the

IOL-GFMM algorithm. In general, the performance of the ensemble model is better

than the single models. With high values of θ, the standard deviation values of base

models are usually high, but the ensemble model shows its superior effectiveness in
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Table 4.7 : Average testing errors (%) of the IOL-GFMM and the ensemble method

ID Datasets Algorithm θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7

1
Blood

transfusion

IOL-GFMM 27.8926 27.4307 28.3058 29.8128 29.1687 29.0107 29.0107

Ensemble of

IOL-GFMMs
24.3316 24.4652 24.3316 25.1337 23.5294 24.8663 25.4011

2
Breast Cancer

Coimbra

IOL-GFMM 31.8966 28.4483 28.6834 28.3699 29.4671 29.3887 29.3887

Ensemble of

IOL-GFMMs
31.8966 28.4483 25 24.1380 24.9999 25.0000 25.8621

3 Haberman
IOL-GFMM 30.0632 30.0686 29.6282 29.5936 31.5032 31.2057 32.6539

Ensemble of

IOL-GFMMs
30.0666 27.1232 26.8113 25.487 28.439 27.1318 29.4173

4 Heart
IOL-GFMM 21.8503 22.2234 21.8558 21.5914 22.1232 21.7480 20.1932

Ensemble of

IOL-GFMMs
21.8503 22.2234 21.8558 21.4882 21.8503 20.3633 18.8707

5 Page blocks
IOL-GFMM 4.1244 4.0115 4.1061 4.0762 4.3320 4.2589 4.3570

Ensemble of

IOL-GFMMs
3.5447 3.3986 3.3803 3.3072 3.2523 3.5265 3.6727

6
Landsat

Satellite

IOL-GFMM 10.9006 10.5911 11.1097 12.3019 12.9617 13.4406 13.6680

Ensemble of

IOL-GFMMs
10.3341 9.1064 9.5415 10.7070 11.4218 11.4063 11.7793

7 Waveform
IOL-GFMM 21.94 21.8091 18.9382 18.9327 19.2982 19.4727 19.4073

Ensemble of

IOL-GFMMs
21.94 18.24 15.26 15.04 15.46 15.44 15.7

8 Yeast
IOL-GFMM 40.6408 43.5354 46.2186 49.92493 53.7171 55.7447 58.0855

Ensemble of

IOL-GFMMs
39.0191 39.2839 41.9788 47.1685 52.4907 54.5810 56.0649

9 Spherical 5 2
IOL-GFMM 1.2341 0.9071 1.0502 0.7937 0.7937 0.7937 0.7937

Ensemble of

IOL-GFMMs
1.1967 0.3968 1.1969 0.7937 0.7937 0.7937 0.7937

comparison to base estimators. For example, with θ = 0.6, the standard deviations

of the base models on Blood transfusion and Breast Cancer Coimbra datasets are

approximately 5%, whereas the testing errors of ensemble models are lower by about

4% compared to the average testing errors of the single models. This result confirms

that the ensemble method is a suitable approach to overcome the limitations of the

proposed method and contribute to building robust learning models.
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4.4 Summary

This chapter partly addressed the thesis Objective 2 proposed in Section 1.2.

It presented the improved online learning algorithm for the GFMMNN. The pro-

posed method does not use the contraction step in the training process or reduce

the expandable hyperbox candidates for the expansion step. Experimental results

indicated that the performance of the proposed approach outperformed the original

learning algorithm, especially in the case of using large values of maximum hyperbox

size. The new method also showed the robustness to noise in the training sets.

One of the drawbacks of the proposed and original learning algorithms is that

they do not handle categorical features effectively because the current membership

function is designed for only continuous values. Therefore, Chapter 5 will address

this problem in order to build more robust classifiers.
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Chapter 5

Mixed-Attribute Data Classification using

General Fuzzy Min-Max Neural Network

One of the downsides of the original learning algorithms for the GFMMNN is the

inability to handle and learn from the mixed-attribute data. The popular approaches

such as using categorical encoding techniques are not suitable for online learning

algorithms working in the dynamically changing environments without ability to

retrain or access full historical data, which are usually required for many real world

applications. This chapter presents an extended online learning algorithm for the

GFMMNN. The proposed method can handle the datasets with both continuous

and categorical features. It uses the change in the entropy values of categorical

features of the samples contained in a hyperbox to determine if the current hyperbox

can be expanded to include the categorical values of a new training instance. An

extended architecture of the original GFMMNN and its new membership function

are introduced for mixed-attribute data. Important mathematical properties of the

proposed learning algorithms are also presented and proved in this chapter. The

main content shown in this chapter is taken from the two following papers (Khuat

and Gabrys 2020; Khuat and Gabrys 2021b):

1. Thanh Tung Khuat, and Bogdan Gabrys, “An online learning algorithm

for a neuro-fuzzy classifier with mixed-attribute data,” Submitted to IEEE

Transactions on Fuzzy Systems (Revised and Resubmit).

2. Thanh Tung Khuat, and Bogdan Gabrys, “An in-depth comparison of meth-

ods handling mixed-attribute data for general fuzzy min-max neural network,”

Neurocomputing, vol. 464, pp. 175-202, 2021.
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5.1 Introduction

Classical batch learning algorithms usually require the complete availability of

data at the training time. These algorithms do not constantly accommodate new

information to the built models. Instead, the model needs to be reconstructed from

scratch when the underlying data changes. This operation is time-consuming, espe-

cially in the case of massive data, and the constructed models are more likely to be

outdated in dynamically changing environments. Taking an advertising recommen-

dation system as an example, this system constructs a customer preference model

based on the tracking information about the shopping and browsing behaviors of

the users. The buying activities and preferences are temporary and continuously

changing. For example, the pandemic events can dramatically change the online

shopping behaviors of customers where people tend to purchase things they have

never bought before. Therefore, the learning models trained on consumer behavior

data prior to the pandemic have been deteriorated or crashed. As a result, these

models need to be retrained on new (normal?) behavior data. In this context, and

many others characterised by streaming data in changing environments, it is desir-

able or even necessary to have online learning algorithms that can learn constantly

new information without retraining from scratch.

With the increase in the data volume and the rapid change of the environmen-

tal conditions nowadays, online learning algorithms are in high demand (Laksh-

minarayanan et al. 2014; Lughofer and Pratama 2018). These algorithms require

smaller or no data storage as they only need one or few newest training samples

at one time to rapidly update the constructed model. Hence, the online learning

models are ideal candidates for the systems with frequently updating demands. The

GFMMNN in this study is a potential candidate which perfectly fits with this re-

quirement. This type of learning model combines the artificial neural networks with

the fuzzy set theories to form a consolidated framework. The model creates new

hyperboxes or adjusts the existing hyperboxes to cover new samples in its structure.

Each hyperbox is defined by the minimum and maximum points in an n-dimensional

space. The degree-of-fit of an input pattern to a hyperbox is identified by a mem-
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bership function.

Chapters 3 and 4 in this thesis introduced the online learning versions for the

GFMMNN. However, both the original online learning algorithm (Gabrys and Bargiela

2000) and the IOL-GFMM algorithm (Khuat et al. 2020) work well on the datasets

with only numerical features. To perform classification for the datasets with mixed-

type features, it would need to use the encoding methods to transform the categor-

ical values into numerical values. As shown in a recent study (Khuat and Gabrys

2021b), each encoding method has its own drawbacks and except for the CatBoost

(Prokhorenkova et al. 2018) and label encoding techniques, all of the remaining

encoding approaches need to use the entire training set to encode the categorical

features. Therefore, they are not appropriate for incremental learning algorithms,

where the new values can appear during the operation time. In addition, according

to the empirical results in Khuat and Gabrys (2021b), the classification performance

of the online learning algorithms using the CatBoost or label encoding method for

the GFMMNN is quite poor. It is because the label encoding method imposes an

artificial distance metric for categorical groups, in which this distance is not corre-

spondent to the correlation among original categorical values (Brouwer 2002). Not

only this poses a serious problem but the CatBoost encoding method is sensitive to

the presentation order of training samples and a shift in the encoded values between

training and testing data as well as between training samples have been observed.

For the same categorical value, its encoded value in the training data may be dis-

tinct from that in the testing data. Even in the training set, the same categorical

value may be mapped into many different encoded values depending on the histor-

ical patterns prior to the current training pattern. The proposed method in this

chapter avoids all of these issues by not using any encoding methods for categorical

attributes in the first place.

Many real-world datasets are in the form of mixed-type features. The mixed-

attribute data contain both continuous and categorical (or categorical) features.

Nowadays, the mixed-attribute data are more and more popular in a wide range of

applications from the credit approval data to medical diagnostic data (Huang et al.
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2019). Hence, to apply the GFMMNN to such problems, it is necessary to extend its

current learning algorithms so that they can deal effectively with mixed-attribute

data. Although there are a large number of improved algorithms of the FMNN,

only two existing studies have focused on expanding the learning algorithms for

both categorical and numerical features as shown in a recent survey paper (Khuat

et al. 2021b) and Chapter 2. The first study was proposed in Castillo and Car-

denosa (2012) (denoted by Onln-GFMM-M1 in this chapter) using the correlation

between the occurrence frequency of categorical values and classes to determine the

similarity degrees among categorical values for each categorical feature. After that,

the authors proposed to extend the original online learning algorithm (Gabrys and

Bargiela 2000) for mixed-attribute data. The second idea of expanding the original

online learning algorithm of the FMNN model for both numerical and categorical

features was introduced in Shinde and Kulkarni (2016), called Onln-GFMM-M2 in

this chapter. It uses the one-hot encoding method for the categorical features and

logical operators such as AND and OR to operate on the categorical groups. How-

ever, the main weak point of both algorithms is the use of the entire training set to

encode or compute the similarity degree between categorical values. If a new value

occurs without being encountered during a training process before, these algorithms

cannot handle such situation and produce a valid prediction. Different from these

two approaches, this chapter proposes a new incremental learning algorithm for both

continuous and categorical features. The proposed method does not use any encod-

ing methods for categorical values. Instead, it uses a union operator of a set to add

new categorical value to the current set of values in each categorical feature of a

hyperbox. The decision on expanding a selected hyperbox to accommodate a new

input pattern is based on the change in the entropy for each categorical feature.

The membership function is also modified to handle both categorical and numerical

attributes. The membership degree for all categorical features is computed from the

average probability of categorical values in the input sample with regard to all of

the existing categorical values stored in categorical features of the hyperbox.

In short, this study focuses on addressing a classification problem on the tabular
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data with mixed continuous and categorical features, where an incremental learning

ability of the classifiers is highly desired to avoid retraining these models on a large

amount of historical data. The main contribution in this chapter can be summarized

as follows:

• A novel online learning algorithm for the GFMMNN able to learn from mixed-

attribute data is proposed. This is the first online learning algorithm for the

family of fuzzy min-max neural networks which can handle both continuous

and categorical features without using any encoding methods.

• Several properties of the proposed method with regard to the categorical at-

tributes are presented and proved.

• Extensive experiments are conducted to prove the effectiveness of the proposed

method in comparison to other relevant methods.

• The impact of hyper-parameters on the classification performance of the pro-

posed method is assessed, and a simple method for the parameter estimation

is proposed.

5.2 Extended Improved Online Learning Algorithm for Mixed-

Attribute Data

5.2.1 Formal Description

Let TN = {(Xi, ci)}Ni=1, where Xi = [X l
i , X

u
i , X

d
i ], be N training patterns, where

ci is the class of the i-th pattern, X l
i = (xli1, . . . , x

l
in) and Xu

i = (xui1, . . . , x
u
in) are n

continuous attributes (determined in a unit hyper-cube [0, 1]n) of lower bound X l
i

and upper bound Xu
i for the i-th training sample, Xd

i = (xdi1, . . . , x
d
ir) represents

r categorical attributes for the i-th training sample, xdij is a categorical value of

the j-th categorical feature (Ad
j ) at the i-th training sample, xdij ∈ DOM(Adj ) =

{a1j, a2j, . . . , anjj}, where DOM(Adj ) is a domain of categorical values for the cate-

gorical attribute Adj and nj is the number of symbolic values of Adj . This chapter

presents an online learning algorithm to train an efficient GFMM classifier from TN .
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Figure 5.1 : The extended architecture of GFMMNN for mixed-attribute data

5.2.2 Architecture of the GFMMNN for Mixed-Attribute Data

First of all, it is necessary to expand the architecture of the GFMMNN for

mixed-attribute data. Instead of using 2n input nodes as in the GFMMNN for

continuous data, it is requested to have 2n + r nodes for the input layer. The

first 2n nodes are lower bound and upper bound nodes for n numerical features,

respectively. The last r remaining nodes correspond to r categorical features in each

input pattern. These r input nodes are connected to m hyperboxes by connection

weights stored in a matrix D. New architecture of the GFMMNN is shown in Figure

5.1. Beside the minimum point Vi and the maximum point Wi, each hyperbox Bi

in the hidden layer also contains a vector Di storing r categorical-valued sets. Each

element dij ∈ Di (1 ≤ j ≤ r) is a set of categorical values with their cardinalities

for the j-th categorical dimension of the hyperbox Bi. For example, di1 = {apple :

5, orange : 1} means that the first categorical feature of the hyperbox Bi contains

5 values of apple and 1 value of orange. The values of vectors Vi, Wi, and Di for

each hyperbox Bi are generated and adjusted during the learning process. The
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membership function of each hyperbox Bi with regard to each input pattern with

mixed-attribute X = (X l, Xu, Xd, cX) is modified as follows:

bi(X,Bi) = α ·
n

min
j=1

(min([1− f(xuj − wij, γj)],

[1− f(vij − xlj, γj)])) +
1− α
r
·

r∑
j=1

Pj(x
d
j ∈ dij)

(5.1)

where α(α ∈ [0, 1]) is a trade-off factor regulating the contribution level of continuous

numerical features part and categorical features part to the membership score, and

Pj(x
d
j ∈ dij) is a probability of encountering a categorical value xdj in the j-th

categorical attribute of the hyperbox Bi. This probability is formally defined as

follows:

Pj(x
d
j ∈ dij) =

|{a ∈ dij|a = xdj}|
|dij|

(5.2)

where | · | is the cardinality of a set. For the above example, Pj({orange} ∈ di1) =

1/6, Pj({apple} ∈ di1) = 5/6, and Pj({banana} ∈ di1) = 0 are obtained. Unlike

the continuous numerical part in the membership function, an average operation

for the categorical part is used to reduce sensitivity to the membership value. If

the min operator is also used for the categorical part, the membership value for

the categorical features will get the value of zero when there is only one categorical

feature getting a new categorical value.

5.2.3 Extended Improved Online Learning Algorithm for Mixed-Attribute

Data Classification

To create new hyperboxes or adjust existing hyperboxes towards learning mixed-

attribute training samples in the GFMM model, it is necessary to expand the current

improved learning algorithm presented in Chapter 4, denoted by EIOL-GFMM in

this chapter. The proposed modifications include the expansion condition for cate-

gorical features, the way of accommodating a categorical value into the hyperbox,

and the overlap test for categorical features.

For each training sample, X = [X l, Xu, Xd, cX ] ∈ TN , the algorithm first filters

all of the existing hyperboxes representing the same class as cX . Then, the member-

ship values of X in these selected hyperboxes are calculated and sorted in descending
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order. After that, expandable hyperbox candidates are selected in turn starting from

the hyperbox with the highest membership degree if the highest membership score

is smaller than one. Assuming that Bi is the currently considered hyperbox, the

numerical features of Bi are checked for the maximum hyperbox size condition as

shown in Eq. (3.4). If the expansion condition for continuous features is satisfied,

the algorithm continues to check the constraint for categorical features.

Entropy-based measures can be used to assess the heterogeneity of data in clus-

ters, and they are appropriate for clustering of categorical data due to the lack of

explicit distance measures between categorical values (Li et al. 2004). The change

in the entropy value of categorical values contained in the hyperbox is used to de-

cide whether the current hyperbox can be expanded to accommodate the categorical

values of a new training sample. Given a categorical attribute j, let Hj(Bi) be the

current entropy of hyperbox Bi for the j-th categorical feature, computed from the

probability of all current categorical values stored in the j-th attribute as follows:

Hj(Bi) = −
Nj∑
l=1

Pj(al ∈ dij) · log2 Pj(al ∈ dij) (5.3)

where Nj is the number of different categorical values (al) in the j-th attribute, and

Pj is defined in (5.2). It is clear that if a new sample is added to the hyperbox for

which most of the sample’s categorical values existed in the categorical attributes of

the hyperbox, the change in the entropy of that hyperbox is small. In contrast, if a

sample is added into the hyperbox for which most of the sample’s categorical values

are new symbolic values to the set of existing categorical attributes of the hyperbox,

the homogeneity of this hyperbox is significantly changed, and so the entropy will

increase. As a result, the change in the entropy of the hyperbox can be used as

an expansion condition for categorical attributes. This entropy changing value is

defined in Eq. (5.4) for each categorical feature j of each hyperbox candidate Bi.

Zj = Hj(Bi ∪ {X})−
ni

ni + 1
Hj(Bi) (5.4)

where Hj(Bi ∪ {X}) is the entropy of the hyperbox Bi in the j-th attribute after

putting the input pattern X into this hyperbox Bi, computed using Eq. (5.3); ni
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is the number of samples contained in the hyperbox Bi (ni is also equal to the

summation of cardinalities of categorical values in the dimension j).

Based on Zj, there are two ways to construct the expansion condition for cate-

gorical attributes:

• The first method is similar to the expansion condition for continuous features.

The extended algorithm using this way is denoted by EIOL-GFMM-v1 in this

chapter. It is required the change in the entropy for every categorical attribute

smaller than a maximum entropy changing threshold δ for all categorical di-

mensions:

Zj ≤ δ, ∀j ∈ [1, r] (5.5)

• The second approach to build the expansion condition for categorical fea-

tures uses a weaker condition compared to the first way. The proposed online

learning algorithm adopting this condition is called EIOL-GFMM-v2 in this

chapter. This method requires the average change in the entropy of all of the

r categorical attributes smaller than a maximum average entropy changing

threshold δ:

1

r
·

r∑
j=1

Zj ≤ δ (5.6)

If both conditions for categorical and numerical features are met for the hyperbox

Bi, it will be temporarily expanded to new coordinates. The expansion of numerical

features is performed using Eqs. (3.5) and (3.6). Each categorical feature dij of Bi

is expanded as follows:

dnewij =

d
old
ij ∪ {xdj : 1}, if @aj ∈ doldij : aj = xdj

doldij .update(aj), if ∃aj ∈ doldij : aj = xdj

(5.7)

where update(aj) is a function to increase the number of elements of the categorical

value aj by 1. After that, an overlap checking procedure is performed for the newly

expanded Bi to examine whether Bi overlaps with any hyperboxes belonging to

other classes. In the improved online learning algorithm for numerical features,
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only four overlap test cases are used as in the original online learning algorithm.

However, these four cases are not sufficient to identify all potential overlap cases

between two hyperboxes. Therefore, in this extended version, a similarity measure

between two hyperboxes will be deployed based on their smallest gap introduced in

Gabrys (2002a) to check the overlap for numerical features between Bi and other

hyperboxes Bk representing different classes. This similarity measure sik is defined

in Eq. (5.8).

sik =
n

min
j=1

[min(1− f(vkj − wij, 1), 1− f(vij − wkj, 1))] (5.8)

where n is the number of continuous features, f is a ramp function given in Eq.

(3.2). If Bi and Bk overlap with each other, sik = 1; otherwise, sik < 1. If Bi does

not overlap with any Bk representing other classes in the numerical features, it is

unnecessary to check the overlap conditions for their categorical features. Otherwise,

the overlap has to be verified for the categorical features between Bi and hyperboxes

Bk overlapping with Bi in the continuous features. Let Ωij and Ωkj be the set of

categorical values in the j-th categorical attribute of two hyperboxes Bi and Bk,

respectively. Bi overlaps with Bk in the j-th categorical feature if and only if:

Ωj = Ωij ∩ Ωkj 6= ∅ and

∃aj ∈ Ωj : Pj(aj ∈ dij) = Pj(aj ∈ dkj)
(5.9)

where Pj is defined in (5.2), and Ωj contains the common categorical values from two

sets Ωij and Ωkj for the j-th categorical feature. Bi overlaps with Bk in categorical

attributes if the equation (5.9) is true for all of the r categorical features of these

two hyperboxes.

If the hyperbox candidate Bi does not overlap with any hyperboxes Bk represent-

ing other classes in either categorical or continuous features, the new coordinates of

Bi remain unchanged and the algorithm continues with the next training sample.

Otherwise, the coordinates of Bi are reverted to the previous values and the hyper-

box candidate with the next highest membership value is selected as an expandable

hyperbox candidate, and the above steps are re-iterated.

If none of the hyperbox candidates can be extended to accommodate the input
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pattern X, a new hyperbox Bi is generated as follows. For each numerical feature

j, vij = xlj, wij = xuj , ∀j ∈ [1, n] is set, and for each categorical feature j, dij = {xdj :

1}, ∀j ∈ [1, r] is assigned.

The classification phase of the EIOL-GFMM algorithm remains unchanged as

in the original IOL-GFMM algorithm. It can be seen that the way of working of

the EIOL-GFMM algorithm itself can explain the reason leading to the classifica-

tion results based on the selection of the hyperbox with the maximum membership

degree.

5.2.4 Properties of the Change in Entropy of Categorical Features when

Accommodating New Training Samples

This section presents several interesting properties related to the change of the

entropy in each categorical attribute of a hyperbox Bi when accommodating a new

training sample X. Their proofs can be found in the Appendix C.

Property 5.1. When covering an input pattern, the change of the entropy in each

categorical attribute j of Bi obtains its maximum value if and only if that attribute

j includes a new categorical value which does not exist in the list of its current

categorical values. Formally,

dnewij = doldij ∪ {xdj : 1} ⇒ Zj 7→ max (5.10)

Property 5.2. The upper bound of the change in the entropy for every categorical

dimension j of Bi depends on the current number of samples included in Bi. That

is:

Zj ≤ log2(ni + 1)−
ni

ni + 1
log2 ni (5.11)

Property 5.3. The change of the entropy for each categorical dimension j always

falls in the range of [0, 1]:

0 ≤ Zj ≤ 1; ∀j ∈ [1, r]

Property 5.3 also confirms that 0 ≤ δ ≤ 1.
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Property 5.4. When the number of samples contained in Bi approaches infinity, the

change of the entropy for every categorical dimension will be limited at 0. Formally,

lim
ni→+∞

Zj = 0, ∀j ∈ [1, r] (5.12)

Property 5.4 indicates that when the number of samples included in each hyper-

box Bi increases, the expansion condition for categorical attributes of this hyperbox

becomes easier to be satisfied.

5.2.5 Time Complexity Analysis for the EIOL-GFMM Algorithm

For a better understanding of its computational complexity, this section provides

the time complexity analysis of the EIOL-GFMM algorithm. For each training input

pattern, the algorithm first selects K hyperboxes from the existing set of hyperboxes

belonging to the same class as the input pattern. The time complexity of this proce-

dure is O(1) if a hash table is used to store indices of the hyperboxes corresponding

to each class label. To compute the membership values, the algorithm needs to

traverse n continuous features and r categorical features for the input pattern and

each of the K selected hyperboxes. Because dij is a hash table, the complexity of

the Pj computation in (5.2) is O(1). The time complexity of calculations in (3.1)

for each continuous dimension is also O(1), thus the time complexity of the mem-

bership values calculation is O(K · (n+ r)). The sorting operation of K membership

values has the time complexity of O(K · logK). Let R be the number of hyper-

boxes with class labels different from the class of the input pattern in the current

iteration; collecting these R hyperboxes has the time complexity of O(R). In the

worst case, it is required to loop through K hyperbox candidates for the verification

of expansion conditions and overlap test procedures with R hyperboxes represent-

ing other classes. For each expandable hyperbox Bi, the time complexity to check

the expansion condition for n continuous features in Eqs. (3.5) and (3.6) is O(n).

Let q be the maximum number of different categorical values for all categorical fea-

tures j, i.e., q = max
j
Nj. The time complexity of the expansion condition checking

for r categorical features using Eq. (5.4) is O(r · q). Therefore, the time complex-

ity of checking the expansion conditions is O(n + r · q). The time complexity of
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the hyperbox expansion procedure using Eqs. (3.5), (3.6) and (5.7) is O(n + r).

Next, the newly expanded hyperbox Bi is tested for overlap with R hyperboxes

representing other classes. To check the overlap for each pair of hyperboxes, the

overlap condition for n continuous features using Eq. (5.8) has the time complexity

of O(n). Because the set of categorical values for each categorical feature is stored

using the hash table, the time complexity for the overlap checking operation for all

r categorical features using Eq. (5.9) is O(r · q). As a result, the overall time com-

plexity of the expansion and overlap test processes for each training input pattern

is O(K · (n+ r · q +R · (n+ r · q))) = O(K · R · (n+ r · q)). If none of the existing

hyperboxes can be expanded, a new hyperbox is generated, and the time complexity

of this operation is O(n+ r). In summary, let K be the average number of hyperbox

candidates with the same class as the input pattern and R be the average number of

hyperboxes representing classes different from the class of the input pattern in each

iteration, the time complexity of the proposed learning algorithm over N training

patterns in the worst case is O(N · K · R · (n+ r · q)).

5.3 Experimental Results

The main purposes of the experiments in this section are to

• Analyze the critical roles of parameters α and δ on classification accuracy for

the proposed method

• Compare the performance of the proposed method to relevant approaches of

the GFMMNN for mixed-attribute data using fixed settings and tuning pa-

rameters

• Assess several different methods to estimate the values of α if there have

sufficient samples at the training time.

These experiments were conducted on 14 datasets taken from the UCI machine

learning repository (Dua and Graff 2019). These datasets were used in Khuat and

Gabrys (2021b) to evaluate different methods to handle mixed-attribute data using
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the GFMMNN. The same datasets were used to compare the proposed approach

to the results presented in that research. The details of these datasets can also be

found in Section C.5 in Appendix C. The datasets used in this experiment contain

mixed-type features or only categorical features, and so they are different from

those used in other Chapters. All of the experimental datasets in this chapter are

class-imbalanced, so the class balanced accuracy (CBA) metric was used to assess

the performance of classification algorithms. The superior facets of the CBA in

comparison to other metrics for the class-imbalanced datasets were shown in Khuat

and Gabrys (2021b); Mosley (2013).

5.3.1 Analyzing the Sensitivity of Parameters

There are three important parameters affecting the classification performance of

the proposed method, i.e., the maximum hyperbox size for continuous attributes

(θ), the trade-off factor (α) regarding the contribution levels of continuous and cate-

gorical attributes to the membership function, and the maximum entropy changing

threshold (δ) for categorical attributes. The role of θ was analyzed in a recent study

(Khuat and Gabrys 2020) and presented in Chapter 3, in which smaller values of θ

usually result in better performance than the use of larger values of θ does. How-

ever, the smaller values of θ are, the more complex the final model is (i.e. the higher

number of generated hyperboxes). This section only studies the influence of two

new parameters introduced in the proposed method, i.e., δ and α.

Parameter α

To evaluate the impact of α on the performance of the EIOL-GFMM algorithms,

the values of α were changed from 0 to 1 with step 0.1 and recorded the average

CBA scores using 10 times repeated stratified 4-fold cross-validation for 11 mixed-

attribute datasets. The impact of α is studied for two cases, i.e., large-sized hy-

perboxes and small-sized hyperboxes. To obtain the large-sized hyperboxes, the

parameters θ = δ = 1 were established so that the expansion process of hyperboxes

is not constrained. To achieve small-sized resulting hyperboxes, the small values

were used for both θ and δ, i.e., θ = δ = 0.1 in this experiment. Figure 5.2 shows
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the change in the CBA for different values of α in the case of large-sized hyperboxes.

For δ = 1, the behaviors of the EIOL-GFMM-v1 and EIOL-GFMM-v2 algorithms

are identical. Figure 5.3 presents the change in the CBA results for different values

of α in the case of small-sized hyperboxes for both EIOL-GFMM algorithms. Only

the results for a representative flag dataset are presented in this section. The results

of the remaining datasets are presented in Figures C.2, C.3, and C.4 in the Appendix

C.
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Figure 5.2 : The change in the class balanced accuracy according to the different

values of α for the flag dataset (θ = 1, δ = 1).

In general, the CBA values of both proposed learning algorithms at α = 0 (using

categorical features only) and α = 1 (using numerical features only) are usually

smaller than the results of using both types of features. The impact of α on both

EIOL-GFMM-v1 and EIOL-GFMM-v2 algorithms are similar for many datasets.

It can be observed that the influence of α on the GFMM models with small-sized

hyperboxes is significantly higher than that with large-sized hyperboxes. This is

demonstrated by the degree of oscillation in classification accuracy among different

values of α in Figure 5.2 and Figure 5.3. It is because the value of α affects the

results of the membership function, and the membership value in turn impacts the

selection of the final hyperbox for each unseen pattern. In the case of small-sized

hyperboxes, the number of hyperboxes is high and a small change in the membership
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Figure 5.3 : The change in the class balanced accuracy according to the different

values of α for the flag dataset (θ = 0.1, δ = 0.1).

value can lead to a significant change in the selected hyperbox.

As can be seen, the selection of α can result in the change in the classification

performance, thus this parameter needs to be tuned in the learning process. How-

ever, for a large number of training samples, performing a hyper-parameter tuning

step for α is time-consuming. For the online learning process, one also faces another

scenario, where there are not sufficient samples at the training time. In this case,

the tuning process cannot be conducted using a cross-validation technique to select

an appropriate α for the learning algorithms. Therefore, a fixed setting for α is

usually used. From the empirical results in Figures 5.2, 5.3 and Figures C.2, C.3,

and C.4 in the Appendix C, it is interesting to observe that the highest CBA results

are usually obtained for the value of α near the threshold n/(n + r). Therefore, in

the case of using a fixed setting for α, α = n/(n+ r) will be set. With this setting,

each feature is treated as equally important in decision making.

Parameter δ

This subsection will assess the impact of the maximum entropy changing thresh-

old (δ) for categorical attributes on the classification performance. To rule out the
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influence of θ, θ = 1 was set so that numerical features can be expanded without any

limitation. From the above experimental results, α = n/(n+r) was used. Therefore,

the performance of the learning algorithms depends on the selection of δ. The value

of δ was changed from 0.05 to 0.1 and kept the change step of 0.1 up to 1. The

impact of δ on the IOL-GFMM-v1 and IOL-GFMM-v2 algorithms is illustrated in

Figure 5.4 for the flag dataset. The results for the remaining datasets can be found

in Figures C.5 and C.6 in the Appendix C.

From these results, it can be observed that the change in the CBA results for

the EIOL-GFMM-v1 using δ < 0.7 is very small. For α ≥ 0.7, its impact on the

classification performance of the EIOL-GFMM-v1 on a number of datasets such as

autralian, heart, and post operative is significant, especially in the case of δ = 1. In

general, the classification error for δ ≥ 0.7 in the EIOL-GFMM-v1 is relatively high.
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Figure 5.4 : The change in the class balanced accuracy according to the different

values of δ for the flag dataset (θ = 1, α = n/(n+ r)).

For the EIOL-GFMM-v2, however, the change in CBA values is small for δ < 0.2

and δ ≥ 0.7. In contrast, the classification performance has significantly changed

for the values of δ from 0.2 to 0.7. It can be seen that the impact of δ on the

performance of the EIOL-GFMM-v2 algorithm is higher than that on the EIOL-

GFMM-v1 algorithm. It is because the hyperbox expansion procedure for categorical
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features in the EIOL-GFMM-v2 algorithm can be performed much easier than that

in the EIOL-GFMM-v1 algorithm. As a result, the number of generated hyperboxes

in the EIOL-GFMM-v1 algorithm is higher than that of hyperboxes in the EIOL-

GFMM-v2 algorithm, and so it can capture better the underlying data distribution.

For the EIOL-GFMM-v1 algorithm, each categorical feature can only accommodate

a new categorical value if the number of samples for the current categorical values is

sufficiently large according to Properties 5.1 and 5.2. As a result the homogeneity for

each categorical feature of hyperboxes in the EIOL-GFMM-v1 is higher compared to

that in the EIOL-GFMM-v2. Therefore, the change in the classification performance

among the different values of δ in the first version of the proposed method is smaller

in comparison to the second version.

5.3.2 Comparing the Performance of the EIOL-GFMM Algorithms with

Other Methods using the Fixed-Parameter Settings

As assuming that there will not be sufficient number of training samples up front

in the considered online learning scenarios, as discussed earlier, a fixed setting will

be used for certain hyper-parameters which cannot be reliably tuned/optimized us-

ing available data. This section is to assess the proposed method in comparison to

other solutions to deal with mixed-attribute data for the GFMMNN shown in Khuat

and Gabrys (2021b) using previously evaluated fixed values of hyper-parameters. In

particular, the proposed method will be compared with two learning algorithms

with the mixed-attribute handling ability for the GFMM model including the Onln-

GFMM-M1 (Castillo and Cardenosa 2012) and the Onln-GFMM-M2 (Shinde and

Kulkarni 2016). The proposed method will also be compared to the use of the orig-

inal IOL-GFMM algorithm together with various encoding methods for categorical

features.

Algorithms with Mixed-Attribute Learning Ability

In Khuat and Gabrys (2021b), the different learning methods were compared

to each other using three different settings for θ, i.e., a small size θ = 0.1, a large

size θ = 0.7, and an extreme case θ = 1. To compare the proposed method to the
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previous solutions, the same settings were also used for the θ parameter. For the

γ parameter, γ = 1 was set as recommended in Abe (2001) for all algorithms. In

addition to θ and γ, the existing learning algorithms for the GFMMNN with mixed-

feature handling ability have their own hyper-parameters. The Onln-GFMM-M1

algorithm depends on the η parameter, which represents the maximum hyperbox

size for categorical features. η ∈ {0.1, 0.7, 1} was used as shown in Khuat and

Gabrys (2021b). The Onln-GFMM-M2 algorithm has the β parameter to control

the minimum number of categorical features matched between the selected hyperbox

and the input pattern so that hyperbox can be expanded to cover the input pattern.

Similarly to (Khuat and Gabrys 2021b), β ∈ {25%, 50%, 75%} of the total number

of features for each dataset was used. To be fair in the comparison, the parameter

δ ∈ {0.1, 0.7, 1} and α = n/(n+ r) were set for the proposed learning algorithms.

The average CBA values over 10 times repeated stratified 4-fold cross-validation

with different parameter settings are shown in Table C.2 in the Appendix C. It

can be easily observed that in extreme cases (the largest values of parameters),

the classification performance of the proposed method significantly outperforms the

Onln-GFMM-M1 and Onln-GFMM-M2 algorithms. To facilitate the comparison

of results, for each value of θ, the best results of the remaining parameter will

be used to rank four algorithms over 14 datasets. For example, for θ = 0.7, the

Onln-GFMM-M1 usually obtains the best performance using η = 0.1, the Onln-

GFMM-M2 achieves its best results with β = 0.75r, and two proposed methods

attain their best results using δ = 0.1. The average ranking of algorithms using

their best settings is shown in Table 5.1.

It can be seen that the classification performance of the proposed methods is

better than that of two existing algorithms with the mixed-attribute learning abil-

ity for three different thresholds of θ. The superior performance of the proposed

method compared to the Onln-GFMM-M1 and Onln-GFMM-M2 using fixed pa-

rameter settings indicates that the new membership function and entropy-based

hyperbox expansion condition, proposed in this chapter, are more suitable for han-

dling categorical features than the mechanisms used in the other evaluated learn-
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Table 5.1 : The average rank for the algorithms using their best settings

θ Method Other parameters Average rank

0.1

Onln-GFMM-M1 η = 0.1 3

Onln-GFMM-M2 β = 0.75r 3.214

EIOL-GFMM-v1 δ = 0.1 1.893

EIOL-GFMM-v2 δ = 0.1 1.893

0.7

Onln-GFMM-M1 η = 0.1 2.429

Onln-GFMM-M2 β = 0.75r 3.857

EIOL-GFMM-v1 δ = 0.1 1.607

EIOL-GFMM-v2 δ = 0.1 2.107

1

Onln-GFMM-M1 η = 0.1 2.429

Onln-GFMM-M2 β = 0.75r 3.857

EIOL-GFMM-v1 δ = 0.1 1.679

EIOL-GFMM-v2 δ = 0.1 2.036

ing algorithms. Another advantage of the proposed method is that it can learn

in an incremental manner and can include any new categorical values, while the

Onln-GFMM-M1 and Onln-GFMM-M2 algorithms need to have all training data

to compute the distances between categorical values (as in the Onln-GFMM-M1)

or to build fixed size binary one-hot encoding strings (as in the Onln-GFMM-M2).

As a result, the Onln-GFMM-M1 and Onln-GFMM-M2 cannot accommodate new

categorical values which have not appeared in the training set.

To conclude if there are statistically significant differences among algorithms, a

non-parametric test procedure will be carried out as recommended in Demsar (2006)

employing the Friedman rank-sum test with a confidence level of 95% (a significance

level ε = 0.05). The null hypothesis is “there are no statistical differences between

learning algorithms”, and if this hypothesis is rejected, then the Nemenyi post-

hoc test is performed to determine the particular differences. For Z datasets and

M algorithms, the Friedman statistic distribution is computed using average ranks

Rj(j ∈ [1,M ]) of each algorithm j as follows:

χ2
F =

12Z

M · (M + 1)

 M∑
j=1

R2
j −

M · (M + 1)2

4

 (5.13)

From χ2
F , a F-distribution with M − 1 and (M − 1) · (N − 1) degrees of freedom
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can be calculated using (5.14).

FF =
(Z − 1) · χ2

F

Z · (M − 1)− χ2
F

(5.14)

The rejection of the null hypothesis occurs with the significance level ε if FF is

smaller than a critical value of F (M − 1, (M − 1) · (N − 1), ε). In this experiment,

14 datasets and four learning algorithms were used, so FF is distributed according

to the F-distribution with 4− 1 = 3 and (4− 1) · (14− 1) = 39 degrees of freedom.

The critical value of F (3, 39) for ε = 0.05 is 2.845.

CD = 1.254

4 3 2 1

1.893 EIOL-GFMM-v1
1.893 EIOL-GFMM-v23Onln-GFMM-M1

3.214Onln-GFMM-M2

Figure 5.5 : Critical difference diagram for four learning algorithms (θ = 0.1).

For θ = 0.1, FF = 5.5539 > 2.845 is obtained, and so the null hypothesis is

rejected. This means that there are significant differences between the results of

learning algorithms. Using the Nemenyi post-hoc test, a critical difference (CD)

diagram is obtained in Figure 5.5. The groups of algorithms that are not signifi-

cantly different from each other are connected by a solid line. It can be seen that

the proposed methods are statistically better compared to the Onln-GFMM-M2

algorithm with the selected settings. However, there is no statistically significant

difference in the classification performance between the proposed methods and the

Onln-GFMM-M1 algorithm.

For θ = 0.7, we have FF = 16.5238 > 2.845, and so the null hypothesis is also

rejected. Applying the Nemenyi post-hoc test, a CD diagram is constructed as in

Figure 5.6. It can be observed that there are no statistically significant differences

among the obtained empirical results in the groups of two proposed learning algo-

rithms and the Onln-GFMM-M1 algorithm. However, the algorithms in this group

significantly outperform the Onln-GFMM-M2 algorithm.
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CD = 1.254
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2.107 EIOL-GFMM-v22.429Onln-GFMM-M1

3.857Onln-GFMM-M2

Figure 5.6 : Critical difference diagram for four learning algorithms (θ = 0.7).

CD = 1.254

4 3 2 1

1.679 EIOL-GFMM-v1
2.036 EIOL-GFMM-v22.429Onln-GFMM-M1
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Figure 5.7 : Critical difference diagram for four learning algorithms (θ = 1).

Similarly, for θ = 1, FF = 15.7716 > 2.845 is obtained, and so the null hypothesis

is rejected as well. Figure 5.7 shows the CD diagram using the Nemenyi post-hoc

test. In this case, the statistical difference in the classification performance among

the four methods is the same as in the case of θ = 0.7.

For the complexity of the resulting GFMM models using these learning algo-

rithms, the average number of generated hyperboxes for each method is shown in

Table C.3 in the Appendix C. It can be seen that in most of the cases, the complexity

of the model using the Onln-GFMM-M2 algorithm is lowest, while the complexity

of the GFMMNN using the EIOL-GFMM-v1 is highest. The number of generated

hyperboxes using the EIOL-GFMM-v2 algorithm is usually smaller than that using

the Onln-GFMM-M1 algorithm. The complexity of the models trained by the Onln-

GFMM-M2 is low, because its expansion condition based on the total numbers of

matching bits in the binary one-hot encoding strings of categorical values can be

easily satisfied compared to the expansion conditions in other methods. In contrast,

the expansion condition of the EIOL-GFMM-v1 using Eq. (5.5) is strong and harder

to be met for all categorical features, and so the number of expanded hyperboxes

is smaller compared to other algorithms. This means that the number of newly
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generated hyperboxes in the EIOL-GFMM-v1 is high. The expansion condition of

the EIOL-GFMM-v2 using Eq. (5.6) is weaker than that using Eq. (5.5), thus the

complexity of the models trained by the EIOL-GFMM-v2 is lower than that trained

by the EIOL-GFMM-v1.

Comparing the Proposed Method to the Original Learning Algorithm

using Encoding Methods

This subsection will compare the EIOL-GFMM algorithms to the original IOL-

GFMM algorithm using different encoding techniques. In Khuat and Gabrys (2021b),

there are eight encoding methods used to transform the categorical features into nu-

merical features, i.e., Leave-One-Out (LOO), CatBoost, Label, One-hot, Target,

James-Stein, Helmert, and Sum encoding techniques. Similarly to the above exper-

iment, three different thresholds for θ including 0.1, 0.7, and 1 will be considered.

To be fair in the comparison, the value of δ was established equal to θ.

The average CBA values over 10 times repeated stratified 4-fold cross-validation

of these approaches are shown in Table C.4 in the Appendix C. The average rank

for these methods for different thresholds of θ is shown in Table 5.2, in which the

best results are highlighted in bold. In general, it can be seen that the average

performance of the proposed method is better than that using the original IOL-

GFMM algorithm together with the encoding techniques for categorical attributes.

One of the strong points of the proposed method is that it does not use any encoding

method for categorical attributes. Hence, the proposed method can be applied

flexibly to datasets with mixed categorical and continuous features in an incremental

learning manner without using any pre-processing methods for categorical features.

Meanwhile, the use of encoding methods need to have access to the entire training set

at the training time to encode categorical values prior to learning steps. Additionally,

each encoding method has its own drawbacks as analyzed in Khuat and Gabrys

(2021b), and so the classification performance will be significantly affected if an

unsuitable encoding method is deployed. These results indicate a great advantage

of the proposed method compared to the use of encoding techniques for categorical

features.
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Table 5.2 : The average ranks for the proposed method and the original IOL-GFMM

using different encoding techniques

Method
θ(= δ)

0.1 0.7 1

IOL-GFMM + CatBoost 5.357 5.071 5

IOL-GFMM + One-hot 8.179 8.036 7.536

IOL-GFMM + LOO 4.857 4.786 5.643

IOL-GFMM + Label 5.107 5.607 5.464

IOL-GFMM + Target 5.464 4.464 5.429

IOL-GFMM + James-Stein 5.250 4.536 5.214

IOL-GFMM + Helmert 7.893 7.750 7.179

IOL-GFMM + Sum 5.607 5.750 7.821

EIOL-GFMM-v1 3.679 3.536 2.857

EIOL-GFMM-v2 3.607 5.464 2.857

Similarly to the above experiments, a statistical test procedure will be used to

analyze the statistical difference among the methods. The critical value of F (9, 117)

for 10 methods and 14 datasets at ε = 0.05 is 1.9608.

For θ(= δ) = 0.1, FF = 4.289 > 1.9608 is obtained, and so there are statis-

tically significant differences among methods. Using the Nemenyi post-hoc test, a

CD diagram is shown in Figure 5.8. It can be seen that the proposed method is

significantly better than the original IOL-GFMM algorithm using the one-hot or

Helmert encoding method. However, there are no statistical differences between

the proposed methods and the IOL-GFMM algorithm using the remaining encoding

techniques.

CD = 3.620

10 9 8 7 6 5 4 3 2 1

3.607 EIOL-GFMM-v2
3.679 EIOL-GFMM-v1
4.857 IOL-GFMM + LOO
5.107 IOL-GFMM + Label

5.25 IOL-GFMM + James-Stein5.357IOL-GFMM + CatBoost

5.464IOL-GFMM + Target

5.607IOL-GFMM + Sum

7.893IOL-GFMM + Helmert

8.179IOL-GFMM + One-hot

Figure 5.8 : Critical difference diagram for the proposed method and the original

algorithm using encoding methods (θ = 0.1).
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For θ(= δ) = 0.7, FF = 3.6596 > 1.9608 is obtained, and so there are also statis-

tically significant differences among methods in this case. Employing the Nemenyi

post-hoc test, it can be obtained a CD diagram in Figure 5.9. In this case, the EIOL-

GFMM-v1 is significantly better than the original IOL-GFMM algorithm using the

one-hot or Helmert encoding method as well, but it does not statistically outper-

form the original algorithm using the remaining encoding approaches. Moreover, in

this case, there is not sufficient evidence to conclude that the EIOL-GFMM-v2 is

statistically better than the original algorithm employing encoding methods.

CD = 3.620

10 9 8 7 6 5 4 3 2 1

3.536 EIOL-GFMM-v1
4.464 IOL-GFMM + Target
4.536 IOL-GFMM + James-Stein
4.786 IOL-GFMM + LOO
5.071 IOL-GFMM + CatBoost5.464EIOL-GFMM-v2

5.607IOL-GFMM + Label

5.75IOL-GFMM + Sum

7.75IOL-GFMM + Helmert

8.036IOL-GFMM + One-hot

Figure 5.9 : Critical difference diagram for the proposed method and the original

algorithm using encoding methods (θ = 0.7).
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7.179IOL-GFMM + Helmert
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Figure 5.10 : Critical difference diagram for the proposed method and the original

algorithm using encoding methods (θ = 1).

For the extreme case θ(= δ) = 1, FF = 6.2138 > 1.9608 is obtained, and so the

null hypothesis is also rejected. Figure 5.10 shows the CD diagram, in this case,

using the Nemenyi post-hoc test. It can be observed that there are no statistical

differences among the original algorithms using encoding methods. The proposed
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methods significantly outperform the original learning algorithm using the one-hot,

sum, or Helmert encoding method. However, there are no statistical differences

between the proposed methods and the original IOL-GFMM algorithm using the

remaining encoding approaches.

5.3.3 Evaluating the Role of the Hyper-Parameter Tuning on the Per-

formance of the EIOL-GFMM Algorithms

Hyper-Parameter Tuning and the Estimation of α

In the case that a large number of samples are given at the training time to

build an initial model, a hyperparameter tuning step can be performed for α but

this process is time-consuming. Meanwhile, the empirical results in subsection 5.3.1

indicate the relation between suitable values of α and the ratio of the number of

continuous features over the total number of features. This subsection proposes a

simple way to estimate the appropriate value of α in a data-driven manner. The

estimation method does not loop through predefined values of α as in the tuning

process, and so they will run faster than the hyper-parameter tuning step for α.

Each training fold Ti is split into three inner folds. To estimate the value of α for

each training fold Ti, the learning process will be repeated three times. Each time

two inner folds are used to build the GFMM model and the remaining inner fold

is used as a validation set. Each inner training fold Tij(j ∈ [1, 3]) is split into two

separate parts, in which each part contains either continuous attributes or categorical

attributes. Then, two separate GFMM models will be constructed using the EIOL-

GFMM algorithm from these two training parts. After that, the CBA value for

each trained model is computed using the inner validation fold Vij. Let CBAij1 and

CBAij2 be the CBA scores for the GFMM models trained on continuous features

only and categorical features only, respectively. There are two ways to estimate the

value of α for each training fold Ti. The first way uses both the CBA values and
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the number of features, denoted Est-α-v1 in this chapter, as follows:

α̂ =

3∑
j=1

CBAij1 · n

3∑
j=1

CBAij1 · n+
3∑
j=1

CBAij2 · r
(5.15)

The second estimation way of α uses only the obtained CBA values, called Est-α-v2,

as follows:

α̂ =

3∑
j=1

CBAij1

3∑
j=1

CBAij1 +
3∑
j=1

CBAij2

(5.16)

Two ways of estimating α are summarized in Figure C.1 in the Appendix C. The

obtained value of α is used to train a final model using the whole mixed-attribute

training fold Ti and evaluate its performance using the i-th testing fold. The above

process is repeated 40 times (10 times repeated stratified 4-fold cross-validation) to

compare the average CBA values among different methods.

This section will compare the effectiveness of two above estimation methods to

the fixed setting of α = n/(n + r) and the parameter tuning method for α. In the

parameter tuning method, each training fold Ti is split into three inner training folds.

Two inner training folds are used to build the GFMM model using the proposed

EIOL-GFMM algorithm and the remaining fold is used as a validation fold. This

process will be iterated three times to obtain three CBA values from three validation

folds for each value α ∈ {0, 0.1, . . . , 0.9, 1}. The value of α resulting in the highest

average CBA value over three inner validation folds is used to build the final GFMM

model on the whole training fold Ti, and the trained model is assessed by the CBA

value on the i-th testing fold. The whole process is repeated 40 times for different

training folds Ti.

The average CBA results of 40 GFMM models trained using the proposed al-

gorithms with two estimation methods of α, the parameter tuning method and the

fixed setting of α for 11 datasets are shown in Table C.5 in the Appendix C. It

is noted that the results are reported over 11 out of 14 experimental datasets be-

cause these datasets contain both continuous and categorical features while three
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remaining datasets consist of only categorical features. The average rank over 11

datasets for different methods of finding the value of α for the GFMM model trained

using the proposed algorithm is shown in Table 5.3. Similarly to subsection 5.3.1,

the methods of finding α is compared in two cases, i.e., small-sized hyperboxes

(θ = δ = 0.1) and large-sized hyperboxes (θ = δ = 1). The best rank in each row is

highlighted in bold. In the case of θ = δ = 1, the behavior of both EIOL-GFMM-v1

and EIOL-GFMM-v2 is the same, and so they lead to the same results.

Table 5.3 : Average rank for different methods used to find values for parameter α

Algorithm θ = δ Tuning α Est-α-v1 Est-α-v2 α = n/(n+ r)

EIOL-GFMM-v1 0.1 2.727 2 3 2.273

EIOL-GFMM-v2 0.1 2.545 2.318 2.727 2.409

Both 1 2.273 2.773 2.273 2.682

It can be observed that for small values of θ and δ, the estimation method using

the CBA values from two separate models along with the number of features usually

results in the best average CBA values in comparison to the second estimation

method, the parameter tuning approach, and the fixed setting of α for both learning

algorithms. However, the second estimation method without using the number of

features often leads to the worst results. Interestingly, in this case, the fixed value

of α = n/(n + r) shows slightly better results than the hyper-parameter tuning

method. In the case of generating the largest hyperbox sizes, the best predictive

results belong to the models using the hyper-parameter tuning method and the Est-

α-v2 method. Meanwhile, the first estimation method usually leads to the worst

classification performance.

To explain these facts, the distribution of the obtained values of α will be exam-

ined through 40 iterations and the change in the corresponding CBA values. Figure

5.11 shows the distribution of the obtained α values for different methods in the

case of largest-sized hyperboxes for the flag dataset. The results in the case of

θ = δ = 0.1 are presented in Figure 5.12. Similar results for all of the remaining

datasets can be found in Figures C.7, C.8 and C.9 in the Appendix C.
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Figure 5.11 : The distribution of the obtained α values for different methods used

to find α and the CBA values for the flag dataset (θ = 1, δ = 1).
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Figure 5.12 : The distribution of the obtained α values for different methods used

to find α and the CBA values for the flag dataset (θ = 0.1, δ = 0.1).

It can be seen that, in both cases, the use of the hyper-parameter tuning method

returns a wide range of values for α, in which the obtained median value of α

locates near the α value resulting in the best classification result. In the case of

small-sized hyperboxes, it can be seen that the deviation in the classification results

among adjacent values of α is high. Therefore, a wide range of α values usually

leads to a low average classification result compared to the use of a narrow range

of α values near the best results. As can be seen from Figure 5.12, the obtained α

values employing two estimation methods are distributed in a narrower area than

that using the hyper-parameter tuning approach. Also, the range of the obtained
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α values of the Est-α-v2 is wider than that using the Est-α-v1 method. However,

the range of the obtained α values using the Est-α-v1 is nearer the α value leading

to the best classification performance than one using the Est-α-v2. Hence, in this

case, the Est-α-v1 method usually gives the best classification results among the

four methods.

In the case of largest-sized hyperboxes, the difference in the performance among

different values of α is small. Therefore, the wide range of the obtained α values using

the hyper-parameter tuning method regularly leads to a better average classification

result compared to the outcomes employing other methods. As can be seen from

Figure C.7 in the Appendix C that two estimation methods return a narrower range

of the obtained α values in comparison to the use of the hyper-parameter tuning

approach. However, in this case, the obtained α values using the Est-α-v2 usually

locate nearer the α values leading to much better performance than those in the

case of using the Est-α-v1 method. Therefore, the performance of the GFMM model

using the Est-α-v2 outperforms that adopting the Est-α-v1 method.

In short, the second estimation method is appropriate for the model having a

small number of hyperboxes, while the first estimation method should be used in

the case when the resulting model has a large number of hyperboxes.

Comparing the EIOL-GFMM Algorithms to Other Algorithms with the

Mixed-Attribute Learning Ability

In this experiment, the classification performance of the proposed method and

two existing algorithms with the mixed-attribute learning ability will be compared

using the hyper-parameter tuning procedure (grid-search) for important parame-

ters in each learning algorithms. For the θ value in all learning algorithms, its

best parameter value will be sought in the range of {0.1, 0.2, . . . , 0.9, 1} for each

training fold. The η parameter for the Onln-GFMM-M1 algorithm is searched in

the range of {0.1, 0.3, 0.5, 0.9, 1}. The searching range of the β parameter for the

Onln-GFMM-M2 is {10%, 30%, 50%, 70%, 90%, 100%} of the total number of cate-

gorical features. For the two proposed algorithms in this chapter, the δ parameter
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is searched in the range of {0.1, 0.3, 0.5, 0.9, 1}, while the α value is sought in the

range of {0, 0.1, . . . , 0.9, 1}.

Each training fold Ti is split into three inner folds, in which two inner folds are

used for training a GFMM model using learning algorithms. Then, the remaining

fold is used to obtain the CBA value. This process is repeated three times for

every inner validation fold. The combination of parameters resulting in the best

average CBA values through three validation folds is used to train the final GFMM

model using the whole training fold Ti. After that, this model is evaluated using

the corresponding testing fold. This process is iterated 40 times (10 times repeated

stratified 4-fold cross-validation) for each dataset. The average CBA results for four

learning methods using the above hyper-parameter tuning approach are shown in

Table C.6 in the Appendix C. The average rank for each method over 11 mixed-

attribute datasets is shown in Table 5.4.

Table 5.4 : Average ranks for the learning algorithms using the hyper-parameter

tuning approach

Algorithm Average rank

Onln-GFMM-M1 3.182

Onln-GFMM-M2 2.909

EIOL-GFMM-v1 1.5

EIOL-GFMM-v2 2.409

It can be observed that the two proposed learning algorithms outperform two

existing learning algorithms with the mixed-attribute handling ability, in which the

best performance belongs to the EIOL-GFMM-v1 algorithm. For the experimen-

tal results in subsection 5.3.2, it can be seen that the Onln-GFMM-M1 algorithm

is better than the Onln-GFMM-M2 algorithm using the fixed-parameter settings.

However, by using the hyper-parameter tuning method, the Onln-GFMM-M2 al-

gorithm overcomes the Onln-GFMM-M1. This is because of the difference in the

distribution between the inner training set used to find the best combination of pa-

rameters and the training fold used to build the final model. The Onln-GFMM-M1

needs to use the entire training data to find the distance between categorical values
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based on the relationship between the occurrence frequency of categorical values

and classes. These distance values are deployed to build membership functions.

Therefore, when the training data change, the best combination of parameters on

the inner training folds no longer maintains the superior classification performance

when used on the training fold Ti. The proposed methods do not use the training

samples to build the similarity measure among categorical features, and so they still

achieve the best performance as in the case of using the fixed parameter settings.

Interestingly, the classification performance of learning algorithms using the

hyper-parameter tuning method in several datasets such as cmc, cmc, zoo, aus-

tralian, and japanese credit is worse than those using fixed parameter settings pre-

sented in subsection 5.3.2. This is because the representativeness and distribution

of the inner validation sets used to find the best combination of parameters are dif-

ferent from the training and testing folds. Therefore, the best parameters obtained

from the inner validation folds may not lead to the best classification accuracy on

the testing set. As a result, the hyper-parameter tuning method does not always

result in better performance than the use of fixed parameters.

To verify the statistical difference in the performance among the learning al-

gorithms, the above Friedman rank-sum test will be used. For 11 datasets and 4

learning algorithms, FF is distributed according to the F-distribution with 4−1 = 3

and (4 − 1) · (11 − 1) = 30 degrees of freedom. The critical value of F (3, 30) at a

significant level ε = 0.05 is 2.9223. In this case, FF = 4.884 > 2.9223 is obtained.

Therefore, there are statistically significant differences among the four considering

algorithms. Using the Nemenyi post-hoc test, a CD diagram is achieved as in Figure

5.13.

It can be seen that there is a statistically significant difference in the classification

performance between the EIOL-GFMM-v1 and the Onln-GFMM-M1 algorithms in

this case. For CD = 1.414, it can also be concluded that the EIOL-GFMM-v1

algorithm significantly better than the Onln-GFMM-M2 algorithm. However, the

EIOL-GFMM-v2 does not statistically outperform both existing learning algorithms

with the mixed-attribute learning ability.
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CD = 1.414

4 3 2 1

1.5 EIOL-GFMM-v1
2.409 EIOL-GFMM-v22.909Onln-GFMM-M2

3.182Onln-GFMM-M1

Figure 5.13 : A CD diagram of four learning algorithms using the hyper-parameter

tuning method.

5.3.4 Discussion on Existing Issues of the Proposed Method

Although extensive experimental results confirmed very good performance of the

proposed method in comparison to other learning algorithms, there are a number of

outstanding issues that would need to be addressed in further studies. The first issue

is related to the acceleration of the proposed method for data with mixed features

by reducing the number of hyperbox candidates in the expansion process, i.e., the

value of K, also K, in the time complexity analysis. The mathematical lemmas pro-

posed in (Khuat and Gabrys 2021a) to reduce the number of expandable hyperboxes

only work on continuous features. Therefore, future studies need to expand these

lemmas for categorical features. The second issue is related to the membership func-

tion. Similarly to the membership function presented in Eq. (3.1) for the original

learning algorithm, the part handling continuous features in Eq. (5.1) only works

appropriately when the continuous features are normalized to the range of [0, 1].

As a result, the membership function can be improved so that it can robustly work

with any ranges of continuous features’ values without need for normalization. For

an online learning operation in the dynamically changing environments, the range of

feature values can be different from ones in the training data, and so denormalization

and normalisation of continuous features as presented in Salvador et al. (2016) are

inconvenient and sensitive to outliers. In addition, the current membership function

in Eq. (5.1) has to handle continuous and categorical attributes separately and use

the α parameter to control the importance of each type of features. Therefore, a

unique membership function with the ability to handle both continuous and cate-
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gorical features in a natural way is highly desirable. The third issue is related to

the process of handling missing values for the categorical features. If the j-th con-

tinuous feature of the input pattern X contains a missing value, xuj = 0 and xlj = 1

will be set so that the membership value on that continuous feature gets a value of

one and does not affect the final membership value of all continuous features when

using the minimum operation. This is a very powerful characteristic of the original

GFMM learning algorithms working on continuous features only which allows it to

process data with missing values without any changes to the learning algorithms

(Gabrys 2002c). However, for categorical features with missing values, the missing

values need to be considered as an Unknown categorical value and handle them

as other categorical values. As the exact impact of missing categorical values on

the performance of the proposed method is not clear, a separate study needs to be

conducted to assess it. All of the above discussed issues are outside of the scope of

the current study in this chapter and form a part of future work directions towards

making the GFMMNN robust and continuously learning while operating in changing

environments.

5.4 Summary

This chapter partly tackled the thesis Objective 2 proposed in Section 1.2, which

presented a new online learning algorithm for the GFMMNN with mixed-attribute

data. The proposed method expanded the current membership function for both

continuous and categorical features. Current architecture of the GFMMNN for

mixed-attribute data was also extended, and a new way of learning for categorical

dimensions based on the change in the entropy when accommodating new categorical

values without using any encoding methods was introduced as well. The experimen-

tal results confirmed the superior classification performance of the proposed method

in comparison to the current solutions to handle the mixed-type datasets for the

GFMMNN.
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Chapter 6

Accelerated Learning Algorithms for General

Fuzzy Min-Max Neural Network

This chapter presents the methods of accelerating the learning algorithms for the

GFMMNN. The first method reformulates and represents learning algorithms in a

format allowing for their parallel execution and subsequently leveraging the com-

putational power of the GPUs. The original implementation of the GFMMNN is

modified by matrix computations to be executed on the GPUs for the very high-

dimensional datasets. The second technique aims to reduce the unsuitable hyper-

boxes selected as the potential candidates of the expansion step of existing hyper-

boxes to cover a new input pattern in the online learning algorithms or candidates

of the hyperbox aggregation process in the agglomerative learning algorithms. This

second method is based on the mathematical formulas to form a novel solution

aiming to remove the hyperboxes which are certain not to satisfy expansion or ag-

gregation conditions. The key content of this chapter is taken from the two following

papers (Khuat and Gabrys 2019, 2021a):

• Thanh Tung Khuat, and Bogdan Gabrys, “Accelerated training algorithms

of general fuzzy min-max neural network using gpu for very high dimensional

data,” in Proceedings of the 26th International Conference on Neural Infor-

mation Processing (ICONIP), pp. 583-595, 2019.

• Thanh Tung Khuat, and Bogdan Gabrys, “Accelerated learning algorithms

of general fuzzy min-max neural network using a novel hyperbox selection

rule,” Information Sciences, vol. 547, pp. 887-909, 2021.
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6.1 A Solution based on Matrix Operations and Advanced

Engineering

6.1.1 Overview

In practical applications, pattern classification of high-dimensional data is a chal-

lenging issue. A dataset with N patterns and n features is taken into account as

very high dimensional if n � N , and the value of n is relatively large. The high-

dimensional data appear in many real-world applications, especially in genomes data

(Tariq et al. 2018) or data sampled from sensor networks as shown in Cuturi (2011);

Vergara et al. (2013). In monitoring systems, a network of different sensors is used

to supervise the operating statuses. Data of sensor arrays in complex environmental

conditions sampled through different time-series exhibit very high dimensionality,

even to millions of attributes as in Vergara et al. (2013). The similar phenomena

also happen in the gene expression data, where the numbers of samples for both

training and testing sets are regularly less than 100, while the number of attributes

ranges from 6000 to 60,000 (Tariq et al. 2018). High dimensionality imposes high

computational cost for the training process. It is needless to say that the long train-

ing time is one of the problems hindering machine learning algorithms from applying

to real-world applications. Therefore, a method is proposed to reduce the training

time for the GFMMNN by taking advantage of the computational capability of the

GPUs and intrinsic parallelization characteristics of GFMMNN.

For leveraging the power of GPUs, one has to provide the data in batches so

that it is able to perform many operations in parallel at the same time. Therefore,

the matrix operations are built for basic calculation steps in the learning algorithms

of the GFMMNN, such as the computation of membership functions, hyperbox

expansion conditions, hyperbox overlap checking between two hyperboxes or many

pairs of hyperboxes. Coates et al. (2013) showed how to build a system to train the

deep neural network with 64 Nvidia GPUs on 16 computers executing the learning

process more than 6.5 times faster than the system with 1,000 computers using

16,000 CPUs. These results illustrated the power and potential of deploying the
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training phases on GPUs to significantly lower the training time on large-sized or

very high dimensional datasets. Motivated by this study as well as to take advantage

of the intrinsic parallelizable features of the GFMMNN, a new method of accelerating

the training phase of the GFMMNN is proposed by using Pytorch (Pytorch 2021)

and GPUs for very high dimensional data.

The main contributions in this part can be summarized as follows:

• Proposing and representing the learning algorithms of the GFMMNN with

their various components in a format allowing for parallel execution

• Using matrix computations executed expertly on the GPUs to accelerate the

training and testing processes of the GFMMNN

• Implementing training algorithms of the GFMMNN on the GPUs using Py-

torch framework

• Comparing the training and testing time of the GFMMNN implemented by the

NumPy library and Pytorch on two very high-dimensional practical datasets.

6.1.2 Implementation of Learning Algorithms by Matrix Operations

This study reformulates and represents the learning algorithms of GFMMNN

using matrix formats. This representation makes the algorithms execute in parallel

effectively. Hence, the GPUs can be deployed to accelerate GFMM algorithms.

Two matrices V = {V1, . . . , VN} and W = {W1, . . . ,WN} are employed to contain

sets of coordinates of lower and upper bounds of N hyperboxes as well as a vector

L = {c1, . . . , cN} of hyperbox classes during the training process. Each element

Vi of the matrix is an n-dimensional vector {vi1, . . . , vin} maintaining the values of

the minimum point of the i-th hyperbox. The similar setting is formulated for the

maximum point of each hyperbox. These matrices and vector are stored on the

GPUs and initialized by command .cuda() of Pytorch. The operations of learning

algorithms are performed on these operands.
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Membership Computation

In the incremental learning algorithm, to find the potential expandable hyperbox,

the membership values between the input pattern X = [X l, Xu] with all hyperboxes

belonging to the same class label or being unlabelled have to be computed, which

are stored in the matrices V ′ ⊆ V and W ′ ⊆ W . Assume that N1 is the number of

hyperboxes represented by V ′ (or W ′), vectors X l and Xu corresponding to lower

and upper bounds of the input sample are replicated N1 times to form matrices Xl

and Xu. The vector of sensitivity parameters γ is also copied N1 times to formulate

a matrix G. The Eq. (3.1) is changed to compute the membership degree between

the input pattern X = [X l, Xu] and all hyperboxes representing the same class as

follows:

B(X l, Xu,V ′,W ′) = min(min([1− f(Xu −W ′,G)], [1− f(V ′ −Xl,G)])) (6.1)

The operation min(Y, Z) generates the resulting matrix whose each element is taken

from the minimum value of two corresponding elements within two matrices Y and

Z. The procedure min(Y ) is used to find the minimum value within each row of the

matrix Z. The details of the membership computation steps are shown in Algorithm

6.1:

Algorithm 6.1 Membership computation on GPUs:

Membership Computation(X l, Xu,V ′,W ′, γ)
Input:

• Xl, Xu: Minimum and maximum points of an input pattern X

• V ′,W ′: Matrices storing minimum and maximum points of all hyperboxes representing the same class

label as X or being unlabelled

• γ: The speed of decreasing of the membership function

Output:

A list B containing membership values between X and all hyperboxes represented by two matrices V ′,W ′

1: N1 ← size(V ′, 0) {Compute the number of hyperboxes within V ′}

2: Replicate γ, Xl, and Xu N1 times for each vector to build three matrices G, Xl, and Xu

3: F1 ← 1 - F Ramp(Xu −W ′,G); F2 ← 1 - F Ramp(V ′ −Xl,G);

4: F ← minelement-wise (F1, F2)

5: B ← minrow-wise (F )

6: return B
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Algorithm 6.2 Computing Ramp function: F Ramp(Y, G):

1: Z ← Y �G {�: Hadamard product}

2: F ← [(Z > 0)� (Z < 1)]� Z + (Z > 1)

3: return F

Computation of the Similarity among Hyperboxes in the Agglomerative

Learning

In the agglomerative learning algorithm, to find the candidate pair of hyperboxes

for aggregation, it is required to compute the similarity values among all pairs of

hyperboxes representing the same class label in the AGGLO-SM or between cur-

rently considered hyperbox and the other hyperboxes representing same class in the

AGGLO-2 algorithm. Therefore, Eq. (3.8) can be modified as in Eq. (6.2) to com-

pute the similarity values between the currently considered hyperbox Bi and the

other hyperboxes belonging to the same class label shown by matrices V ′ and W ′.

Let V ′i be the matrix formed by replicating vector Vi of hyperbox Bi N1 times,

assuming that N1 is the number of hyperboxes represented by V ′. Similar method is

performed for Wi to generateW ′
i . From Eqs. (6.1) and (6.2), it can be observed that

the function Membership Computation can be reused to compute the similarity

measure by replacing the parameters X l and Xu with Wi and Vi respectively.

s(Vi,Wi,V ′,W ′) = min(min([1− f(V ′i −W ′,G)], [1− f(V ′ −W ′

i ,G)])) (6.2)

After building the similarity matrix, it is necessary to form a new matrix with

three elements in each row, where first two elements are indices of hyperboxes and

the last element is the similarity value of those two hyperboxes. It is noted that

this matrix only includes pairs of hyperboxes with the similarity values larger than

or equal to the predetermined threshold. This matrix is then sorted in descending

order according to the values of the last column. All operations are executed on the

GPUs. The sorted matrix is used for further hyperbox aggregation processes.
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Expansion Constraint Checking

Before expanding the selected hyperbox Bi to cover the new input pattern in the

incremental learning algorithm, the condition given by Eq. (3.4) is verified for all

dimensions. This operation takes much time to complete in the case that the num-

ber of dimensions is very high. The similar phenomenon also occurs when checking

the maximum hyperbox size of the aggregated hyperbox in the agglomerative learn-

ing algorithms. Fortunately, when the data are stored on the GPUs, and Pytorch

provides us with the functions torch.max(), torch.min(), and .all() to execute these

operations rapidly on the GPUs.

Overlap Testing between Two Hyperboxes

In the incremental learning algorithm, it is desirable to test overlap in turn

between the expanded hyperbox Bi and hyperboxes Bk belonging to other class

labels. Four overlap test cases mentioned in subsection 3.2.2 are performed for

n-dimensional vectors Vi, Wi, Vk, and Wk. This study is conducted on the very

high dimensional datasets, so this operation takes much time during the training

process. Therefore, the operations among vectors are built using logical operators to

combine four cases aiming to detect whether there is an overlapping region between

two hyperboxes, and this task is executed on the GPUs.

If the overlap occurs, the second step would determine which dimension needs

to be adjusted with the minimum influence and which case detected the overlap.

The second step should be run on the CPU because its operations are performed in

sequential for each element in vectors. All operations are detailed in the function

Overlap Test in Algorithm 6.3. The function returns the special data structure

containing the test case detecting overlap and the index of the dimension needing

to be adjusted to resolve the overlap.

Overlap Testing between a Hyperbox and a Set of Other Hyperboxes

In the agglomerative learning algorithm, two hyperboxes are merged when the

resulting hyperbox after aggregation does not overlap with hyperboxes belonging
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Algorithm 6.3 Overlap test procedure between two Hyperboxes:

Overlap Test(Vi,Wi, Vk,Wk)
Input:

• Vi,Wi: Minimum and maximum points of the hyperbox Bi

• Vk,Wk: Minimum and maximum points of the hyperbox Bk

Output:

A tuple dim stores the index of overlap test cases and the corresponding dimension that overlap happens

Step 1 : Detecting the occurrence of overlapping regions (executed on GPUs)

1: WiWk ← (Wi −Wk) > 0; ViVk ← (Vi − Vk) > 0;

2: WkVi ← (Wk − Vi) > 0; WiVk ← (Wi − Vk) > 0;

3: c1 ← !WiWk & !ViVk & WiVk; c2 ←WiWk & ViVk & WkVi;

4: c3 ←WiWk & !ViVk; c4 ← !WiWk & ViVk;

5: c← c1 | c2 | c3 | c4
Step 2 : Finding the dimension with minimum influence when doing contraction (run on CPUs)

6: dim← ∅

7: if cj = true, ∀cj ∈ c then

8: q ← 1

9: n← |Vi| {The number of dimentions of vector Vi}

10: for t = 1→ n do

11: if c1[t] = true and q > Wi[t]− Vk[t] then

12: q ←Wi[t]− Vk[t]; dim← [1, t]

13: else if c2[t] = true and q > Wk[t]− Vi[t] then

14: q ←Wk[t]− Vi[t]; dim← [2, t]

15: else if c3[t] = true then

16: if q > Wk[t]− Vi[t] and Wk[t]− Vi[t] < Wi[t]− Vk[t] then

17: q ←Wk[t]− Vi[t]; dim← [31, t]

18: else if q > Wi[t]− Vk[t] then

19: q ←Wi[t]− Vk[t]; dim← [32, t]

20: end if

21: else if c4[t] = true then

22: if q > Wk[t]− Vi[t] and Wk[t]− Vi[t] < Wi[t]− Vk[t] then

23: q ←Wk[t]− Vi[t]; dim← [41, t]

24: else if q > Wi[t]− Vk[t] then

25: q ←Wi[t]− Vk[t]; dim← [42, t]

26: end if

27: end if

28: end for

29: end if

30: return dim

to other classes. Therefore, it is necessary to verify the occurrence of overlapping

regions between the newly aggregated hyperbox Bi and any hyperbox in the set of

hyperboxes with other labels represented by two matrices V ′ and W ′. No hyperbox
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contraction step is performed in this case, so it is only needed to detect overlapping

regions by using GPU computations. Similar to the overlap detection step between

two hyperboxes, logical operators And (&), Or (|), and Not (!) are deployed on

each element of the matrices for the overlap verification process considering four

test cases simultaneously. The function Overlap Test One Many describes the

computational steps shown in Algorithm 6.4.

Algorithm 6.4 Overlap test between a hyperbox and a group of hyperboxes exe-

cuted on GPUs: Overlap Test One Many(Vi,Wi,V ′,W ′)
Input:

• Vi,Wi: Minimum and maximum points of the hyperbox Bi

• V ′,W ′: Matrices storing minimum and maximum points of all hyperboxes representing the classes

different from the class label of Bi

Output:

A boolean variable isOver shows the overlap occurred (true) or not (false)

1: N1 ← the number of hyperboxes represented by V ′ (also W ′)

2: V ′
i ← Replicate vector Vi N1 times; W ′

i ← Replicate vector Wi N1 times

3: WiWk ← (W ′
i −W ′) > 0; ViVk ← (V ′

i − V ′) > 0

4: WkVi ← (W ′ − V ′
i ) > 0; WiVk ← (W ′

i − V ′) > 0

5: c1 ← !WiWk & !ViVk & WiVk; c2 ←WiWk & ViVk & WkVi;

6: c3 ←WiWk & !ViVk; c4 ← !WiWk & ViVk;

7: C ← c1 | c2 | c3 | c4
8: if ∃r ∈ C : rj = true, ∀rj ∈ r, then isOver ← true; otherwise, isOver ← false

9: return isOver

6.1.3 Experiments for the First Solution

Experiments were conducted on a computer with one Intel Xeon Gold 6150

2.7GHz processor, running on the Linux operating system and containing one NVIDIA

Quadro P5000 GPU. Each GPU has 16GB of memory and can perform about 8.9

TFLOPS with single-precision of well-optimized code.

Table 6.1 : Summary of high dimensional datasets for experiments in Chapter 6

Dataset #samples #features #training #testing #classes

PEMS Database 440 138,672 352 88 7

Complex Hydraulic System 2,205 43,680 1764 441 2

The experiments were conducted on two very high dimensional datasets. The
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first dataset is PEMS database taken from (Cuturi 2011). The data values ranging

from 0 to 1 show the occupancy rate of various car lanes of San Francisco bay region

freeways. Each day in this database is a single time series of 963 sensors sampled

every 10 minutes during the day. Therefore, there are total 963 x 6 x 24 = 138,672

features for each record. These data are used to classify each observed day as the

correct day of the week. As a result, there are seven labels with integer numbers

ranging from one to seven.

The second dataset is obtained from (Helwig et al. 2015), which is measurement

data from sensors installed in the hydraulic system. These sensors measure different

physical quantities such as pressure, motor power, volume flow, temperature, vibra-

tion, efficiency factor, cooling efficiency, and cooling power. Combination of data of

all sensors forms a dataset consisting of 2205 patterns with 43,680 features per each

sample. This dataset contains many different operational statuses of the complex

hydraulic system, but only two basic statuses are considered, which are class 1 if

the conditions are stable (1449 samples) and class 2 if the static conditions might

not yet be reached (756 patterns).

Table 6.2 : Training time in seconds of the PEMS Database dataset

Algorithm Mode θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6

Incremental
CPU 32.895 34.891 33.210 33.159 35.095 34.868

GPU 3.757 3.747 3.744 3.756 3.759 3.753

AGGLO-2
CPU 189.957 191.026 193.133 190.579 191.864 190.441

GPU 10.203 10.194 10.199 10.213 10.193 10.179

AGGLO-SM
CPU 204.438 202.868 206.134 205.515 203.240 206.418

GPU 10.658 10.659 10.655 10.661 10.686 10.657

For each dataset, 80% of the data were used for the training process, and the

others were deployed to test the constructed GFMMNN. The information of datasets

is summarized in Table 6.1. The GFMMNN was trained using different learning

algorithms implemented by NumPy library and Pytorch framework on these two

training datasets and recorded the training time concerning different values of the

maximum hyperbox size θ. Table 6.2 reports the training time in seconds of the
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algorithms on the PEMS Database dataset. Table 6.3 shows the training time on

the Complex Hydraulic System dataset.

Table 6.3 : Training time in seconds of the Complex Hydraulic System dataset

Algorithm Mode θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6

Incremental
CPU 1,386.456 1,382.728 1,387.856 1,380.778 1,229.650 1,069.713

GPU 144.264 145.787 147.296 148.389 157.143 154.372

AGGLO-2
CPU 2,659.041 2,698.802 2,654.382 4,855.536 4,695.572 6,908.221

GPU 81.639 81.636 81.633 161.222 161.521 242.325

AGGLO-SM
CPU 2,056.106 2,034.172 1,887.212 16,875.429 91,634.154 170,623.012

GPU 64.898 64.935 64.905 555.486 2,983.057 5,674.349

It can be seen that the GPUs contribute to reducing the training time of both

datasets on all algorithms from 10 to 35 times compared to the CPU-based serial

computations. When the value of θ increases, the number of hyperboxes reduces,

but the overlapping regions appear more often because the expansion or aggregation

condition concerning θ is easily met. The number of samples in datasets is quite

small, so the number of generated hyperboxes is relatively few. Meanwhile, the

number of dimensions is very high, and the overlap test procedure is regularly con-

ducted when the hyperbox expansion or merging process occurs frequently. Hence,

the computations for the overlap test on very large dimensional vectors or matrices

give rise to the increase of the training time. That is the reason why the training

time grows when the maximum hyperbox size increases.

Table 6.4 : Testing time in seconds of the Complex Hydraulic System dataset

Algorithm Mode θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6

Incremental
CPU 956.687 934.076 942.507 935.316 822.990 679.668

GPU 28.151 28.141 28.150 28.022 26.215 21.841

AGGLO-2
CPU 939.199 955.927 935.033 870.593 790.102 773.167

GPU 28.136 28.133 28.133 28.004 26.247 25.266

AGGLO-SM
CPU 957.944 937.624 887.749 841.823 774.469 747.979

GPU 28.101 28.105 28.101 27.958 26.215 25.389

Table 6.4 shows the testing time using the model trained on the Complex Hy-

draulic System dataset through different maximum hyperbox sizes. The most time-
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consuming computations in the testing process consist of the membership compu-

tation and finding the maximum membership values. The obtained results indi-

cated that the testing time using GPUs is much faster than that employing CPU.

These results confirmed that the proposed method is very effective for operations of

GFMMNN on high-dimensional datasets.

The use of GPUs is only suitable for computations of the matrix with enormous

size. In the incremental learning algorithm, hyperboxes are built and adjusted grad-

ually based on the input pattern, so the number of hyperboxes is not high. As a

result, if the dimensionality of hyperboxes is from tens to hundreds of dimensions,

then the usage of GPU computing is regularly ineffective compared to CPU because

of interchanging between CPU with the GPU tensor operations and loop instruc-

tions being executed on the CPU. These operations cause a lot of overhead and slow

down the computations.

6.2 A Solution based on New Hyperbox Selection Rules

6.2.1 Overview

All of the current learning algorithms for the GFMMNN have the same draw-

back in the selection of expandable or mergeable hyperbox candidates. The creation

of a new hyperbox in the online learning algorithms only occurs when all existing

hyperboxes with the same class as the input patterns cannot satisfy the expansion

condition to cover the new input pattern. The expansion condition is the maximum

hyperbox size and the non-overlap of hyperboxes representing different classes if us-

ing the IOL-GFMM. Similarly, in the agglomerative learning algorithm, the process

of hyperbox merging only terminates if all pairs of hyperbox candidates are exam-

ined with regard to the aggregation criteria but the aggregation process cannot be

performed. The aggregation conditions include maximum hyperbox size, minimum

similarity value, and the non-overlap of hyperboxes with different classes. The con-

sideration of expansion or merging conditions for all hyperbox candidates leads to

a waste of time. Therefore, this study provides a lower bound on the membership

functions and similarity measures to reduce the considered hyperbox candidates
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for the expansion or merging process. This method contributes to decreasing the

training time of the learning algorithms.

The contributions in this part can be summarized as follows:

• The lemmas to reduce significantly the considered hyperboxes for both online

and batch learning algorithms for the GFMMNN are proposed and proved.

• The effectiveness of the proposed method is assessed on widely used datasets.

Experimental results confirmed the strong points of the method in decreasing

the training time of the algorithms.

6.2.2 Accelerated Online Learning Algorithms

It is observed that in online learning algorithms of the GFMMNN, a new hy-

perbox is only created to cover the input pattern if all hyperbox candidates cannot

satisfy the conditions to be expanded for accommodating the new input pattern.

However, in the current versions of the online learning algorithms, there is no way

to reduce the considered hyperbox candidates. This study, therefore, provides a

lemma to narrow down the expandable hyperboxes during the training process.

This solution is given in Lemma 6.1.

Lemma 6.1. When finding the candidates of expandable hyperboxes to cover an

input pattern X ∈ [0, 1]n, only hyperboxes (h) with the same class as X and having

a membership degree (bh(X)) to the new input pattern satisfying: bh(X) ≥ 1−θ·γmax
are considered, where γmax =

n
max
j=1

(γj); γj > 0, and θ is the maximum hyperbox size.

If the input pattern X is in the form of a hyperbox, its size must be below θ in all n

dimensions.

The proof of Lemma 6.1 can be found in the Appendix D.1. This lemma shows

the relationship between the membership function and the maximum hyperbox size

parameter if the sensitivity parameter γ is kept fixed. By using this lemma, the

number of hyperbox candidates considered for the expansion step based on their

membership values can be reduced. The Algorithm 3.1 is modified into Algorithm
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6.5 to accelerate the original online learning algorithm of GFMM model. The only

change in this algorithm is that the proposed lemma is used to limit the number

of hyperboxes considered for each input pattern (as highlighted in red color). The

other steps are the same as in the original version.

Similarly, the steps of the IOL-GFMM shown in Algorithm 4.1 can also be

changed to Algorithm 6.6 to accelerate the IOL-GFMM procedure. With the Lemma

6.1, the extendable hyperbox candidates to cover the new input pattern may be re-

duced by conducting the steps highlighted in red color. The remaining operations

are the same as the original version of the IOL-GFMM algorithm.

As will be illustrated in the experimental section, these changes to the algorithms

and the use of the proved Lemma 6.1 resulted in from 2 to 3.5 times reduction of

learning time on average.

Time complexity of the accelerated online learning algorithms. It is eas-

ily observed that the accelerated online learning algorithms are different from the

original version in the reduction of the hyperbox candidates considered during the

training process. Therefore, the time complexity of these algorithms are similar to

the original versions, i.e., O(N · K1 · R · n), where K1 is the average number of ex-

pandable hyperbox candidates considered during the training process, the meaning

of other parameters is the same as in the original versions. The accelerated learning

algorithms run faster than the original versions because of K1 < K.

6.2.3 Accelerated Agglomerative Learning Algorithms

In the original agglomerative learning algorithms, the hyperbox aggregation pro-

cess considers all pairs of hyperboxes for which their similarity values are larger

than or equal to a given minimum similarity threshold. If this threshold is set too

small, then there might be many candidates considered, and so the training process

can be long. However, when the minimum similarity condition is met and two hy-

perboxes could be merged, the newly aggregated hyperbox has to still be checked

for the maximum hyperbox size constraint. This chapter will show the dependency
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Algorithm 6.5 The accelerated original online learning algorithm
Input:

• θ: The maximum hyperbox size threshold

• γ: The speed of decreasing of the membership function

Output:

A list H of hyperboxes with minimum-maximum values and classes

1: Initialize an empty list of hyperboxes: min-max values V =W = ∅, hyperbox classes: L = ∅

2: for each input pattern X = [Xl, Xu, cX ] do

3: n← The number of dimensions of X

4: if V = ∅ then

5: V ← Xl; W ← Xu; L ← cX

6: else

7: H1 = [V1,W1,L1]← Find hyperboxes in H = [V,W,L] representing the same class as cX

8: M← ComputeMembershipValue(X,V1,W1,L1)

9: Hs ← {h : h ∈ H1,M(h) ≥ 1− θ · γmax}

10: Hd ← SortByDescending(Hs,M(Hs))

11: Set H1 ← H \H1

12: flag ← false

13: for each h = [Vh,Wh, ch] ∈ Hd do

14: if M(h) = 1 then

15: flag = true

16: break

17: end if

18: if max(whj , x
u
j )−min(vhj , x

l
j) ≤ θ, ∀j ∈ [1, n] then

19: W t
h ← max(Wh, X

u); V th ← min(Vh, X
l)

20: for each hyperbox [Vi,Wi, ci] ∈ H1 do

21: isOver ← OverlapTest(V th ,W
t
h, Vi,Wi)

22: if isOver = true then

23: DoContraction(V th ,W
t
h, Vi,Wi)

24: end if

25: end for

26: flag = true

27: break

28: end if

29: end for

30: if flag = false then

31: V ← V ∪Xl; W ←W ∪Xu; L ← L ∪ cX
32: end if

33: end if

34: end for

35: return H = [V,W,L]

of the similarity value with the maximum hyperbox size parameter. Based on this

identified relationship, it can be safe to remove immediately the pairs of hyperboxes
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Algorithm 6.6 The accelerated IOL-GFMM algorithm
Input:

• θ: The maximum hyperbox size

• γ: The speed of decreasing of the membership function

Output:

A list H of hyperbox fuzzy sets containing minimum-maximum values and classes

1: Initialize an empty list of hyperboxes: min-max values V =W = ∅, hyperbox classes: L = ∅

2: for each input pattern X = [Xl, Xu, cX ] do

3: n← The number of dimensions of X

4: if V = ∅ then

5: V ← Xl; W ← Xu; L ← cX

6: else

7: H1 = [V1,W1,L1] ← Find hyperboxes in H = [V,W,L] representing the same class as cX or being

unlabeled

8: M← ComputeMembershipValue(X,V1,W1,L1)

9: Hs ← {h : h ∈ H1,M(h) ≥ 1− θ · γmax}

10: Hd ← SortByDescending(Hs,M(Hs))

11: Set H1 ← H \H1

12: flag ← false

13: for each h = [Vh,Wh, ch] ∈ Hd do

14: if M(h) = 1 then

15: flag = true

16: break

17: end if

18: if max(whj , x
u
j )−min(vhj , x

l
j) ≤ θ, ∀j ∈ [1, n] then

19: W t
h ← max(Wh, X

u); V th ← min(Vh, X
l)

20: isOver ← IsOverlap(W t
h, V

t
h ,H1)

21: if isOver = false then

22: Vh ← V th ; Wh ←W t
h

23: ch ← cX if ch is unlabeled and cX is labeled

24: flag ← true

25: Increase the number of samples contained in h

26: break

27: end if

28: end if

29: end for

30: if flag = false then

31: V ← V ∪Xl; W ←W ∪Xu; L ← L ∪ cX
32: end if

33: end if

34: end for

35: return H = [V,W,L]
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for which the hyperbox aggregated from these candidates cannot, with absolute cer-

tainty, satisfy the maximum hyperbox size condition. The details of the proposed

method are described in Lemma 6.2.

Lemma 6.2. Regardless of the similarity measure used, the hyperbox aggregation

process only considers pairs of hyperbox candidates that their similarity values satisfy

the following condition: s(Bi, Bk) ≥ max(σ, 1−θ·γmax), where γmax =
n

max
j=1

(γj); γj >

0, σ is the minimum similarity threshold, n is the number of dimensions, and θ is

the maximum hyperbox size parameter. It is noted that the size of all hyperbox

candidates must be below θ.

The proof of Lemma 6.2 can be found in the Appendix D.2. By using Lemma

6.2, the steps of the AGGLO-SM algorithm in Algorithm 3.2 can be changed to

Algorithm 6.7 (the difference between two algorithms is highlighted in red color),

and modify the AGGLO-2 algorithm as shown in Algorithm 6.8 (the red color part

shows the difference between two algorithms). The only change in these accelerated

algorithms compared to their original versions is the limitation of pairs of candidates

considered during the learning process by a stricter lower bound. The remaining

operations are kept unchanged as described in the original algorithms.

As will be shown in the experimental section, these changes to the agglomerative

learning algorithms and the usage of the proposed Lemma 6.2 led to the acceleration

of seven times in the training time of the AGGLO-SM algorithm, while the training

time of the AGGLO-2 algorithm is reduced from 25 to 37 times on average depending

on the similarity measure and dataset deployed.

Time complexity of the accelerated agglomerative learning algorithms.

It can be seen that the accelerated version of the AGGLO-SM algorithm is only

reduced by the number of pairs of hyperbox candidates considered in the aggregation

process. Therefore, the complexity of the accelerated AGGLO-SM algorithm is

O(N2 · (Z1 · Y · n + Y2
)), where Z1 is the average number of pairs of hyperbox

candidates, the meaning of the other notations is the same as in the description of the

original AGGLO-SM algorithm shown in subsection 3.2.3. Similarly, the complexity
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Algorithm 6.7 The accelerated AGGLO-SM algorithm
Input:

• X = [Xl,Xu]: A list of training features

• C: A vector of pattern classes

• θ: The maximum hyperbox size threshold

• γ: The speed of decreasing of the membership function

Output:

A list H of hyperboxes with minimum-maximum values and classes

1: Initialize a list of hyperboxes: min-max values V = Xl,W = Xu, hyperbox classes: L = C

2: loop← true; n← the number of features of X

3: S ← ComputeSimilarityValPairWithinEachClass(V,W,L)

4: while loop = true do

5: loop← false

6: S ← S \ {s ∈ S|s < max(σ, 1− θ · γmax)}

7: I,K, S ← SortByDescending(S,V,W,L)

8: for each [i, k, s] ∈ [I,K, S] do

9: if max(wij , wkj)−min(vij , vkj) ≤ θ, ∀j ∈ [1, n] then

10: Wt ← max(Wi,Wk); Vt ← min(Vi, Vk)

11: H1 ← A list of hyperboxes with classes different from ci ∈ L

12: isOver ← IsOverlap(Vt,Wt,H1)

13: if isOver = false then

14: loop← true

15: Vi ← Vt; Wi ←Wt

16: V ← V \ Vk; W ←W \Wk; L ← L \ Lk
17: S ← UpdateSimilarityMatrix(V ,W,L)

18: break

19: end if

20: end if

21: end for

22: end while

23: return H = [V,W,L]

of the accelerated AGGLO-2 algorithm is O(N · Z1 · R · n) in the worst-case, where

Z1 is also the average number of pairs of hyperbox candidates considered during the

training process of the accelerated AGGLO-2 algorithm. The other parameters have

the same meaning as shown in subsection 3.2.4 for the original AGGLO-2 algorithm.

The accelerated agglomerative algorithms run faster than the original versions due

to Z1 < Z.

For the time complexity of the AGGLO-2 algorithm, Z, N, n, and R are equally
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Algorithm 6.8 The accelerated AGGLO-2 algorithm
Input:

• X = [Xl,Xu]: A list of training features

• C: A vector of pattern classes

• θ: The maximum hyperbox size threshold

• γ: The speed of decreasing of the membership function

Output:

A list H of hyperboxes with minimum-maximum values and classes

1: Initialize a list of hyperboxes: min-max values V = Xl,W = Xu, hyperbox classes: L = C

2: loop← true; n← the number of features of X

3: while loop = true do

4: loop← false; i← 1

5: while i ≤ |L| do

6: H1 = [V1,W1,L1]← Find hyperboxes in [V,W,L] representing the same class as ci ∈ L

7: S ← ComputeSimilarityValPair(Vi,Wi,H1)

8: S ← S \ {s ∈ S|s < max(σ, 1− θ · γmax)}

9: K,S ← SortByDescending(S,V1,W1,L1)

10: for each [k, s] ∈ [K,S] do

11: if max(wij , wkj)−min(vij , vkj) ≤ θ, ∀j ∈ [1, n] then

12: Wt ← max(Wi,Wk); Vt ← min(Vi, Vk)

13: H1 ← A list of hyperboxes with classes different from li

14: isOver ← IsOverlap(Vt,Wt,H1)

15: if isOver = false then

16: loop← true

17: Vi ← Vt; Wi ←Wt

18: V ← V \ Vk; W ←W \Wk; L ← L \ Lk
19: if i > k then

20: i← i− 1

21: end if

22: break

23: end if

24: end if

25: end for

26: i← i+ 1

27: end while

28: end while

29: return H = [V,W,L]

important factors affecting the algorithm time complexity. However, for the com-

plexity of the AGGLO-SM algorithm, the role of Z is much less important than

those of N2 and Y2
, especially in the large-sized datasets. Therefore, the impact
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Figure 6.1 : The speedup factor of the AGGLO-2 and AGGLO-SM algorithms

according to the number of samples and the number of features over 24 experimental

datasets (using the “longest distance” similarity measure).

of the reduction of Z on the AGGLO-2 algorithm is more significant compared to

the AGGLO-SM algorithm. This fact is confirmed by the experimental results in

section 6.2.4. As an illustrative example, Figure 6.1 shows the speed-up factors

of the AGGLO-2 and AGGLO-SM using the proposed method with the “longest

distance” similarity value in correlation to the numbers of samples and features for

the 24 experimental datasets. It can be seen that the acceleration of the AGGLO-2

algorithm is much higher than that of the AGGLO-SM when using the proposed

approach. Apart from the numbers of samples and features, the input data distribu-

tion and the complexity of the classification problem have a significant effect on the

speed-up factor of the proposed approach. For instance, in Table 6.6, two datasets

plant species leaves texture and plant species leaves margin have the same numbers of

samples, features, and classes, but their speed-up factors are significantly different.

6.2.4 Experiments for the Second Solution

The experimental datasets used in this subsection and parameter settings for

algorithms can be found in Section D.3 in Appendix D.
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Experimental Results for Online Learning Algorithms

Table 6.5 : Speed-up factor and the number of hyperbox candidates considered

during the training process of online learning algorithms

Dataset

IOL-GFMM Onln-GFMM

Speed-

up

factor

Number of hyperbox

candidates

Speed-

up

factor

Number of hyperbox

candidates

w/o

lemma

w/

lemma

w/o

lemma

w/

lemma

blance scale 5.7227 20880 0 5.3978 20880 0

banknote authentication 1.3016 5192.5 914 1.0563 5129 904

blood transfusion 1.2487 2154.5 392 1.0568 1542 320

breast cancer wisconsin 3.8746 14655 0 3.6556 14655 0

breast cancer coimbra 2.3571 768 2 1.9804 768 2

climate model crashes 6.2478 30634 0 6.0559 30634 0

connectionist bench sonar 2.8302 2664.5 0 2.5664 2664.5 0

glass 1.3178 567 49.5 1.1009 567 49.5

haberman 1.3418 960.5 143.5 1.122 913.5 141.5

heart 3.5575 4479.5 1 3.1069 4479.5 1

ionosphere 2.7678 5705 46 1.6163 5705 46

movement libras 1.5575 676 24.5 1.0989 676 24.5

optical digit 4.5451 393452.5 0 3.0049 393452.5 0

page blocks 1.3019 21124.5 2928.5 1.0458 20825.5 2909.5

pendigits 4.2866 892103 3421.5 1.0656 892103 3421.5

pima diabetes 4.9452 26995.5 197.5 1.8977 26995.5 197.5

plant species leaves margin 2.0362 2800 0 1.3029 2800 0

plant species leaves

texture
7.2026 309308 16 7.417 309308 16

ringnorm 12.7486 2986751.5 4108.5 3.0377 2986751.5 4108.5

seeds 1.7213 959.5 42.5 1.2 959.5 42.5

image segmentation 1.8082 26153 1052.5 1.0332 26153 1052.5

spambase 3.3182 329619.5 2815.5 1.2982 329619.5 2815.5

spectf heart 3.8481 5929.5 0 3.7564 5929.5 0

landsat satellite 2.76 349032.5 12759 1.0733 349029 12752

Average ratio with

over without lemma
3.527 0.038 2.373 0.040

Table 6.5 shows the average speed-up factor and the number of hyperbox can-

didates considered during the learning process over 10 iterations (5 times 2-fold

cross-validation) for each dataset. The speed-up value is computed by dividing the
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training time of the algorithm without using the lemma by the training time of the

algorithm using the lemma to accelerate the learning process. The training time of

online learning algorithms are shown in Table D.2 in the Appendix D.4.

It can be easily observed that the online learning algorithms using the proposed

lemma are much faster than ones without deploying the lemma. These figures

can be explained based on the number of hyperboxes considered during the training

process. It can be seen that the use of lemma has significantly reduced the unsuitable

hyperbox candidates that the original versions have to verify. In several datasets,

the number of hyperbox candidates is zero in the case of using the proposed lemma

because all existing hyperboxes cannot be extended to cover the new input patterns.

It means that the resulting models only contain hyperboxes with one data point. In

this case, the speed-up of learning process using the proposed lemma is obvious.

In general, the proposed method contributes to the acceleration of the IOL-

GFMM algorithm more significantly than the Onln-GFMM. This is because the

training time of the IOL-GFMM is usually faster than the Onln-GFMM algorithm

with the small value of θ (θ = 0.1 in this work) (Khuat et al. 2020). Therefore, when

the number of candidates considered in the IOL-GFMM reduces, the overlap test

operation between the extended hyperbox and the existing hyperboxes is conducted

much faster. Meanwhile, the original online learning algorithm needs to check over-

lap and find the dimension to conduct the contraction for each pair of hyperboxes.

These operations occupy most of the computational expense of the Onln-GFMM

algorithm, so the obtained speed-up of the Onln-GFMM is smaller than that of the

IOL-GFMM algorithm.

Experimental Results for Agglomerative Learning Algorithms

This part reports the experimental results of agglomerative learning algorithms

with and without using the proposed lemma. Table 6.6 presents the speed-up factor

of the AGGLO-2 algorithm with the use of the proposed lemma compared to one

without using the lemma for four similarity measures. These values are calculated

from the average training time shown in Table D.3 in the Appendix D.4. Table 6.7
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describes the number of considered hyperbox candidates of the AGGLO-2 algorithm

for each similarity measure. Table 6.8 shows the speed-up factors of the AGGLO-

SM algorithm on the experimental datasets, which are computed from their training

time in Table D.4 in the Appendix D.4. The number of hyperbox candidates consid-

ered during the training process of the AGGLO-SM algorithm with four similarity

measures is presented in Table 6.9.

Table 6.6 : Speed-up factor of the AGGLO-2 algorithm

Dataset
Longest

distance

Shortest

distance

Mid-max

distance

Mid-min

distance

blance scale 31.7626 31.9529 21.156 21.2067

banknote authentication 3.5408 2.6579 2.6302 2.7469

blood transfusion 4.3349 2.7389 2.7078 3.2302

breast cancer wisconsin 21.3396 21.1669 14.7005 14.5726

breast cancer coimbra 8.9 9.0253 6.0635 6.0397

climate model crashes 32.5457 32.2009 20.9304 20.89

connectionist bench sonar 12.1624 12.0424 7.829 7.699

glass 4.1902 3.6753 2.9623 3.1639

haberman 5.0756 3.5084 3.1492 3.7729

heart 17.5549 17.5233 11.4509 11.3709

ionosphere 14.5455 12.7882 8.9468 9.6922

movement libras 3.84 3.4975 2.8035 2.9697

optical digit 272.9711 259.0673 176.7774 183.3464

page blocks 5.5846 3.4114 3.5063 4.1349

pendigits 76.6387 59.2468 51.1295 57.0118

pima diabetes 35.3624 28.1336 21.2801 23.7888

plant species leaves margin 5.8103 5.725 4.1252 4.1257

plant species leaves texture 59.9784 60.189 37.6131 37.3868

ringnorm 154.348 110.4401 89.7151 100.4713

seeds 6.2366 5.2175 4.1833 4.6059

image segmentation 13.6811 9.7371 8.6332 10.1224

spambase 52.2312 29.2803 28.7548 34.9655

spectf heart 20.6977 20.6945 13.2112 13.239

landsat satellite 46.4068 16.1142 20.3232 32.471

Average 37.906 31.668 23.524 25.543

In general, the use of the proposed lemma makes the agglomerative learning algo-

rithm much faster because the number of candidates for the hyperbox aggregation

process is considerably reduced. Among two versions of the batch learning algo-
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Table 6.7 : The number of hyperboxes considered during the training process of the

AGGLO-2 algorithm

Dataset
Longest distance Shortest distance Mid-max distance Mid-min distance

w/o

lemma

w/

lemma

w/o

lemma

w/

lemma

w/o

lemma

w/

lemma

w/o

lemma

w/

lemma

blance scale 41760 0 41760 0 41760 0 41760 0

banknote

authentication
22340 552 22105.5 2896 22300 1675.5 22285.5 1046

blood transfusion 17806.5 447 14332 1952.5 14470.5 1256.5 17637.5 836.5

breast cancer

wisconsin
119974 106.5 119974 106.5 119974 106.5 119974 106.5

breast cancer coimbra 3038.5 2 3038.5 2 3038.5 2 3038.5 2

climate model crashes 61268 0 61268 0 61268 0 61268 0

connectionist bench

sonar
5329 0 5329 0 5329 0 5329 0

glass 3004 36.5 2954.5 120.5 2954 107.5 3005 60.5

haberman 5912.5 93.5 4913.5 398.5 4905.5 275.5 5746.5 142.5

heart 13311.5 1 13311.5 1 13311.5 1 13311.5 1

ionosphere 33598 27 26748 167.5 26747.5 134.5 33599 36

movement libras 3897 34.5 3127.5 55 3127.5 54 3897 36

optical digit 786905 0 786905 0 786905 0 786905 0

page blocks 235607 2522 164723.5 15074.5 194023 8211.5 231764.5 5870

pendigits 5080436 1276 5077333 19843 5077333 11493.5 5080439 2128.5

pima diabetes 128175.5 61.5 100825.5 576.5 100825.5 372.5 128175.5 84

plant species leaves

margin
5600 0 5600 0 5600 0 5600 0

plant species leaves

texture
1232425 12.5 1232425 32.5 1232425 32.5 1232425 12.5

ringnorm 11629867 250 11631487 29762.5 11631487 14020.5 11629867 311

seeds 3333 28.5 3289.5 120 3289.5 95 3333 34.5

image segmentation 181993 570 157079.5 4098.5 157231 2709 181772 1173

spambase 3707848 1150 3340482 51622.5 3345250 21569.5 3707269 4208.5

spectf heart 11859 0 11859 0 11859 0 11859 0

landsat satellite 2021658 1187.5 1956507 81882.5 1956399 39069 2438703 11493

Average ratio w/

over w/o lemma
0.0047 0.0266 0.0167 0.008

rithms, the influence of the proposed lemma on the performance of the AGGLO-2

is more significant compared to the AGGLO-SM. It is due to the fact that the num-

ber of hyperbox candidates for the aggregation process in the original AGGLO-2 is

higher than the AGGLO-SM algorithm. For several datasets in the AGGLO-2 algo-
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rithm such as optical digit, pendigits, rignorm, and spambase, the use of the proposed

lemma accelerates the training process from 50 to nearly 280 times compared to the

original version. Although the AGGLO-SM algorithm cannot obtain such speed-up,

the training time also reduces considerably when using the proposed lemma. These

results confirmed that the proposed method is efficient for all learning algorithms of

the GFMMNN.

Table 6.8 : Speed-up factor of the AGGLO-SM algorithm

Dataset
Longest

distance

Shortest

distance

Mid-max

distance

Mid-min

distance

blance scale 17.9903 17.9709 17.8937 17.8841

banknote authentication 1.1323 1.1549 1.1503 1.1634

blood transfusion 1.1521 1.1381 1.1133 1.1198

breast cancer wisconsin 3.0204 3.0734 2.9323 3.0311

breast cancer coimbra 2.6782 2.6897 2.6782 2.6782

climate model crashes 21.6677 21.4537 21.7 21.4056

connectionist bench sonar 7.4505 7.4286 7.4505 7.4615

glass 1.0887 1.0678 1.0637 1.0775

haberman 1.1469 1.1208 1.1308 1.1521

heart 1.7236 1.7073 1.6763 1.6911

ionosphere 1.2263 1.3166 1.2595 1.2782

movement libras 1.0842 1.0981 1.0841 1.0845

optical digit 86.5943 83.8357 75.9623 83.9551

page blocks 1.1686 1.1677 1.1389 1.1638

pendigits 3.3746 1.6839 1.591 3.0278

pima diabetes 1.5718 1.4924 1.519 1.5698

plant species leaves margin 3.6856 3.7029 3.6874 3.6836

plant species leaves texture 3.3463 3.3465 3.3581 3.3449

ringnorm 1.5222 1.4626 1.4874 1.5244

seeds 1.1595 1.1351 1.1399 1.1459

image segmentation 1.0589 1.0521 1.0545 1.0577

spambase 1.0672 1.0647 1.0658 1.0623

spectf heart 12.6057 12.6098 12.5547 12.5587

landsat satellite 1.2885 1.0914 1.0982 1.2314

Average 7.492 7.286 6.950 7.348

In the AGGLO-2 algorithm, among four similarity measures, the proposed lemma

has the most impact on the longest distance measure and the least influence on

the mid-max distance-based similarity measure. This is because the number of
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Table 6.9 : Number of hyperbox candidates considered during the training process

of the AGGLO-SM algorithm

Dataset
Longest distance Shortest distance Mid-max distance Mid-min distance

w/o

lemma

w/

lemma

w/o

lemma

w/

lemma

w/o

lemma

w/

lemma

w/o

lemma

w/

lemma

blance scale 18032 0 18032 0 18032 0 18032 0

banknote

authentication
5003 552.5 21709.5 18143.5 10925 6988.5 6546.5 2390.5

blood transfusion 2426 572 3940 2482.5 3078.5 1375 2754 947.5

breast cancer

wisconsin
12731.5 106.5 12731.5 106.5 12731.5 106.5 12731.5 106.5

breast cancer coimbra 767.5 2 767.5 2 767.5 2 767.5 2

climate model crashes 30631 0 30631 0 30631 0 30631 0

connectionist bench

sonar
2652.5 0 2652.5 0 2652.5 0 2652.5 0

glass 543.5 37 679 198.5 654.5 161.5 550 56.5

haberman 1018.5 95.5 1276 418.5 1200.5 285 1003.5 119

heart 419 1 419 1 419 1 419 1

ionosphere 4385.5 26.5 4522 219 4480.5 171.5 4403 47

movement libras 690 34.5 727.5 77 720.5 69.5 697 42

optical digit 268395.5 0 268395.5 0 268395.5 0 268395.5 0

page blocks 27414 3158.5 203481 188327.5 76313.5 59269.5 44376.5 20037

pendigits 801368 1266 825055.5 32153 809903 17248.5 801416.5 2085

pima diabetes 27268.5 60 30319.5 3535.5 29136.5 2133.5 27328.5 133

plant species leaves

margin
2792.5 0 2792.5 0 2792.5 0 2792.5 0

plant species leaves

texture
300635.5 12.5 301010 45.5 301010 45.5 300636.5 12.5

ringnorm 3000191 241 3952685 965343.5 3451147 456658 3002038 2119.5

seeds 946 29.5 1152 268.5 1080.5 183.5 948.5 33

image segmentation 25541 571.5 68281.5 44145.5 49774 25671 28740 4101

spambase 328946.5 1158 665797.5 356241.5 513685 198932 342728 18653.5

spectf heart 5916 0 5916 0 5916 0 5916 0

landsat satellite 384186.5 1179.5 1592177 1258323 1070981 745576 446447.5 66231

Average ratio w/

over w/o lemma
0.0315 0.2410 0.1871 0.0773

hyperbox candidates considered during the original training process using the longest

distance-based measure is highest, but after using the proposed method, the number

of considered candidates is smallest. Although the number of hyperbox candidates

considered in the training process with regard to the middle distance-based similarity
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measures using the proposed lemma is lower than that of the shortest distance-based

measure, its speed-up factor on average is still lower compared to the value of the

shortest-based measure. This is due to the fact that the middle-based measures are

asymmetrical values, so for each pair of candidates Bi and Bk, the training step

has to spend time computing both similarity values sik and ski. The repetition of

similarity computation increases the training time and reduces the speed-up factor

though there is a reduction in the number of considered candidates.

Similarly, the speed-up factor of the training process using the proposed lemma

with regard to the longest distance-based similarity measure in the AGGLO-SM is

highest because the number of hyperbox candidates after using the proposed lemma

is much lower than those of other similarity measures. Hence, its training time is

fastest on average. The influence of the proposed lemma on the AGGLO-SM using

the mid-max distance measure is still smallest among four similarity measures since

its training process has to calculate the similarity values for each pair of hyperboxes

twice and the number of hyperbox candidates is relatively high after using the

proposed lemma. In contrast to the outcomes of the AGGLO-2, the impact of

the proposed lemma on the training time of the AGGLO-SM algorithm using the

mid-min distance-based measure is ranked in the second place as the number of

candidates is much smaller than those of the shortest and mid-max distance-based

measures.

6.3 Summary

This chapter addressed the thesis Objective 3 presented in Section 1.2. It pro-

posed two solutions to accelerate learning algorithms for the GFMMNN. The first

solution reformulated and represented the GFMM algorithms in a matrix format

to facilitate the parallel execution on the GPUs. Empirical results indicated the

efficiency of the use of GPU computations to accelerate the training and testing

processes of the GFMMNN for very high dimensional data. The GPU-based com-

putations implemented by Pytorch framework contributed to reducing the training

and testing time of the GFMMNN from 10 to 35 times in comparison to CPU-based



173

serial execution. These findings advocate a new method to train and expand the

GFMMNN for very high dimensional datasets with minimal software engineering

effort.

The second solution for accelerating learning algorithms presented and proved

stricter lower bounds for the online and agglomerative learning algorithms of the

GFMMNN in selecting the hyperbox candidates. The proposed method reduces sig-

nificantly the unsuitable hyperbox candidates considered during the learning pro-

cess, especially in the AGGLO-2 algorithm. Therefore, the training operations are

accelerated when applying the proposed solutions. Experimental results on many

datasets confirmed the effectiveness of the proposed approach. In particular, the ac-

celeration factors of the online learning algorithms are from two to three on average,

while the training time of the AGGLO-SM algorithm is reduced about seven times

on average. Especially, the speed-up factor in the AGGLO-2 algorithm using the

proposed lemma can achieve from 30 to 250 on several datasets when the number

of unsuitable hyperbox candidates is considerably reduced.
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Chapter 7

Learning at Different Granularity Levels using

Hyperbox Representations

This chapter presents a method to construct classifiers from multi-resolution hi-

erarchical granular representations (MRHGRC) using hyperbox fuzzy sets. The

proposed approach will build a series of granular inferences hierarchically through

many levels of abstraction. An important property of the proposed classifier is that

it can maintain a high accuracy at a high degree of abstraction compared to other

fuzzy min-max classifiers based on reusing the knowledge learned from lower levels

of abstraction. Furthermore, the proposed method can reduce the data size signif-

icantly as well as handle the uncertainty and incompleteness associated with data

in real-world applications. The construction process of the classifier consists of two

phases. The first phase is to formulate the model at the greatest level of granularity,

while the later stage aims to reduce the complexity of the constructed model and

deduce it from data at higher abstraction levels. The main content of this chapter

is taken from the following paper (Khuat et al. 2021a):

1. Thanh Tung Khuat, Fang Chen, and Bogdan Gabrys, “An effective multi-

resolution hierarchical granular representation based classifier using general

fuzzy min-max neural network,” IEEE Transactions on Fuzzy Systems, vol.

29, no. 2, pp. 427- 441, 2021.

7.1 Introduction

In a recent study, Jordan (2019) claimed that intelligent learning algorithms need

the ability to emulate the kinds of intelligence of human brains and minds including

the ability to form abstractions, to give semantic interpretation to thoughts and

percepts, and to reason. This study proposes an effective classifier based on multiple
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levels of abstraction of hyperboxes. Based on this design, the classifier is able to

reason through different hierarchical granularity levels.

Hierarchical problem solving, where the problems are analyzed in a variety of

granularity degrees, is a typical characteristic of the human brain (Wang et al. 2017).

Inspired by this ability, granular computing was introduced. One of the critical

features of granular computing is to model the data as high-level abstract structures

and to tackle problems based on these representations similar to structured human

thinking (Morente-Molinera et al. 2017). Information granules (IGs) (Zadeh 1997)

are underlying constructs of the granular computing. They are abstract entities

describing important properties of numeric data and formulating knowledge pieces

from data at a higher abstraction level. They play a critical role in the concise

description and abstraction of numeric data (Pedrycz et al. 2015). Information

granules have also contributed to quantifying the limited numeric precision in data

(Pedrycz 2014).

Utilizing information granules is one of the problem-solving methods based on

decomposing a big problem into sub-tasks which can be solved individually. In the

world of big data, one regularly departs from specific data entities and discover

general rules from data via encapsulation and abstraction. The use of information

granules is meaningful when tackling the five Vs of big data (Xu et al. 2018), i.e.,

volume, variety, velocity, veracity, and value. Granulation process gathering simi-

lar data together contributes to reducing the data size, and so the volume issue is

addressed. The information from many heterogeneous sources can be granulated

into various granular constructs, and then several measures and rules for uniform

representation are proposed to fuse base information granules as shown in Xu and

Yu (2017). Hence, the data variety is addressed. Several studies constructed the

evolving information granules to adapt to the changes in the streams of data as in

Al-Hmouz et al. (2018). The variations of information granules in a high-speed data

stream assist in tackling the velocity problem of big data. The process of forming in-

formation granules is often associated with the removal of outliers and dealing with

incomplete data (Xu et al. 2018); thus the veracity of data is guaranteed. Finally,
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the multi-resolution hierarchical architecture of various granular levels can disre-

gard some irrelevant features but highlighting facets of interest (Chen and Zhang

2014). In this way, the granular representation may help with cognitive demands

and capabilities of different users.

A multi-dimensional hyperbox fuzzy set is a fundamental conceptual vehicle to

represent information granules. Each fuzzy min-max hyperbox is determined by

the minimum and maximum points and a fuzzy membership function. A classi-

fier can be built from the hyperbox fuzzy sets along with an appropriate training

algorithm. A rule set can be directly extracted from hyperbox fuzzy sets or by

using it in combination with other methods such as decision trees (Khuat et al.

2021b) to account for the predictive results. However, a limitation of hyperbox-

based classifiers is that their accuracy at the low level of granularity (corresponding

to large-sized hyperboxes) decreases. In contrast, classifiers at the high granular-

ity level are more accurate, but the building process of classifiers at this level is

time-consuming, and it is difficult to extract the rule set interpretable for predictive

outcomes because of the high complexity of resulting models. Hence, it is desired

to construct a simple classifier with high accuracy. In addition, it is expected to

observe the change in the predictive results at different data abstraction levels. This

chapter introduces a method of constructing a high-precision classifier at the high

data abstraction level based on the knowledge learned from lower abstraction levels.

On the basis of classification errors on the validation set, the change in the accuracy

of the constructed classifier on unseen data can be predicted, and an abstraction

level satisfying both acceptable accuracy and simple architecture on the resulting

classifier can be selected. Furthermore, the proposed method is likely to expand for

large-sized datasets due to the capability of parallel execution during the construc-

tion process of core hyperboxes at the highest level of granularity. In the proposed

method, the algorithm starts with a relatively small value of maximum hyperbox

size (θ) to produce base hyperbox fuzzy sets, and then this threshold is increased

in succeeding levels of abstraction whose inputs are the hyperbox fuzzy sets formed

in the previous step. By using many hierarchical resolutions of granularity, the in-
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formation captured in earlier steps is transferred to the classifier at the next level.

Therefore, the classification accuracy is still maintained at an acceptable value when

the resolution of training data is low.

Data generated from complex real-world applications frequently change over

time, so the machine learning models used to predict behaviors of such systems need

the efficient online learning capability. Many studies considered the online learning

capability when building machine learning models such as (Simpson 1992; Gabrys

and Bargiela 2000; de Jesús Rubio 2009; Zhang and Han 2017; de Jesús Rubio 2017;

Cheng et al. 2018), and (Rubio et al. 2019). Fuzzy min-max neural networks pro-

posed by Simpson (1992) and many of its improved variants presented in Chapter 2

only work on the input data in the form of points. In practice, due to the uncertainty

and some abnormal behaviors in the systems, the input data include not only crisp

points but also intervals. The GFMMNN (Gabrys and Bargiela 2000) was proposed

to handle both fuzzy and crisp input samples. By using hyperbox fuzzy sets for

the input layer, this model can accept the input patterns in the granular form and

process data at a high-level abstract structure. As a result, the proposed method

in this chapter used a similar mechanism as in the GFMMNN to build a series of

classifiers through different resolutions, where the small-sized resulting hyperboxes

generated in the previous step become the input to be handled at a higher level of

abstraction (corresponding to a higher value of the allowable hyperbox size). Going

through different resolution degrees, the valuable information in the input data is

fuzzified and reduced in size, but the proposed method helps to preserve the amount

of knowledge contained in the original datasets. This capability is illustrated via the

slow decline in the classification accuracy. In some cases, the predictive accuracy

increases at higher levels of abstraction because the noise existing in the detailed

levels is eliminated.

Building on the principles of developing GFMMNN with good generalization per-

formance discussed in Gabrys (2004), this study employs different hierarchical repre-

sentations of granular data with various hyperbox sizes to select a compact classifier

with acceptable accuracy at a high level of abstraction. Hierarchical granular repre-
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sentations using consecutive maximum hyperbox sizes form a set of multi-resolution

hyperbox-based models, which can be used to balance the trade-off between effi-

ciency and simplicity of the classifiers. A model with high resolution corresponds

to the use of a small value of maximum hyperbox size, and vice versa. A choice of

suitable resolution level results in better predictive accuracy of the generated model.

The main contributions in this chapter can be summarized as follows:

• A new data classification model is proposed based on the multi-resolution of

granular data representations in combination with the online learning ability

of the general fuzzy min-max neural network.

• The proposed method is capable of reusing the learned knowledge from the

highest granularity level to construct new classifiers at higher abstraction levels

with the low trade-off between the simplification and accuracy.

• The efficiency and running time of the general fuzzy min-max classifier are

significantly enhanced in the proposed algorithm.

• The proposed classifier can perform on large-sized datasets because of the

parallel execution ability.

• Comprehensive experiments are conducted on synthetic and real datasets to

prove the effectiveness of the proposed method compared to other approaches

and baselines.

7.2 Multi-Resolution Hierarchical Granular Representation

based Classifier

7.2.1 Overview

The learning process of the proposed method consists of two phases. The first

phase is to rapidly construct small-sized hyperboxes from similar input data points.

This phase is performed in parallel on training data segments. The data in each

fragment can be organized according to two modes. The first way is called het-

erogeneous mode, which uses the data order read from the input file. The second
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mode is homogeneous, in which the data are sorted according to groups; each group

contains data from the same class. The main purpose of the second phase is to

decrease the complexity of the model by reconstructing phase-1 hyperboxes with a

higher abstraction level.

Training  

Data

Chunk of  

data

Hyperboxes

-Incremental learning

-Pattern centroid building

DistributeLoad in chunk Hyperbox  

fuzzy sets

Phase-1  

Hyperbox  
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hyperboxes and overlap resolving
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Figure 7.1 : Pipeline of the training process of the proposed method

In the first step of the training process, the input samples are split into disjoint

sets and are then distributed to different computational workers. On each worker,

an independent GFMMNN is built. When all training samples are handled, all cre-

ated hyperboxes at different workers are merged to form a single model. Hyperboxes

completely included in other hyperboxes representing the same class are eliminated

to reduce the redundancy and complexity of the final model. After combining hyper-

boxes, the pruning procedure needs to be applied to eliminate noise and low-quality

hyperboxes. The resulting hyperboxes are called phase-1 hyperboxes.

However, phase-1 hyperboxes have small sizes, so the complexity of the system

can be high. As a result, all these hyperboxes are put through phase-2 of the gran-

ulation process with a gradual increase in the maximum hyperbox sizes. At a larger

value of the maximum hyperbox size, hyperboxes at a low level of abstraction will

be reconstructed with a higher data abstraction degree. Previously generated hy-

perboxes are fetched one at a time, and they are aggregated with newly constructed
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hyperboxes at the current granular representation level based on a similarity thresh-

old of the membership degree. This process is repeated for each input value of the

maximum hyperbox sizes. The whole process of the proposed method is shown in

Figure 7.1. Based on the classification error of resulting classifiers on the validation

set, one can select an appropriate predictor satisfying both simplicity and preci-

sion. The following part provides the core concepts for both phases of the proposed

method in a form of mathematical descriptions. The details of Algorithm E.1 for

the phase 1 and Algorithm E.2 corresponding to the phase 2 as well as their im-

plementation aspects are shown in the Appendix E. The readers can refer to this

appendix section to find more about the free text descriptions, pseudo-codes, and

implementation pipeline of the algorithms.

7.2.2 Formal Description

Consider a training set of N data vectors, TN = {Xi : Xi ∈ Rn, i = 1, . . . , N},

and the corresponding classes, C = {ci : ci ∈ N, i = 1, . . . , N}; a validation set of

NV data vectors, T (V )
NV

= {X(V )
i : X

(V )
i ∈ Rn, i = 1, . . . , NV }, and the corresponding

classes, C(V ) = {c(V )
i : c

(V )
i ∈ N, i = 1, . . . , NV }. The details of the proposed method

are formally described as follows.

Phase 1

Let nw be the number of workers to execute the hyperbox construction process in

parallel. Let Fj(T (j)
N , C(j), θ0) be the procedure to construct hyperboxes on the j-th

worker with maximum hyperbox size θ0 using training data {T (j)
N , C(j)}. Procedure

Fj is a modified fuzzy min-max neural network model which only creates new hy-

perboxes or expands existing hyperboxes. It accepts the overlapping regions among

hyperboxes representing different classes, because it is expected to capture rapidly

similar samples and group them into specific clusters by small-sized hyperboxes

without spending much time on computationally expensive hyperbox overlap test

and resolving steps. Instead, each hyperbox Bi is added a centroid Gi of patterns

contained in that hyperbox and a counter ni to store the number of data samples

covered by it in addition to maximum and minimum points. This information is
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used to classify data points located in the overlapping regions. When a new pattern

X is presented to the classifier, the operation of building the pattern centroid for

each hyperbox (line 12 and line 15 in Algorithm E.1 in the Appendix E) is performed

according to Eq. (7.1).

Gnew
i =

ni ·Gold
i +X

ni + 1
(7.1)

where Gi is the sample centroid of the hyperbox Bi, ni is the number of current

samples included in the Bi. Next, the number of samples is updated: ni = ni + 1.

It is noted that Gi is the same as the first pattern covered by the hyperbox Bi when

Bi is newly created.

After the process of building hyperboxes in all workers finishes, merging step is

conducted (lines 19-23 in Algorithm E.1 in the Appendix E), and it is mathematically

represented as:

M = {Bi|Bi ∈
nw⋃
j=1

Fj(T (j)
N , C(j), θ0)} (7.2)

where M is the model after performing the merging procedure. It is noted that

hyperboxes contained in the larger hyperboxes representing the same class are elim-

inated (line 24 in Algorithm E.1 in the Appendix E) and the centroids of larger

hyperboxes are updated using Eq. (7.3).

Gnew
1 =

n1 ·Gold
1 + n2 ·Gold

2

n1 + n2

(7.3)

where G1 and n1 are the centroid and the number of samples of the larger sized

hyperbox, G2 and n2 are the centroid and the number of samples of the smaller

sized hyperbox. The number of samples in the larger sized hyperbox is also updated:

n1 = n1 + n2. This whole process is similar to the construction of an ensemble

classifier at the model level shown in Gabrys (2002b).

Pruning step is performed after merging hyperboxes to remove noise and low-

quality hyperboxes (line 26 in Algorithm E.1 in the Appendix E). Mathematically,
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it is defined as:

H0 =

M1 = M \ {Bk|Ak < α ∨ Ak = Nil}, if EV (M1) ≤ EV (M2)

M2 = M \ {Bk|Ak < α}, otherwise

(7.4)

where H0 is the final model of stage 1 after applying the pruning operation, EV (Mi)

is the classification error of the model Mi on the validation set {T (V )
NV

, C(V )}, α is

the minimum accuracy of each hyperbox to be retained, and Ak is the predictive

accuracy of hyperbox Bk ∈M on the validation set defined as follows:

Ak =

Sk∑
j=1

Rkj

Sk∑
j=1

(Rkj + Ikj)
(7.5)

where Sk is the number of validation samples classified by hyperbox Bk, Rk is the

number of samples predicted correctly by Bk, and Ik is the number of incorrect

predicted samples. If Sk = 0, then Ak = Nil.

The classification step of unseen samples using model H0 is performed in the same

way as in the GFMMNN with an exception of the case of many winning hyperboxes

with the same maximum membership value. In such a case, the Euclidean distance

from the input sample X to centroids Gi of winning hyperboxes Bi is computed

using Eq. (7.6). If the input sample is a hyperbox, X is the coordinate of the center

point of that hyperbox.

d(X,Gi) =

√√√√ n∑
j=1

(xj −Gij)2 (7.6)

The input pattern is then classified to the hyperbox Bi with the minimum value of

d(X,Gi).

Phase 2

Unlike phase 1, the input data in this phase are hyperboxes generated in the

previous step. The purpose of phase 2 is to reduce the complexity of the model by

aggregating hyperboxes created at a higher resolution level of granular data repre-

sentations. At the high level of data abstraction, the confusion among hyperboxes
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representing different classes needs to be removed. Therefore, the overlapping re-

gions formed in phase 1 have to be resolved, and there is no overlap allowed in this

phase. Phase 2 can be mathematically represented as:

HH(Θ,ms) = {Hi|Hi = G(Hi−1, θi,ms)}, ∀i ∈ [1, |Θ|], θi ∈ Θ (7.7)

where HH is a list of models Hi constructed through different levels of granularity

represented by maximum hyperbox sizes θi, Θ is a list of maximum hyperbox sizes,

|Θ| is the cardinality of Θ, ms is the minimum membership degree of two aggregated

hyperboxes, and G is a procedure to construct the models in phase 2 (it uses the

model at previous step as input), H0 is the model in phase 1. The aggregation rule

of hyperboxes, G, is described as follows:

For each input hyperbox Bh in Hi−1, the membership values between Bh and

all existing hyperboxes with the same class as Bh in Hi are computed. The winner

hyperbox with maximum membership degree with respect to Bh is selected, denoted

Bk, to aggregate with Bh. The following constraints are verified before conducting

the aggregation:

• Maximum hyperbox size as defined in Eq. (3.4)

• The minimum membership degree:

b(Bh, Bk) ≥ ms (7.8)

• Overlap test. New hyperbox aggregated from Bh and Bk does not overlap with

any existing hyperboxes in Hi belonging to other classes

If the hyperbox Bk has not met all of the above conditions, the hyperbox with

the next highest membership value is selected and the above process is repeated until

the aggregation step occurs or no hyperbox candidate is left. If the input hyperbox

cannot be mergered with existing hyperboxes in Hi, it will be directly inserted into

the current list of hyperboxes in Hi. After that, the overlap test operation between

the newly inserted hyperbox and hyperboxes in Hi representing other classes is
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performed, and then the contraction process will be executed to resolve overlapping

regions. The algorithm is iterated for all input hyperboxes in Hi−1.

The classification process for unseen patterns using the hyperboxes in phase 2

is realized as in the GFMMNN. A detailed description of the implementation steps

for the proposed method can be found in the Appendix E.1.2.

7.2.3 Missing Value Handling

The proposed method can deal with missing values since it inherits this charac-

teristic from the GFMMNN as shown in Gabrys (2002c). A missing feature xj is

assumed to be able to receive values from the whole range, and it is presented by a

real-valued interval as follows: xlj = 1, xuj = 0. By this initialization, the member-

ship value associated with the missing value will be one, and thus the missing value

does not cause any influence on the membership function of the hyperbox. During

the training process, only observed features are employed for the update of hyperbox

minimum and maximum vertices while missing variables are disregarded automati-

cally. For the overlap test procedure in phase 2, only the hyperboxes which satisfy

vij ≤ wij for all dimensions j ∈ [1, n] are verified for the undesired overlapping areas.

The second change is related to the way of calculating the membership value for the

process of hyperbox selection or classification step of an input sample with missing

values. Some hyperboxes’ dimensions have not been set, so the membership function

shown in Eq. (3.1) is changed to bi(X,min(Vi,Wi),max(Wi, Vi)). With the use of

this method, the training data uncertainty is represented in the classifier model.

7.2.4 Interpretability of the Proposed Classifier

One of the strong points of the use of hyperbox fuzzy sets for building classifiers is

the obvious traceability, which can be used to explain the predictive results to users.

For each input pattern coming to the network, membership functions are used to

find the winner hyperbox, which is the hyperbox with the highest membership value

among all existing hyperboxes, to assign the class label. This hyperbox together

with the representative hyperboxes belonging to other classes, which are hyperboxes

showing the maximum membership values among the hyperboxes within the same
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class, can be presented to the users together with their membership values. For

example, the explanation rules can be provided to users in the form of “If X is in the

hyperbox Bi then the predicted class of X is the class of Bi” or “The predicted class

of X is the class of Bi because the hyperbox Bi is nearest to X with a membership

value of bi. The next close hyperbox of X is Bk with class ck showing a membership

values of bk < bi.” These factors help users to better understand the reason behind

the selection of predicted classes. By using the learning method at higher levels of

abstraction, the number of generated hyperboxes is significantly reduced, and thus

the users may be easier to trace the hyperboxes and verify the predicted results.

However, the use of hyperbox fuzzy sets comes with a price of losing the linguis-

tically interpretable fuzzy rules such as Mamdani-type fuzzy rules (Mamdani and

Assilian 1975) or Takagi-Sugeno-type fuzzy rules (Sugeno 1985). To extract such

linguistic fuzzy rules, the GFMMNN needs to be integrated with an additional layer

to conduct the fuzzification of the crisp input values of features into linguistic values.

This operation is not trivial for the current learning algorithms of the GFMMNN.

To achieve this goal, it requires further studies in the future to possibly build a new

membership function as well as adjusting the learning steps for linguistic features,

and this is out of scope of this thesis.

7.3 Experiments

Macia et al. (2013) argued that data set selection poses a considerable impact

on conclusions of the accuracy of learners, and then the authors advocated for con-

sidering properties of the datasets in experiments. They indicated the importance

of employing artificial data sets constructed based on previously defined character-

istics. In these experiments, therefore, two types of synthetic datasets with linear

and non-linear class boundaries were considered. The number of features, the num-

ber of samples, and the number of classes for synthetic datasets were also changed

to assess the variability in the performance of the proposed method. In practical

applications, the data are usually not ideal as well as not following a standard dis-

tribution rule and including noisy data. Therefore, experiments were also carried
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out on real datasets with diversity in numbers of samples, features, and classes.

For medium-sized real datasets such as Letter, Magic, White wine quality, and

Default of credit card clients, the density-preserving sampling (DPS) method (Budka

and Gabrys 2013) was used to separate the original datasets into training, validation,

and test sets. For large-sized datasets, the hold-out method was used for splitting

datasets, which is the simplest and the least computationally expensive approach

to assessing the performance of classifiers because more advanced resampling ap-

proaches are not essential for large amounts of data (Budka and Gabrys 2013). The

classification model is then trained on the training dataset. The validation set is

used for the pruning step and evaluating the performance of the constructed clas-

sifier aiming to select a suitable model. The testing set is employed to assess the

efficiency of the model on unseen data.

The experiments aim to answer the following questions:

• How is the classification accuracy of the predictor using multi-resolution hier-

archical granular representations improved in comparison to the model using

a fixed granulation value?

• How good is the performance of the proposed method compared with other

types of fuzzy min-max neural networks and popular algorithms based on

other data representations such as support vector machines, Naive Bayes, and

decision trees?

• Whether a classifier with high accuracy can be obtained at high abstraction

levels of granular representations?

• Whether the performance of the model on validation sets can be relied on

to select a good model for unseen data, which satisfies both simplicity and

accuracy?

• How good is the ability of handling missing values in datasets without requiring

data imputation?
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• How critical are the roles of the pruning process and the use of sample cen-

troids?

The limitation of runtime for each execution is seven days. If an execution does

not finish within seven days, it will be terminated, and the result is reported as

N/A. In the experiments, parameters were set up as follows: nw = 4, α = 0.5,ms =

0.4, γ = 1 because they gave the best results on a set of preliminary tests with

validation sets for the parameter selection. All datasets are normalized to the range

of [0, 1] because of the characteristic of the fuzzy min-max neural networks. Most

of the datasets except the susy datasets utilized the value of 0.1 for θ0 in phase

1, and Θ = {0.2, 0.3, 0.4, 0.5, 0.6} for different levels of granularity in phase 2. For

the susy dataset, due to the complexity and limitation of runtime for the proposed

method and other compared types of fuzzy min-max neural networks, the θ0 = 0.3

was used for phase 1, and Θ = {0.4, 0.5, 0.6} was employed for phase 2. For Naive

Bayes, Gaussian Naive Bayes (GNB) algorithm was used for classification. The

radial basis function (RBF) was used as a kernel function for the support vector

machines (SVM). The default setting parameters in the scikit-learn library were

used for GNB, SVM, and decision tree (DT) in the experiments. The performance

of the proposed method was also compared to other types of fuzzy min-max neural

networks such as the original fuzzy min-max neural network (FMNN) (Simpson

1992), the enhanced fuzzy min-max neural network (EFMNN) (Mohammed and

Lim 2015), the enhanced fuzzy min-max neural network with a K-nearest hyperbox

expansion rule (KNEFMNN) (Mohammed and Lim 2017a), and the general fuzzy

min-max neural network (GFMMNN) (Gabrys and Bargiela 2000). These types of

fuzzy min-max neural networks used the same pruning procedure as the proposed

method.

Synthetic datasets in the experiments were generated by using Gaussian distribu-

tion functions, so GNB and SVM with RBF kernel which use Gaussian distribution

assumptions to classify data will achieve nearly optimal error rates because they

match perfectly with underlying data distribution. Meanwhile, fuzzy min-max clas-

sifiers employ the hyperboxes to cover the input data, thus they are not an optimal
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representation for underlying data. Therefore, the accuracy of hyperbox-based clas-

sifiers on synthetic datasets cannot outperform the predictive accuracy of Gaussian

NB or SVM with RBF kernel. However, Gaussian NB is a linear classifier, and thus,

it only outputs highly accurate predictive results for datasets with linear decision

boundary. In contrast, decision tree, fuzzy min-max neural networks, and SVM

with RBF kernel are universal approximators, and they can deal effectively with

both linear and non-linear classification problems.

All experiments were conducted on the computer with Xeon 6150 2.7GHz CPU

and 180GB RAM. Each experiment was repeated five times to compute the average

training time. The accuracy of types of fuzzy min-max neural networks remains the

same through different iterations because they only depend on the data presentation

order and the same order of training samples was maintained during the experiments.

7.3.1 Performance of the Proposed Method on Synthetic Datasets

The first experiment was conducted on the synthetic datasets with the linear

or non-linear boundary between classes. For each synthetic dataset, a testing set

containing 100,000 samples and a validation set with 10,000 instances were generated

using the same probability density function as the training sets.

Linear boundary datasets

Increase the number of samples:

Both the number of dimensions n = 2 and the number of classes C = 2 were kept

the same, and only the number of samples was changed to evaluate the impact of

the number of patterns on the performance of classifiers. Gaussian distribution was

used to construct synthetic datasets as described in Fukunaga (1990). The means

of the Gaussians of two classes are given as follows: µ1 = [0, 0]T , µ2 = [2.56, 0]T , and

the covariance matrices are as follows:

Σ1 = Σ2 =

[
1 0

0 1

]
With the use of these configuration parameters, training sets with different sizes

(10K, 1M, and 5M samples) were formed. Fukunaga (1990) indicated that the



189

0 0.1 0.2 0.3 0.4 0.5 0.6
10

15

20

25

30

35

40
Er

ro
r r

at
e 

(%
)

N = 10K, n = 2, C = 2
Heterogeneous MRHGRC
Homogeneous MRHGRC
GFMMNN
FMNN
KNEFMNN
EFMNN

(a) 10K samples

0 0.1 0.2 0.3 0.4 0.5 0.6
10

15

20

25

30

35

40

45

50

Er
ro

r r
at

e 
(%

)

N = 1M, n = 2, C = 2
Heterogeneous MRHGRC
Homogeneous MRHGRC
GFMMNN
FMNN
KNEFMNN
EFMNN

(b) 1M samples

0 0.1 0.2 0.3 0.4 0.5 0.6
10

15

20

25

30

35

40

45

50

Er
ro

r r
at

e 
(%

)

N = 5M, n = 2, C = 2
Heterogeneous MRHGRC
Homogeneous MRHGRC
GFMMNN
FMNN
KNEFMNN
EFMNN

(c) 5M samples

Figure 7.2 : The error rate of classifiers on synthetic linear boundary datasets with

the different number of samples

general Bayes error of the datasets formed from these settings is around 10%. An

equal number of samples for each class was generated to remove the impact of

imbalanced class property on the performance of classifiers. Figure 7.2 shows the

change in the error rates of different fuzzy min-max classifiers on the testing synthetic

linear boundary datasets with the different numbers of training patterns when the

level of granularity (θ) changes. The other fuzzy min-max neural networks used the

fixed value of θ to construct the model, while the proposed method builds the model

starting from the defined lowest value of θ (phase 1) to the current threshold. For

example, the model at θ = 0.3 in the proposed method is constructed with θ = 0.1,

θ = 0.2, and θ = 0.3.

It can be seen from Figure 7.2 that the error rates of the proposed method are

lower than those of other fuzzy min-max classifiers, especially in high abstraction

levels of granular representations. At high levels of abstraction (corresponding to

high values of θ), the error rates of other classification models are relatively high,

while the proposed classifier still maintains the low error rate, just a little higher

than the error at a high-resolution level of granular data. The lowest error rates

of the different classifiers on validation (EV ) and testing (ET ) sets, as well as total

training time for six levels of abstraction, are shown in Table 7.1. Best results are

highlighted in bold in each table. The training time reported in this chapter consists

of time for reading training files and model construction.
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Table 7.1 : The lowest error rates and training time of classifiers on synthetic linear

boundary datasets with different number of samples (n = 2, C = 2)

N Algorithm minEV minET θV θT Time (s)

10K

He-MRHGRC 10.25 10.467 0.1 0.1 1.1378

Ho-MRHGRC 10.1 10.413 0.1 0.1 1.3215

GFMM 11.54 11.639 0.1 0.1 8.6718

FMNN 10.05 10.349 0.1 0.1 46.4789

KNEFMNN 12.07 12.232 0.1 0.1 9.4459

EFMNN 10.44 10.897 0.1 0.1 48.9892

GNB 9.85 9.964 - - 0.5218

SVM 9.91 9.983 - - 1.5468

DT 15.33 14.861 - - 0.5405

1M

He-MRHGRC 10.31 10.386 0.3 0.3 20.0677

Ho-MRHGRC 10.24 10.401 0.1 0.1 16.0169

GFMM 11.47 11.783 0.1 0.1 405.4642

FMNN 10.98 11.439 0.2 0.2 13163.1404

KNEFMNN 10.36 10.594 0.1 0.1 413.8296

EFMNN 11.61 11.923 0.6 0.6 10845.1280

GNB 9.87 9.972 - - 5.0133

SVM 9.86 9.978 - - 21798.2803

DT 14.873 14.682 - - 9.9318

5M

He-MRHGRC 10.11 10.208 0.5 0.5 101.9312

Ho-MRHGRC 10.04 10.222 0.1 0.1 75.2254

GFMM 13.14 13.243 0.1 0.1 1949.2138

FMNN 12.68 12.751 0.6 0.6 92004.7253

KNEFMNN 17.31 17.267 0.1 0.1 1402.1173

EFMNN 12.89 13.032 0.1 0.1 41888.5296

GNB 9.88 9.976 - - 22.9343

SVM N/A N/A - - N/A

DT 15.253 14.692 - - 70.2041

It can be seen that the accuracy of the proposed method on unseen data using the

heterogeneous data distribution (He-MRHGRC) regularly outperforms the accuracy

of the classifier built based on the homogeneous data distribution (Ho-MRHGRC)

using large-sized training sets. It is also observed that the proposed method is

less affected by overfitting when increasing the number of training samples while

keeping the same testing set. For other types of fuzzy min-max neural networks,

their error rates frequently increase with the increase in training size because of

overfitting. The total training time of the proposed algorithm is faster than that
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of other types of fuzzy min-max classifiers since the proposed method executes the

hyperbox building process at the lowest value of θ in parallel, and the overlapping

areas among hyperboxes representing different classes are allowed to rapidly capture

the characteristics of sample points locating near each other. The hyperbox overlap

resolving step is only performed at higher abstraction levels with a smaller number

of input hyperboxes.

The proposed method also achieves better classification accuracy compared to

the decision tree, but it cannot overcome the support vector machines and Gaussian

Naive Bayes methods on synthetic linear boundary datasets. However, the training

time of the support vector machines on large-sized datasets is costly, even becomes

unacceptable on training sets with millions of patterns. The synthetic datasets

were constructed based on the Gaussian distribution, so the Gaussian Naive Bayes

method can reach the minimum error rate, but the proposed approach can also

obtain the error rates relatively near these optimal error values. It can be observed

that the best performance of the He-MRHGRC attains at quite high abstraction

levels of granular representations because some noisy hyperboxes at high levels of

granularity are eliminated at lower granulation levels. These results demonstrate

the efficiency and scalability of the proposed approach.

Increase the number of classes:

The purpose of the experiment in this subsection is to evaluate the performance

of the proposed method on multi-class datasets. The number of dimensions n = 2,

the number of samples N = 10, 000 were remained unchanged, and only changed the

number of classes to form synthetic multi-class datasets with C ∈ {2, 4, 16}. The

covariance matrices stay the same as in the case of changing the number of samples.

Figure 7.3 shows the change in error rates of fuzzy min-max classifiers with

a different number of classes on the testing sets. It can be easily seen that the

error rates of the proposed method are lowest compared to other fuzzy min-max

neural networks on all multi-class synthetic datasets at high abstraction levels of

granular representations. At high abstraction levels, the error rates of other fuzzy

min-max neural networks increase rapidly, while the error rate of the proposed
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Figure 7.3 : The error rate of classifiers on synthetic linear boundary datasets with

the different number of classes
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Figure 7.4 : The error rate of classifiers on synthetic linear boundary datasets with

the different number of features

classifier still maintains the stability. In addition, the error rates of the proposed

method also slowly augment in contrast to the behaviors of other considered types

of fuzzy min-max neural networks when increasing the abstraction level of granular

representations. These facts demonstrate the efficiency of the proposed method on

multi-class datasets. The lowest error rates of classifiers on validation and testing

sets, as well as total training time, are shown in Table 7.2. It is observed that the

predictive accuracy of the proposed method outperforms all considered types of fuzzy

min-max classifiers and decision tree, but it cannot overcome the Gaussian Naive

Bayes and support vector machine methods. The training time of the proposed

method is faster than other fuzzy min-max neural networks and support vector
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Table 7.2 : The lowest error rates and training time of classifiers on synthetic linear

boundary datasets with different classes (N = 10K,n = 2)

C Algorithm minEV minET θV θT Time (s)

2

He-MRHGRC 10.25 10.467 0.1 0.1 1.1378

Ho-MRHGRC 10.10 10.413 0.1 0.1 1.3215

GFMM 11.54 11.639 0.1 0.1 8.6718

FMNN 10.05 10.349 0.1 0.1 46.4789

KNEFMNN 12.07 12.232 0.1 0.1 9.4459

EFMNN 10.44 10.897 0.1 0.1 48.9892

GNB 9.85 9.964 - - 0.5218

SVM 9.91 9.983 - - 1.5468

DT 15.33 14.861 - - 0.5405

4

He-MRHGRC 19.76 19.884 0.4 0.4 1.0754

Ho-MRHGRC 19.97 21.135 0.1 0.1 1.5231

GFMM 22.34 22.515 0.1 0.1 10.8844

FMNN 20.00 20.350 0.1 0.1 65.7884

KNEFMNN 20.54 20.258 0.1 0.1 12.5618

EFMNN 21.75 21.736 0.1 0.1 55.1921

GNB 19.35 19.075 - - 0.5492

SVM 19.34 19.082 - - 1.6912

DT 26.94 27.014 - - 0.5703

16

He-MRHGRC 30.11 30.996 0.1 0.4 1.2686

Ho-MRHGRC 28.70 30.564 0.1 0.1 1.8852

GFMM 32.66 33.415 0.1 0.1 18.0554

FMNN 29.78 31.035 0.1 0.1 69.6761

KNEFMNN 33.42 34.670 0.1 0.1 22.3418

EFMNN 31.80 33.239 0.1 0.1 76.0920

GNB 27.12 28.190 - - 0.5764

SVM 27.29 28.103 - - 1.6455

DT 38.813 39.644 - - 0.6023

machines on the considered multi-class synthetic datasets.

Increase the number of features:

To generate the multi-dimensional synthetic datasets with the number of sam-

ples N = 10K and the number of classes C = 2, similar settings were used as in

generation of datasets with different number of samples. The means of classes are

µ1 = [0, . . . , 0]T , µ2 = [2.56, 0, . . . , 0]T , and the covariance matrices are as follows:
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Σ1 = Σ2 =


1 . . . 0
...

. . .
...

0 . . . 1

 (7.9)

The size of each expression corresponds to the number of dimensions n of the prob-

lem. Fukunaga (Fukunaga 1990) stated that the general Bayes error of 10% and

this Bayes error stays the same even when n changes.

Table 7.3 : The lowest error rates and training time of classifiers on synthetic linear

boundary datasets with different features (N = 10K,C = 2)

n Algorithm minEV minET θV θT Time (s)

2

He-MRHGRC 10.250 10.467 0.1 0.1 1.1378

Ho-MRHGRC 10.100 10.413 0.1 0.1 1.3215

GFMM 11.540 11.639 0.1 0.1 8.6718

FMNN 10.050 10.349 0.1 0.1 46.4789

KNEFMNN 12.070 12.232 0.1 0.1 9.4459

EFMNN 10.440 10.897 0.1 0.1 48.9892

GNB 9.850 9.964 - - 0.5218

SVM 9.910 9.983 - - 1.5468

DT 15.330 14.861 - - 0.5405

8

He-MRHGRC 10.330 10.153 0.3 0.3 21.9131

Ho-MRHGRC 10.460 10.201 0.3 0.3 23.0554

GFMM 12.170 12.474 0.1 0.2 196.0682

FMNN 10.250 10.360 0.6 0.6 302.8683

KNEFMNN 12.720 12.844 0.1 0.1 618.2524

EFMNN 11.300 10.907 0.4 0.4 579.3113

GNB 9.940 9.919 - - 0.5915

SVM 9.980 9.927 - - 2.0801

DT 15.383 15.087 - - 0.6769

32

He-MRHGRC 11.070 10.995 0.5 0.5 226.3193

Ho-MRHGRC 11.070 10.995 0.5 0.5 226.0611

GFMM 12.390 12.625 0.3 0.3 847.6977

FMNN 11.830 11.637 0.5 0.6 1113.6836

KNEFMNN 17.410 18.395 0.1 0.4 837.9571

EFMNN 13.890 13.766 0.4 0.4 1114.4976

GNB 10.280 10.088 - - 0.7154

SVM 10.220 10.079 - - 4.5937

DT 15.400 15.201 - - 1.0960

Figure 7.4 shows the change in the error rates with different levels of granularity

on multi-dimensional synthetic datasets. In general, with a low number of dimen-
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sions, the proposed method outperforms other fuzzy min-max neural networks. With

high dimensionality and a small number of samples, the high levels of granularity

result in high error rates, and misclassification results considerably drops when the

value of θ increases. The same trend also happens to the FMNN when its accuracy

at θ = 0.5 or θ = 0.6 is quite high. Apart from the FMNN on high dimensional

datasets, the proposed method is better than three other fuzzy min-max classifiers at

high abstraction levels. Table 7.3 reports the lowest error rates of classifiers on vali-

dation and testing multi-dimensional sets as well as the total training time through

six abstraction levels of granular representations. The training time of the proposed

method is much faster than other types of fuzzy min-max neural networks. Gener-

ally, the performance of the proposed method overcomes the decision tree and other

types of fuzzy min-max neural networks, but its predictive results cannot defeat the

Gaussian Naive Bayes and support vector machines. It can be observed that the

best performance on validation and testing sets obtains at the same abstraction level

of granular representations on all considered multi-dimensional datasets. This fact

indicates that the validation set can be used to choose the best classifier at a given

abstraction level among constructed models through different granularity levels.

Non-linear boundary datasets

To generate non-linear boundary datasets, the Gaussian means of the first class

were set up as follows: µ1 = [−2, 1.5]T , µ2 = [1.5, 1]T and the Gaussian means of the

second class: µ3 = [−1.5, 3]T , µ4 = [1.5, 2.5]T . The covariance matrices for the first

class Σ1,Σ2 and for the second class Σ3,Σ4 were established as follows:

Σ1 =

 0.5 0.05

0.05 0.4

 ,Σ2 =

 0.5 0.05

0.05 0.3

 ,
Σ3 =

 0.5 0

0 0.5

 ,Σ4 =

 0.5 0.05

0.05 0.2

 ,
(7.10)

The number of samples for each class was equal, and the generated samples were

normalized to the range of [0, 1]. Only a testing set including 100,000 samples

and a validation set with 10,000 patterns were created. Three different training sets
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containing 10K, 100K, and 5M samples were used to train classifiers. The purpose is

to evaluate the predictive results of the proposed method on the non-linear boundary

dataset when changing the sizes of the training set.

Figure 7.5 shows the changes in the error rates through different levels of gran-

ularity of classifiers on non-linear boundary datasets. It can be observed that the

error rates of the proposed method trained on the large-sized non-linear boundary

datasets are better than those using other types of fuzzy min-max neural networks,

especially at high abstraction levels of granular representations. While other fuzzy

min-max neural networks show the increase in the error rates if the value of θ grows

up, the proposed method is capable of maintaining the stability of predictive results

even in the case of high abstraction levels. When the number of samples increases,

the error rates of other fuzzy min-max classifiers usually rise, whereas the error rate

in the proposed approach only fluctuates a little. These results indicate that the pro-

posed method may reduce the influence of overfitting because of constructing higher

abstraction level of granular data representations using the learned knowledge from

lower abstraction levels.
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Figure 7.5 : The error rate of classifiers on synthetic non-linear boundary datasets

with the different number of samples

The best performance of the proposed approach does not often happen at the

smallest value of θ on these non-linear datasets. Results regarding accuracy on

validation and testing sets reported in Table 7.4 confirm this statement. These

figures also illustrate the effectiveness of the processing steps in phase 2. Unlike
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the linear boundary datasets, the proposed method overcomes GNB to become two

best classifiers (together with SVM) among classifiers considered. Although SVM

outperformed the proposed approach, its runtime on large-sized datasets was much

slower than the proposed method. The training time of the proposed algorithm is

much faster than other types of fuzzy min-max neural networks and SVM, but it is

still slower than GNB and decision tree techniques.

Table 7.4 : The lowest error rates and training time of classifiers on synthetic non-

linear boundary datasets with different number of samples (n = 2, C = 2)

N Algorithm minEV minET θV θT Time (s)

10K

He-MRHGRC 9.950 9.836 0.2 0.2 0.9616

Ho-MRHGRC 9.820 9.940 0.1 0.1 1.1070

GFMM 10.200 9.787 0.4 0.5 10.5495

FMNN 9.770 9.753 0.5 0.5 61.1130

KNEFMNN 9.890 9.505 0.2 0.2 16.1099

EFMNN 9.750 9.565 0.1 0.4 60.6073

GNB 10.740 10.626 - - 0.5218

SVM 9.750 9.490 - - 1.5565

DT 14.107 13.831 - - 0.5388

100K

He-MRHGRC 10.130 9.670 0.3 0.3 2.5310

Ho-MRHGRC 9.910 9.412 0.1 0.1 2.3560

GFMM 11.810 11.520 0.1 0.1 44.7778

FMNN 10.880 10.575 0.1 0.1 588.4412

KNEFMNN 12.470 11.836 0.1 0.1 42.9151

EFMNN 11.020 10.992 0.1 0.1 485.7613

GNB 10.830 10.702 - - 0.9006

SVM 9.650 9.338 - - 93.4474

DT 14.277 13.642 - - 1.1767

5M

He-MRHGRC 10.370 10.306 0.1 0.6 91.7894

Ho-MRHGRC 9.940 9.737 0.1 0.1 69.5106

GFMM 15.260 14.730 0.1 0.1 1927.6191

FMNN 13.160 13.243 0.1 0.1 53274.4387

KNEFMNN 15.040 14.905 0.1 0.1 1551.5220

EFMNN 15.660 15.907 0.2 0.2 54487.6978

GNB 10.840 10.690 - - 22.9849

SVM N/A N/A - - N/A

DT 13.790 13.645 - - 49.9919
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7.3.2 Performance of the Proposed Method on Real Datasets

Real datasets used for the experiments in this section are described in Table E.1

in Appendix E. To assess the significant reduction in the number of generated hy-

perboxes while still maintaining good performance, medium and large sized datasets

were used in this chapter. Therefore, these datasets are different from small sized

datasets employed in previous chapters. From the results of synthetic datasets, it

can be seen that the performance of the multi-resolution hierarchical granular rep-

resentation based classifier using the heterogeneous data distribution technique is

more stable than that utilizing the homogeneous distribution method. Therefore,

the experiments in the rest of this chapter were conducted for only the heterogeneous

classifier.

Table 7.5 : The real datasets and their statistics for experiments in Chapter 7

Dataset
#Dimen-

sions
#Classes #Training

#Valida-

tion
#Testing Source

Poker Hand 10 10 25,010 50,000 950000 LIBSVM

SensIT Vehicle 100 3 68,970 9,852 19,706 LIBSVM

Skin NonSkin 3 2 171,540 24,260 49,257 LIBSVM

Covtype 54 7 406,709 58,095 116,208 LIBSVM

White wine quality 11 7 2,449 1,224 1,225 Kaggle

PhysioNet MIT-BIH

Arrhythmia
187 5 74,421 13,133 21,892 Kaggle

MAGIC Gamma

Telescope
10 2 11,887 3,567 3,566 UCI

Letter 16 26 15,312 2,188 2,500 UCI

Default of credit

card clients
23 2 18,750 5,625 5,625 UCI

MoCap Hand

Postures
36 5 53,104 9,371 15,620 UCI

MiniBooNE 50 2 91,044 12,877 26,143 UCI

SUSY 18 2 4,400,000 100,000 500,000 UCI

Table 7.6 shows the number of generated hyperboxes for the He-MRHGRC on

real datasets at different abstraction levels of granular representations. It can be

seen that the number of hyperboxes at the value of θ = 0.6 is significantly reduced in

comparison to those at θ = 0.1. However, the error rates of the classifiers on testing
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Table 7.6 : The change in the number of generated hyperboxes through different

levels of granularity of the proposed method

Dataset
θ

0.1 0.2 0.3 0.4 0.5 0.6

Skin NonSkin 1012 248 127 85 64 51

Poker Hand 11563 11414 10905 3776 2939 2610

Covtype 94026 13560 5224 2391 1330 846

SensIT Vehicle 5526 2139 1048 667 523 457

PhysioNet MIT-BIH Arrhythmia 60990 26420 15352 8689 5261 3241

White wine quality 1531 676 599 559 544 526

Default of credit card clients 2421 529 337 76 48 29

Letter 9236 1677 952 646 595 556

MAGIC Gamma Telescope 1439 691 471 384 335 308

MiniBooNE 444 104 24 10 6 6

SUSY - - 26187 25867 16754 13017

sets at θ = 0.6 do not change so much compared to those at θ = 0.1. This fact is

illustrated in Figure 7.6 and Figure E.3 in the Appendix E. From these figures, it is

observed that at the high values of the maximum hyperbox size such as θ = 0.5 and

θ = 0.6, the proposed classifier achieves the best performance compared to other

considered types of fuzzy min-max neural networks. It can also be observed that the

prediction accuracy of the proposed method is usually much better than that using

other types of fuzzy min-max classifiers on most of the data granulation levels. The

error rate of the proposed classifier regularly increases slowly with the increase in

the abstraction level of granules, even in some cases, the error rate declines at a high

abstraction level of granular representations. The best performance of classifiers on

validation and testing sets, as well as training time through six granularity levels,

are reported in Table E.2 in the Appendix E.

Although the proposed method cannot achieve the best classification accuracy

on all considered datasets, its performance is located in the top 2 for all datasets.

The Gaussian Naive Bayes classifiers obtained the best predictive results on syn-

thetic linear boundary datasets, but it fell to the last position and became the worst

classifier on real datasets because real datasets are highly non-linear. On datasets

with highly non-linear decision boundaries such as covtype, PhysioNet MIT-BIH Ar-
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Figure 7.6 : The error rate of classifiers on the Letter datasets through data ab-

straction levels

rhythmia, and MiniBooNE, the proposed method still produces the good predictive

accuracy.

The training process of the proposed method is much faster than other types

of fuzzy min-max neural networks on all considered datasets. Notably, on several

large-sized complex datasets such as covtype and susy, the training time of other

fuzzy min-max classifiers is costly, but their accuracy is worse than the proposed

method, which takes less training time. The proposed approach is frequently faster

than SVM and can deal with datasets with millions of samples, while the SVM

predictor cannot perform.

On many datasets, the best predictive results on validation and testing sets were

achieved at the same abstraction level of granular representations. In the case that

the best model on the validation set has different abstraction level compared to the

best model on the testing set, the error rate on the testing set if using the best

classifier on the validation set is also near the minimum error. These figures show

that the proposed method is stable, and it can achieve a high predictive accuracy

on both synthetic and real datasets.
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7.3.3 The Vital Role of the Pruning Process and the Use of Sample

Centroids

This experiment aims to assess the important roles of the pruning process and

the use of sample centroids on the performance of the proposed method. The ex-

perimental results related to these issues are presented in Table 7.7. It is easily

observed that the pruning step contributes to significantly reducing the number of

generated hyperboxes, especially in SensIT Vehicle, Default of credit card clients,

susy datasets. When the poorly performing hyperboxes are removed, the accuracy

of the model increases considerably. These figures indicate the critical role of the

pruning process with regards to reducing the complexity of the model and enhancing

the predictive performance.

Table 7.7 : The role of the pruning process and the use of sample centroids

Dataset

Num

hyperboxes
Error

rate

before

pruning

(%)

Error

rate

after

pruning

(%)

No. of

predicted

samples using

centroids

before pruning

No. of

predicted

samples using

centroids after

pruning

Before

pruning

After

pruning
Total Wrong Total Wrong

Skin NonSkin 1,358 1,012 0.1726 0.0974 1,509 73 594 30

Poker Hand 24,991 11,563 53.5951 49.8128 600,804 322,962 725,314 362,196

SensIT

Vehicle
61,391 5,526 23.6730 20.9073 2 1 0 0

Default of

credit card

clients

9,256 2,421 22.3822 19.7689 662 291 312 127

Covtype 95971 94026 7.7335 7.5356 2700 975 2213 783

PhysioNet

MIT-BIH

Arrhythmia

61,419 60,990 3.6589 3.5492 49 9 48 8

MiniBooNE 1,079 444 16.4289 13.9043 14,947 3,404 11,205 2,575

SUSY 55,096 26,187 30.8548 28.3456 410,094 145,709 370,570 124,850

It can also be seen that the use of sample centroids and Euclidean distance may

predict accurately from 50% to 95% of the samples located in the overlapping regions

between different classes. The predictive accuracy depends on the distribution and



202

complexity of underlying data. With the use of sample centroids, the overlap test

and contraction process are unnecessary to be used in phase 1 at the highest level of

granularity. This strategy leads to accelerating the training process of the proposed

method compared to other types of fuzzy min-max neural networks, especially in

large-sized datasets such as covtype or susy. These facts point to the effectiveness of

the pruning process and the usage of sample centroids on improving the performance

of the proposed approach in terms of both accuracy and training time.

7.3.4 Ability to Handling Missing Values

This experiment was conducted on two datasets containing many missing values,

i.e., PhysioNet MIT-BIH Arrhythmia and MoCap Hand Postures datasets. The

aim of this experiment is to demonstrate the ability to handle missing values of the

proposed method to preserve the uncertainty of input data without doing any pre-

processing steps. Three other training datasets were generated from the original data

by replacing missing values with the zero, mean, or median value of each feature.

Then, these values were used to fill in the missing values of corresponding features

in the testing and validation sets. The obtained results are presented in Table 7.8.

The predictive accuracy of the classifier trained on the datasets with missing values

cannot be superior to ones trained on the datasets imputed by the median, mean

or zero values. However, the training time is reduced, and the characteristic of

the proposed method is still preserved, in which the accuracy of the classifier is

maintained at high levels of abstraction, and its behavior is nearly the same on both

validation and testing sets. The replacement of missing values by other values is

usually biased and inflexible in real-world applications. The capability of deducing

directly from data with missing values ensures the maintenance of the online learning

property of the fuzzy min-max neural network on the incomplete input data.

7.3.5 Comparison to State-of-the-art Studies

The purpose of this section is to compare the proposed method with recent

studies of classification algorithms on large-sized datasets in physics and medical

diagnostics. The first experiment was performed on the susy dataset to distinguish
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Table 7.8 : The training time and the lowest error rates of the proposed method on

the datasets with missing values

Dataset Training time (s) minEV al minETest

Arrhythmia with replacing missing values

by zero values
53,100.2895 3.0762 (θ = 0.1) 3.5492 (θ = 0.1)

Arrhythmia with replacing missing values

by mean values
60,980.5110 2.6879 (θ = 0.1) 3.3848 (θ = 0.1)

Arrhythmia with replacing missing values

by median values
60,570.4315 2.7031 (θ = 0.1) 3.2980 (θ = 0.2)

Arrhythmia with missing values retained 58,188.8138 2.6955 (θ = 0.1) 3.1473 (θ = 0.1)

Postures with replacing missing values by

zero values
5,845.9722 6.6482 (θ = 0.1) 7.7529 (θ = 0.4)

Postures with replacing missing values by

mean values
5,343.0038 8.5370 (θ = 0.1) 9.7631 (θ = 0.3)

Postures with replacing missing values by

median values
4,914.4475 8.4089 (θ = 0.1) 9.9936 (θ = 0.3)

Postures with missing values retained 2,153.8121 14.5662 (θ = 0.4) 13.7900 (θ = 0.4)

between a signal process producing super-symmetric particles and a background

process. To attain this purpose, Baldi et al. (2014) compared the performance of

a deep neural network with boosted decision trees using the area under the curve

(AUC) metrics. In another study, Sakai et al. (2018) evaluated different methods

of AUC optimization in combination with support vector machines to enhance the

efficiency of the final predictive model. The AUC values of these studies together

with the proposed method are reported in Table 7.9. It can be seen that the proposed

approach overcomes all approaches in Sakai’s research, but it cannot outperform the

deep learning methods and boosted trees on the considered dataset.

The second experiment was conducted on a medical dataset (PhysioNet MIT-

BIH Arrhythmia) containing Electrocardiogram (ECG) signal used for the classifica-

tion of heartbeats. There are many studies on ECG heartbeat classification such as

deep residual convolution neural network (Kachuee et al. 2018), a 9-layer deep con-

volutional neural network on the augmentation of the original data (Acharya et al.

2017), combinations of a discrete wavelet transform with neural networks, SVM

(Martis et al. 2013), and random forest (Li and Zhou 2016). The PhysioNet MIT-
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Table 7.9 : The AUC value of the proposed method and other methods on the susy

dataset

Method AUC

Boosted decision tree (Baldi et al. 2014) 0.863

Deep neural network (Baldi et al. 2014) 0.876

Deep neural network with dropout (Baldi et al. 2014) 0.879

Positive-Negative and unlabeled data based AUC optimization (Sakai et al. 2018) 0.647

Semi-supervised rankboost based AUC optimization (Sakai et al. 2018) 0.709

Semi-supervised AUC-optimized logistic sigmoid (Sakai et al. 2018) 0.556

Optimum AUC with a generative model (Sakai et al. 2018) 0.577

He-MRHGRC (The proposed method) 0.799

Table 7.10 : The accuracy of the proposed method and other methods on the Phy-

sioNet MIT-BIH Arrhythmia dataset

Method Accuracy(%)

Deep residual Convolutional neural network (Kachuee et al. 2018) 93.4

Augmentation + Deep convolutional neural network (Acharya et al. 2017) 93.5

Discrete wavelet transform + SVM (Martis et al. 2013) 93.8

Discrete wavelet transform + NN (Martis et al. 2013) 94.52

Discrete wavelet transform + Random Forest (Li and Zhou 2016) 94.6

The proposed method on the dataset with the missing values 96.85

The proposed method on the dataset with zero padding 96.45

BIH Arrhythmia dataset contains many missing values and above studies used the

zero padding mechanism for these values. The proposed method can directly handle

missing values without any imputations. The accuracy of the proposed method on

the datasets with missing values and zero paddings is shown in Table 7.10 along

with results taken from other studies. It is observed that the proposed approach

on the dataset including missing values outperforms all other methods considered.

From these comparisons, it can be concluded that the proposed method is extremely

competitive to other state-of-the-art studies published on real datasets.
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7.4 Summary

This chapter addressed the thesis Objective 4 shown in Section 1.2. A method

to construct classification models was presented based on multi-resolution hierarchi-

cal granular representations using hyperbox fuzzy sets. The proposed approach can

maintain good classification accuracy at high abstraction levels with a low number

of hyperboxes. The best classifier on the validation set usually produces the best

predictive results on unseen data as well. One of the interesting characteristics of

the proposed method is the capability of handling missing values without the need

for missing values imputation. This property makes it flexible for real-world ap-

plications, where the data incompleteness usually occurs. In general, the proposed

method outperformed other typical types of fuzzy min-max neural networks using

the contraction process for dealing with overlapping regions in terms of both ac-

curacy and training time. Furthermore, the proposed technique can be scaled to

large-sized datasets based on the parallel execution of the hyperbox building pro-

cess at the highest level of granularity to form core hyperboxes from sample points

rapidly. These hyperboxes are then refined at higher abstraction levels to reduce

the complexity and maintain consistent predictive performance.



206

Chapter 8

Ensemble Learning using Hyperboxed-based

Classifiers

The learning algorithms proposed from Chapters 4 to 7 focus on building effective

single predictive models. However, as shown in the literature, ensembles usually

achieve better performance on classification problems than a single classifier (Zhang

and Ma 2012). Another reason that ensemble models are commonly used in practice

over a single model is their robustness in terms of the mean performance, because

the ensemble models may reduce the dispersion of the predictive outcomes on dif-

ferent parts of training data in comparison to the use of a single learning model

(Hastie et al. 2009). From these benefits, it is desired to build an effective ensem-

ble model based on single hyperbox-based models. Therefore, this chapter presents

a simple yet powerful ensemble classifier, called Random Hyperboxes, constructed

from individual hyperbox-based classifiers trained on the random subsets of sample

and feature spaces of the training set. A generalization error bound of the proposed

classifier is also introduced based on the strength of the individual hyperbox-based

classifiers as well as the correlation among them. The effectiveness of the proposed

classifier is analyzed using a carefully selected illustrative example and compared

empirically with other popular single and ensemble classifiers via 20 datasets using

statistical testing methods. Finally, the existing issues related to the generalization

error bounds of the real datasets are identified, and the potential research directions

are informed. The main content of this chapter is taken from the following paper

(Khuat and Gabrys 2021c):

• Thanh Tung Khuat, and Bogdan Gabrys, “Random hyperboxes,” IEEE

Transactions on Neural Networks and Learning Systems (Early Access), 2021,

doi: 10.1109/TNNLS.2021.3104896.

https://doi.org/10.1109/TNNLS.2021.3104896
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8.1 Introduction

A random Hyperboxes (RH) classifier is an ensemble model containing many

individual hyperbox-based learners, e.g., GFMMNNs, trained on random subsets of

both instances and feature spaces. One of the key characteristics of hyperbox-based

classifiers is the single-pass through the training data learning ability. Based on this

incremental learning ability, new data and classes can be added to the model without

retraining the whole network. Another interesting characteristic of hyperbox-based

models is their interpretability thanks to the human understandable rule sets which

can be extracted directly or indirectly from hyperboxes. Interpretability is one of

the key requirements when applying machine learning algorithms to high-stakes

applications such as medical diagnostics, financial investment, self-driving systems,

and criminal justice (Rudin 2019).

The random hyperboxes model can be categorized into the family of ensemble

classifiers, which build many base estimators and then combine them to create a

final model. It is well-known that ensemble models are usually much more accu-

rate than their base learners (Biau et al. 2008). There are two main methods to

construct an ensemble model when using resampling methods and the same type

of base learners. The first one aims to build many independent or low correlation

individual estimators and combining their predictive outputs using majority voting

or averaging approach. The representative models for this group include Bagging

(Breiman 1996) and Random Forests (Breiman 2001). The second paradigm con-

sists of algorithms building base estimators in a sequential manner, where the newly

added learner tries to correct errors generated by previous classifiers. Adaptive

boosting (Adaboost) (Freund and Schapire 1997) and Gradient Boosting Machines

(Friedman 2001) are typical algorithms under the boosting framework. Extreme

Gradient Boosting (XGBoost) (Chen and Guestrin 2016) and LightGBM (Ke et al.

2017) are two recent effective and scalable implementations of the gradient boosting

algorithm.

The proposed random hyperboxes classifier belongs to the first group because

it shares the same principle with the bagging, i.e., using individual hyperbox-based
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learners with low correlation and combining their outputs by the majority voting.

As shown in a recent survey on hyperbox-based machine learning algorithms (Khuat

et al. 2021b) and in Chapter 2, there has been only one study (Gabrys 2002b) related

to the use of bagging techniques with hyperbox-based models as base learners and

another one which has been concerned with method independent learning approaches

for constructing either ensembles or individual hyperbox-based classifiers (Gabrys

2004). In their work, after training individual hyperbox-based estimators on different

subsets of the training sets, the resulting base learners are combined at the decision

level using the majority voting or averaging of membership values or combined at the

model level into a single model. However, as it has been frequently shown resampling

methods used with bagging like algorithms operating only in the sample space can

generate a limited level of diversity amongst the base classifiers trained in this way.

As the diversity amongst the base learners is of key importance (Ruta and Gabrys

2005), there is another mechanism needed for making the resulting ensembles more

effective and well performing. Based on Lemma 8.1 (the proof of this lemma can

be found in the Appendix F), adapted from (Hastie et al. 2009), it can be seen

that the high correlation between base learners leads to a high testing error for the

average classifier. To cope with this problem, the correlation should be lowered

but without significantly increasing the variance σ2 of individual hyperbox-based

learners by using only a subset of features when building base estimators. This

fact can be achieved by utilizing feature subsets selected randomly for training each

base classifier besides the subsets of samples. The use of a subsampling technique

for both sample and feature spaces to construct the ensemble model constitutes

the core principle of the random hyperboxes classifier. From surveys on hyperbox-

based machine learning algorithms (Khuat et al. 2021b) and fuzzy min-max neural

networks (Al Sayaydeh et al. 2019), it can be observed that this study is the first

work using randomized hyperbox estimators trained on subsets of both samples and

features to construct an ensemble model.

Lemma 8.1. Given M identically distributed random variables (not necessarily in-

dependent) with the variance of each variable σ2 and positive pairwise correlation ρ,

the variance of the average random variable is:
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ρ · σ2 +
1− ρ
M
· σ2 (8.1)

The use of subsets of features in building classifiers results in many effective

models such as randomized trees on geometric feature selection (Amit and Geman

1997), the random subspace-based decision forests (Tin Kam Ho 1998), and random

forests (Breiman 2001). Recently, there have been several studies focusing on em-

ploying random projections of the feature vectors into a lower-dimensional space to

form training data for classifiers such as Fisher’s linear discriminant (Durrant and

Kabán 2015), random projection neural network (Andras 2018), or a general frame-

work of random-projection based ensemble models (Cannings and Samworth 2017).

These results have provided further motivation for the proposed random hyperboxes

classifier.

One of the interesting characteristics of the proposed classifier is that it is easy

to scale with large-sized training sets because each base learner can be constructed

independently, so the learning process may be parallelized easily. The contributions

in this chapter can be summarized as follows:

• A new ensemble classifier built from individual hyperbox-based learners is

proposed using random subsets of both sample and feature spaces.

• A generalization error bound of the RH classifier is derived based on the

strength and correlation between base learners.

• The effectiveness of the RH classifier has been analyzed in comparison to its

base learners concerning the decrease in the variance of the ensemble model

and the increase in the accuracy. Extensive experiments have been conducted

on 20 datasets to compare the performance of the proposed method to other

FMNNs as well as popular single and ensemble classifiers.

• The generalization error bounds on the real datasets are discussed and the

open research directions are informed.
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8.2 Random Hyperboxes Model

8.2.1 Formal Description

Let us denote by TN = {(Xi, ci)}Ni=1 a training data where Xi ∈ X ⊂ Rn is a n-

dimensional vector of observations (i.e. features) and ci ∈ C, C is a set of categorical

variables denoting classes to which the observations fall. Given an input X, the

main goal is to build an ensemble classifier which predicts class c from X using the

training data TN .

Please note that for the theoretical considerations of the proposed algorithm

covered in this section and the discussion of the convergence properties and the

derivation of generalisation error bounds presented in Section 8.2.3, an assumption

is made that the observations are independent and identically distributed (i.i.d.)

random variables.

A random hyperboxes model with M hyperbox-based learners is a classifier in-

cluding a set of randomized base hyperbox models h(X,Φ1), . . . , h(X,ΦM), where

Φ1, . . . ,ΦM are i.i.d. random vectors of a randomizing vector Φ, independent con-

ditionally on X, C, and TN . Each individual hyperbox-based learner h(X,Φi) is

constructed using the training set TN and a random vector Φi. Φi introduces the

randomness to the building process of hyperbox-based learners including the deter-

mining of a subset TΦi of the full training data TN as well as determining a subset of

features XΦi used. After a large number of hyperbox-based learners genereated, the

random hyperboxes estimator takes the class with most votes among base learners

as its predictive result. Formally, the definition of the random hyperboxes classifier

can be stated as follows:

Definition 8.1. A random hyperboxes model is a classifier including a set of hyperbox-

based learners {h(X,Φi) : i = 1, . . . ,M}, where {Φi} are independent and identically

distributed random vectors of a model random vector Φ independent conditionally

on sample space (X, C) and the training set TN . Each hyperbox-based learner gives

a unit vote based on the class of the hyperbox with the maximum membership degree

with respect to the input pattern X. The predictive result of the random hyperboxes
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model is the aggregation of predictive results from its base learners using a majority

voting method.

In particular, the predictive class (ck ∈ C) with respect to input data X of a

random hyperboxes classifier including M base learners (let Φ(M) = {Φ1, . . . ,ΦM})

can be shown as follows:

h(X,Φ(M)) = argmax
ck∈C

1

M

M∑
i=1

1(h(X,Φi) = ck) (8.2)

where 1(·) is the indicator function. According to the strong law of large num-

bers, when the number of base learners increases, it is almost surely to obtain

lim
M→+∞

h(X,Φ(M)) = h(X,Φ), where h(X,Φ) = argmax
ck∈C

EΦ[1(h(X,Φ) = ck)] (Here

EΦ denotes the expectation with regard to the random variable Φ).

Algorithm 8.1 Training algorithm of the Random hyperboxes
Input: training set TN , sampling rate for samples rs, maximum number of used features mf , number of base

estimators M , maximum hyperbox size θ, sensitivity parameter γ

Output: A Random Hyperboxes model H

1: i = 1; H← ∅

2: for i ≤ m do

3: Tl ← Perform subsampling on TN with rate rs

4: p← Generate a uniform random number in the range of [1,mf ]

5: T (p)
l ← Random sampling p features of Tl

6: hi ← IOL-GFMM(T (p)
l , γ, θ)

7: H← H ∪ hi
8: i = i+ 1

9: end for

10: return H

The basic steps of the building process of the random hyperboxes classifier are

shown in Algorithm 8.1. Each random hyperbox-based learner h(X,Φ) is formed as

follows. A subset Tl (line 3 ) including l < N samples is randomly selected from the

full training data TN using subsampling method without replacement under weak

assumptions l → 0 and rs = l/N → 0 as N →∞. According to (Politis et al. 1999),

under the weak convergence hypothesis, the sampling distributions of Tl and TN
should be close, and they will converge to the true unknown distribution of whole
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sample space. After that, p (1 ≤ p ≤ mf ≤ n) features from n features of Tl (line

4 ) will be selected at uniformly random to form a training set T (p)
l for h(X,Φ) (line

5 ), where mf is the maximum features used for each base learner. There are many

learning algorithms which could be used to train the base hyperbox-based classifier

h(X,Φ) on T
(p)
l (line 6 ). This study uses the IOL-GFMM as presented in Chapter

4 to build the base estimators. It is noted that the base model h(X,Φ) is trained

on only p features of TN , so in the classification step, h(X,Φ) only makes prediction

using the same p features with respect to the unseen sample X. The learning and

classification steps for each base learner are kept the same as in the IOL-GFMM

algorithm. The above process is repeated M times to build M base learners for the

random hyperboxes model H.

8.2.2 Time Complexity

Based on Algorithm 8.1, it is easily observed that the time complexity of a

random hyperboxes model depends mainly on the time complexity of the training

process for each base learner. As discussed in Chapter 4, the time complexity

of the IOL-GFMM algorithm trained on a dataset containing N samples with n

features is O(N · K ·R · n), where K is the average number of expandable hyperbox

candidates and R is the average number of hyperboxes representing classes different

from the input pattern class for each iteration in the training process. For the

random hyperboxes model, each base learner is trained on only l < N samples with

the maximum mf < n features. Therefore, the time complexity of each base learner

in the worst case is O(l · K · R · mf ). It is required to build M base learners for

a random hyperboxes classifier. As a result, if the base learners are sequentially

constructed, the time complexity of training a random hyperboxes model in the

worst case is O(M · l · K · R ·mf ).

8.2.3 Properties of the Random Hyperboxes

The Convergence of the Random Hyperboxes Model

Let X be a random sample, drawn from the sample space, to be classified with

true class c. Let TN be a random training set drawn i.i.d. from the true distribution
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of sample space (X, C). Given an ensemble of M base learners h1(X), . . . , hM(X),

where hi(X) ≡ h(X,Φi), a margin function of a random hyperboxes model with M

base estimators for an input sample X can be defined as Eq. (8.3):

M(X, c) =
1

M

M∑
i=1

1(hi(X) = c)−max
j 6=c

1

M

M∑
i=1

1(hi(X) = j) (8.3)

where 1(·) is the indicator function.

Remark 8.1. The margin can be considered as a confidence measure with respect to

the classification result of the random hyperboxes model. A large margin increases

the confidence in predictive results for observations and vice versa.

Based on the above margin function, the generation error of the random hyper-

boxes model is defined as follows:

Definition 8.2. The generalization error is the probability PX,C measured in the

sample space (X, C) that gives a negative margin: E = PX,C(M(X, c) < 0)

Lemma 8.2. When the number of base estimators increases (M → ∞) and base

estimators are independent, for almost surely all i.i.d. random vectors Φ1,Φ2, . . ., the

margin function for a random hyperboxes model M(X, c) at each input X converges

to:

M∗(X, c) = PΦ(h(X,Φ) = c)−max
j 6=c

PΦ(h(X,Φ) = j) (8.4)

The proof of Lemma 8.2 can be found in the Appendix F.2. From Definition 8.2

and Lemma 8.2, the following theorem for the convergence of generalization error

can be achieved:

Theorem 8.1. When the number of base learners increases (M → ∞), for almost

surely all random vectors Φ1,Φ2, . . ., the generalization error E converges to: E∗ =

PX,C [M∗(X, c) < 0]

This theorem explains that the random hyperboxes model does not overfit when

more base learners are added to the model if hyperbox-based learners are indepen-

dent and under the i.i.d. assumption. In the next subsection, the upper bound of

the generalization error will be derived.
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Generalization Error Bound

Based on Lemma 8.1, it can be observed that to decrease the variance of the

average classifier, it is necessary to reduce the correlation of base learners. However,

if the correlation decreases, the variance of base learners usually increases, and it

makes the reduction of the prediction error harder. The correlation among base

learners can be easily decreased by increasing base models’ randomness. However,

in this way the variance of the base learners will also be increased. Therefore, it

is expected not to let the variance increase too fast. To cope with this issue, the

change in the generalization error bound can be inspected and monitored.

Instead of having a fixed number of base estimators M , assuming that a fixed

probability distribution is given for the random vector Φ from which base models

are constructed. Similarly to random forests (Breiman 2001), the strength of the

random hyperbox model can be defined based on the limit of the margin function

as follows:

Definition 8.3. The strength of the random hyperboxes model is defined as:

S = EX,CM∗(X, c) (8.5)

where EX,C is the expectation through the (X, C) space. Strength can be con-

sidered as a fitness measure representing how accurate, on average, the individual

hyperbox-based estimators generated from the model’s random vector Φ are.

Assuming that S > 0, according to Chebyshev’s inequality, one has:

E∗ = PX,C [M∗(X, c) < 0] ≤ PX,C [S −M∗(X, c) ≥ S]

= PX,C [|M∗(X, c)− S| ≥ S] ≤
VarX,C(M∗(X, c))

S2

(8.6)

This is a weak upper bound of the generalization error, and it indicates that the

prediction error is always lower than an explicit but unknown limit. The value of S
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can be estimated over the training set TN as follows:

S =
1

N

N∑
i=1

M(Xi, ci)

=
1

NM

N∑
i=1

( M∑
k=1

1(hk(Xi) = ci)−max
j 6=ci

M∑
k=1

1(hk(Xi) = j)
) (8.7)

Let J(X, c) = argmax
j 6=c

PΦ(h(X,Φ) = j) be the class j leading to the most

incorrect classification of base learners with respect to the input X. Then, a raw

margin function can be defined for each base learner at each input X as follows:

Definition 8.4. The raw margin function is defined by:

R(Φ) = R(X, c,Φ) = 1(h(X,Φ) = c)− 1(h(X,Φ) = J(X, c)) (8.8)

Following from the above definition,

M∗(X, c) = PΦ(h(X,Φ) = c)−PΦ(h(X,Φ) = J(X, c))

= EΦ [1(h(X,Φ) = c)− 1(h(X,Φ) = J(X, c))]

= EΦR(Φ)

(8.9)

It means that the limit of the margin values is the expectation of raw margin values

computed over all realizations of Φ.

From the above raw margin function, the correlation between two hyperbox-

based learners h(X,Φi) and h(X,Φj) generated from two i.i.d. random vectors Φi

and Φj can now be defined as follows:

Definition 8.5. The correlation between two hyperbox-based learners h(X,Φi) and

h(X,Φj) of a random hyperboxes model can be calculated from the raw margin func-

tion through all observations as follows:

ρX,C(Φi,Φj) =
CovX,C(R(Φi),R(Φj))

σX,C(R(Φi))σX,C(R(Φj))
(8.10)

where Cov is the covariance, σX,C(R(Φi)) denotes the standard deviation of

R(Φi), holding Φi fixed, computed over observations.
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Generally, the average correlation between base learners in the random hyper-

boxes models is computed through all pairs of two i.i.d. random vectors Φ and Φ′

as follows:

ρ = EΦ,Φ′ [ρX,C(Φ,Φ
′)] (8.11)

From the average correlation between base learners and the strength S, the

following theorem for the upper bound of the generalization error is given as below.

The proof of Theorem 8.2 can be found in the Appendix F.3.

Theorem 8.2. An upper bound of the generalization error for the random hyper-

boxes model can be estimated from the strength of base learners and average corre-

lation between base learners as follows:

E∗ ≤ ρ
( 1

S2
− 1
)

(8.12)

8.3 Experimental Results

It is noted that the derivations and proofs in the previous section have been

carried out under the i.i.d. assumption which in practice is difficult to verify and

is very often not satisfied. In this section and the supplementary materials in the

Appendix F, therefore, extensive bench-marking and experimental evaluation of the

proposed method have been conducted to also verify its practical characteristics and

performance. Experimental datasets used in this study were real-world multi-class

problems and so they usually show the class imbalanced properties. As a result,

the weighted-F1 measure has been used as a more suitable and less biased perfor-

mance assessment measure than the often used classification accuracy. This measure

was effectively used in many recent studies to assess the classification performance

of predictive models on many practical multi-class imbalanced datasets (Ahmedt-

Aristizabal et al. 2020; Shafaei et al. 2020; Bai et al. 2018; Canzanese et al. 2015).

Weighted-F1 score is the average F1 score of each class weighted by the support

which is the number of patterns of each class. Formally, the weighted-F1 score is
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defined as Eq. (8.13):

Weighted F1 =

|C|∑
i=1

nci

nt
·

2 · precisioni · recalli
precisioni + recalli

(8.13)

where |C| is the number of classes, nt is the total number of testing samples, and nci

is the number of samples for the i-th class in the testing set.

8.3.1 Analyzing the Random Hyperboxes Classifier

The Decrease in the Variance Compared to Base Learners

To conduct this experiment, six datasets with diversity in the numbers of sam-

ples, features, and classes were used. All of the experimental results are shown in

subsection F.4.1 in the Appendix F. This section only illustrates the results for a

dataset of the one-hundred plant species leaves for margin (Mallah et al. 2013).

This dataset includes 1600 samples with 64 features and 100 classes. Ten times re-

peated 4-fold cross-validation were performed to evaluate the ensemble model with

100 base learners. Therefore, there are 4000 base learners using the IOL-GFMM

algorithm and 40 random hyperboxes models generated. The variance values in

terms of weighted-F1 scores of base learners and the random hyperboxes models are

shown in Figure 8.1. The variance values of other datasets are shown in Figure F.1

in the Appendix F. These results confirmed that the variance of random hyperboxes

models using simple majority voting is significantly reduced compared to their base

learners, so its classification accuracy is also higher than that of base estimators.

In this experiment, the maximum number of used features mf = 2
√
n = 16

was set (for the plant species leaves margin dataset) and 50% of the training data

samples were randomly selected to train each base learner. The probability of the

number of features, p, used to build the 4000 base learners is shown in Figure F.2

in the Appendix F. The importance scores of features through all base learners can

be identified using the used probability of each feature, as shown in Figure F.3.

Based on the probability that each feature is used in 4000 base learners, the

contribution of the combination of features to the performance of each classifier can

be determined. Therefore, a single model has been trained by the IOL-GFMM algo-
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Figure 8.1 : The variances of RH models and their base learners (plant species leaves

margin dataset).

rithm using top-K most used features (K = 1, . . . , n) (n = 64 for the plant species

leaves margin dataset) in each iteration. Figure 8.2 shows the average weighted-

F1 scores for 40 testing folds (10 times repeated 4-fold cross-validation) for each

top-K of the most often used features in the plant species leaves margin dataset.

The results for the other datasets can be found in Figure F.4 in the Appendix F.

It can be seen that the single model usually achieves the best performance if it is

trained on all features. However, by using the random hyperboxes method with

base learners trained on only a maximum of mf features, a higher accuracy than

the single model trained on all features can be obtained. Furthermore, in several

datasets such as ringnorm and connectionist bench sonar, the best performance is

often obtained when using a subset of the most crucial features. It is due to the

fact that the redundant features can prevent the single GFMMNN from learning

the true distribution of the underlying data with a given finite number of training

samples. Therefore, the use of the random hyperboxes model of which base learners

are trained on a subset of features can capture the data distribution more effectively

and achieve better classification performance compared to the case of employing of

a single GFMMNN.

In general, the RH classifier can achieve much better performance compared to

the single GFMMNN using the IOL-GFMM algorithm with a full feature space,
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Figure 8.2 : Average weighted-F1 scores through 40 testing folds of a single model us-

ing training sets with top-k most used features (plant species leaves margin dataset).

especially for very high dimensional datasets. These results are shown in subsection

F.4.2 in the Appendix F.

The Roles of the Number of Base Learners and Maximum Number of

Used Features

This experiment is to assess the sensitivity of hyper-parameters such as the num-

ber of base learners and the maximum number of used features on the performance

of the random hyperboxes model. Eight datasets with diversity in the numbers of

samples, classes, and features were used for this purpose. All of the empirical results

can be found in subsection F.4.3 in the Appendix F. This section only illustrates the

outcomes of the same dataset used in subsection 8.3.1. To evaluate the impact of

the number of base learners on the performance of the random hyperboxes model,

the maximum number of used features mf = 2 ·
√
n (mf = 16 in this case) and the

maximum hyperbox size of each base learner θ = 0.1 were kept unchanged, while

50% of samples were randomly selected to train each base estimator. The number

of base learners is set from 5 to 200 with a step of 5. Figure 8.3 shows the average

weighted-F1 scores over 10 times repeated 4-fold cross-validation at each threshold

for the plant species leaves margin dataset. The results for the other datasets can
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be found in Figure F.7 in the Appendix F. It can be observed that the performance

of the random hyperboxes classifier is not reduced as more base learners are added.

These figures confirmed that the random hyperboxes classifier does not overfit when

adding more base learners.
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Figure 8.3 : The change in the average weighted-F1 scores when increasing the

number of base learners (plant species leaves margin dataset).
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Figure 8.4 : The change in the average weighted-F1 scores when increasing the

maximum number of used dimensions (plant species leaves margin dataset).

To assess the influence of the maximum number of used features mf , the number

of base learners M = 100, θ = 0.1, rs = 0.5 were kept unchanged, and the maximum



221

0 10 20 30 40 50 60 70
Maximum number of used features

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Av
er

ag
e 

co
rre

la
tio

n 
sc

or
es

 b
et

w
ee

n 
ba

se
 le

ar
ne

rs plant_species_leaves_margin dataset

Figure 8.5 : Average correlation scores between base learners when increasing the

maximum number of used dimensions (plant species leaves margin dataset).

numbers of used features from 1 to n (n = 64 in this case) were changed. Figure 8.4

depicts the average weighted-F1 scores for 10 times repeated 4-fold cross-validation

at each value of the maximum number of used features for the plant species leaves

margin dataset. The outcomes for the remaining datasets are shown in Figure F.8

in the Appendix F.

It can be easily observed that the overall trend when increasing the maximum

number of used features is that the accuracy of the random hyperboxes classifier

only increases to a certain threshold, and then its accuracy will decrease. It is due

to the fact that the correlation between base learners will be higher when using

too many features for each base learner. In contrast, if too few features are used,

the strength of each base learner gets a low value, so the error of the ensemble

model will increase. This fact confirms that the maximum number of used features

is an important parameter, which needs to be carefully selected to achieve the high

accuracy for the random hyperboxes classifier. To demonstrate the increase of the

correlation between base learners when many features are used for each of the base

learners, the average correlation scores were computed (using Eq. (8.11)) of all

base learners generated from 10 times repeated 4-fold cross-validation on the plant
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species leaves margin dataset and based on the testing prediction results. In this

experiment, all training samples were used to train base learners aiming to eliminate

the impact of the numbers of used samples on the correlation score. Therefore, the

correlation scores, in this case, are only impacted by the maximum number of used

features. Figure 8.5 shows the average correlation scores for 100 base learners trained

and evaluated within 40 cross-validatory iterations.

The Impact of the Maximum Hyperbox Size Parameter

The experimental results in Chapters 3 and 4 indicated that the GFMMNN’s

classification performance usually decreases when increasing the values of the maxi-

mum hyperbox size (θ). Therefore, in this section, the impact of θ is assessed on the

classification performance of the RH models. The number of base learners M = 100,

mf = 2
√
n, rs = 0.5 were kept unchanged, while the values of θ were changed from

0.1 to 0.7 with a step of 0.1. This experiment was conducted on eight datasets with

a diversity in numbers of samples, features, and classes.

Figure 8.6 describes the average weighted-F1 scores over 10 times repeated 4-fold

cross-validation at each threshold of θ for the plant species leaves margin dataset.

The results for the other datasets can be found in Figure F.9 in the Appendix F. In

most of the datasets (six out of eight datasets), the classification performance of the

RH models slightly decreased when increasing the values of θ, while the remaining

two datasets (e.g., plant species leaves margin in Fig. 8.6) only slightly increased in

the classification performance.

Generally, it can be seen that the performance of the RH models is less impacted

by the choice of the values of θ than other single hyperbox-based classifiers (as shown

in subsection 8.3.2), and the difference in the classification performance between

different values of θ is usually smaller than 5%. This relative insensitivity to the

choice of hyper-parameter θ can be regarded as additional advantage of RH method.
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Figure 8.6 : The change in the average weighted-F1 scores when increasing the

maximum hyperbox size (plant species leaves margin dataset).

8.3.2 Comparing the Performance of the Random Hyperboxes to Other

Classifiers

The datasets used and parameter settings for models are presented in subsection

F.4.4 in the Appendix F. The random hyperboxes model is built based on a subset

of features, and thus it is more appropriate for datasets with high dimensionality.

Therefore, most of datasets used in this chapter have a high number of features

and taken from the datasets employed in Chapter 6. The following results are the

average weighted-F1 scores using 10 times repeated 4-fold cross-validation. In each

iteration, three folds were used for training and hyper-parameter tuning (if used),

and one remaining fold was used as a testing set.

A Comparison of the Random Hyperboxes With Other FMNNs

This experiment compares the RH model with FMNN (Simpson 1992), online

learning version of GFMMNN (Onln-GFMM) (Gabrys and Bargiela 2000), agglom-

erative learning algorithm version 2 of GFMMNN (AGGLO-2) (Gabrys 2002a), com-

bination of Onln-GFMM at θ = 0.05 and AGGLO-2 (Gabrys 2002b), IOL-GFMM

(Khuat et al. 2020), EFMNN (Mohammed and Lim 2015), KNEFMNN (Mohammed
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and Lim 2017a), and RFMNN (Al Sayaydeh et al. 2020). The classification accuracy

results of fuzzy min-max neural networks at low values of θ are usually better than

those at high values of θ (as presented in Chapter 3). Therefore, in this experiment,

the RH model will be compared with other FMNNs using θ = 0.1 and θ = 0.7. For

the RH model, mf = 2
√
n, rs = 0.5, and M = 100 were set up. All of these fuzzy

min-max neural networks have been implemented in Python.

The average weighted-F1 scores of classifiers using 10 times repeated 4-fold cross-

validation are shown in Table 8.1 for the maximum hyperbox size θ = 0.1 and

Table 8.2 for θ = 0.7. The best result for each dataset is highlighted in bold in

the respective Tables. To facilitate the process of evaluating the performance and

performing statistical testing, the performance of classifiers on each dataset is ranked

with the best classifier with the highest average weighted-F1 score ranked first, and

the next best performing classifier ranked second and so on. The classifiers with the

same average weighted-F1 scores are assigned the average value of their ranks.

Figure 8.7 summarizes these results by comparing the results of the RH clas-

sifier with the best values of other FMNNs. It can be seen that in both subplots

most points are located above the diagonal line. In addition, the random hyper-

boxes classifier usually obtains the highest average weighted-F1 scores on almost

all considered datasets. These figures illustrate the efficiency and robustness of the

random hyperboxes for both low and high thresholds of θ. It can also be seen that

the random hyperboxes classifier achieves the best rank for both high and low values

of θ. Its average ranks are nearly twice as low as those of the second-best classifiers.

These figures show the superior performance of the RH classifier in comparison to

other types of fuzzy min-max neural networks.

Using the Friedman rank-sum test (Friedman 1940), the F-distribution value

FF = 8.0166 can be computed from the average ranks of models at θ = 0.1. Since

the critical value of F (8, 152) for the significance level ε = 0.05 is 1.9998, the null

hypothesis is rejected. It means that there are significant differences between the

average weighted-F1 scores of these models. To further compare the peformance of

the RH model to other FMNNs at θ = 0.1, the Critical Difference (CD) diagram
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Figure 8.7 : Comparison of average weighted-F1 scores of the random hyperboxes

and the best value from single FMNNs.

with Bonferroni-Dunn test (Demsar 2006) for ε = 0.05 is computed and shown in

Figure 8.8.

CD = 2.359

9 8 7 6 5 4 3 2 1
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4.025 EFMNN
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6.275IOL-GFMM

6.65FMNN

Figure 8.8 : Critical difference diagram for the performance of the RH classifier and

other FMNNs (θ = 0.1).

Similarly, with results of average ranks at θ = 0.7, the F-distribution value can be

calculated using the Friedman test FF = 17.4406 > F (8, 152) = 1.9998. Therefore,

there are significant differences among models using θ = 0.7. By applying the

Bonferroni-Dunn test, the CD diagram can be drawn as in Figure 8.9.

It can be seen that at the low value of θ, the RH classifier is significantly better
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Table 8.1 : The average weighted-F1 scores of the random hyperboxes and other

fuzzy min-max neural networks (θ = 0.1)

ID Dataset RH
IOL-

GFMM

Onln-

GFMM
FMNN EFMNN

KN

EFMNN RFMNN
AGGLO-

2

Onln-

GFMM

+

AGGLO-

2

1
Balance

scale
0.84976 0.85166 0.78643 0.75247 0.78619 0.78619 0.78619 0.85332 0.85166

2

banknote

authentica-

tion

0.99723 0.99774 0.99774 0.99854 0.99891 0.99884 0.99898 0.99796 0.9976

3
blood

transfusion
0.71903 0.7089 0.66383 0.68116 0.67464 0.66669 0.66774 0.71737 0.6728

4

breast

cancer

wisconsin

0.96807 0.94863 0.95227 0.96502 0.96281 0.96281 0.96281 0.94758 0.94863

5

Breast-

Cancer-

Coimbra

0.69199 0.68361 0.6722 0.64681 0.66408 0.66408 0.66408 0.6722 0.68361

6

connection-

ist bench

sonar

0.8528 0.79679 0.79725 0.81323 0.83993 0.83993 0.83993 0.79725 0.79679

7 haberman 0.66515 0.64908 0.63228 0.62469 0.64068 0.63899 0.64002 0.65031 0.65209

8 heart 0.82781 0.73711 0.76455 0.80191 0.78621 0.78621 0.78621 0.75117 0.73711

9
movement

libras
0.82799 0.81226 0.8152 0.80345 0.81816 0.8164 0.81816 0.8152 0.81251

10
pima

diabetes
0.71234 0.6999 0.69686 0.67605 0.70184 0.70664 0.70184 0.69394 0.6989

11

plant species

leaves

margin

0.74348 0.58294 0.58413 0.69625 0.7712 0.7712 0.7712 0.57974 0.58294

12
plant species

leaves shape
0.60077 0.5552 0.55773 0.5003 0.50534 0.53708 0.49769 0.57325 0.57101

13 ringnorm 0.94761 0.61643 0.61425 0.78111 0.6391 0.5809 0.6391 0.61594 0.61924

14
landsat

satellite
0.89232 0.88035 0.88104 0.82841 0.87867 0.88315 0.87984 0.88145 0.88177

15 twonorm 0.96986 0.93642 0.93703 0.94191 0.94523 0.94523 0.94523 0.93703 0.93642

16
vehicle

silhouettes
0.70157 0.66154 0.66417 0.66377 0.68376 0.67881 0.68376 0.66505 0.66419

17
vertebral

column
0.7743 0.72024 0.74241 0.73968 0.74319 0.74631 0.74283 0.75287 0.72582

18 vowel 0.96492 0.96504 0.96333 0.95463 0.96909 0.96818 0.96909 0.96312 0.9655

19 waveform 0.83075 0.75629 0.75849 0.75236 0.76704 0.76704 0.76704 0.75838 0.75629

20

wireless

indoor

localization

0.98361 0.97906 0.97937 0.9779 0.9811 0.9841 0.981 0.97831 0.97831

Average rank 2 6.275 6.175 6.65 4.025 4.25 4.275 5.425 5.925

than Onln-GFMM, IOL-GFMM, FMNN, AGGLO-2, and Onln-GFMM + AGGLO2

in terms of the average weighted-F1 scores. However, its performance still has no

significant difference compared to EFMNN, KNEFMNN, and RFMNN, although the

average ranking of the RH classifier is lowest among nine fuzzy min-max models over
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Table 8.2 : The average weighted-F1 scores of the random hyperboxes and other

fuzzy min-max neural networks (θ = 0.7)

ID Dataset RH
IOL-

GFMM

Onln-

GFMM
FMNN EFMNN

KNEFMNNRFMNN
AGGLO-

2

Onln-

GFMM

+

AGGLO-

2

1
Balance

scale
0.84206 0.72088 0.72088 0.65996 0.74475 0.71665 0.78225 0.83147 0.82594

2

banknote

authentica-

tion

0.95216 0.7017 0.75738 0.84161 0.74829 0.76439 0.82741 0.9949 0.99351

3
blood

transfusion
0.68629

0.71283
0.50747 0.51013 0.60178 0.59096 0.66797 0.70812 0.66711

4

breast

cancer

wisconsin

0.96644 0.96098 0.92804 0.91483 0.92646 0.9492 0.96119 0.95651 0.95757

5

Breast-

Cancer-

Coimbra

0.72403 0.61573 0.63197 0.55274 0.54407 0.64074 0.55574 0.6853 0.67133

6

connection-

ist bench

sonar

0.78649 0.75466 0.73908 0.55492 0.61079 0.71767 0.60349 0.76568 0.76265

7 haberman 0.6439 0.6666 0.64321 0.65691 0.62859 0.62292 0.64803 0.64683 0.62664

8 heart 0.81813 0.76232 0.78471 0.69063 0.78213 0.7959 0.78248 0.76214 0.75531

9
movement

libras
0.82251 0.73695 0.70277 0.56669 0.68259 0.7102 0.655 0.79195 0.79407

10
pima

diabetes
0.67864 0.67542 0.64567 0.62277 0.61957 0.64848 0.66615 0.67683 0.6853

11

plant species

leaves

margin

0.78233 0.643 0.648
0.79197

0.78218 0.78603 0.68474 0.6291 0.63016

12
plant species

leaves shape
0.6142 0.51384 0.44816 0.42757 0.43559 0.43559 0.44598 0.55561 0.56121

13 ringnorm 0.85772 0.77197 0.75873 0.81912 0.60252 0.70688 0.7151 0.86597 0.90358

14
landsat

satellite
0.86986 0.85073 0.68601 0.61078 0.54928 0.67686 0.77834 0.88479 0.88965

15 twonorm 0.97102 0.9153 0.78093 0.76907 0.81234 0.7598 0.74947 0.9583 0.95802

16
vehicle

silhouettes
0.69017 0.65234 0.56617 0.30581 0.51839 0.53064 0.56136 0.65224 0.64578

17
vertebral

column
0.77232 0.62315 0.7489 0.75078 0.74176 0.75121 0.71126 0.75619 0.75988

18 vowel 0.91093 0.86002 0.57575 0.44263 0.53349 0.5673 0.72508 0.92471 0.92902

19 waveform 0.8301 0.80398 0.74535 0.70421 0.71902 0.72766 0.54723 0.81008 0.80806

20

wireless

indoor

localization

0.98213 0.85241 0.92548 0.92129 0.84104 0.84739 0.84548 0.97823 0.97715

Average rank 1.85 4.55 5.85 7 7.275 6.125 5.95 3.05 3.35

20 considered datasets. With a high value of θ, the RH model is significantly better

than KNEFMNN, IOL-GFMM, Onln-GFMM, RFMNN, EFMNN, and FMNN. In

this case, however, there is no statistical difference in the performance among the

RH model, Onln-GFMM + AGGLO2 and AGGLO-2, although the performance of
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CD = 2.359

9 8 7 6 5 4 3 2 1

1.85 RH
3.05 AGGLO-2
3.35 Onln-GFMM + AGGLO-2
4.55 IOL-GFMM
5.85 Onln-GFMM

5.95RFMNN

6.125KNEFMNN

7FMNN

7.275EFMNN

Figure 8.9 : Critical difference diagram for the performance of the RH classifier and

other FMNNs (θ = 0.7).

the RH classifier outperforms those of Onln-GFMM + AGGLO2 and AGGLO-2.

A Comparison of the Random Hyperboxes to Other Ensemble Classi-

fiers

This experiment compares the perfomance of the random hyperboxes classifier

(with and without hyperparameter tuning) to other prevalent ensemble models in-

cluding Random Forest (Breiman 2001), Rotation Forest (Rodriguez et al. 2006),

XGBoost (Chen and Guestrin 2016), LightGBM (Ke et al. 2017), Gradient Boosting

(Friedman 2001), and ensemble of GFMMNNs using the IOL-GFMM algorithm at

the decision level (Ens-IOL-GFMM (DL)) and at the model level (Ens-IOL-GFMM

(ML)) (Gabrys 2002b). The hyperparameters of these models were tuned using the

settings presented in subsection F.4.4. The Ens-IOL-GFMM (DL) model was formed

by training many individual GFMMNNs using the IOL-GFMM algorithm with all

of the training features. Then, the predictive results of this model are aggregation

of predictions from all of its base learners using a majority voting mechanism. The

Ens-IOL-GFMM (ML) model also trains many base learners with all features using

the IOL-GFMM learning algorithm in the first step. Unlike the Ens-IOL-GFMM

(DL) model, however, first for all the resulting hyperboxes from all of these base

learners the undesired overlapping regions are eliminated before they are used as

input patterns to build a single GFMMNN adopting the IOL-GFMM.

The average weighted-F1 scores of classifiers obtained from 10 times repeated



229

Table 8.3 : The average weighted-F1 scores of the random hyperbox model and

other ensemble models

ID Dataset

Tuned

Ran-

dom

Forest

Tuned

Rota-

tion

Forest

Tuned

XG-

Boost

Tuned

Light-

GBM

Tuned

Gradi-

ent

Boost-

ing

Tuned

Ens-

IOL-

GFMM

(DL)

Tuned

Ens-

IOL-

GFMM

(ML)

Non-

Tuned

RH

Tuned

RH

1
Balance

scale
0.84657 0.8354 0.8734 0.92132 0.85399 0.85086 0.84168 0.84976 0.74308

2

banknote

authentica-

tion

0.99111 0.99388 0.99636 0.99417 0.99432 0.9984 0.99767 0.99723 0.99213

3
blood

transfusion
0.75383 0.74006 0.73982 0.7259 0.73938 0.74451 0.7176 0.71903 0.70569

4

breast

cancer

wisconsin

0.96947 0.96873 0.96484 0.96862 0.96802 0.9585 0.94801 0.96807 0.96455

5

Breast-

Cancer-

Coimbra

0.71956 0.68227 0.65512 0.6952 0.70325 0.67474 0.69184 0.69199 0.66304

6

connection-

ist bench

sonar

0.78173 0.81073 0.81911 0.84303 0.80998 0.80103 0.8061 0.8528 0.83608

7 haberman 0.68526 0.666 0.69473 0.69598 0.66856 0.65809 0.65013 0.66515 0.66565

8 heart 0.82876 0.81862 0.83217 0.83983 0.8219 0.74656 0.75032 0.82781 0.79963

9
movement

libras
0.76902 0.80929 0.74371 0.77936 0.70987 0.80231 0.82094 0.82799 0.82326

10
pima

diabetes
0.75671 0.73857 0.73753 0.73702 0.73593 0.71999 0.69793 0.71234 0.70386

11

plant species

leaves

margin

0.72804 0.63063 0.80826 0.81833 0.55679 0.61404 0.58517 0.74348 0.78007

12
plant species

leaves shape
0.52327 0.48445 0.56407 0.57754 0.4511 0.59155 0.58127 0.60077 0.61721

13 ringnorm 0.95029 0.92298 0.98059 0.98219 0.97848 0.61796 0.58931 0.94761 0.9688

14
landsat

satellite
0.89042 0.89798 0.91841 0.92102 0.91814 0.88653 0.88049 0.89232 0.89756

15 twonorm 0.971 0.967 0.97265 0.97267 0.97351 0.96516 0.93608 0.96986 0.97486

16
vehicle

silhouettes
0.73042 0.72433 0.75314 0.75702 0.75157 0.67201 0.66082 0.70157 0.70334

17
vertebral

column
0.83331 0.78491 0.8123 0.82625 0.82524 0.75397 0.74838 0.7743 0.74919

18 vowel 0.90091 0.91476 0.91602 0.92655 0.94053 0.95669 0.96234 0.96492 0.96633

19 waveform 0.85043 0.85038 0.85297 0.85667 0.85461 0.80326 0.75615 0.83075 0.8403

20

wireless

indoor

localization

0.98281 0.97651 0.9837 0.98289 0.9828 0.98243 0.9799 0.98361 0.9816

Average rank 4.6 5.6 3.85 2.85 4.65 6.25 7.2 4.55 5.45

4-fold cross-validation and their ranking are given in Table 8.3. It can be observed

that the average performance of the RH without hyperparameter tuning is much

better than the results of the tuned Rotation Forest and the ensemble models of IOL-

GFMM learners using all features in their training. It is also slightly better than the
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tuned Random Forest and the tuned Gradient Boosting, but the RH classifier cannot

outperform the tuned XGBoost and LightGBM models on 20 considered datasets.

In spite of using the same base learners and sampling method, the RH classifier is

much better than the Ens-IOL-GFMM with decision and model combination levels.

It is due to the fact that the random hyperboxes classifier uses only a subset of

features to train each base learner. This method reduces the correlation between

base learners, and so it leads to the reduction of the generalization error. These

empirical results are consistent with the theoretical results presented in subsection

8.2.3. However, it is also noted that the correlation is linked with variance, so

achieving a low correlation but high variance will not decrease the prediction error.

In addition, when reducing correlation by using a smaller number of features, it will

also increase the variance of each base learner. Therefore, to achieve the reduction

of prediction error, the correlation between base learners has to decrease faster than

the growth of the variance. This issue needs to be analyzed in more details in

the future study, especially the relationship between the maximum number of used

features and the number of base learners.

Based on their average rank for 20 datasets, Friedman rank-sum test can be

applied to calculate the F-distribution value FF = 5.4609 > F (8, 152) = 1.9998.

Therefore, there are differences in the performance of classifiers. Using the Bonferroni-

Dunn test, the CD diagram of the RH model and other ensemble classifiers is shown

in Figure 8.10.

CD = 2.359

9 8 7 6 5 4 3 2 1

2.85 Tuned Light GBM
3.85 Tuned XGBoost
4.55 Non-Tuned RH
4.6 Tuned Random Forest

4.65 Tuned Gradient Boosting

5.45Tuned RH

5.6Tuned Rotation Forest

6.25Tuned Ens-IOL-GFMM (DL)

7.2Tuned Ens-IOL-GFMM (ML)

Figure 8.10 : Critical difference diagram for the performance of the RH classifier

and other ensemble models.
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Although the average rank of over 20 datasets of the RH model without hy-

perparameter tuning is higher than XGBoost and Light GBM, there are no signif-

icant differences in the weighted-F1 values among Random hyperboxes, XGBoost,

LightGBM, Random Forest, and Gradient Boosting. In contrast, the RH classi-

fier (without hyperparameter tuning) is statistically better than ensemble at the

model level of IOL-GFMM base learners using full features and hyperparamenter

tuning on 20 considered datasets. It can also be seen that the performance of the

RH model without hyperparameter tuning outperforms that of the RH model using

hyperparameter tuning. This result indicates that the RH model can achieve high

performance without the need for tuning hyperparameters.

A Comparison of the Random Hyperboxes to Other Machine Learning

Algorithms

This experiment compares the RH classifier (with and without hyperparameter

tuning) to other popular machine learning algorithms including Decision Tree (DT)

(Breiman et al. 1984), Naive Bayes (NB) (Zhang 2004), support vector machine

(SVM) (Suykens and Vandewalle 1999), K-nearest neighbors (KNN) (Altman 1992),

and Linear Discriminant Analysis (LDA) (Ye 2007). Apart from LDA and NB

which do not have any hyperparameters, the remaining models were tuned using

the settings shown in section F.4.4 in the Appendix F. Table 8.4 shows the average

weighted-F1 scores and average rank of the random hyperboxes and other classifiers

for the 20 datasets.

Using Friedman rank-sum test, the F-distribution value FF = 2.6833 > F (6, 114) =

2.1791 can be obtained. Hence, there are statistical differences in the performance

among classifiers. Similarly, using the Bonferroni-Dunn test, the CD diagram in this

case is shown in Figure 8.11.

In this case, there is no statistically significant difference in the performance

between the RH model using default parameters and other learning algorithms using

hyperparameter tuning mechanisms on the considered datasets.
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Table 8.4 : The average weighted-F1 scores of the random hyperboxes and other

machine learning algorithms

ID Dataset

Tuned

Decision

trees

Tuned

SVM

Tuned

KNN
LDA

Naive

Bayes

Non-

Tuned

RH

Tuned

RH

1 Balance scale 0.75988 0.97229 0.84967 0.83725 0.86568 0.84976 0.74308

2
banknote

authentication
0.98193 0.98908 0.99854 0.97644 0.84001 0.99723 0.99213

3
blood

transfusion
0.75683 0.71825 0.75453 0.70104 0.70773 0.71903 0.70569

4
breast cancer

wisconsin
0.93955 0.95973 0.96679 0.9568 0.9594 0.96807 0.96455

5
BreastCancer-

Coimbra
0.68505 0.683 0.66734 0.69417 0.60585 0.69199 0.66304

6
connectionist

bench sonar
0.72193 0.87293 0.8236 0.74465 0.67663 0.8528 0.83608

7 haberman 0.68624 0.69068 0.66489 0.69172 0.69973 0.66515 0.66565

8 heart 0.78853 0.7936 0.80693 0.83762 0.83939 0.82781 0.79963

9 movement libras 0.635 0.84433 0.82906 0.60429 0.61467 0.82799 0.82326

10 pima diabetes 0.74638 0.73151 0.72352 0.75864 0.74742 0.71234 0.70386

11
plant species

leaves margin
0.44808 0.83169 0.75339 0.79402 0.72753 0.74348 0.78007

12
plant species

leaves shape
0.41721 0.69639 0.61528 0.48546 0.51983 0.60077 0.61721

13 ringnorm 0.88983 0.98099 0.72459 0.76902 0.9867 0.94761 0.9688

14 landsat satellite 0.85382 0.91031 0.90658 0.83205 0.80403 0.89232 0.89756

15 twonorm 0.84042 0.97524 0.97295 0.97735 0.97819 0.96986 0.97486

16
vehicle

silhouettes
0.68481 0.82559 0.6881 0.77492 0.41933 0.70157 0.70334

17
vertebral

column
0.80737 0.80516 0.76791 0.81346 0.82186 0.7743 0.74919

18 vowel 0.72827 0.93225 0.97308 0.58748 0.66367 0.96492 0.96633

19 waveform 0.7629 0.85382 0.84054 0.85945 0.79677 0.83075 0.8403

20
wireless indoor

localization
0.9689 0.97921 0.98311 0.97161 0.98321 0.98361 0.9816

Average rank 5.3 2.8 3.75 4.1 4.25 3.6 4.2

CD = 1.802

7 6 5 4 3 2 1

2.8 Tuned SVM
3.6 Non-Tuned RH

3.75 Tuned KNN
4.1 LDA

4.2Tuned RH

4.25NB

5.3Tuned Decision Tree

Figure 8.11 : Critical difference diagram for the performance of the RH classifier

and other popular learning algorithms.
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8.4 On the Estimation of Generalization Error Bounds and

Open Problems

The upper generalization error bound of the random hyperboxes model is com-

puted based on the i.i.d. assumption of samples in both training and testing sets.

However, in practice, this assumption is usually violated for the real world datasets.

This means that it is very difficult to obtain the training and testing sets which are

representatives of a true distribution of the sample space. This section will estimate

the upper generalization error bounds of datasets used for the experiments in section

8.3. The purpose of this section is to identify the effectiveness of the upper gener-

alization error bound on real datasets and the existing problems when applying a

strong assumption from the theoretical derivations to the practical issues. The up-

per bound values were estimated from the training set and 100 base learners trained

by the IOL-GFMM algorithm with θ = 0.1. The estimated results of the upper gen-

eralization error bound are the average values from 40 iterations (10 times repeated

4-fold cross-validation). To strengthen the comparison and conclusion, the upper

generalization error bounds were also estimated from the base learners trained in

turn on each of four folds generated by using the density preserving sampling (DPS)

method (Budka and Gabrys 2013). The DPS method aims to preserve the data

density and the classes shapes when splitting an original dataset into many folds,

so it is possible to create the testing sets which are representatives for the training

data. Hence, the testing errors on the DPS folds are usually smaller than those

calculated from folds of the cross-validation method. This fact is confirmed with

the results shown in Table 8.5. This table presents the real average testing errors of

4-DPS-fold cross-validation and 10 times repeated 4-fold cross-validation as well as

their upper generalization error bounds estimated from corresponding training sets.

In general, there have been eleven datasets in which the estimated upper bounds

are higher than real testing errors. Among them, there are a number of datasets

with real errors close to the estimated upper bounds, such as pima diabetes, banknote

authentication, vowel, and twonorm. One explanation for these good estimations is

that the training sets and testing sets are good representatives of each other and
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Table 8.5 : Estimated upper generalization error bounds (%), real testing error (%),

and their standard deviations computed from different assessment methods

ID Dataset

10 times repeated 4-fold

cross-validation

4-DPS-fold

cross-validation

Testing error

(%)

Estimated upper

error bound (%)

Testing error

(%)

Estimated upper

error bound (%)

1 Balance scale 12.224 ± 1.188 55.093 ± 3.694 11.839 ± 1.98 42.744 ± 2.242

2 banknote authentication 0.269 ± 0.259 2.448 ± 0.397 0.219 ± 0.279 2.251 ± 0.331

3 blood transfusion 22.915 ± 1.445 89.405 ± 6.018 21.39 ± 0.617 82.004 ± 1.409

4 breast cancer wisconsin 3.404 ± 1.312 13.014 ± 1.708 3.29 ± 1.265 12.638 ± 3.668

5 BreastCancerCoimbra 30.259 ± 8.319 10.048 ± 1.012 24.138 ± 5.631 10.278 ± 1.145

6 connectionist bench sonar 14.415 ± 3.501 7.076 ± 0.54 11.538 ± 2.72 7.579 ± 0.516

7 haberman 27.752 ± 3.223 56.919 ± 4.751 23.855 ± 1.214 51.372 ± 5.858

8 heart 17.475 ± 4.021 19.2 ± 1.987 17.395 ± 4.16 16.737 ± 1.852

9 movement libras 16.5 ± 3.545 11.477 ± 0.864 13.333 ± 3.741 14.421 ± 1.649

10 pima diabetes 26.38 ± 2.501 27.373 ± 2.02 23.698 ± 0.672 24.799 ± 0.6

11 plant species leaves margin 24.113 ± 1.778 12.479 ± 0.575 22.938 ± 3.098 11.565 ± 0.353

12 plant species leaves shape 37.606 ± 2.25 17.615 ± 0.444 34.5 ± 2.908 19.155 ± 0.769

13 ringnorm 5.191 ± 0.566 4.76 ± 0.134 5.824 ± 0.222 5.103 ± 0.104

14 landsat satellite 10.409 ± 0.678 17.224 ± 0.355 10.287 ± 0.507 16.95 ± 0.227

15 twonorm 2.972 ± 0.419 3.798 ± 0.064 2.919 ± 0.153 3.838 ± 0.118

16 vehicle silhouettes 28.238 ± 2.054 19.644 ± 0.982 27.181 ± 3.81 20.148 ± 1.029

17 vertebral column 21.32 ± 3.029 12.526 ± 0.702 19.68 ± 2.221 14.431 ± 1.493

18 vowel 3.545 ± 0.962 5.226 ± 0.231 2.022 ± 0.994 5.808 ± 0.244

19 waveform 16.322 ± 0.926 8.396 ± 0.172 15.98 ± 0.734 8.296 ± 0.088

20 wireless indoor localization 1.66 ± 0.486 10.102 ± 0.466 1.85 ± 0.252 9.827 ± 0.638

the whole sample space. It can be seen that, for these datasets, the real testing

errors of 10 times repeated 4-fold cross-validation and 4-DPS-fold cross-validation

are relatively close to each other.

In the nine remaining datasets, the estimated values of upper bounds are lower

than the real testing errors when applying the 10 times repeated 4-fold cross-

validation method. The same behavior but with a smaller error can be found with

the 4-DPS-fold cross-validation method on nine datasets. Interestingly, there are

two datasets, heart and movement libras, in which the estimated values are bad

when using 10 times repeated 4-fold cross-validation, but very good estimated up-

per bounds can be obtained when deploying the 4-DPS-fold cross-validation. This

fact indicates that if the representativeness of training sets with regard to the whole

sample space is good, it can be achieved a much better estimation of the upper

generalization error bounds which is close to the testing error on unseen data with

the same distribution.
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Figure 8.12 : The relationship of the difference in the estimated upper error bound

and actual testing error with respect to the ratio of the average number of training

samples per class and the number of features.

One general characteristic of datasets resulting in the poor estimated upper

bounds is their sparsity with regard to a small number of samples and a relatively

high number of dimensions. For these datasets, there are not sufficient number

of samples to accurately enough capture the underlying distribution of the whole

sample space. As a result, the base estimators overfit with their training data, and

the estimated values of the upper error bounds are usually small. Meanwhile, the

testing errors on unseen data are fairly high. Here, one open problem identified is

the relationship between the number of samples, classes, and dimensions so that a

good estimation of the generalization error bounds can be obtained from the training

data. This is a critical issue that needs to be tackled in future work. As an example

demonstration for this issue, Figure 8.12 shows the relationship of the difference in

the estimated upper error bound and actual testing error to the ratio of the average

training samples per class and the number of features for 20 datasets used in this

experiment. It can be seen that a good estimation of the upper error bound can be

obtained if the ratio of the average training samples per class and the number of
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features is larger than 20. If this ratio is higher than 120, it is more likely to achieve

an estimated upper error bound close to the actual testing error.

In summary, the i.i.d. assumption of training and testing sets is usually not

met in practical datasets. Therefore, to reduce the classification error on unseen

data, it is necessary to use several methods to guarantee the representativeness of

the training and testing sets when assessing the performance of models. Moreover,

identification of the relationship between the numbers of samples, classes, and fea-

tures is crucial to building a representative training set.

One of the strong points of the general fuzzy min-max neural network is the inter-

pretability. However, the significantly improved predictive accuracy of the proposed

random hyperboxes method comes at a price of loss of interpretability as is common

with other ensemble methods. As previously shown in Gabrys (2002b), hyperbox

representation allows for combination at the model level rather than the decision

level and therefore retaining the interpretability of the final model. Nonetheless, the

combination of the individual hyperbox-based learners which are built from different

random subspaces of features is not a trivial problem. Therefore, the future study

should focus on building interpretable random hyperboxes models.

8.5 Summary

This chapter addressed the thesis Objective 5 presented in Section 1.2. A novel

random hyperboxes classifier was proposed, and its properties were discussed and

provided derivations of its generalization error bounds. The experimental results

confirmed the efficiency of the proposed method in comparison to other single fuzzy

min-max neural networks as well as single learning algorithms. The random hyper-

boxes model is also competitive with other popular ensemble methods. Furthermore,

several discussions on the estimation of the upper generalization error bounds for

real-world datasets were provided, and identified some open issues for future work.
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Chapter 9

Conclusion and Future Work

9.1 Key Findings and Conclusions

The main purpose of this study is to construct robust, scalable, and interpretable

learning algorithms using hyperbox representations. To address this aim, the fol-

lowing objectives were successfully achieved.

Evaluating the strong and weak points of the existing hyperbox-based learning

algorithms. Chapter 2 presented the progression of hyperbox-based learning models

from the first version of FMNN. Attractive characteristics of this class of learning

algorithms were identified together with their drawbacks. Next, Chapter 3 described

the empirical assessments regarding a particular learning model using hyperbox

fuzzy sets, i.e., GFMMNN. The factors affecting the classification performance of

the GFMMNN were analyzed in detail. The obtained results enabled to detect issues

which needed to be addressed in the future studies.

Developing and evaluating new robust learning algorithms for the GFMMNN.

Based on the analyses shown in Chapters 2 and 3, new robust learning algorithms for

the GFMMNN were proposed in Chapters 4 and 5. A new online learning algorithm

was introduced in Chapter 4 to address the drawbacks of the existing online learning

algorithm related to the contraction process. The empirical results indicated the

improvement in the classification accuracy and stability of the proposed method

compared to the original version and other fuzzy min-max classifiers. However, all

of the current online learning algorithms for the GFMMNN have not dealt effectively

with mixed-attribute data. Therefore, Chapter 5 extended the IOL-GFMM learning

algorithm proposed in Chapter 4 by using the changes in entropy values regarding

the categorical values to determine whether the hyperbox can be expanded to include

the input pattern. One of the interesting properties of the EIOL-GFMM algorithm
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is that it does not use any encoding methods for categorical features. Empirical

results confirmed the superior performance of the proposed method compared to

other existing techniques in the literature for mixed-attribute data classification.

Developing different solutions to accelerate learning algorithms for the GFMMNN.

One of the drawbacks of prototype-based learning algorithms is the long training

time due to the continuous computation of distance/similarity values, especially in

the datasets with high dimensionality. The learning algorithms of the GFMMNN

have also faced the same issue. Therefore, a solution of reformulating the learning

steps was proposed so that they can be executed on the GPUs in parallel. The

operations on matrices were used to implement the learning procedures aiming to

take benefits from the strength of GPUs. The empirical results on two very high-

dimensional datasets indicated that the training and testing processes performed

on the GPUs were from 10 to 35 times faster compared to those running serially

on the CPU while retaining the same classification accuracy. Apart from using the

GPUs to speed-up learning algorithms, another acceleration technique was given in

Chapter 6. This solution relied on mathematical formulas to reduce the hyperbox

candidates considered in the learning process, which certainly do not satisfy the

expansion conditions. The experimental results indicated the significant decrease

in training time of the proposed approach for both online and agglomerative learn-

ing algorithms. Notably, the training time of the online learning algorithms was

reduced from 1.2 to 12 times when using the proposed method, while the agglomer-

ative learning algorithms were accelerated from 7 to 37 times on average.

Increasing the interpretability of hyperbox-based learning models. Chapter 7 pro-

posed the way of building high-performing classifiers with simple structures using

multi-level granular information from the input data. The construction process of

the proposed classifier comprises two phases. The first phase is to build a model at

the lowest level of abstraction, while the later stage aims to reduce the complexity

of the constructed model and deduce it from data at higher abstraction levels. The

proposed learning algorithm can maintain a high accuracy at a low degree of granu-

larity. Therefore, it can reduce the data size significantly and handle the uncertainty
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and incompleteness associated with the input data. Experimental analyses carried

out on both synthetic and real datasets illustrated the efficiency of the proposed

method in terms of training time, simple structure, and predictive performance

compared to other types of fuzzy min-max neural networks and common machine

learning algorithms.

Building an effective ensemble model from hyperbox-based learners. Chapter 8

proposed a random hyperboxes classifier, which is built from many GFMMNN base

learners trained on different subsets of both samples and features. The important

mathematical properties of this model such as the convergence and generalization

error bound were also proposed and proved. The effectiveness of the method and

the sensitivity of its parameters were carefully analyzed across many examples. The

experimental results confirmed that the proposed method outperformed other fuzzy

min-max neural networks, popular learning algorithms, and is competitive with

other ensemble methods.

9.2 Future Work

Although hyperbox-based machine learning algorithms have achieved remarkable

results as presented in previous chapters in this thesis, there are still outstanding

issues and room for the improvements. In addition to potential research directions

presented in section 2.6.2, the following presents other research topics which can be

performed as an extension of this thesis:

• Building an interpretable GFMMNN for both numerical and cat-

egorical features. Although the GFMMNN for mixed-attribute data pre-

sented in Chapter 5 can explain the predicted results using the membership

function to select the appropriate hyperbox, to make it friendly and easy-to-

read for users, it is necessary to extract and optimize if-then rule sets from

the resulting hyperboxes for both continuous and discrete features in the fu-

ture studies. The interpretability of predictive models is a critical factor when

applying the machine learning algorithms for high-stakes applications such as

medicine, finance, or criminal justice (Rudin 2019).
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• Dynamic rescaling and outlier detection. The GFMMNN only works

if the input samples are in the range of [0, 1] in each dimension. Hence,

the input samples need to be normalized before training the GFMMNN. As

a result, if the testing sample is outside of the range of the training data,

then the value after normalizing would fall outside the required range of

[0, 1] and the classifier does not work correctly. In the online learning process

on the streaming data, it is also faced the same problem because the range of

input features may be not known in advance and input samples are usually

not normalized to the range of [0, 1]. A solution is to perform a dynamic

rescaling of the ranges covered by the features as shown in Salvador et al.

(2016). However, this method will be affected by the outliers when the cur-

rent hyperboxes are normalized to accommodate the outliers. Therefore, it is

necessary to build an effective outlier handling mechanism to decide whether

the current model should be renormalized or not. Therefore, the construction

of an online adaptive GFMMNN is an exciting field of research which should

receive more attention in the future.

• Construction of robust interpretable ensemble models using hyper-

box representations. One of the strong points of the GFMMNN is the in-

terpretability of the trained model. However, this interpretability is lost when

building ensemble models such as random hyperboxes. The use of hyperbox

representations enables us to merge the hyperboxes generated from many base

learners to form an interpretable single model. However, the relearning method

using the AGGLO-2 algorithm to aggregate resulting hyperboxes from base

estimators presented in Gabrys (2002b) only works when all base learners use

the same number of features. Hence, future studies should pay more attention

to expand this technique for base learners trained on subsets of features.

• Expansion of theoretical analyses for random hyperboxes. The re-

lationship between correlation and variance between base learners as well as

the trade-off between variance and bias of the random hyperboxes model need

to be analyzed in more details. In addition, the influence of hyperparame-
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ters of the random hyperboxes model should be assessed by a comparative

study. In Chapter 8, it is assumed that the strength S > 0 when analyzing

the generalization error bound. In the case of highly imbalanced classes, this

assumption may be false because the strength usually focuses on the majority

class. Therefore, the efficiency of the random hyperboxes classifier and its the-

oretical results should be investigated and extended for imbalanced datasets.

• Securing hyperbox-based machine learning algorithms. When most

businesses and governments are more and more dependent on machine learn-

ing algorithms for their decision making, there is an increase in attacking these

algorithms to receive the expected results from hackers. Therefore, securing

the machine learning algorithms in general and hyperbox-based learning algo-

rithms, in particular, plays a crucial role. Many defense methods can be used

to make the hyperbox-based learning models secure under adversarial attacks.

An adversarial training mechanism (Goodfellow et al. 2015) can be employed,

in which the hyperbox-based models are retrained on adversarial patterns cre-

ated at each iteration based on the current state of the model. This technique

may enforce invariance in outputs of the model given the original samples and

their adversarial counterparts. Another method is to introduce randomness to

the model against adversarial samples by pruning or dropping several hyper-

boxes during test time. The data density can also be estimated and integrated

into the process of building hyperboxes to detect patterns located far away

from a class manifold or outside of the data distribution. These are potential

techniques to secure hyperbox-based learning models.

• Real-time big data analytics. In the era of digital information, a critical

growing trend of machine learning research based on hyperbox representa-

tions is to discover and extract valuable knowledge from real-time big data.

However, it is extremely challenging to analyze the real-world big data sets

because of their exceedingly high volume and velocity. To cope with these

problems effectively, more research efforts should focus on developing parallel

or distributed hyperbox-based models to make use of the strengths of grid com-
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puting and high performance computing systems. Ilager and Prasad (2017)

have been the first ones who proposed the use of MapReduce mechanism to

scale the original FMNN for large data sets. However, this research direction

needs many enhancements and expansions to realize its full potential. In recent

years, re-configurable hardware, for instance Field-Programmable Gate Arrays

(FPGAs), has attracted much attention due to the programmable property,

massive parallelism, and energy efficiency (Ghasemi and Chow 2017). The

FPGAs have recently been applied to accelerate large-scale tasks and improve

significant performance with considerable power savings, which suggests their

potential for large-scale high-performance computations (Putnam et al. 2014).

Hence, implementation of hyperbox-based machine learning algorithms on FP-

GAs is also interesting research direction in near future.

• Automatic adaptation of models. In order to discover information from

real-time data, machine learning models need to adapt with the changes of

data. Therefore, significant research efforts should be put into this problem to

formulate adaptive hyperbox-based predictors.

• Streaming data mining. In the practical applications, the data may change

constantly over time, so hyperboxes need an adaptive ability. It is essential to

find a way of re-sizing or evolving the previously learned hyperboxes or ignor-

ing these hyperboxes if they are no longer appropriate for the new situations

(Mirzamomen and Kangavari 2017). Another problem for streaming data is

the case where the target concepts to be predicted are likely to change over

time in unanticipated ways, which is called the “concept drift” problem. In

general, there are still no formal hyperbox-based techniques for dealing with

all kinds of issues, especially in the situations that target concepts change

constantly in arbitrary ways.

• Automatic optimization of hyperparameters and parameters. It has

been frequently observed that the performance of current hyperbox-based

models depends on various user definable hyperparameters and parameters.

Therefore, it is necessary to investigate the importance of each parameter to
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the performance of algorithms. Studies also need to find the optimal config-

urations for parameters or adapt the values of parameters according to the

features of data sets in an automated manner.

• Learning from multiple data sources. All current hyperbox based ma-

chine learning algorithms have learned from only single source-structured data.

In the real applications, data can come from many sources in many different

formats (structured, unstructured, or semi-structured data). Therefore, future

research should handle these challenges by building multi-source hyperbox-

based learning algorithms.

• Improvement of membership functions. The classification performance

of current hyperbox-based classifiers significantly depends on the membership

function. Therefore, one can propose a novel membership function based on

the features of data and the influence of noise for both numerical and cate-

gorical data. Current membership function for both numerical and categorical

data proposed by Castillo and Cardenosa (2012) and Shinde and Kulkarni

(2016) did not take the features of data and noise into account. In Chapter 5,

a novel membership function for mixed-attribute data was proposed. However,

this membership function still does not take noisy data into account. Another

problem of current membership functions is that they do not yet classify data

in the overlapping regions among hyperboxes belonging to different classes

effectively. Certainly, current studies have not yet fully handled all of these

problems.

• Data editing. The data quality is one of the factors influencing the accuracy

of final classification results. In terms of real-time data analysis, the input data

may contain noise or missing values or incomplete data. The use of prepro-

cessing methods might not be sufficient to enhance the quality of input data.

The ways of dealing with missing values using hyperbox fuzzy sets proposed

by Gabrys (2002c) for numerical data and Castillo and Cardenosa (2012) for

categorical data are efficient techniques to handle missing or incomplete data.

Therefore, many research efforts should concentrate on enhancing the robust-
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ness of hyperbox-based learning algorithms when resolving the poor quality of

real data.

• Extraction of linguistic fuzzy rules. As discussed in Section 7.2.4, it is

easy to track the hyperbox used to generate the predicted class for each input

pattern. This hyperbox together with its membership value can be utilized

to help users to better understanding the learning models. However, when

the number of generated hyperboxes significantly increase in the case of large

number of input samples, the transparency and traceability of hyperbox-based

models can reduce overtime. It is highly desirable that the learned knowledge

of models can be extracted and shown a compact set of linguistically inter-

pretable fuzzy rules. By this way, the interpretablity of the learning models

may dramatically increase and the users can interact with learning systems

easier. However, existing learning algorithms for hyperbox-based models have

not yet possessed the ability to extract and represent such linguistic rules.

This is an interesting research direction for the future studies.

9.3 Final Summary

Nowadays, there is a high demand for interpretable models to substitute black-

box models in assisting decision-makers in areas with the requirement of high safety

and trust such as finance, health-care, and criminal justice. Using hyperboxes as

fundamental building blocks and representations can help to formulate interpretable

learning models. In addition, hyperbox-based learning model can be trained in incre-

mental ways. This is an attractive characteristic of this type of learning algorithms

because it does not require retraining the models periodically. As a result, they can

be deployed for applications working in a dynamically changing environment with

a high volume of data.

This study has been formed on top of principles of constructing robust classifiers

with good generalization using hyperboxes as foundational building blocks. The ob-

tained results in this thesis can form foundations to develop smart adaptive systems

in the near future. This thesis presented fundamental information on formation and
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development of hyperbox-based learning algorithms. Building on the existing stud-

ies, this thesis also proposed new robust learning algorithms for both single models

and ensemble models to address the limitations of existing learning algorithms. In

addition, different methods were offered to accelerate current learning algorithms on

large-sized datasets. The obtained results from this study have led to the following
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Appendix A

Additional Results for Chapter 3

A.1 Datasets for the Experiments in Chapter 3

Table A.1 : Datasets were used for experiments in Chapter 3

ID Dataset No. samples No. features No. classes

1 Circle 1000 3 2

2 Complex9 3031 2 9

3 Diagnostic Breast Cancer 569 30 2

4 Glass 214 9 6

5 Ionosphere 351 34 2

6 Iris 150 4 3

7 Ringnorm 7400 20 2

8 Segmentation 2310 19 7

9 Spherical 5 2 250 2 5

10 Spiral 1000 2 2

11 Thyroid 215 5 3

12 Twonorm 7400 20 2

13 Waveform 5000 21 3

14 Wine 178 13 3

15 Yeast 1484 8 10

16 Zelnik6 (Toy dataset) 238 2 3

The experiments in Chapter 3 used 16 relatively small-sized datasets. These

benchmark datasets have been widely used to evaluate machine learning algorithms

such as in Salvador and Chan (2004); Zelnik-Manor and Perona (2004); Kononenko

et al. (1997); Kaski and Peltonen (2003); Tung et al. (2005); Breiman (2001). The

detailed information of these datasets is shown in Table A.1.
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Table A.2 : Average performance of different variants of FMNN

ID Dataset Measure Online

GFMM

AGGLO-

2

FMNN EFMNN KNEFMNN

1 Circle

No. of hyperboxes 172 126.25 209.75 282.75 116.5

Training time (s) 1.2473 3.5819 1.682 3.6704 1.6951

Testing error (%) 3.4 3.6 4.3 3.1 3.7

Parameter-tuned

time (s)

9.913 29.0167 18.08 23.6851 155.4245

2 Complex 9

No. of hyperboxes 198.75 213 450.25 458.5 257.25

Training time (s) 4.1982 3.613 7.2618 11.6016 7.1803

Testing error (%) 0 0 0.033 0 0

Parameter-tuned

time (s)

36.7573 40.6123 57.938 75.0684 424.9958

3
Diagnostic

Breast Cancer

No. of hyperboxes 62.25 80.75 383 381.25 257.75

Training time (s) 0.3179 2.6611 0.4174 0.3406 1.2007

Testing error (%) 4.7463 2.987 3.1668 4.3955 4.0443

Parameter-tuned

time (s)

10.0033 147.3405 6.2507 12.1373 130.3236

4 Glass

No. of hyperboxes 107.25 106.25 109 110.5 101.5

Training time (s) 0.1327 1.06 0.1203 0.172 0.1922

Testing error (%) 30.3985 30.3895 27.1225 27.5943 25.7338

Parameter-tuned

time (s)

2.3779 6.7931 1.8835 3.0415 27.5698

5 Ionosphere

No. of hyperboxes 191.75 113 208.5 229 226

Training time (s) 0.3292 5.3567 0.2457 0.3203 0.3514

Testing error (%) 12.2585 14.2435 10.828 8.8328 8.8328

Parameter-tuned

time (s)

7.5723 131.0173 5.6189 9.4672 95.3095

6 Iris

No. of hyperboxes 52.25 51.75 37.5 47.75 27.5

Training time (s) 0.05 0.4249 0.0205 0.071 0.0515

Testing error (%) 5.299 5.299 3.983 5.3165 5.3165

Parameter-tuned

time (s)

0.9627 2.9324 0.8019 1.0995 10.1352

7 Ringnorm

No. of hyperboxes 507.25 1,415.25 1,899.75 2,263.25 1,217.50

Training time (s) 15.0971 1,276.87 15.4478 25.4722 25.0148

Testing error (%) 13.0405 9.311 16.027 25.4188 18.2705

Parameter-tuned

time (s)

621.682 117,532.42 412.5195 555.8019 5013.0365

8 Segmentation

No. of hyperboxes 803.5 809.75 906 1205.25 994.5

Training time (s) 14.8696 192.1328 11.7049 17.0457 19.5409

Testing error (%) 4.1558 3.9825 3.506 2.2075 2.2508

Parameter-tuned

time (s)

130.2684 736.4805 64.8881 261.9439 1691.2003

9 Spherical 5 2

No. of hyperboxes 22 23.25 21.25 24.5 14.75

Training time (s) 0.0593 0.1074 0.038 0.0688 0.059

Testing error (%) 1.2033 0.8 1.1905 1.197 1.197



249

Table A.2 : Average performance of different variants of FMNN

Parameter-tuned

time (s)

1.771 2.4714 1.6866 2.1349 18.0612

10 Spiral

No. of hyperboxes 121.5 115.75 102.75 137.5 121.5

Training time (s) 0.4895 1.851 0.4994 0.9892 0.9478

Testing error (%) 0 0 0 0 0

Parameter-tuned

time (s)

7.7798 16.4694 8.3901 13.0277 99.7823

11 Thyroid

No. of hyperboxes 68.5 48 95.25 96.5 108.5

Training time (s) 0.0863 0.4432 0.1249 0.1393 0.1866

Testing error (%) 2.315 3.7215 3.2408 3.7125 2.778

Parameter-tuned

time (s)

1.4175 5.2984 1.2786 1.885 16.3993

12 Twonorm

No. of hyperboxes 823.75 1,134.75 5,448.50 5,531.75 5,384.25

Training time (s) 27.9473 463.9801 13.87 7.2354 13.8077

Testing error (%) 4.527 4.3378 5.1213 5.3108 4.1623

Parameter-tuned

time (s)

615.0026 109,086.28 371.7325 549.3722 4,787.5467

13 Waveform

No. of hyperboxes 322.75 838 3220 3749.75 2757.25

Training time (s) 11.1249 177.3769 5.6624 1.8178 31.3935

Testing error (%) 17.88 17.76 22.52 21.36 19.88

Parameter-tuned

time (s)

305.3155 28,641.43 160.9124 312.5685 2,867.3944

14 Wine

No. of hyperboxes 46.25 25.75 39.25 74.5 27

Training time (s) 0.0457 0.141 0.0368 0.0732 0.0824

Testing error (%) 3.952 4.5073 2.8155 5.6313 2.8283

Parameter-tuned

time (s)

1.8072 9.3405 1.2843 1.8737 19.5112

15 Yeast

No. of hyperboxes 738.75 537.75 859.5 913.5 663

Training time (s) 5.4222 54.0145 4.613 5.1744 8.0922

Testing error (%) 49.3938 49.2588 49.7978 47.17 46.2265

Parameter-tuned

time (s)

44.0484 386.3297 33.0291 63.2031 580.8328

16 Zelnik6

No. of hyperboxes 26 40.75 59 45.25 34.5

Training time (s) 0.0426 0.3498 0.0933 0.0976 0.0789

Testing error (%) 0.4238 0.4238 0.4238 0.4238 0.4238

Parameter-tuned

time (s)

1.156 3.4367 1.1349 1.2665 10.8995
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Table A.3 : Average performance of variants of FMNN using a pruning procedure

ID Dataset Measure Online

GFMM

AGGLO-

2

FMNN EFMNN KNEFMNN

1 Circle

No. of hyperboxes

before pruning

146.75 106.75 164 226.5 99.75

No. of hyperboxes

after pruning

124.75 90 87.75 184.75 78.25

Training time 0.7504 2.3950 0.9043 1.8106 1.0028

Testing error be-

fore pruning (%)

3.3 3.2 3.9 3 3.6

Testing error after

pruning (%)

3.3 3.8 4.1 3.3 3.8

2 Complex 9

No. of hyperboxes

before pruning

183 196 320.75 345.5 221.5

No. of hyperboxes

after pruning

156 195.25 160.5 191.75 156.75

Training time 2.9040 2.4693 4.3682 6.7983 4.5382

Testing error be-

fore pruning (%)

0 0 0.033 0 0

Testing error after

pruning (%)

0 0 0.033 0 0

3
Diagnostic

Breast Cancer

No. of hyperboxes

before pruning

48.5 57.75 254 254 173.5

No. of hyperboxes

after pruning

24 35.75 43.5 56 32.5

Training time 0.2235 1.3171 0.2754 0.2481 0.5979

Testing error be-

fore pruning (%)

5.273 5.8013 4.2215 4.5735 4.3965

Testing error after

pruning (%)

5.2718 5.9760 4.223 5.4528 4.3965

4 Glass

No. of hyperboxes

before pruning

78.25 77.75 72.5 79.75 73.75

No. of hyperboxes

after pruning

42.5 41.75 32.75 63.25 47.5

Training time 0.0718 0.5802 0.0707 0.0806 0.091

Testing error be-

fore pruning (%)

30.407 30.3985 27.1318 26.66 28.066

Testing error after

pruning (%)

35.045 34.5735 30.381 25.725 29.446

5 ionosphere

No. of hyperboxes

before pruning

131.75 78.75 141.25 159 156.25

No. of hyperboxes

after pruning

35 26.75 33.5 73 72

Training time 0.1991 2.2911 0.1522 0.1646 0.1818

Testing error be-

fore pruning (%)

14.5343 14.2373 11.9645 9.401 9.117
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Table A.3 : Average performance of variants of FMNN using a pruning procedure

Testing error after

pruning (%)

14.8185 14.2373 14.2405 11.3898 11.1055

6 Iris

No. of hyperboxes

before pruning

39.5 38.25 23.75 37 21

No. of hyperboxes

after pruning

21.25 22 6.5 15.25 11.75

Training time 0.0373 0.2035 0.0219 0.0449 0.0361

Testing error be-

fore pruning (%)

5.9745 4.6585 3.983 5.9745 3.9833

Testing error after

pruning (%)

5.3165 4.641 3.983 5.9745 4.6588

7 Ringnorm

No. of hyperboxes

before pruning

372.75 976.25 1132 1482.25 789.5

No. of hyperboxes

after pruning

207.25 716 2 855.5 10

Training time 14.0247 488.1716 9.71927 18.79225 19.04846739

Testing error be-

fore pruning (%)

12.6758 9.9595 18.0135 26.2163 17.4188

Testing error after

pruning (%)

12.6215 9.811 18.0135 25.7028 17.2568

8 Segmentation

No. of hyperboxes

before pruning

624.75 631.75 635.25 885.25 744.5

No. of hyperboxes

after pruning

530.75 545.5 190.5 506.25 447.5

Training time 7.0460 84.3958 5.6199 7.3270 8.4242

Testing error be-

fore pruning (%)

4.8918 4.935 3.723 2.857 3.073

Testing error after

pruning (%)

5.7575 5.6278 4.632 3.7663 3.8528

9 Spherical 5 2

No. of hyperboxes

before pruning

19.75 19.5 15.25 18.75 13.25

No. of hyperboxes

after pruning

17.25 15.25 9.5 11.25 10.75

Training time 0.0567 0.0934 0.0358 0.0546 0.0485

Testing error be-

fore pruning (%)

1.197 1.6003 1.5875 2.0035 2.4068

Testing error after

pruning (%)

1.197 1.197 1.58725 2.4003 2.4068

10 Spiral

No. of hyperboxes

before pruning

103 105 81.5 109.25 103

No. of hyperboxes

after pruning

92 105 69.75 95.25 94.5

Training time 0.3895 1.3104 0.3818 0.6423 0.6513

Testing error be-

fore pruning (%)

0 0 0 0 0
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Table A.3 : Average performance of variants of FMNN using a pruning procedure

Testing error after

pruning (%)

0 0 0 0 0

11 Thyroid

No. of hyperboxes

before pruning

53 35 65.25 68.75 77.75

No. of hyperboxes

after pruning

36 21.25 18.75 24.75 31.5

Training time 0.0547 0.2263 0.0694 0.0627 0.0838

Testing error be-

fore pruning (%)

3.241 4.6475 5.5643 2.7868 2.315

Testing error after

pruning (%)

3.2408 6.036 6.0273 4.6475 3.7128

12 Twonorm

No. of hyperboxes

before pruning

609.75 776.25 3655 3694.5 3563.75

No. of hyperboxes

after pruning

315.25 610.25 2864.25 3048 27

Training time 23.5492 215.1739 13.3195 10.2797 15.0206

Testing error be-

fore pruning (%)

4.7703 4.108 5.297 5.3648 4.4865

Testing error after

pruning (%)

4.8378 4.2973 5.4728 5.189 4.4865

13 Waveform

No. of hyperboxes

before pruning

247.25 565.75 2153.75 2500 1751.5

No. of hyperboxes

after pruning

208.25 402.25 603 2354.75 46.25

Training time 10.0276 85.5954 6.3840 4.4676 23.4186

Testing error be-

fore pruning (%)

19.48 18.84 22.82 20.48 20

Testing error after

pruning (%)

19.36 18.4 22.6 19.7 19.66

14 Wine

No. of hyperboxes

before pruning

31.5 20.5 28 51 20

No. of hyperboxes

after pruning

28 13.75 5.25 8.25 6.75

Training time 0.0373 0.1165 0.0312 0.0480 0.0483

Testing error be-

fore pruning (%)

3.9268 3.9268 2.8155 5.0883 3.9268

Testing error after

pruning (%)

3.9268 3.9268 2.8155 5.0883 3.9268

15 Yeast

No. of hyperboxes

before pruning

522 387 582.5 618 461.25

No. of hyperboxes

after pruning

267.25 220.25 416.5 443.25 350.25

Training time 2.3044 21.8444 1.9543 2.1734 3.3138

Testing error be-

fore pruning (%)

49.7305 49.8655 51.1455 47.6415 46.5633
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Table A.3 : Average performance of variants of FMNN using a pruning procedure

Testing error after

pruning (%)

49.5283 47.5068 47.9783 44.6765 45.3505

16 Zelnik6

No. of hyperboxes

before pruning

23 35.25 42 36.25 29.75

No. of hyperboxes

after pruning

16.5 24.25 23 25.25 20

Training time 0.0417 0.2616 0.0565 0.0557 0.0539

Testing error be-

fore pruning (%)

0.8475 1.2643 0.8475 0.8475 0.8475

Testing error after

pruning (%)

1.695 3.3618 2.1045 2.0975 1.688
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Appendix B

Additional Results for Chapter 4

B.1 Datasets for Experiments in Chapter 4

Several descriptions of the used datasets are shown in Table B.1. It is desirable to

assess the effectiveness of the proposed algorithm on real-world datasets for practical

usefulness. Therefore, several synthetic datasets used in Chapter 3 such as Circle,

Complex9, Ringnorm, Twonorm, Spiral, and Zelnik6 were not employed for the

experiments in this chapter. Some of the real world datasets used in Chapter 3

were combined with other real datasets, which are show a small number of samples

but high dimensionality (e.g., Breast Cancer Coimbra) or high numbers of samples

and dimensions (e.g., Page blocks, Landsat Satellite), to create a set of experimental

datasets in Table B.1.

Table B.1 : Descriptions of datasets for experiments in Chapter 4

ID Dataset # samples # features # classes

1 Blood transfusion 748 4 2

2 Breast Cancer Coimbra 116 9 2

3 Haberman 306 3 2

4 Heart 270 13 2

5 Page blocks 5473 10 5

6 Landsat Satellite 6435 36 6

7 Waveform 5000 21 3

8 Yeast 1484 8 10

9 Spherical 5 2 250 2 5
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Appendix C

Additional Results for Chapter 5

C.1 Proof of Property 5.1 in Chapter 5

Proof. From the main paper, the current entropy of categorical values for the cate-

gorical feature j is computed as follows:

Hj(Bi) = −
Nj∑
l=1

Pj(al ∈ dij) · log2 Pj(al ∈ dij)

We have:

Pj(al ∈ dij) =
|{a ∈ dij|a = al}|

|dij|
=
ϕ(al)

ni

where ϕ(al) is a function returning the number of elements of al in the categorical

dimension dij of Bi and ni is the number of samples included in the hyperbox Bi.

Therefore,

Hj(Bi) = −
Nj∑
l=1

ϕ(al)

ni
· log2

ϕ(al)

ni

Case 1: The j-th categorical feature includes a new categorical value xdj which does

not exist in the current list of categorical values of dij.

In this case, the number of categorical values in the categorical attribute j after

including xdj is Nj + 1 and ϕ(al)(l ∈ [1, Nj] is unchanged. The number of samples

contained in Bi is ni + 1. As a result, it leads to: Pj(x
d
j ∈ dij) =

1

ni + 1

Now, the new entropy on the categorical feature j when including xdj is:

H
(1)
j (Bi ∪ {X}) = −

Nj∑
l=1

Pj(al ∈ dij) · log2 Pj(al ∈ dij)− Pj(x
d
j ∈ dij) · log2 Pj(x

d
j ∈ dij)

= −
Nj∑
l=1

ϕ(al)

ni + 1
· log2

ϕ(al)

ni + 1
−

1

ni + 1
· log2

1

ni + 1
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Case 2: The j-th categorical feature includes a categorical value xdj existed in the

current list of categorical values of dij.

In this case, the number of distinct categorical values, Nj, storied on each of

the j-th categorical dimension is unchanged, while the number of samples included

in Bi increases by 1. Without loss of generality, assuming that xdj = aNj , then

ϕ(al) (l ∈ [1, Nj − 1] is unchanged, while ϕ(xdj ) = ϕnew(aNj) = ϕold(aNj) + 1.

Therefore, Pj(x
d
j ∈ dij) =

ϕold(aNj) + 1

ni + 1

The new entropy on the categorical feature j when including xdj is:

H
(2)
j (Bi ∪ {X}) = −

Nj−1∑
l=1

Pj(al ∈ dij) · log2 Pj(al ∈ dij)− Pj(x
d
j ∈ dij) · log2 Pj(x

d
j ∈ dij)

= −
Nj−1∑
l=1

ϕ(al)

ni + 1
· log2

ϕ(al)

ni + 1
−
ϕold(aNj) + 1

ni + 1
· log2

ϕold(aNj) + 1

ni + 1

= −
Nj−1∑
l=1

ϕ(al)

ni + 1
· log2

ϕ(al)

ni + 1
−
ϕold(aNj)

ni + 1
· log2

ϕold(aNj) + 1

ni + 1

−
1

ni + 1
· log2

ϕold(aNj) + 1

ni + 1

Because 1 ≤ ϕold(aNj), it leads to − log2

ϕold(aNj) + 1

ni + 1
< − log2

ϕold(aNj)

ni + 1

and − log2

ϕold(aNj) + 1

ni + 1
< − log2

1

ni + 1
Hence,

H
(2)
j (Bj ∪ {X}) <−

Nj−1∑
l=1

ϕ(al)

ni + 1
· log2

ϕ(al)

ni + 1
−
ϕold(aNj)

ni + 1
· log2

ϕold(aNj)

ni + 1

−
1

ni + 1
· log2

1

ni + 1

= −
Nj∑
l=1

ϕ(al)

ni + 1
· log2

ϕ(al)

ni + 1
−

1

ni + 1
· log2

1

ni + 1
= H

(1)
j (Bj ∪ {X})

As a result, the change in the entropy for the hyperbox Bi on the j-th categorical

attribute:

Z
(2)
j = H

(2)
j (Bj ∪ {X})−Hj(Bj) < H

(1)
j (Bj ∪ {X})−Hj(Bj) = Z

(1)
j
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Therefore, the change in the entropy for each categorical dimension of the hyperbox

Bi will takes its maximum value if the categorical value on that categorical dimension

of the input pattern does not appear in the current list of categorical values stored

on that categorical dimension. This property is proved.

C.2 Proof of Property 5.2 in Chapter 5

Proof. Based on the Property 5.1, it can be seen that the maximum entropy change

occurs on the j-th categorical dimension when it accommodates a new categorical

value which does not exist in its current values. Hence, we obtain:

Zj ≤ Z
(1)
j = H

(1)
j (Bi ∪ {X})−

ni

ni + 1
Hj(Bi)

= −
Nj∑
l=1

ϕ(al)

ni + 1
· log2

ϕ(al)

ni + 1
−

1

ni + 1
· log2

1

ni + 1
+

ni

ni + 1
·
Nj∑
l=1

ϕ(al)

ni
· log2

ϕ(al)

ni

= −
1

ni + 1

Nj∑
l=1

[ϕ(al) · [log2 ϕ(al)− log2(ni + 1)]] +
log2(ni + 1)

ni + 1

+
1

ni + 1
·
Nj∑
l=1

ϕ(al) · [log2 ϕ(al)− log2 ni]

=
log2(ni + 1)

ni + 1

Nj∑
l=1

ϕ(al) +
log2(ni + 1)

ni + 1
−

log2 ni

ni + 1
·
Nj∑
l=1

ϕ(al)

=
log2(ni + 1)

ni + 1

 Nj∑
l=1

ϕ(al) + 1

− log2 ni

ni + 1
·
Nj∑
l=1

ϕ(al)

We have:
Nj∑
l=1

ϕ(al) = ni. Hence,

Z
(1)
j =

log2(ni + 1)

ni + 1
(ni + 1)−

log2 ni

ni + 1
· ni = log2(ni + 1)−

ni

ni + 1
· log2 ni

As a result,

Zj ≤ log2(ni + 1)−
ni

ni + 1
· log2 ni

The property is proved.
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C.3 Proof of Property 5.3 in Chapter 5

Proof. First of all, it is necessary to prove that Zj ≤ 1; ∀j ∈ [1, r]

Let f(n) = log2(n + 1) −
n

n+ 1
· log2 n; (n ≥ 1). The first order derivative of f(n)

is:

f
′
(n) =

1

(n+ 1) ln 2
−

log2 n

(n+ 1)2
−

1

(n+ 1) ln 2
= −

log2 n

(n+ 1)2

Therefore, f
′
(n) ≤ 0, ∀n ≥ 1. As a result, f(n) is decreasing on the interval [1,+∞].

This leads to f(n) ≤ f(1) = 1; ∀n ≥ 1. Hence, log2(ni + 1) −
ni

ni + 1
· log2 ni ≤

1; ∀ni ≥ 1. From the Property 5.2, it can obtain

Zj ≤ log2(ni + 1)−
ni

ni + 1
· log2 ni; ∀j ∈ [1, r]

As a result, Zj ≤ 1; ∀j ∈ [1, r] is proved.

Next, it is necessary to prove that Zj ≥ 0; ∀j ∈ [1, r]. From the Property 5.1,

it can be seen that the change in the entropy on each categorical dimension j takes

a smaller value if the included value xdj has already been in the current categorical

values of dij in the hyperbox Bi. Hence, it is sufficient to only prove Zj ≥ 0 for this

case. We obtain:

Zj = H
(2)
j (Bi ∪ {X})−

ni

ni + 1
·Hj(Bi)

= −
Nj∑
l=1

Pj(al ∈ dij|Bi ∪ {X}) · log2 Pj(al ∈ dij|Bi ∪ {X})

+
ni

ni + 1
·
Nj∑
l=1

Pj(al ∈ dij|Bi) · log2 Pj(al ∈ dij|Bi)

= −
Nj∑
l=1

ϕ(al|Bi ∪ {X})
ni + 1

· log2

ϕ(al|Bi ∪ {X})
ni + 1

+
ni

ni + 1
·
Nj∑
l=1

ϕ(al|Bi)

ni
· log2

ϕ(al|Bi)

ni
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To prove Zj ≥ 0, we need to prove that:

ni ·
ϕ(al|Bi)

ni
· log2

ϕ(al|Bi)

ni
≥ (ni + 1) ·

ϕ(al|Bi ∪ {X})
ni + 1

· log2

ϕ(al|Bi ∪ {X})
ni + 1

, ∀l ∈ [1, Nj]

⇔ ϕ(al|Bi) · log2

ϕ(al|Bi)

ni
≥ ϕ(al|Bi ∪ {X}) · log2

ϕ(al|Bi ∪ {X})
ni + 1

, ∀l ∈ [1, Nj]

(C.1)

Let x = ϕ(al|Bi) ≥ 1, then ϕ(al|Bi ∪ {X}) = x + 1 or ϕ(al|Bi ∪ {X}) = x because

the number of elements of al on the j-th categorical feature can remain unchanged

or increase by 1 when Bi includes X. In the case that ϕ(al|Bi ∪{X}) = x, we have:

(C.1)⇔ x · log2

x

ni
≥ x · log2

x

ni + 1

This inequality is obviously true because x ≥ 1 and
x

ni
≥

x

ni + 1
⇔ log2

x

ni
≥

log2

x

ni + 1
.

In the case that ϕ(al|Bi ∪ {X}) = x+ 1, we need to prove that:

x · log2

x

ni
≥ (x+ 1) · log2

x+ 1

ni + 1
(C.2)

Let a1, . . . , am and b1, . . . , bm be non-negative numbers, and a =
m∑
k=1

ak, b =
m∑
k=1

bk,

the log-sum inequality states that

m∑
k=1

ai · log2

ai

bi
≥ a · log2

a

b

Based on this log-sum inequality, we obtain:

x · log2

x

ni
+ 1 · log2

1

1
≥ (x+ 1) · log2

x+ 1

ni + 1

We have 1 · log2

1

1
= 0, thus the inequality (C.2) is true.

From all above proofs, we obtain: 0 ≤ Zj ≤ 1; ∀j ∈ [1, r]. The property is

proved.
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C.4 Proof of Property 5.4 in Chapter 5

Proof. From the properties 5.2 and 5.3, we have:

0 ≤ Zj ≤ log2(ni + 1)−
ni

ni + 1
· log2 ni

To prove this property, therefore, we need to show that:

lim
ni→+∞

log2(ni + 1)−
ni

ni + 1
· log2 ni = 0

Let f(n) = log2(n + 1) −
n

n+ 1
· log2 n =

(n+ 1) · log2(n+ 1)− n · log2 n

n+ 1
, then

lim
n→+∞

f(n) is the indeterminate form
∞
∞

. Let’s apply L’Hospital’s rule:

lim
n→+∞

f(n) = lim
n→+∞

(n+ 1) · log2(n+ 1)− n · log2 n

n+ 1

= lim
n→+∞

log2(n+ 1) +
1

ln 2
− log2 n−

1

ln 2

 = lim
n→+∞

log2(1 +
1

n
) = 0

The property is proved.

C.5 Datasets

Table C.1 shows the detailed information about the datasets used for the exper-

iments in this study. These datasets were used in the previous research (Khuat and

Gabrys 2021b) regarding different solutions to learn from mixed-attribute data for

the general fuzzy min-max neural network. These datasets show the diversity in the

numbers of samples, classes, and features. All datasets are class-imbalanced.

C.6 Additional Results

C.6.1 Additional Experimental Results for Chapter 5

This section provides the interested readers with the detailed results for the

experiments presented in Chapter 5.
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Table C.1 : Experimental dataset used in Chapter 5

ID Dataset # Patterns # Classes
# Continuous

attributes

# categorical

attributes

1 abalone 4177 28 7 1

2 australian 690 2 6 8

3 cmc 1473 3 2 7

4 dermatology 358 6 1 33

5 flag 194 8 10 18

6 german 1000 2 7 13

7 heart 270 2 7 6

8 japanese credit 653 2 6 9

9 molecular biology 3190 3 0 60

10 nursery 12960 5 0 8

11 post operative 87 3 1 7

12 tae 151 3 1 4

13 tic tac toe 958 2 0 9

14 zoo 101 7 1 15

Fig C.1 provides a graphical illustration for two ways of estimating the value of

α shown in subsection 5.3.3. Figure C.2 to Figure C.4 show the change in the CBA

scores for different values of α. These results support the contents in subsection

5.3.1. Fig C.5 presents the change in the CBA values for different values of δ using

the IOL-GFMM-v1 algorithm. Meanwhile, Figure C.6 shows similar results for the

IOL-GFMM-v2 algorithm. These figures consolidate the comments in subsection

5.3.1.

Figures from C.7 to C.9 show the distribution of the obtained values of α using

different methods to find the suitable values for α. The best results in each row

of the tables in this document are highlighted in bold. These figures support the

explanation in subsection 5.3.3 related to the effectiveness of each method of finding

the trade-off parameter α.

Table C.2 presents the average class balanced accuracy for different learning al-

gorithms with mixed-attribute handling ability over 40 iterations (10 times repeated

stratified 4-fold cross-validation). The number of generated hyperboxes from these

algorithms is shown in Table C.3. These are the results for the experiment mentioned

in subsection 5.3.2.
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Numerical features

Categorical features

Training data
Learned model

Numerical features

Categorical features

Validation

CBA 1

CBA 2

Inner Fold 1

Numerical features

Categorical features

Training data
Learned model

Numerical features

Categorical features

Validation

CBA 3

CBA 4

Inner Fold 2

Numerical features

Categorical features

Training data
Learned model

Numerical features

Categorical features

Validation

CBA 5

CBA 6
Inner Fold 3

Estimated 

=
𝐶𝐵𝐴1+𝐶𝐵𝐴3+𝐶𝐵𝐴5

𝐶𝐵𝐴1+𝐶𝐵𝐴2+𝐶𝐵𝐴3+𝐶𝐵𝐴4+𝐶𝐵𝐴5+𝐶𝐵𝐴6

=
𝐶𝐵𝐴1+𝐶𝐵𝐴3+𝐶𝐵𝐴5 ×𝑛

𝐶𝐵𝐴1+𝐶𝐵𝐴3+𝐶𝐵𝐴5 ×𝑛+(𝐶𝐵𝐴2+𝐶𝐵𝐴4+𝐶𝐵𝐴6)×𝑟

𝑛: number of numerical features
𝑟: number of categorical features

CBA: Class Balanced Accuracy

Figure C.1 : A demonstration for the methods used to estimate the values for

parameter α.

Table C.4 shows the average CBA for the proposed methods and the original

improved online learning algorithm using different encoding techniques to transform

the categorical features into numerical features. These results supplement to the

claims in subsection 5.3.2.

Table C.5 describes the average CBA values for the different methods to find

the appropriate values for α using the proposed learning algorithms. These are the

detailed empirical results for the experiment presented in subsection 5.3.3.

Table C.6 shows the average CBA values for four learning algorithms using the

hyper-parameter tuning approach. The ranks for these results are presented in Table

C.7. These results add more details to the content in subsection 5.3.3.
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Figure C.2 : Class balanced accuracy values for different values of α (θ = 1, δ = 1).
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Figure C.3 : Class balanced accuracy values for different values of α using the

IOL-GFMM-v1 algorithm (θ = 0.1, δ = 0.1).
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Figure C.4 : Class balanced accuracy values for different values of α using the

IOL-GFMM-v2 algorithm (θ = 0.1, δ = 0.1).
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Figure C.5 : Class balanced accuracy values for different values of δ using the IOL-

GFMM-v1 algorithm (θ = 1, α = n/(n+ r)).
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Figure C.6 : Class balanced accuracy values for different values of δ using the IOL-

GFMM-v2 algorithm (θ = 1, α = n/(n+ r)).
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Table C.2 : Average class balanced accuracy for the proposed EIOL-GFMM algorithms and two existing algorithms with the

mixed-attribute learning ability

Dataset θ
Onln-GFMM-M1 Onln-GFMM-M2 EIOL-GFMM-v1 EIOL-GFMM-v2

η = 0.1 η = 0.7 η = 1 β = 0.25r β = 0.5r β = 0.75r δ = 0.1 δ = 0.7 δ = 1 δ = 0.1 δ = 0.7 δ = 1

abalone

0.1 0.10182 0.10156 0.1039 0.10195 0.10195 0.10195 0.10592 0.09893 0.0951 0.10592 0.09893 0.0951

0.7 0.09182 0.08919 0.07923 0.08662 0.08662 0.08662 0.09384 0.07846 0.08748 0.09384 0.07846 0.08748

1 0.08831 0.08357 0.0729 0.08455 0.08455 0.08455 0.094 0.07766 0.08545 0.094 0.07766 0.08545

australian

0.1 0.77345 0.76536 0.75532 0.62766 0.6276 0.6425 0.77871 0.77871 0.74137 0.77871 0.73931 0.74137

0.7 0.7939 0.69939 0.62978 0.54578 0.53535 0.50845 0.80259 0.78758 0.77546 0.78005 0.77846 0.77546

1 0.79382 0.69821 0.60577 0.55546 0.55456 0.50156 0.80242 0.78793 0.7771 0.78057 0.7771 0.7771

cmc

0.1 0.4003 0.39828 0.37507 0.39889 0.40054 0.41933 0.40938 0.41002 0.2987 0.40936 0.30153 0.2987

0.7 0.39879 0.31526 0.28304 0.24961 0.24822 0.31226 0.36564 0.32006 0.32407 0.34705 0.33095 0.32407

1 0.39603 0.31665 0.29373 0.28774 0.28759 0.19917 0.35431 0.31151 0.29882 0.32979 0.29882 0.29882

dermatology

0.1 0.89702 0.88468 0.87987 0.80026 0.80026 0.80822 0.91871 0.91871 0.81362 0.92217 0.81362 0.81362

0.7 0.897 0.87034 0.86026 0.51967 0.51967 0.53411 0.91871 0.91871 0.86642 0.9095 0.86642 0.86642

1 0.897 0.87097 0.85932 0.45787 0.45787 0.51649 0.91871 0.91871 0.91473 0.91284 0.91473 0.91473

flag

0.1 0.20758 0.2098 0.21106 0.27048 0.27417 0.27848 0.31378 0.31378 0.25518 0.31398 0.25518 0.25518

0.7 0.20707 0.21187 0.22017 0.28746 0.2849 0.25168 0.31232 0.31232 0.27507 0.30981 0.27569 0.27507

1 0.20722 0.21272 0.21607 0.25298 0.25797 0.2513 0.31301 0.31301 0.28709 0.31044 0.28691 0.28709

german

0.1 0.59853 0.5947 0.5906 0.49704 0.50612 0.53338 0.57323 0.57323 0.58901 0.57247 0.58943 0.58901

0.7 0.59975 0.56437 0.53981 0.51698 0.51199 0.52676 0.57175 0.57175 0.57531 0.5759 0.57426 0.57531

1 0.60161 0.54852 0.51234 0.37304 0.37304 0.43286 0.56632 0.56632 0.5969 0.58602 0.5969 0.5969

heart

0.1 0.72107 0.72131 0.73083 0.7632 0.75282 0.74892 0.74995 0.74995 0.73615 0.74995 0.73522 0.73615

0.7 0.72325 0.71335 0.64509 0.59566 0.55006 0.54566 0.7445 0.73701 0.73827 0.73341 0.72268 0.73827

1 0.72291 0.71955 0.60935 0.56718 0.53851 0.53506 0.74169 0.76615 0.74998 0.74213 0.74415 0.74998

japanese credit

0.1 0.77503 0.7741 0.75015 0.65456 0.64753 0.67543 0.78084 0.78084 0.70476 0.78116 0.70675 0.70476

0.7 0.798 0.7099 0.60187 0.52062 0.51952 0.51664 0.80483 0.78195 0.75976 0.74552 0.76258 0.75976

1 0.79766 0.7024 0.59146 0.50578 0.50578 0.50519 0.80554 0.78266 0.75584 0.74095 0.75584 0.75584

molecular biology - 0.54925 0.53621 0.4805 0.43242 0.43218 0.17394 0.62653 0.63410 0.47090 0.63435 0.45035 0.47090

nursery - 0.84465 0.38292 0.21174 0.50402 0.50402 0.50402 0.78223 0.78223 0.33203 0.78223 0.33203 0.33203

post operative

0.1 0.33633 0.31583 0.28579 0.27155 0.31368 0.35604 0.30645 0.30645 0.12997 0.30645 0.11659 0.12997

0.7 0.33491 0.28111 0.2672 0.23059 0.23783 0.24881 0.30748 0.30748 0.1589 0.30748 0.15175 0.1589

1 0.33491 0.28598 0.27953 0.24144 0.23603 0.27637 0.30888 0.30888 0.15504 0.30888 0.11313 0.15504

tae

0.1 0.54089 0.49741 0.43901 0.48868 0.52062 0.53408 0.54668 0.54668 0.43773 0.54668 0.39556 0.43773

0.7 0.54286 0.42037 0.3789 0.32134 0.35273 0.45906 0.55159 0.55159 0.36061 0.55159 0.35133 0.36061

1 0.53996 0.39701 0.3698 0.31717 0.3535 0.44079 0.55181 0.55181 0.35503 0.55181 0.31224 0.35503

tic tac toe - 0.85823 0.8238 0.49501 0.44417 0.44417 0.44417 0.95561 0.95561 0.57448 0.95561 0.57448 0.57448

zoo

0.1 0.55787 0.55787 0.67455 0.86093 0.86093 0.86093 0.8647 0.86375 0.90143 0.80119 0.90143 0.90143

0.7 0.6146 0.6146 0.61193 0.7827 0.7827 0.78776 0.8647 0.85801 0.86369 0.79869 0.86369 0.86369

1 0.6146 0.6146 0.57089 0.7396 0.7396 0.73202 0.8647 0.85801 0.85744 0.79869 0.85744 0.85744
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Table C.3 : The Average Number of Generated Hyperboxes from the Proposed Method and Other Existing Algorithms with

Mixed-Attribute Learning Ability

Dataset θ
Onln-GFMM-M1 Onln-GFMM-M2 EIOL-GFMM-v1 EIOL-GFMM-v2

η = 0.1 η = 0.7 η = 1 β = 0.25r β = 0.5r β = 0.75r δ = 0.1 δ = 0.7 δ = 1 δ = 0.1 δ = 0.7 δ = 1

abalone

0.1 693.95 591.725 522.825 704.15 704.15 704.15 1675.2 1318.925 919.45 1675.2 1318.925 919.45

0.7 77.225 56.875 46.75 79.375 79.375 79.375 1665.075 605.25 934.1 1665.075 605.25 934.1

1 63.3 45.275 37.375 65.275 65.275 65.275 1662.125 599.225 932.375 1662.125 599.225 932.375

australian

0.1 472.15 348.225 222.6 198.775 206.05 279.025 493.225 493.225 203.2 493.225 204.7 203.2

0.7 260.275 95.825 42.7 11.675 12.875 21.875 334.45 207.5 11.85 250.55 12 11.85

1 253.25 86.4 35.725 2 2.675 6.95 329.225 198.475 2 243.35 2 2

cmc

0.1 880.95 447.85 202.325 118.05 127.05 240 925.925 924.9 131.625 925.9 137.6 131.625

0.7 496.325 117.2 38.675 10.85 11.775 24.475 736.475 184.975 14.25 341.1 14.5 14.25

1 471.1 99 28.8 3 3.025 8.275 734.7 130.725 3 267.6 3 3

dermatology

0.1 268.5 212.65 105.975 38.65 38.675 71.2 268.5 268.5 46.225 255.1 46.225 46.225

0.7 267.375 164.825 68.025 7.8 7.8 20 267.425 267.425 12.125 220.825 12.125 12.125

1 267.375 163.85 67.1 6 6 19.05 267.425 267.425 6 220.35 6 6

flag

0.1 143.2 137.5 107.825 101.95 105.075 124.35 143.2 143.2 101.95 141.175 101.95 101.95

0.7 140.975 123.3 44.725 23.55 25.475 49.5 140.975 140.975 23.55 132.675 23.825 23.55

1 140.675 116.625 34.2 8 9.65 31.55 140.675 140.675 8 131.5 8.025 8

german

0.1 747.925 711.3 549.55 524.225 547.45 669.3 748.225 748.225 523.7 744.975 526.225 523.7

0.7 726.225 299.575 115.225 32.25 36.375 87.725 738.825 738.825 32.6 666.725 32.975 32.6

1 714.925 201.1 69.575 2 2.125 10.3 735.425 735.425 2 516 2 2

heart

0.1 198.675 197.475 181.375 181.225 183.525 188.5 199.1 199.1 181.425 199.1 182.3 181.425

0.7 92.05 71.5 16.9 12.5 13.4 17.425 103.45 73.175 12.725 97.625 13.1 12.725

1 74.925 53.625 7.25 2 3.375 4.85 89.85 50.8 2 76.925 2.2 2

japanese credit

0.1 451.175 340.15 219.775 198.65 202 233.25 468.875 468.875 202.55 468.3 203.725 202.55

0.7 252.775 95.675 42.475 12.35 12.95 15.775 320.425 210.3 12.725 197.325 12.95 12.725

1 246.7 87.475 35.275 2 2 4.425 315.675 198.4 2 183.9 2 2

molecular biology - 2271.125 2034.025 1060.925 3.9 178.425 1743.325 2279.6 2279.6 3 2195.1 5.55 3

nursery - 5434.325 156.4 33.075 5 5 5.175 9720 9720 5 9720 5 5

post operative

0.1 58.575 38.9 13.2 7 9.05 19.1 59.25 59.25 7 59.25 8.7 7

0.7 55.1 30.075 8.7 4.825 5.175 11.15 56.125 56.125 4.45 56.125 5.05 4.45

1 55.05 29.375 7.475 2.75 3.95 9.425 56.05 56.05 2.75 56.05 3.625 2.75

tae

0.1 80.75 47.15 35.125 22.125 32.325 68.775 84.15 84.05 23.325 84.05 26.45 23.325

0.7 70.55 29 21.55 5.025 6.95 37.125 77.35 77.225 6.225 77.225 6.775 6.225

1 69.95 28.425 20.575 3.025 4.625 33.325 76.75 76.625 3 76.625 3.8 3

tic tac toe - 639.125 239.275 18.175 2 2 2.05 718.5 718.5 2 718.5 2 2

zoo

0.1 48.4 48.4 13.375 13.375 13.375 14.5 49.35 45.625 13.375 26.65 13.375 13.375

0.7 44.975 44.975 8 8 8 8.55 46 39.95 8 19.275 8 8

1 44.975 44.975 7 7 7 7.25 46 39.95 7 18.15 7 7
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Table C.4 : The average class balanced accuracy for the proposed method and the IOL-GFMM using encoding techniques

Dataset θ(= δ) CatBoost One-hot LOO Label Target James-Stein Helmert Sum EIOL-GFMM-v1 EIOL-GFMM-v2

abalone

0.1 0.1077 0.11216 0.08367 0.11217 0.11161 0.11161 0.11216 0.11215 0.10592 0.10592

0.7 0.11117 0.04521 0.04599 0.07214 0.0544 0.0544 0.04521 0.03942 0.07846 0.07846

1 0.11041 0.03651 0.05247 0.07843 0.07027 0.07027 0.02491 0.02491 0.08545 0.08545

australian

0.1 0.79148 0.6283 0.70876 0.77303 0.77283 0.77321 0.62855 0.79163 0.77871 0.77871

0.7 0.81259 0.63919 0.60169 0.79844 0.80302 0.80712 0.63943 0.80088 0.78758 0.77846

1 0.72686 0.36155 0.45375 0.38134 0.63626 0.64024 0.36384 0.36405 0.7771 0.7771

cmc

0.1 0.27015 0.39891 0.39403 0.4124 0.40797 0.40849 0.39891 0.4095 0.40938 0.40936

0.7 0.24563 0.38885 0.23629 0.37042 0.37329 0.3739 0.38885 0.40109 0.32006 0.33095

1 0.28563 0.14279 0.13443 0.14279 0.14482 0.14482 0.14301 0.14301 0.29882 0.29882

dermatology

0.1 0.7371 0.05674 0.87801 0.55851 0.87721 0.85747 0.05674 0.28197 0.91871 0.92217

0.7 0.75532 0.05674 0.87791 0.60397 0.88038 0.86116 0.05674 0.34796 0.91871 0.86642

1 0.74119 0.75364 0.81876 0.80716 0.82864 0.81965 0.82665 0.24084 0.91473 0.91473

flag

0.1 0.2597 0.06655 0.2218 0.13868 0.14268 0.14573 0.06655 0.12138 0.31378 0.31398

0.7 0.21977 0.06655 0.2205 0.13571 0.1382 0.14176 0.06655 0.12031 0.31232 0.27569

1 0.12787 0.2391 0.15268 0.13549 0.17076 0.17001 0.24299 0.24084 0.28709 0.28709

german

0.1 0.57516 0.35944 0.57602 0.5219 0.58811 0.5854 0.35944 0.46208 0.57323 0.57247

0.7 0.54573 0.35944 0.57281 0.51857 0.59267 0.59057 0.35944 0.43172 0.57175 0.57426

1 0.3895 0.38493 0.40407 0.37334 0.36717 0.36736 0.35404 0.35404 0.5969 0.5969

heart

0.1 0.76571 0.6405 0.71338 0.69879 0.67343 0.69832 0.64175 0.68189 0.74995 0.74995

0.7 0.74487 0.66551 0.72538 0.69216 0.69781 0.72236 0.66635 0.6776 0.73701 0.72268

1 0.64107 0.32977 0.42858 0.47927 0.55031 0.54678 0.32641 0.32641 0.74998 0.74998

japanese credit

0.1 0.77653 0.62878 0.74217 0.77063 0.7745 0.77262 0.62878 0.80086 0.78084 0.78116

0.7 0.81413 0.63782 0.70741 0.80831 0.80203 0.80616 0.63782 0.81319 0.78195 0.76258

1 0.70607 0.36353 0.44061 0.49254 0.5359 0.54993 0.36467 0.36554 0.75584 0.75584

molecular biology

0.1 0.45006 0.30092 0.68158 0.54743 0.54642 0.51235 0.30092 0.40823 0.62742 0.63435

0.7 0.18284 0.30092 0.68161 0.52217 0.54689 0.54447 0.30092 0.364 0.62742 0.47625

1 0.38381 0.17398 0.39789 0.47431 0.27719 0.22743 0.17405 0.17398 0.46948 0.46948

nursery

0.1 0.34878 0.075 0.773 0.70924 0.7625 0.76726 0.075 0.45355 0.78033 0.78033

0.7 0.34219 0.075 0.70922 0.63043 0.58198 0.58197 0.075 0.55267 0.78033 0.33111

1 0.34404 0.3361 0.41684 0.42149 0.49159 0.49174 0.3361 0.3361 0.33111 0.33111

post operative

0.1 0.37532 0.31386 0.34674 0.34483 0.32674 0.32082 0.31386 0.29886 0.30645 0.30645

0.7 0.37125 0.31386 0.34063 0.35297 0.33419 0.32633 0.31386 0.3535 0.30748 0.15175

1 0.34648 0.3423 0.3623 0.36426 0.36205 0.36685 0.34087 0.34087 0.15504 0.15504

tae

0.1 0.27737 0.54896 0.41787 0.54959 0.53362 0.5414 0.57858 0.58822 0.54668 0.54668

0.7 0.29342 0.54896 0.32724 0.40225 0.42256 0.4233 0.57922 0.51246 0.55159 0.35133

1 0.29217 0.28113 0.17504 0.343 0.22983 0.28051 0.31731 0.28113 0.35503 0.35503

tic tac toe

0.1 0.40253 0.32672 0.86118 0.49864 0.84898 0.84898 0.32672 0.50738 0.95561 0.95561

0.7 0.21604 0.32672 0.85408 0.52528 0.85278 0.85278 0.32672 0.61887 0.95561 0.57448

1 0.21598 0.32672 0.34482 0.32672 0.32672 0.32672 0.32672 0.32672 0.57448 0.57448

zoo

0.1 0.73326 0.47723 0.89851 0.47723 0.47723 0.47723 0.47723 0.47723 0.8647 0.80119

0.7 0.72461 0.47723 0.89851 0.47723 0.47723 0.47723 0.47723 0.47723 0.85801 0.86369

1 0.66473 0.65154 0.87506 0.65154 0.65154 0.65154 0.65154 0.65154 0.85744 0.85744
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Table C.5 : The Average Class Balanced Accuracy for Different Methods Used to

Find the Values for Parameter α

Dataset Algorithm θ = δ Tuning α Est-α-v1 Est-α-v2 α = n/(n+ r)

abalone

EIOL-GFMM-v1 0.1 0.10452 0.10571 0.10589 0.10592

EIOL-GFMM-v2 0.1 0.10452 0.10571 0.10589 0.10592

Both 1 0.08795 0.08498 0.08307 0.08545

australian

EIOL-GFMM-v1 0.1 0.7806 0.77979 0.77416 0.77871

EIOL-GFMM-v2 0.1 0.78038 0.77991 0.77406 0.77871

Both 1 0.77654 0.77734 0.77784 0.7771

cmc

EIOL-GFMM-v1 0.1 0.43148 0.41052 0.41074 0.40938

EIOL-GFMM-v2 0.1 0.43168 0.41074 0.41414 0.40936

Both 1 0.29941 0.29907 0.29967 0.29882

dermatology

EIOL-GFMM-v1 0.1 0.91653 0.91871 0.88963 0.91871

EIOL-GFMM-v2 0.1 0.91763 0.92217 0.89801 0.92217

Both 1 0.91446 0.91473 0.91315 0.91473

flag

EIOL-GFMM-v1 0.1 0.3206 0.32098 0.30551 0.31378

EIOL-GFMM-v2 0.1 0.32063 0.32267 0.30648 0.31398

Both 1 0.28035 0.28494 0.28583 0.28709

german

EIOL-GFMM-v1 0.1 0.59599 0.57887 0.55533 0.57323

EIOL-GFMM-v2 0.1 0.59563 0.5794 0.5568 0.57247

Both 1 0.5998 0.59663 0.59677 0.5969

heart

EIOL-GFMM-v1 0.1 0.73854 0.74783 0.7465 0.74995

EIOL-GFMM-v2 0.1 0.73854 0.7462 0.74909 0.74995

Both 1 0.75397 0.75177 0.75383 0.74998

japanese credit

EIOL-GFMM-v1 0.1 0.76721 0.78298 0.77622 0.78084

EIOL-GFMM-v2 0.1 0.76642 0.78392 0.77529 0.78116

Both 1 0.75572 0.75755 0.7563 0.75584

post operative

EIOL-GFMM-v1 0.1 0.30712 0.30645 0.33384 0.30645

EIOL-GFMM-v2 0.1 0.30712 0.30645 0.33384 0.30645

Both 1 0.1627 0.1555 0.16801 0.15504

tae

EIOL-GFMM-v1 0.1 0.512 0.54668 0.54421 0.54668

EIOL-GFMM-v2 0.1 0.512 0.54668 0.54421 0.54668

Both 1 0.35715 0.35499 0.35216 0.35503

zoo

EIOL-GFMM-v1 0.1 0.84196 0.8647 0.85161 0.8647

EIOL-GFMM-v2 0.1 0.82726 0.79839 0.85708 0.80119

Both 1 0.91994 0.84655 0.94256 0.85744
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Table C.6 : The average class balanced accuracy for the learning algorithms using

the hyper-parameter tuning method

Dataset Onln-GFMM-M1 Onln-GFMM-M2 EIOL-GFMM-v1 EIOL-GFMM-v2

abalone 0.10072 0.09932 0.10431 0.10431

australian 0.78501 0.79201 0.79484 0.78588

cmc 0.39265 0.40692 0.42634 0.42522

dermatology 0.87378 0.83522 0.91563 0.91497

flag 0.21735 0.27828 0.30107 0.28806

german 0.58233 0.55034 0.60345 0.59929

heart 0.72481 0.7772 0.76922 0.75861

japanese credit 0.763 0.76685 0.79294 0.79211

post operative 0.32856 0.29945 0.3582 0.31890

tae 0.48682 0.4853 0.47482 0.44618

zoo 0.67941 0.8648 0.87179 0.85685

Table C.7 : The rank for the learning algorithms using the hyper-parameter tuning

method

Dataset Onln-GFMM-M1 Onln-GFMM-M2 EIOL-GFMM-v1 EIOL-GFMM-v2

abalone 3 4 1.5 1.5

australian 4 2 1 3

cmc 4 3 1 2

dermatology 3 4 1 2

flag 4 3 1 2

german 3 4 1 2

heart 4 1 2 3

japanese credit 4 3 1 2

post operative 1 4 3 2

tae 1 2 3 4

zoo 4 2 1 3

Average 3.182 2.909 1.5 2.409
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Figure C.7 : Class balanced accuracy values and range of obtained α for different

ways of estimating α (θ = 1, δ = 1).
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Figure C.8 : Class balanced accuracy values and range of obtained α for different

ways of estimating α (using EIOL-GFMM-v1 with θ = 0.1, δ = 0.1).
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Figure C.9 : Class balanced accuracy values and range of obtained α for different

ways of estimating α (using EIOL-GFMM-v2 with θ = 0.1, δ = 0.1).



276

Appendix D

Additional Results for Chapter 6

D.1 Proof of Lemma 6.1

Proof. It is expected to prove that if the membership degree bh(X) is below 1−θ·γmax
then the maximum hyperbox size condition is not satisfied for at least one of the

dimensions. First of all, it is desirable to prove that if the membership value for

the j-th dimension bh(xj) < 1 − θ · γj, then the maximum hyperbox size condition

is not met for the j-th dimension, i.e., wnewj − vnewj > θ. An assumption for this

lemma is that all the dimensions of the input hyperbox X = [X l, Xu] must satisfy

the maximum hyperbox size condition xuj − xlj ≤ θ and xuj , x
l
j ∈ [0, 1] ∀j ∈ [1, n].

For each j-th dimension, there are six cases concerning the positions of the input

pattern X = [X l, Xu] and the hyperbox h = [V,W ] as follows:

Case 1 : xlj ≤ vj ≤ xuj ≤ wj. The membership value along the j-th dimension

is:

bhj = bh(xj) = min([1−f(xuj −wj, γj)], [1−f(vj−xlj, γj)]) = 1−min((vj−xlj) ·γj, 1)

Only (vj−xlj) ·γj ≤ 1 is considered, because in case of (vj−xlj) ·γj > 1⇒ bhj = 0

and 1 < (vj−xlj) ·γj ≤ (xuj −xlj) ·γj ≤ θ ·γj, thus 1−θ ·γj < 0⇒ bhj = 0 > 1−θ ·γj.

Therefore, if (vj − xlj) · γj > 1, the case bhj < 1 − θ · γj will never occur. For

(vj − xlj) · γj ≤ 1, we have:

bhj = 1− (vj − xlj) · γj

If the hyperbox h is expanded, then:

vnewj = min(vj, x
l
j) = xlj; wnewj = max(wj, x

u
j ) = wj
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It is obtained:

bhj < 1− θ · γj ⇒ 1− (vj − xlj) · γj < 1− θ · γj ⇒ vj − xlj > θ (because of γj > 0)

⇒ wj − xlj > θ (because of wj ≥ vj)⇒ wnewj − vnewj > θ

Hence, if bhj < 1− θ · γj, then wnewj − vnewj > θ in this case.

Case 2 : vj ≤ xlj ≤ wj ≤ xuj . The membership value along the j-th dimension

is:

bhj = bh(xj) = min([1−f(xuj −wj, γj)], [1−f(vj−xlj, γj)]) = 1−min((xuj −wj) ·γj, 1)

Similarly to case 1, Only (xuj − wj) · γj ≤ 1 is considered, thus it can get:

bhj = 1− (xuj − wj) · γj

If the hyperbox h is expanded, then:

vnewj = min(vj, x
l
j) = vj; wnewj = max(wj, x

u
j ) = xuj

We have:

bhj < 1− θ · γj ⇒ 1− (xuj − wj) · γj < 1− θ · γj ⇒ xuj − wj > θ (because of γj > 0)

⇒ xuj − vj > θ (because of vj ≤ wj)⇒ wnewj − vnewj > θ

Hence, if bhj < 1− θ · γj, then wnewj − vnewj > θ in this case.

Case 3 : xlj ≤ vj ≤ wj ≤ xuj . The membership value along the j-th dimension

is:

bhj = bh(xj) = min([1− f(xuj − wj, γj)], [1− f(vj − xlj, γj)])

= min([1− (xuj − wj) · γj], [1− (vj − xlj) · γj])

According to the assumption of the lemma with regard to the input hyperbox,

xuj − xlj ≤ θ, thus, xuj − wj ≤ xuj − xlj ≤ θ and vj − xlj ≤ xuj − xlj ≤ θ. These

lead to (xuj − wj) · γj ≤ θ · γj and (vj − xlj) · γj ≤ θ · γj (because of γj > 0)
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⇒ 1 − (xuj − wj) · γj ≥ 1 − θ · γj and 1 − (vj − xlj) · γj ≥ 1 − θ · γj. Therefore,

bhj ≥ 1− θ · γj. As a result, in this case, bhj < 1− θ · γj never happens.

Case 4 : vj ≤ xlj ≤ xuj ≤ wj, the membership value is computed as: bhj = 1 ≥

1− θ · γj, and so bhj < 1− θ · γj never occurs in this case.

Case 5 : vj ≤ wj ≤ xlj ≤ xuj . The membership value along the j-th dimension

is:

bhj = bh(xj) = min([1−f(xuj −wj, γj)], [1−f(vj−xlj, γj)]) = 1−min((xuj −wj) ·γj, 1)

If the hyperbox h is expanded, then:

vnewj = min(vj, x
l
j) = vj; wnewj = max(wj, x

u
j ) = xuj

Case 5.1 : (xuj − wj) · γj > 1 ⇔ xuj − wj > 1/γj due to γj > 0. In addition,

bhj = 0. We have:

bhj < 1− θ · γj ⇒ 0 < 1− θ · γj ⇒ θ · γj < 1

⇒ θ < 1/γj < xuj − wj ≤ xuj − vj (due to vj ≤ wj and γj > 0)

⇒ θ < wnewj − vnewj

Hence, if bhj < 1− θ · γj, then wnewj − vnewj > θ in this case.

Case 5.2 : (xuj − wj) · γj ≤ 1, it can lead to:

bhj = 1− (xuj − wj) · γj

and

bhj < 1− θ · γj ⇒ 1− (xuj − wj) · γj < 1− θ · γj ⇒ xuj − wj > θ (due to γj > 0)

⇒ xuj − vj > θ (because of vj ≤ wj)⇒ wnewj − vnewj > θ

As a result, if bhj < 1− θ · γj, then wnewj − vnewj > θ in this case as well.

Case 6 : xlj ≤ xuj ≤ vj ≤ wj. The membership value along the j-th dimension

is:

bhj = bh(xj) = min([1−f(xuj −wj, γj)], [1−f(vj−xlj, γj)]) = 1−min((vj−xlj) ·γj, 1)
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If the hyperbox h is expanded, then:

vnewj = min(vj, x
l
j) = xlj; wnewj = max(wj, x

u
j ) = wj

Case 6.1 : (vj − xlj) · γj > 1 ⇔ vj − xlj > 1/γj due to γj > 0. In addition,

bhj = 0. It is obtained:

bhj < 1− θ · γj ⇒ 0 < 1− θ · γj ⇒ θ · γj < 1⇒ θ < 1/γj < vj − xlj ≤ wj − xlj (due to vj ≤ wj and γj > 0)

⇒ θ < wnewj − vnewj

Hence, if bhj < 1− θ · γj, then wnewj − vnewj > θ in this case.

Case 6.2 : (vj − xlj) · γj ≤ 1, it can obtained:

bhj = 1− (vj − xlj) · γj

and:

bhj < 1− θ · γj ⇒ 1− (vj − xlj) · γj < 1− θ · γj ⇒ vj − xlj > θ (due to γj > 0)

⇒ wj − xlj > θ (because of vj ≤ wj)⇒ wnewj − vnewj > θ

As a result, if bhj < 1− θ · γj, then wnewj − vnewj > θ in this case as well.

From the six above cases, it can be seen that for each dimension j if bhj < 1−θ·γj,

then wnewj − vnewj > θ. Given that the membership function for the input hyperbox

X is bh(X) =
n

min
j=1

bhj and 0 ≤ θ ·γj ≤ θ · n
max
j=1

γj = θ ·γmax ⇒ 1− θ ·γj ≥ 1− θ ·γmax.

Therefore, if bhj < 1 − θ · γmax, then wnewj − vnewj > θ for every dimension j. As a

result, if bh(X) < 1 − θ · γmax, then the maximum hyperbox size condition is not

satisfied for the expanded hyperbox. The lemma is proved.

D.2 Proof of Lemma 6.2

Proof. An underlying assumption in this lemma is that all input hyperboxes and

aggregatable hyperbox candidates have sizes less than θ. If not, the aggregation

process will not be possible. First of all, it is required to prove that if the similarity

value sik = s(Bi, Bk) < 1 − θ · γmax, then the maximum hyperbox size constraint

is not satisfied for at least one of the dimensions of the hyperbox aggregated from
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Bi and Bk. Therefore, it is expected to prove that if sjik < 1 − θ · γj for any

dimension j ∈ [1, n], then the maximum hyperbox size condition is not met for that

j-th dimension, i.e., wnewj − vnewj > θ. It can be seen that the similarity measure

using middle distance between two hyperboxes is the same as the membership value

between a hyperbox and an input pattern. Therefore, the proof is the same as in

the Appendix D.1. Here, the above condition is only proved for the longest and

shortest distance measures.

Using the shortest distance based similarity measure

The shortest distance based similarity value for the j-th dimension is computed

as follows:

s̃jik = min[1− f(vkj − wij, γj), 1− f(vij − wkj, γj)]

For each j-th dimension, there are six cases concerning the positions of the

hyperbox Bi = [Vi,Wi] and the hyperbox Bk = [Vk,Wk] as follows:

Case 1 : vij ≤ vkj ≤ wij ≤ wkj. The similarity value: s̃jik = 1 ≥ 1 − θ · γj
(because of θ · γj > 0). Therefore, s̃jik < 1− θ · γj will never happen in this case.

Case 2 : vkj ≤ vij ≤ wkj ≤ wij. The similarity value: s̃jik = 1 ≥ 1 − θ · γj.

Therefore, s̃jik < 1− θ · γj will never happen in this case as well.

Case 3 : vkj ≤ wkj ≤ vij ≤ wij. The coordinate at the j-th dimension of the

hyperbox aggregated from Bi and Bk is:

vnewj = min(vij, vkj) = vkj; wnewj = max(wij, wkj) = wij

The similarity value: s̃jik = 1−min[1, (vij − wkj) · γj]

Case 3.1 : (vij − wkj) · γj > 1 ⇔ vij − wkj > 1/γj (because of γj > 0). In this

case: s̃jik = 0. It leads to:

s̃jik < 1− θ · γj ⇒ 0 < 1− θ · γj ⇒ θ · γj < 1

⇒ θ < 1/γj < vij − wkj ≤ wij − wkj ≤ wij − vkj(due to vkj ≤ wkj, vij ≤ wij, γj > 0)

⇒ θ < wnewj − vnewj
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Therefore, if s̃jik < 1− θ · γj, then wnewj − vnewj > θ in this case.

Case 3.2 : (vij − wkj) · γj ≤ 1 ⇒ s̃jik = 1 − (vij − wkj) · γj. It can be obtained

that:

s̃jik < 1− θ · γj ⇒ 1− (vij − wkj) · γj < 1− θ · γj ⇒ θ < vij − wkj (due to γj > 0)

⇒ θ < wij − wkj ≤ wij − vkj = wnewj − vnewj (because of vkj ≤ wkj; vij ≤ wij)

Therefore, if s̃jik < 1− θ · γj, then wnewj − vnewj > θ in this case as well.

Case 4 : vij ≤ wij ≤ vkj ≤ wkj. This case is proved similarly to case 3.

Case 5 : vkj ≤ vij ≤ wij ≤ wkj. The similarity value: s̃jik = 1 ≥ 1 − θ · γj.

Therefore, s̃jik < 1− θ · γj will never happen in this case.

Case 6 : vij ≤ vkj ≤ wkj ≤ wij. The similarity value: s̃jik = 1 ≥ 1 − θ · γj.

Hence, s̃jik < 1− θ · γj will never happen in this case as well.

Using the longest distance based similarity measure

The longest distance based similarity value for the j-th is calculated as follows:

ŝjik = min[1− f(wkj − vij, γj), 1− f(wij − vkj, γj)]

For each j-th dimension, it is also expected to consider in turn six cases relevant

to the positions of the hyperbox Bi = [Vi,Wi] and the hyperbox Bk = [Vk,Wk] as

follows:

Case 1 : vij ≤ vkj ≤ wij ≤ wkj. The coordinate at the j-th dimension of the

hyperbox aggregated from Bi and Bk is:

vnewj = min(vij, vkj) = vij; wnewj = max(wij, wkj) = wkj

The similarity value: ŝjik = min[1−min((wkj−vij) ·γj, 1), 1−min((wij−vkj) ·γj, 1)].

In this case, we have wkj − vij ≥ wkj − vkj ≥ wij − vkj ⇒ min((wkj − vij) · γj, 1) ≥

min((wij − vkj) · γj, 1). Therefore, ŝjik = 1−min((wkj − vij) · γj, 1)

Case 1.1 : (wkj − vij) · γj > 1 ⇔ wkj − vij > 1/γj (because of γj > 0). In this
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case: ŝjik = 0. We have:

ŝjik < 1− θ · γj ⇒ 0 < 1− θ · γj ⇒ θ < 1/γj (due to γj > 0)

⇒ θ < wkj − vij = wnewj − vnewj

Therefore, if ŝjik < 1− θ · γj, then wnewj − vnewj > θ.

Case 1.2 : (wkj − vij) · γj ≤ 1⇒ ŝjik = 1− (wkj − vij) · γj. We have:

ŝjik < 1− θ · γj ⇒ 1− (wkj − vij) · γj < 1− θ · γj ⇒ θ < wkj − vij (due to γj > 0)

⇒ θ < wnewj − vnewj

Therefore, if ŝjik < 1− θ · γj, then wnewj − vnewj > θ in this case.

Case 2 : vkj ≤ vij ≤ wkj ≤ wij. This case is proved similarity to case 1.

Case 3 : vkj ≤ wkj ≤ vij ≤ wij. The coordinate at the j-th dimension of the

hyperbox aggregated from Bi and Bk is:

vnewj = min(vij, vkj) = vkj; wnewj = max(wij, wkj) = wij

The similarity value: ŝjik = 1−min((wij − vkj) · γj, 1).

Case 3.1 : (wij − vkj) · γj > 1 ⇔ wij − vkj > 1/γj (because of γj > 0). In this

case: ŝjik = 0. We have:

ŝjik < 1− θ · γj ⇒ 0 < 1− θ · γj ⇒ θ < 1/γj (due to γj > 0)

⇒ θ < wij − vkj = wnewj − vnewj

Therefore, if ŝjik < 1− θ · γj, then wnewj − vnewj > θ in this case.

Case 3.2 : (wij − vkj) · γj ≤ 1⇒ ŝjik = 1− (wij − vkj) · γj. It can be obtained:

ŝjik < 1− θ · γj ⇒ 1− (wij − vkj) · γj < 1− θ · γj ⇒ θ < wij − vkj (due to γj > 0)

⇒ θ < wnewj − vnewj

Therefore, if ŝjik < 1− θ · γj, then wnewj − vnewj > θ in this case.

Case 4 : vij ≤ wij ≤ vkj ≤ wkj. This case is proved similarly to case 3.
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Case 5 : vkj ≤ vij ≤ wij ≤ wkj. The coordinate at the j-th dimension of the

hyperbox aggregated from Bi and Bk is:

vnewj = min(vij, vkj) = vkj; wnewj = max(wij, wkj) = wkj

The similarity value: ŝjik = min[1−min((wkj−vij) ·γj, 1), 1−min((wij−vkj) ·γj, 1)].

According to the assumption of the lemma the sizes of the input hyperboxes for

the aggregation process must be below θ along each of their n dimensions. Therefore,

in this case:

wkj − vkj ≤ θ ⇒ 0 ≤ wkj − vij ≤ θ and 0 ≤ wij − vkj ≤ θ (vkj ≤ vij and wij ≤ wkj)

⇒ (wkj − vij) · γj ≤ θ · γj and (wij − vkj) · γj ≤ θ · γj (because of γj > 0)

⇒ min((wkj − vij) · γj, 1) ≤ min(θ · γj, 1)

and min((wij − vkj) · γj, 1) ≤ min(θ · γj, 1)

⇒ 1−min((wkj − vij) · γj, 1) ≥ 1−min(θ · γj, 1)

and 1−min((wij − vkj) · γj, 1) ≥ 1−min(θ · γj, 1)

⇒ ŝjik ≥ 1−min(θ · γj, 1) ≥ 1− θ · γj

Therefore, the input hyperboxes size assumption always leads to ŝjik ≥ 1− θ · γj. As

a result, ŝjik < 1− θ · γj will never occur in this case.

Case 6 : vij ≤ vkj ≤ wkj ≤ wij. This case is proved similarly to case 5.

From the above proofs, it can be seen that if the similarity value sjik < 1 − θ ·

γj; ∀j ∈ [1, n], then the hyperbox aggregated from two hyperboxes Bi and Bk does

not satisfy the maximum hyperbox size condition on the j-th dimension. We also

have 0 ≤ θ · γj ≤ θ · γmax ⇒ 1 − θ · γj ≥ 1 − θ · γmax; ∀j ∈ [1, n]. Therefore, if

the similarity score between two hyperboxes sik < 1 − θ · γmax, then the maximum

hyperbox size condition is not satisfied for at least one of the dimensions of the

aggregated hyperbox. In addition, in the agglomerative learning, two hyperboxes Bi

and Bk are aggregated if their similarity value sik ≥ σ, where σ is a given minimum

similarity threshold. From these two conditions, it is sufficient to consider only

pairs of hyperboxes with similarity values sik ≥ max(σ, 1− θ · γmax) when selecting

hyperbox canditates for the aggregation process. Lemma 6.2 is proved.
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D.3 Experimental Datasets and Parameter Settings

To evaluate the effectiveness of the proposed method, the experiments on 24

datasets taken from the UCI machine learning repository (Dua and Graff 2019) were

conducted. A summary of these datasets related to the numbers of classes, features,

and samples is shown in Table D.1. As discussed in the complexity analysis parts,

the complexity of all learning algorithms depends on both the number of features

and the number of hyperboxes considered during the training process. The proposed

acceleration methods in section 6.2 target reducing only the number of hyperboxes

considered. Therefore, it is appropriate to keep a high number of dimensions when

assessing the impact of number of considered hyperboxes on the acceleration of the

proposed methods in comparison to the original algorithms. As a result, several

high dimensional datasets used in Chapters 3 and 4 were combined with other high

dimensional datasets to build a set of experimental datasets shown in Table D.1. It

is noted that the proposed method in this Chapter only fits for datasets with only

numerical features, thus the datasets in this Chapter are different from those used

in Chapter 5.

For each dataset, 5 times 2-fold cross-validation were carried out, and then the

average values of the training time and the number of hyperbox candidates con-

sidered during the training process are reported in this chapter. Experiments were

executed on a Intel Xeon Gold 6150 2.7GHz computer with 32GB RAM running

Red Hat Enterprise Linux. The algorithms were implemented using Python pro-

gramming language.

The sensitivity parameter γj impacts the decreasing speed of the membership

function on the j -th dimension. If a large value of γj is set, there may be cases that

samples are not classified correctly as the membership values for all classes are zero.

Therefore, to avoid this situation, the sensitivity parameter γj = 1; ∀j ∈ [1, n] was

used as recommended in Abe (2001) when all the input data were normalized to the

range of [0, 1]. If the maximum hyperbox size parameter θ is assigned a large value,

the classification accuracy of the GFMMNN is negatively affected. A high classifica-

tion accuracy is usually achieved for a small value of θ but it significantly increases
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Table D.1 : The summary of the used datasets for the second solution of accelerating

learning algorithms

ID Dataset # samples # features # classes

1 blance scale 625 4 3

2 banknote authentication 1372 4 2

3 blood transfusion 748 4 2

4 breast cancer wisconsin 699 9 2

5 breast cancer coimbra 116 9 2

6 climate model crashes 540 18 2

7 connectionist bench sonar 208 60 2

8 glass 214 9 6

9 haberman 306 3 2

10 heart 270 13 2

11 ionosphere 351 33 2

12 movement libras 360 90 15

13 optical digit 5620 62 10

14 page blocks 5473 10 2

15 pendigits 10992 16 10

16 pima diabetes 768 8 2

17 plant species leaves margin 1600 64 100

18 plant species leaves texture 1600 64 100

19 ringnorm 7400 20 2

20 seeds 210 7 3

21 image segmentation 2310 19 7

22 spambase 4601 57 2

23 spectf heart 267 44 2

24 landsat satellite 6435 36 6

the training time (Khuat and Gabrys 2020). Therefore, to show the efficiency of

the proposed method, a small value of θ = 0.1 was used for learning algorithms in

this experiment. In the agglomerative learning algorithms, the minimum similarity

threshold σ = 0 was set to assess the impact of the lower bound related to θ on the

training time of algorithms. For σ = 0, the hyperbox aggregation step depends only

on the maximum hyperbox size. The analysis of the impacts of different parameters

on the classification performance of GFMM learning algorithms was presented in

Chapter 3.
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D.4 Training Time of Algorithms with and without using

Lemmas

This appendix subsection shows the training time of online and agglomerative

learning algorithms from the experiments in section 6.2.4 in Chapter 6. Table D.2

shows the training time of the IOL-GFMM and original online learning algorithms.

Table D.3 presents the training time of the AGGLO-2 algorithm, while Table D.4

decribes the learning time of the AGGLO-SM algorithm.

Table D.2 : Training time of online learning algorithms in Chapter 6

Dataset
IOL-GFMM Onln-GFMM

w/o. lemma w. lemma w/o. lemma w. lemma

blance scale 0.1465 0.0256 0.1479 0.0274

banknote authentication 0.0984 0.0756 0.471 0.4459

blood transfusion 0.0497 0.0398 0.1322 0.1251

breast cancer wisconsin 0.1205 0.0311 0.121 0.0331

breast cancer coimbra 0.0099 0.0042 0.0101 0.0051

climate model crashes 0.2093 0.0335 0.2168 0.0358

connectionist bench sonar 0.03 0.0106 0.029 0.0113

glass 0.0141 0.0107 0.0382 0.0347

haberman 0.0212 0.0158 0.0469 0.0418

heart 0.0402 0.0113 0.0407 0.0131

ionosphere 0.0584 0.0211 0.091 0.0563

movement libras 0.0271 0.0174 0.0578 0.0526

optical digit 4.9332 1.0854 3.7477 1.2472

page blocks 0.8802 0.6761 4.8526 4.64

pendigits 14.4605 3.3734 179.4647 168.4146

pima diabetes 0.406 0.0821 0.6995 0.3686

plant species leaves margin 0.2702 0.1327 0.1768 0.1357

plant species leaves texture 4.3093 0.5983 4.5103 0.6081

ringnorm 38.1094 2.9893 54.7914 18.037

seeds 0.0315 0.0183 0.0714 0.0595

image segmentation 0.7204 0.3984 10.2108 9.8831

spambase 5.567 1.6777 17.4908 13.4731

spectf heart 0.1039 0.027 0.1033 0.0275

landsat satellite 6.4317 2.3303 58.5758 54.5749

Average 3.210358 0.570238 14.00407 11.34798
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Table D.3 : Training time of the AGGLO-2 algorithm in Chapter 6

Dataset
Longest distance Shortest distance Mid-max distance Mid-min distance

w/o

lemma

w/

lemma

w/o

lemma

w/

lemma

w/o

lemma

w/

lemma

w/o

lemma

w/

lemma

blance scale 0.883 0.0278 0.8819 0.0276 0.8949 0.0423 0.8928 0.0421

banknote

authentication
0.6161 0.174 0.6153 0.2315 0.6686 0.2542 0.6675 0.243

blood

transfusion
0.4673 0.1078 0.3892 0.1421 0.417 0.154 0.4842 0.1499

breast cancer

wisconsin
2.74 0.1284 2.7136 0.1282 2.8078 0.191 2.7892 0.1914

breast cancer

coimbra
0.0712 0.008 0.0713 0.0079 0.0764 0.0126 0.0761 0.0126

climate model

crashes
1.4255 0.0438 1.4104 0.0438 1.4442 0.069 1.4435 0.0691

connectionist

bench sonar
0.1423 0.0117 0.1421 0.0118 0.1511 0.0193 0.1509 0.0196

glass 0.0859 0.0205 0.0849 0.0231 0.0942 0.0318 0.0946 0.0299

haberman 0.1477 0.0291 0.1249 0.0356 0.1351 0.0429 0.1562 0.0414

heart 0.3037 0.0173 0.3014 0.0172 0.3149 0.0275 0.3127 0.0275

ionosphere 0.832 0.0572 0.6701 0.0524 0.6898 0.0771 0.8597 0.0887

movement

libras
0.1728 0.045 0.142 0.0406 0.1612 0.0575 0.1963 0.0661

optical digit 323.1978 1.184 324.0414 1.2508 324.5103 1.8357 331.7654 1.8095

page blocks 14.5953 2.6135 10.8555 3.1821 13.2088 3.7672 15.3054 3.7015

pendigits 597.5753 7.7973 596.2356 10.0636 599.6309 11.7277 599.684 10.5186

pima diabetes 6.3228 0.1788 4.9712 0.1767 5.0455 0.2371 6.3992 0.269

plant species

leaves margin
0.6798 0.117 0.6807 0.1189 0.7446 0.1805 0.7451 0.1806

plant species

leaves texture
119.9449 1.9998 120.5406 2.0027 122.1148 3.2466 121.6378 3.2535

ringnorm 1350.8695 8.7521 1352.427 12.2458 1357.874 15.1354 1354.012 13.4766

seeds 0.174 0.0279 0.1727 0.0331 0.1849 0.0442 0.187 0.0406

image

segmentation
11.882 0.8685 10.3135 1.0592 10.6223 1.2304 12.1874 1.204

spambase 441.0555 8.4443 396.2303 13.5323 400.5978 13.9315 446.2259 12.7619

spectf heart 0.6437 0.0311 0.6436 0.0311 0.6632 0.0502 0.6646 0.0502

landsat

satellite
255.4462 5.5045 242.8039 15.0677 243.0923 11.9613 307.8871 9.4819

Average 130.428 1.591 127.811 2.480 128.589 2.680 133.534 2.405
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Table D.4 : Training time of the AGGLO-SM algorithm in Chapter 6

Dataset
Longest distance Shortest distance Mid-max distance Mid-min distance

w/o

lemma

w/

lemma

w/o

lemma

w/

lemma

w/o

lemma

w/

lemma

w/o

lemma

w/

lemma

blance scale 0.3724 0.0207 0.3702 0.0206 0.3704 0.0207 0.3702 0.0207

banknote

authentication
20.4138 18.0293 20.9532 18.1422 20.5455 17.8608 20.6175 17.722

blood

transfusion
0.5674 0.4925 0.8059 0.7081 0.7212 0.6478 0.6057 0.5409

breast cancer

wisconsin
0.3999 0.1324 0.4103 0.1335 0.3982 0.1358 0.3998 0.1319

breast cancer

coimbra
0.0233 0.0087 0.0234 0.0087 0.0233 0.0087 0.0233 0.0087

climate model

crashes
0.6912 0.0319 0.6951 0.0324 0.6944 0.032 0.6914 0.0323

connectionist

bench sonar
0.0678 0.0091 0.0676 0.0091 0.0678 0.0091 0.0679 0.0091

glass 0.1718 0.1578 0.1733 0.1623 0.1686 0.1585 0.1738 0.1613

haberman 0.1577 0.1375 0.1893 0.1689 0.1893 0.1674 0.1598 0.1387

heart 0.0212 0.0123 0.021 0.0123 0.0233 0.0139 0.0208 0.0123

ionosphere 0.4828 0.3937 0.5086 0.3863 0.4907 0.3896 0.4833 0.3781

movement

libras
0.2215 0.2043 0.225 0.2049 0.2218 0.2046 0.2208 0.2036

optical digit 105.8615 1.2225 103.9479 1.2399 98.2648 1.2936 104.8599 1.249

page blocks 494.1239 422.8161 1409.174 1206.817 1156.35 1015.346 511.3471 439.3924

pendigits 130.6623 38.7196 267.1413 158.6442 250.7539 157.6118 140.068 46.2601

pima diabetes 3.7218 2.3679 3.9888 2.6727 3.932 2.5885 3.7252 2.3731

plant species

leaves margin
0.3564 0.0967 0.3577 0.0966 0.3562 0.0966 0.3562 0.0967

plant species

leaves texture
40.4664 12.0927 40.5373 12.1132 40.6338 12.1003 40.4593 12.0958

ringnorm 1327.968 872.3743 1442.132 986.0059 1382.036 929.1679 1332.649 874.2278

seeds 0.3235 0.279 0.3286 0.2895 0.3259 0.2859 0.3197 0.279

image

segmentation
62.3063 58.843 72.7162 69.1137 71.0587 67.3851 63.6872 60.2109

spambase 1506.906 1412.081 1642.779 1543.002 1621.651 1521.519 1516.833 1427.837

spectf heart 0.3101 0.0246 0.3102 0.0246 0.3101 0.0247 0.3102 0.0247

landsat

satellite
237.7967 184.5571 965.5685 884.7285 908.0397 826.8151 291.1204 236.4152

Average 163.933 126.046 248.893 203.531 231.568 189.745 167.899 129.993
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Appendix E

Additional Results for Chapter 7

E.1 Implementation of the MRHGRC

E.1.1 An Example of the MRHGRC

This sub-section is to provide an example for the proposed method in Chapter

7. The illustration of the proposed approach can be found in Figure E.1. Two-class

datasets with 400 training samples, 200 testing samples, and 100 validation patterns

were generated based on Gaussian distribution. The dotted points in respective

figures surrounding the hyperboxes are testing points. Based on probability density

functions used to generate the data, the lowest classification error on the testing

set is 11%. Assuming using four processes to build hyperboxes in parallel. The

training set is split into four parts and delivered to four processes to form four

hyperbox-based classifiers independently. For each model, it is easy to observe that

the decision boundary is complex, in which small hyperboxes can occupy relatively

large influencing regions such as A, B, C, and D zones in the figure. These regions

cause a misclassification for each model. However, these influencing regions are

narrowed down in size after the merging step because evidence from the surrounding

correct hyperboxes is sufficient to form new decision boundaries as well as reducing

the impact of hyperboxes causing misclassification. Therefore, the error rate of the

merged classifier decreases. Nonetheless, the complexity of the aggregated model

increases and many hyperboxes may contribute to the predictive results; even some

noisy hyperboxes can lead to the decline in the classification accuracy of the model.

As a result, a pruning step is performed using a validation set, and hyperboxes with

the accuracy lower than 50% are eliminated. It can be observed that the error rate

of the model decreases. In phase 2, the minimum hyperbox sizes are increased to

reduce the complexity of the classifier, and overlapping regions among hyperboxes
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representing different classes are resolved. As shown, the accuracy of the model

only changes a little, while the complexity is significantly reduced. This example

demonstrates the efficiency of the proposed method.

Process 1 Process 2

Process 3 Process 4

MergingPruning

Validation set

Training set

θ=0.2 θ=0.3 θ=0.4

θ=0.5θ=0.6

Phase 1

Phase 2

θ=0.1

Error rate = 13.25% Error rate = 13.5%

Error rate = 16% Error rate = 16.25%

Error rate = 12.75%Error rate = 11.75%

Error rate = 11.5% Error rate = 11.5% Error rate = 11.75%

Error rate = 11.5%Error rate = 11.5%

A

B

C D

Hyperbox decision boundary

Optimal decision boundary

Figure E.1 : Demonstration of the training process proposed in Chapter 7
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Figure E.2 shows the aggregation process of hyperboxes through different levels

of granularity for the above example. The numbers in the right-hand side of the

figure show the numbers of generated hyperboxes for each granularity level specified

by the maximum hyperbox size threshold θ. The value of θ ≤ 0.6 in this experiment

is only used to illustrate the proposed method. If the value of θ larger than 0.6 is

passed to the algorithm, phase 2 will continue to be performed to aggregate and

merge hyperboxes when the constraints are still met. When the value of θ is close to

1, and the minimum membership value between hyperbox candidates is close to 0, it

is possible that all samples in the same class will be covered by only one hyperbox.

0.1

0.2

0.3

0.4

0.5

0.6

θ
 

22

12

7

5

4

52

Hyperboxes

Figure E.2 : An dendrogram showing the changes in the number of hyperboxes

through different levels of granularity for the example in Figure E.1

The next subsections present the detailed steps for implementation of the pro-

posed method. The readers can find the source code at: https://github.com/

UTS-AAi/MRHGRC.

E.1.2 An Implementation of the MRHGRC

This sub-section is relevant to section 7.2 in Chapter 7. It provides the read-

ers with some of the implementational aspects including the free text description,

pseudo-codes, and implementation pipeline.

Phase 1

The steps of phase 1 are described in Algorithm E.1. First of all, the training

set which is loaded from the input file using heterogeneous or homogeneous mode is

separated into many disjoint stratified groups. The number of groups is equal to the

https://github.com/UTS-AAi/MRHGRC
https://github.com/UTS-AAi/MRHGRC
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Algorithm E.1 Phase 1 of the proposed method
Input:

ckS: the size of each data chunk loaded from the input file; path: the path to the file containing the input data;

pathV al: the path to the file containing the validation data; dType: type of distributing data to each worker

(homogeneous or heterogeneous mode); α: minimum accuracy of each hyperbox to be trained after pruning;

nw: number of workers (processes); θ0: maximum hyperbox size in phase 1

Output:

A list H0 of hyperbox fuzzy sets with minimum and maximum coordinates and classes

1: X← ReadInputData(path, ckS) and group data by classes if dType is the homogeneous mode

2: for parallel worker p in [1, nw] do

3: if the first iteration then

4: if dType is heterogeneous mode then

5: Initialize an empty list of hyperboxes for each worker: min-max values V [p] = W [p] = ∅, hyperbox

classes: L[p] = ∅

6: else

7: Initialize a hashtable containing the empty lists for each class: V {c}[p] = W{c}[p] = L{c}[p] = ∅ for

c in the list of classes C in X

8: end if

9: end if

10: if dType is the heterogeneous mode then

11: X[p]← Get data for worker p from X

12: V [p],W [p], L[p] ← HyperboxExpansionOrCreateNewAndCentroidConstruction

(p,X[p], V [p],W [p], L[p], θ0)

13: else

14: X{c}[p]← Get data for worker p from X for each class c in the list of classes in X

15: V {c}[p],W [p], L[p] ← HyperboxExpansionOrCreateNewAndCentroidConstruction

(p,X{c}[p], V {c}[p],W{c}[p], L{c}[p], θ0), ∀c ∈ C

16: end if

17: end for

18: go to step 1 if there are remaining data in the input data file

19: if dType is the heterogeneous mode then

20: [V,W,L]← Merge(V [p],W [p], L[p]) ∀p ∈ [1, nw] using Eq. (7.2)

21: else

22: [V,W,L]← Merge(V {c}[p],W{c}[p], L{c}[p]), ∀p ∈ [1, nw], ∀c ∈ C using Eq. (7.2)

23: end if

24: [V,W,L]← RemoveContainedHyperboxesAndUpdateCentroid(V,W,L) using Eq. (7.3)

25: XV ← ReadValidationData(pathV al)

26: [V,W,L]← Pruning(V,W,L, α,XV ) using Eqs. (7.4) and (7.5)

27: return H0 = [V,W,L]

number of initialized processes (CPU cores). In the case that the size of the training

set is large, all data should not be fetched into the main memory. In this case, it is

expected to load data in chunks with the pre-determined size. The disjoint stratified
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groups are formed from these chunks. After that, these groups will be distributed

to workers on separated CPU cores. Each process executes an incremental learning

procedure associated with determining the centroid of patterns of each constructed

hyperbox (lines 10-16 in Algorithm E.1). If the homogeneous mode is used, then the

process of building hyperboxes only includes the verification of maximum hyperbox

size, expansion of the hyperbox with the highest membership grade (if the condition

is met) or generation of new hyperboxes. Otherwise, if the heterogeneous mode is

deployed, firstly it is necessary to filter hyperboxes representing the same class as the

input sample before performing the process of hyperbox expansion/generation. The

operations of checking the expansion criterion and choosing the suitable hyperboxes

are only conducted on the obtained hyperboxes of the filtering process. The expan-

sion criterion and steps of expanding/generating hyperboxes are the same as those

in the learning algorithm of the GFMMNN. When a new pattern X is presented

to the classifier, the operation of building the pattern centroid for each hyperbox is

performed according to Eq. (7.1) in Chapter 7.

After entire data in the training file are read, and the process of building hyper-

boxes on workers finished, all constructed hyperboxes are joint into a data structure

on the main thread to form a single model (lines 19-23 in Algorithm E.1). Then,

it is required to merge all hyperboxes contained in other hyperboxes with the same

label, and update the pattern centroid of larger hyperbox using Eq. (7.3).

The process continues with the pruning step using a validation set. The vali-

dation patterns are put through the constructed model to compute the numbers of

samples which are accurately predicted and misclassified by each hyperbox fuzzy

set. Next, hyperboxes with the value of prediction accuracy being lower than a pre-

defined threshold (50% in this work) are eliminated. It is noted that there are some

hyperboxes which do not join the classification process on the validation set (their

accuracy is zero). There are two solutions for these hyperboxes, i.e., eliminating or

keeping them. If the removal of these hyperboxes leads to a better value of averaged

accuracy over all classifiers on the validation set compared to the case of retaining

them, these hyperboxes will be pruned; otherwise, they are retained. The final set
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of hyperboxes is called phase-1 hyperbox fuzzy sets.

Phase 2

Algorithm E.2 describes the steps of phase 2 in the proposed method. For each

given level of granularity, previously generated hyperboxes are pushed sequentially

through the process of hyperbox aggregation. Firstly, it is required to filter hyper-

boxes representing the same label as the input hyperbox Xh among all hyperboxes

at the current level of granularity, and then computing their membership values

with the input hyperbox. Next, the values of membership are sorted in descending

order (lines 5-7 in Algorithm E.2). The hyperbox forming the highest member-

ship degree with the input pattern is selected to verify the maximum hyperbox size

and the minimum value of membership ms. If the expansion criteria are met, the

selected hyperbox will be expanded to cover the input sample. After that, the over-

lap between the expanded hyperbox and the hyperboxes belonging to other classes

is checked. If no overlap occurs, the expanded hyperbox will replace its previous

versions, the centroid of newly aggregated hyperbox is updated using Eq. (7.3) in

Chapter 7, and the process continues with another input hyperbox (lines 9-21 ).

Otherwise, the hyperbox with the second highest membership is chosen, and the

steps of expansion, overlap test, and replacing hyperbox are repeated until there is

a satisfied hyperbox or no hyperbox to be selected. If no hyperbox in the current

set of hyperboxes can expand to cover the input hyperbox Xh, hyperbox Xh will be

added to the current list of hyperboxes. Then, the overlap test is conducted, and if

there exists any overlapping region, the contraction process is deployed to deal with

overlap (lines 22-28 ). The steps of the contraction process are the same as those in

the general fuzzy min-max neural network shown in section 3.2.2 in Chapter 3.

E.2 Experimental results on real datasets

This part is relevant to the subsection 7.3.2 in Chapter 7. Several experimental

results of the proposed method on the real datasets will be shown in this part.

Twelve datasets with diverse ranges of numbers of sizes, dimensions, and classes
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Algorithm E.2 Phase 2 of the proposed method
Input:

H0: a set of hyperboxes created in phase 1; Θ: a list of maximum hyperbox sizes; ms: the minimum membership

degree of two aggregated hyperboxes

Output:

A list HH(Θ) of higher-level hyperbox fuzzy sets with minimum-maximum points and classes

1: i← 1

2: for each θ ∈ Θ do

3: Initialize an empty list of hyperboxes: Hi ← [V = ∅,W = ∅,L = ∅]

4: for each hyperbox Xh ∈ Hi−1 do

5: Hs ← Filter hyperboxes in Hi representing the same class with Xh

6: F ← ComputeMembershipValue(Hs, Xh) using Eq. (3.1)

7: Index(Hs)← SortDescending(F )

8: isAdjust← false

9: for each i ∈ Index(Hs) do

10: e← ExpansionConditionChecking (Hs[i], Xh, θ,ms) Eqs. (3.4) and (7.8)

11: if e is true then

12: H1 = [V1,W1, L1]← Expand hyperbox Hs[i] to cover Xh using Eqs. (3.5) and (3.5)

13: o← IsOverlap(H1,Hi \Hs)

14: if o is false then

15: isAdjust = true

16: Update the sample centroids of newly expanded hyperbox using Eq. (7.3)

17: Replace Hs[i] by H1

18: break

19: end if

20: end if

21: end for

22: if isAdjust = false then

23: Hi ← Hi ∪Xh
24: O ← OverlapTest(Xh,Hi \Hs)

25: if |O| > 0 then

26: Contraction(Xh, O)

27: end if

28: end if

29: end for

30: HH(Θ)← HH(Θ) ∪Hi

31: i← i+ 1

32: end for

33: return HH(Θ)

were used. These datasets were taken from the LIBSVM (Chang and Lin 2011),

Kaggle (Kaggle 2019), and UCI repositories (Dua and Graff 2019) and their proper-

ties are described in Table E.1. For the susy dataset, the last 500,000 patterns were
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used for the test set as shown in Baldi et al. (2014).

Table E.1 : The real datasets and their statistics for experiments in Chapter 7

Dataset
#Dimen-

sions
#Classes #Training

#Valida-

tion
#Testing Source

Poker Hand 10 10 25,010 50,000 950000 LIBSVM

SensIT Vehicle 100 3 68,970 9,852 19,706 LIBSVM

Skin NonSkin 3 2 171,540 24,260 49,257 LIBSVM

Covtype 54 7 406,709 58,095 116,208 LIBSVM

White wine quality 11 7 2,449 1,224 1,225 Kaggle

PhysioNet MIT-BIH

Arrhythmia
187 5 74,421 13,133 21,892 Kaggle

MAGIC Gamma

Telescope
10 2 11,887 3,567 3,566 UCI

Letter 16 26 15,312 2,188 2,500 UCI

Default of credit

card clients
23 2 18,750 5,625 5,625 UCI

MoCap Hand

Postures
36 5 53,104 9,371 15,620 UCI

MiniBooNE 50 2 91,044 12,877 26,143 UCI

SUSY 18 2 4,400,000 100,000 500,000 UCI

Figure E.3 shows the error rate of classifiers on several real testing datasets with

the change in the data abstraction levels. Table E.2 presents the minimum error

rates of classifiers on the validation (EV ) and testing (ET ) sets as well as the total

running time through six levels of granularity. Moreover, the granularity level which

results in the minimum error rate for each dataset will be shown. In addition, the

error on the testing set if the model is trained using the best granularity level on

the validation set is also mentioned.
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Figure E.3 : The error rate of classifiers on several real testing datasets with the

change in the data abstraction levels
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Table E.2 : The lowest error rates and training time of classifiers on real datasets

Dataset Algorithm minEV minET ET (θ = θV ) θV θT Total training time (s)

covtype

He-MRHGRC 5.312 7.536 7.536 0.1 0.1 35,097.1298

GFMM 6.426 8.690 8.690 0.1 0.1 171,511.1511

FMNN 36.905 37.27 37.27 0.1 0.1 89,060.0745

KNEFMNN 7.016 8.777 8.777 0.1 0.1 469,703.8682

EFMNN 7.736 9.514 9.514 0.1 0.1 1,134,505.2210

GNB 90.986 90.992 - - - 8.3349

SVM 27.510 27.480 - - - 30,823.2404

Decision tree 6.492 6.479 - - - 16.6013

Poker Hand

He-MRHGRC 39.112 49.589 49.813 0.1 0.4 2,170.2065

GFMM 47.078 51.251 51.647 0.4 0.6 6,849.3993

FMNN 42.586 50.801 50.865 0.1 0.3 9,159.2247

KNEFMNN 40.286 50.153 51.412 0.1 0.4 9,953.7574

EFMNN 40.292 50.02 51.363 0.1 0.4 9,831.7911

GNB 49.880 49.879 - - - 0.1685

SVM 46.838 46.573 - - - 32.2543

Decision tree 51.866 52.162 - - - 0.2762

Skin NonSkin

He-MRHGRC 0.070 0.097 0.097 0.1 0.1 11.9259

GFMM 0.128 0.156 0.156 0.1 0.1 116.1890

FMNN 0.12 0.13 0.144 0.2 0.1 1,709.5918

KNEFMNN 0.107 0.124 0.124 0.1 0.1 163.9299

EFMNN 0.12 0.136 0.136 0.1 0.1 846.6562

GNB 7.6876 7.467 - - - 1.1434

SVM 1.1047 1.1288 - - - 79.7543

Decision tree 0.071 0.070 - - - 1.3032

SensIT Vehicle

He-MRHGRC 14.921 20.364 20.907 0.1 0.3 15,658.6847

GFMM 14.961 19.903 20.816 0.1 0.2 35,675.7565

FMNN 22.381 23.013 23.013 0.1 0.1 76,412.8685

KNEFMNN 17.428 19.557 19.557 0.1 0.1 92,118.9432

EFMNN 18.321 20.146 20.146 0.1 0.1 158,362.4286

GNB 24.208 24.911 - - - 2.8469

SVM 20.270 20.258 - - - 846.4761

Decision tree 23.603 23.869 - - - 19.5091

MiniBooNE

He-MRHGRC 13.590 13.904 13.904 0.1 0.1 24.461218

GFMM 16.999 17.622 17.622 0.1 0.1 370.7756

FMNN 27.669 27.598 27.598 0.1 0.1 63.8761

KNEFMNN 17.046 17.316 17.316 0.1 0.1 8,073.123

EFMNN 17.287 17.504 17.504 0.1 0.1 24,572.8257

GNB 71.469 71.656 - - - 1.8561

SVM 17.551 17.358 - - - 1493.6944

Decision tree 10.549 10.821 - - - 9.0240

Letter

He-MRHGRC 3.336 5.160 5.160 0.1 0.1 69.033658

GFMM 8.958 11.320 11.320 0.1 0.1 888.5603

FMNN 8.821 10.400 10.400 0.1 0.1 1,835.5864

KNEFMNN 4.890 6.600 6.600 0.1 0.1 1,312.8839
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Letter

EFMNN 4.616 5.920 5.920 0.1 0.1 2,684.6123

GNB 35.421 35.160 - - - 0.1418

SVM 26.463 25.640 - - - 9.5060

Decision tree 11.731 11.080 - - - 0.2699

MAGIC Gamma

Telescope

He-MRHGRC 13.429 17.807 18.312 0.1 0.5 21.1161

GFMM 13.569 18.536 18.564 0.1 0.2 242.1811

FMNN 17.550 18.480 18.480 0.1 0.1 2,052.5925

KNEFMNN 14.382 17.723 17.723 0.1 0.1 1,099.5460

EFMNN 16.428 19.434 19.434 0.1 0.1 2,261.7551

GNB 27.082 27.734 - - - 0.1333

SVM 17.886 18.116 - - - 4.0418

Decision tree 18.466 18.146 - - - 0.3372

SUSY

He-MRHGRC 25.601 26.148 26.148 0.4 0.4 26,356.3185

GFMM 26.430 26.965 26.965 0.4 0.4 254,181.1993

FMNN N/A N/A N/A N/A N/A N/A

KNEFMNN N/A N/A N/A N/A N/A N/A

EFMNN N/A N/A N/A N/A N/A N/A

GNB 26.433 26.533 - - - 41.9785

SVM N/A N/A - - - N/A

Decision tree 28.427 28.415 - - - 381.5020

PhysioNet

MIT-BIH

Arrhythmia

He-MRHGRC 3.076 3.549 3.549 0.1 0.1 53,100.2895

GFMM 3.373 3.768 3.782 0.1 0.2 85,499.5178

FMNN 3.982 4.056 4.056 0.1 0.1 100,232.7024

KNEFMNN 2.33 2.572 2.572 0.1 0.1 164,408.8073

EFMNN 2.307 2.590 2.590 0.1 0.1 186,775.4619

GNB 87.1469 86.8491 - - - 4.9943

SVM 8.170 7.820 - - - 601.4092

Decision tree 5.358 4.892 - - - 37.7381

Default of credit

card clients

He-MRHGRC 14.827 19.769 19.769 0.1 0.1 96.6555

GFMM 17.511 21.724 23.804 0.1 0.4 550.3491

FMNN 20.018 21.351 21.351 0.1 0.1 1,691.3673

KNEFMNN 15.502 20.32 20.32 0.1 0.1 2,743.4832

EFMNN 15.200 20.587 20.587 0.1 0.1 4,349.6698

GNB 34.524 34.222 - - - 0.1748

SVM 21.582 21.636 - - - 13.0480

Decision tree 26.619 26.892 - - - 0.4684

White wine

quality

He-MRHGRC 24.898 31.454 31.454 0.1 0.1 30.9282

GFMM 27.265 32.026 32.026 0.1 0.1 33.1445

FMNN 29.878 33.170 33.170 0.1 0.1 45.0146

KNEFMNN 27.592 32.843 32.843 0.1 0.1 72.1374

EFMNN 27.592 31.618 31.618 0.1 0.1 100.6138

GNB 54.694 55.392 - - - 0.0151

SVM 49.143 49.020 - - - 0.3169

Decision tree 31.918 35.594 - - - 0.0309
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Appendix F

Additional Results for Chapter 8

F.1 Proof of Lemma 8.1 in Chapter 8

This section provides the readers with the proof of Lemma 8.1 in Chapter 8.

Proof. Supposing that Φ = (Φ1, . . . ,ΦM) is a set of M random variables with given

covariances σij = Cov(Φi,Φj), it is required to find variance of an average variable

L(Φ1, . . . ,ΦM) obtained as a linear combination of M random variables, i.e.,

L(Φ1, . . . ,ΦM) =
M∑
i=1

(λi · Φi)

this formula can be rewritten in a compact way using matrix and vector notations

as follows:

L(Φ) = ΛT · Φ

where ΛT = (λ1, . . . , λM). And then, one has the expected value:

E(L(Φ)) = E(ΛT · Φ) = ΛT · E(Φ)

and the variance:

Var(L(Φ)) = E(L2(Φ))− [E(L(Φ))]2 = E(ΛTΦΦTΛ)− E(ΛTΦ)[E(ΛTΦ)]T

= ΛTE(ΦΦT )Λ−ΛTE(Φ)(E(Φ))TΛ = ΛT [E(ΦΦT )− E(Φ)(E(Φ))T ]Λ

= ΛTCov(Φ)Λ = ΛTΣΛ

where Σ = (σij) is the covariance of Φ

In this lemma, σij = ρ · σ2 when i 6= j. One also has σii = Cov(Φi,Φi) = σ2 =

[ρ + (1− ρ)]σ2. Hence, the co-variance matrix Σ may be decomposed into the sum

of two matrices, i.e., one includes ρ in every entry and the other includes (1− ρ) on
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the main diagonal and zeros for the rest. Formally, it can achieve:

Σ = σ2[ρ1M1TM + (1− ρ)IM ]

where 1M is a column vector containing M 1’s and IM is an identity matrix with

size M ×M . Then, we get:

Var(L(Φ)) = ΛTσ2[ρ1M1TM + (1− ρ)IM ]Λ = (ΛT1M1TMΛ)ρσ2 + (ΛT IMΛ)(1− ρ)σ2

For ΛT = (1/M, . . . , 1/M), we get:

ΛT1M1TMΛ = (ΛT1M)2 = (M · 1/M)2 = 1

and

ΛT IMΛ = 1/M2 + . . .+ 1/M2 = M · 1/M2 = 1/M

Therefore,

Var(L(Φ)) = ρσ2 +
1− ρ
M

σ2

The lemma is proved.

F.2 Proof of Lemma 8.2 in Chapter 8

This section provides the proof of Lemma 8.2 in Chapter 8.

Proof. The margin function of the random hyperboxes model with M base learners

at each input sample X can be shown as follows:

M(X, c) =
1

M

M∑
i=1

1(hi(X) = c)−max
j 6=c

1

M

M∑
i=1

1(hi(X) = j)

For random vectors Φ1,Φ2, . . . and for all input vectors X, to prove Lemma 8.2,

it suffices to show

1

M

M∑
i=1

1(hi(X) = j)
M→∞−−−−→ PΦ(h(X,Φ) = j)

where hi(X) ≡ h(X,Φi), and 1(·) is an indicator function.
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For each hyperbox-based learner, h(X,Φi) = j is union of hyerboxes with class

j and their neighborhood regions which generate the maximum membership value

from these hyperboxes to an input X in comparison to hyperboxes representing

other classes. Assuming a finite number of random vectors Φ (the finite number

of sample subsets and finite number of feature subsets) from which any hyperbox-

based learner h(X,Φi) (Φi ⊂ Φ) is constructed, then there exists a finite number K

of such unions of hyperboxes and neighbourhood regions, called S1, . . . , SK .

Let define:

ϕ(Φ) = k if {X : h(X,Φ) = j} = Sk

Let Nk be the number of times that ϕ(Φi) = k in the first M trials, then it can

obtain:

1

M

M∑
i=1

1(h(X,Φi) = j) =
1

M

∑
k

Nk1(X ∈ Sk)

According to the strong law of large numbers when M increases,

Nk =
1

M

M∑
i=1

1(ϕ(Φi) = k)

converges almost surely (a.s.) with probability 1 to

EΦ[1(ϕ(Φ) = k)] = PΦ(ϕ(Φ) = k)

Therefore,

1

M

M∑
i=1

1(h(X,Φi) = j)
a.s.−−→

∑
k

PΦ(ϕ(Φ) = k)1(X ∈ Sk)

= PΦ(h(X,Φ) = j)

The lemma is proved.

F.3 Proof of Theorem 8.2 in Chapter 8

This section shows the proof for Theorem 8.2 in Chapter 8.
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Proof. From lemma 8.2, we have:

M∗(X, c) = PΦ(h(X,Φ) = c)−max
j 6=c

PΦ(h(X,Φ) = j)

With the assumption of the strength S = EX,CM∗(X, c) > 0, according to Cheby-

shev’s inequality, we have:

E∗ = PX,C [M∗(X, c) < 0] ≤ PX,C [S −M∗(X, c) ≥ S]

= PX,C [|M∗(X, c)− S| ≥ S] ≤
VarX,C(M∗(X, c))

S2

For any function f and two i.i.d. random variables Φ and Φ′, we have:

EΦ[f(Φ)]2 = EΦ,Φ′ [f(Φ)f(Φ′)]

In Chapter 8, we get M∗(X, c) = EΦR(Φ), thus

[M∗(X, c)]2 = EΦR(Φ)2 = EΦ,Φ′ [R(Φ)R(Φ′)]

Now, VarX,C(M∗(X, c)) can be computed as follows:

VarX,C(M∗(X, c)) = EX,C([M∗(X, c)]2)−
[
EX,C(M∗(X, c))

]2

= EX,C

[
EΦ,Φ′ [R(Φ)R(Φ′)]

]
−
[
EX,C(EΦR(Φ))

]2

= EΦ,Φ′

[
EX,C[R(Φ)R(Φ′)]

]
−
[
EΦ(EX,CR(Φ))

]2

= EΦ,Φ′

[
EX,C[R(Φ)R(Φ′)]

]
− EΦ,Φ′

[
EX,CR(Φ)EX,CR(Φ′)

]
= EΦ,Φ′

[
EX,C[R(Φ)R(Φ′)]− EX,CR(Φ)EX,CR(Φ′)

]
= EΦ,Φ′

[
CovX,C(R(Φ)R(Φ′))

]
= EΦ,Φ′

[
ρX,C(Φ,Φ

′)σX,C(R(Φ))σX,C(R(Φ′))
]

= ρ
[
EΦ(σX,C(R(Φ)))

]2

where ρ = EΦ,Φ′ [ρX,C(Φ,Φ
′)]

For any random variable Z, Var(Z) ≥ 0⇒ E(Z2)−E(Z)2 ≥ 0⇒ E(Z)2 ≤ E(Z2).

Therefore,

VarX,C(M∗(X, c)) = ρ
[
EΦ(σX,C(R(Φ)))

]2

≤ ρ EΦ(σX,C(R(Φ))2) = ρ EΦ(VarX,C(R(Φ)))
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In addition, using the definition of the variance for a random variable and inequality

E(Z)2 ≤ E(Z2), we can write:

EΦ(VarX,C(R(Φ))) = EΦ

[
EX,C[R(Φ)2]− EX,C[R(Φ)]2

]
= EΦ

[
EX,C[R(Φ)2]

]
− EΦ

[
[EX,CR(Φ)]2

]
≤ EΦ

[
EX,C[R(Φ)2]

]
−
[
EΦ(EX,C[R(Φ)])

]2

= EΦ

[
EX,C[R(Φ)2]

]
−
[
EX,C(EΦ[R(Φ)])

]2

= EΦ

[
EX,C[R(Φ)2]

]
−
[
EX,CM∗(X, c)

]2

≤ 1− S2

due to R(Φ) ≤ 1 and S = EX,CM∗(X, c). As a result,

E∗ ≤
VarX,C(M∗(X, c))

S2
≤
ρ EΦ(VarX,C(R(Φ)))

S2
≤
ρ (1− S2)

S2
= ρ

( 1

S2
− 1
)

The theorem is proved.

F.4 Additional Experimental Results

F.4.1 Supplementary Part for Analyzing the Variance of the Random

Hyperboxes Classifier

This part provides some supplementary figures for subsection 8.3.1 in Chapter

8. This experiment was performed on six datasets with diversity in the numbers of

samples, features, and classes, i.e., plant species leaves margin, plant species leaves

shape, heart, vowel, ringnorm, and connectionist bench sonar. Figure F.1 shows the

variance values in terms of weighted-F1 scores using the 10 times repeated 4-fold

cross-validation of base classifiers and the random hyperboxes models over different

datasets. These results confirm that the random hyperboxes model is able to reduce

the variance in its base learners, and so it can achieve better performance than its

base models.

Figure F.2 shows the probability of the number of features, p, used to build the

4000 base learners for the experiment shown in subsection 8.3.1 in Chapter 8. It
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(f) Connectionist bench sonar

Figure F.1 : The variances of the random hyperboxes models and their base learners

for different datasets.

can be observed that the probability distribution of the number of used features is

nearly uniform in all 4000 base learners.

The used probability of each feature over 4000 base learners can also be identified
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(f) Connectionist bench sonar

Figure F.2 : The probability of the number of used features for all base learners over

different datasets.

to find the importance scores of features with respect to the performance of the

ensemble model. This information is given in Figure F.3. From the importance

scores of features, a single model was built using top-K of the most important
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features to assess the performance of the random hyperboxes and the use of single

models. It can be observed that in many datasets, the single model often achieves

better performance when it is trained on more features. However, in several cases

such as in ringnorm and connectionist bench sonar datasets, the best performance of

the single model is obtained if it is trained on a subset of the most important features.

From Figures F.1 and F.4, it is easily seen that the random hyperboxes model trained

using a subset of features usually achieves higher classification accuracy than the

single model trained on the same dataset using all of the available features.

F.4.2 Analyzing the Effectiveness of the Random Hyperboxes on High

Dimensional Data

When building predictive models for problems with very high dimensional data,

the performance of models is negatively influenced by the redundancy of features.

This problem is known as the Curse of Dimensionality (Friedman 1997). This ex-

periment is to assess the robustness of the random hyperboxes classifier for high

dimensional data in comparison to the single IOL-GFMM model. Two very high

dimensional datasets were used, i.e., PEMS database (Cuturi 2011) and Complex

Hydraulic System (Helwig et al. 2015). 80% of samples in each dataset were used as

training data and the remaining 20% of samples were testing data. The summaries

of these datasets were shown in Table 6.1 in Chapter 6.

In this experiment, each base learner in the random hyperboxes model is trained

on 50% of samples randomly selected from the training data. The maximum number

of used features for each base learner is set to 2
√
n, where n is the number of

dimensions of the dataset. The number of base learners for each random hyperboxes

model is M = 100. The weighted-F1 scores of the random hyperboxes and single

IOL-GFMM model through different values of θ are given in Figure F.5 for the PEMS

database dataset and in Figure F.6 for the Complex Hydraulic System dataset.

It can be observed that the IOL-GFMM has consistently lower performance than

RH with the very high dimensional data. In contrast, the random hyperboxes can

achieve high accuracy using only 2
√
n random features at most for each base learner.



308

plant_species_leaves_margin (4000 base learners)

36 47 45 13 56 61 43 58 14 31 17 44 57 20 25 23 2 49 59 15 60 26 28 32 48 5 1 8 10 30 11 9 55 46 7 63 39 38 64 12 37 54 4 29 35 51 19 52 41 21 6 27 33 22 62 16 24 34 40 42 18 3 53 50

Feature Index

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Pr

ob
ab

ilit
y

(a) Plant species leaves margin

plant_species_leaves_shape (4000 base learners)

20 3 7 44 19 49 55 16 52 45 46 17 42 30 26 47 4 61 35 32 53 24 40 10 1 33 57 15 29 13 38 31 2 60 36 48 63 5 50 6 41 51 64 8 18 22 56 14 27 23 43 54 37 59 62 34 12 25 9 11 28 58 39 21

Feature Index

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
ro

ba
bi

lit
y

(b) Plant species leaves shape

heart (4000 base learners)

8 9 2 12 10 6 13 1 7 4 3 5 11
Feature Index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Pr
ob

ab
ilit

y

(c) Heart

vowel (4000 base learners)

5 7 6 9 2 1 4 10 8 3
Feature Index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Pr
ob

ab
ilit

y

(d) Vowel
ringnorm (4000 base learners)

1 7 12 15 13 19 14 6 8 3 5 9 20 16 2 18 17 11 4 10
Feature Index

0

0.05

0.1

0.15

0.2

0.25

Pr
ob

ab
ilit

y

(e) Ringnorm

connectionist_bench_sonar (4000 base learners)

44 12 8 22 15 29 57 3 55 36 5 4 24 41 2 50 18 59 37 40 48 53 47 30 27 1 38 13 46 51 28 6 10 16 31 52 25 11 43 23 14 32 45 35 49 56 34 60 20 39 54 21 58 9 42 17 19 33 26 7

Feature Index

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pr
ob

ab
ilit

y

(f) Connectionist bench sonar

Figure F.3 : The probability of each feature used for all base learners over different

datasets.

The diversity in the base learners and the use of a low number of features allow the

random hyperboxes to obtain better performance across the maximum hyperbox

size values. Because each base learner in the random hyperboxes model uses a much
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(b) Plant species leaves shape
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(f) Connectionist bench sonar

Figure F.4 : Average weighted-F1 scores over 40 testing folds of a single model using

training sets with top-k most used features over different datasets.

smaller number of features compared to the IOL-GFMM model trained using all

features, training time and testing time of the random hyperboxes is faster than

that of the IOL-GFMM model. The training and testing time of each classifier
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Figure F.5 : Weighted-F1 score of the random hyperboxes and IOL-GFMM for the

PEMS database dataset
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Figure F.6 : Weighted-F1 score of the random hyperboxes and IOL-GFMM for the

Complex Hydraulic System dataset

is given in Tables F.1 and F.2. Fast training and testing time along with better

accuracy confirm the efficiency of the ensemble model in comparison to the single

model using the same learning algorithm.

F.4.3 Supplementary Part for Analyzing the Roles of the Number of

Base Learners, Maximum Number of Used Features, and Maxi-

mum hyperbox size in the Random Hyperboxes models

This experiment was performed on eight different datasets with diversity in the

numbers of samples, features, and classes, i.e., plant species leaves margin, plant
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Table F.1 : Training time (s) of the IOL-GFMM and random hyperboxes model on

the high dimensional datasets

Dataset Algorithm θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6

PEMS database
IOL-GFMM 51.3784 56.5849 52.6432 52.12905 56.7359 57.1392

RH 26.2364 26.4292 27.0474 27.3853 29.3139 28.7593

Complex Hydraulic

System

IOL-GFMM 2093.5169 2235.3104 2045.8519 1914.7439 1987.5575 1785.5609

RH 154.9104 125.8966 100.0234 84.0987 75.5298 66.7039

Table F.2 : Testing time (s) of the IOL-GFMM and random hyperboxes model on

the high dimensional datasets

Dataset Algorithm θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6

PEMS database
IOL-GFMM 121.2674 126.1965 121.4517 122.0169 126.4106 126.3136

RH 11.3272 11.3308 12.8158 11.6774 12.3205 10.8228

Complex Hydraulic

System

IOL-GFMM 1440.4623 1506.2449 1467.3662 1357.6034 1277.8380 1083.6029

RH 118.4271 69.8559 44.8562 29.9445 23.3218 17.1749

species leaves shape, movement libras, connectionist bench sonar, vehicle sihouettes,

breast cancer wisconsin, heart, and vowel. The purpose of this experiment is to study

the impacts of the number of base learners, the maximum number of used features,

and the maximum hyperbox size threshold on the classification performance of the

random hyperboxes model.

Figure F.7 shows the change in the average weighted-F1 score when increasing the

number of base estimators. It can be observed a general trend over all experimental

datasets which is that the increase in the number of base learners does not lead to

the decrease in the classification accuracy. These empirical results are consistent

with the statements in the theoretical part (subsection 8.2.3 in Chapter 8).

Figure F.8 presents the change in the classification performance when the max-

imum number of used features increases. A general trend can be observed in which

the classification accuracy only increases up to a certain value of the maximum

number of used features, and then decreases if the maximum number of features

available for the base classifiers is increased. The reason for this trend is explained

by the correlation between base learners as shown in subsection 8.3.1 in Chapter 8.
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Figure F.7 : The change in the average weighted-F1 scores when increasing the

number of base learners for different datasets.
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Figure F.9 describes the change in the classification performance when the max-

imum hyperbox size threshold increases. It can be seen that the performance of six

out of eight datasets slightly decreases when increasing the values of θ. The remain-

ing two datasets slightly increases the classification accuracy when the value of θ

goes up. However, in general, the change of the average weighted-F1 score between

the different values of θ is small (lower than 5%). These outcomes indicated that

the random hyperboxes models are less impacted by the change in the values of the

maximum hyperbox size parameter.

F.4.4 Datasets and Parameter Settings

In Chapter 8, 20 datasets with diversity in the numbers of samples, features, and

classes taken from the UCI repository (Dua and Graff 2019) were used. Table F.3

summarizes the information of these datasets. Each dataset is normalized to the

range of [0, 1] according to the requirement of the fuzzy min-max neural networks.

The experiments were executed on the computer using Red Hat Enterprise Linux

7.5 with Intel Xeon Gold 6150 2.7GHz CPU and 64GB RAM.

For experiments, the maximum hyperbox size of based learners in the random

hyperboxes model, as well as different types of FMNNs, is set to θ = 0.1 and

the sensitivity parameter of the membership function is fixed at γ = 1. In terms

of default settings for the RH model without hyperparameter tuning, this study

deployed the threshold 2
√
n for the maximum number of used features and 50%

of training samples were randomly sampled to train base learners (rs = 0.5), the

number of base learners M = 100 was also set.

To compare the performance of the RH model to other ensemble models, the

grid-search method along with 3-fold cross-validation was employed for each train-

ing fold to discover the best setting combination. After that, each ensemble model

was trained on the full training set using the best hyperparameters. Three hy-

perparameters were tuned for ensemble models, i.e., number of base learners (M ∈

{30, 50, 70, 100, 150, 200}), the maximum number of used features (mf ∈ {0.2, 0.3, 0.4,

0.5, 0.6} · n), and sampling rate for samples (rs ∈ {0.3, 0.5, 0.7}). The other para-
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Table F.3 : The descriptions of the used datasets in Chapter 8

ID Dataset # samples # features # classes

1 Balance scale 625 4 3

2 banknote authentication 1372 4 2

3 blood transfusion 748 4 2

4 breast cancer wisconsin 699 9 2

5 BreastCancerCoimbra 116 9 2

6 connectionist bench sonar 208 60 2

7 haberman 306 3 2

8 heart 270 13 2

9 movement libras 360 90 15

10 pima diabetes 768 8 2

11 plant species leaves margin 1600 64 100

12 plant species leaves shape 1600 64 100

13 ringnorm 7400 20 2

14 landsat satellite 6435 36 6

15 twonorm 7400 20 2

16 vehicle silhouettes 846 18 4

17 vertebral column 310 6 3

18 vowel 990 10 11

19 waveform 5000 21 3

20 wireless indoor localization 2000 7 4

maters got default settings of libraries such as scikit-learn (Pedregosa et al. 2011b),

XGBoost (Chen and Guestrin 2016), LightGBM (Ke et al. 2017) apart from the

maximum tree depth of decision trees and tree-based ensemble methods is set to

the value of 8 to prevent overfitting (Bertsimas and Dunn 2017; Chen and Guestrin

2016).

For support vector machines, the Radial Basis function was used as a kernel and

two hyperparameters, i.e., the penalty parameter (C ∈ {2−5, 2−3, . . . , 215}) and the

gamma parameter (γ ∈ {2−15, 2−13, . . . , 23}) were adjusted as shown in (Hsu et al.

2003). For K-nearest neighbours model, the searching range of K was set in the

range of {1, 3, . . . , 15}. In terms of decision trees, the minimum number of samples

in each leaf was searched in the range of {1, . . . , 50}.



315

0 10 20 30 40 50 60 70
Maximum number of used features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e 

we
igh

te
d-

F1
 sc

or
e

plant_species_leaves_margin dataset

(a) Plant species leaves margin

0 10 20 30 40 50 60 70
Maximum number of used features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e w

eig
hte

d-
F1

 sc
or

e

plant_species_leaves_shape dataset

(b) Plant species leaves shape

0 2 4 6 8 10 12 14
Maximum number of used features

0

0.2

0.4

0.6

0.8

1

Av
er

ag
e w

eig
hte

d-
F1

 sc
or

e

heart dataset

(c) Heart

0 2 4 6 8 10
Maximum number of used features

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Av
er

ag
e 

we
igh

te
d-

F1
 sc

or
e

vowel dataset

(d) Vowel

0 20 40 60 80 100
Maximum number of used features

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e 

we
igh

te
d-

F1
 sc

or
e

movement_libras dataset

(e) Movement libras

0 10 20 30 40 50 60
Maximum number of used features

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e w

eig
hte

d-
F1

 sc
or

e

connectionist_bench_sonar dataset

(f) Connectionist bench sonar

0 5 10 15 20
Maximum number of used features

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e w

eig
hte

d-
F1

 sc
or

e

vehicle_silhouettes dataset

(g) Vehicle silhouettes

0 2 4 6 8 10
Maximum number of used features

0.4

0.5

0.6

0.7

0.8

0.9

1

Av
er

ag
e w

eig
hte

d-
F1

 sc
or

e

breast_cancer_wisconsin dataset

(h) Breast cancer wisconsin

Figure F.8 : The change in the average weighted-F1 scores when increasing the

maximum number of used dimensions for different datasets.
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Figure F.9 : The change in the average weighted-F1 scores when increasing the

maximum hyperbox size threshold for different datasets.



317

Bibliography

Abe, S., 2001, ‘Dynamic fuzzy rule generation’, Pattern Classification: Neuro-fuzzy

Methods and Their Comparison, Springer London, pp. 177–196.

Abe, S. & Ming-Shong, L., 1995, ‘A method for fuzzy rules extraction directly from

numerical data and its application to pattern classification’, IEEE Transactions

on Fuzzy Systems, vol. 3, no. 1, pp. 18–28.

Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adam, M., Gertych, A. & Tan,

R. S., 2017, ‘A deep convolutional neural network model to classify heartbeats’,

Computers in Biology and Medicine, vol. 89, pp. 389 – 396.

Ahmedt-Aristizabal, D., Fernando, T., Denman, S., Petersson, L., Aburn, M. J.

& Fookes, C., 2020, ‘Neural memory networks for seizure type classification’,

Proceedings of the 42nd Annual International Conference of the IEEE Engineering

in Medicine & Biology Society (EMBC), pp. 569–575.

Al-Hmouz, R., Pedrycz, W., Balamash, A. S. & Morfeq, A., 2018, ‘Granular de-

scription of data in a non-stationary environment’, Soft Computing, vol. 22, no. 2,

pp. 523–540.

Al Sayaydeh, O. N., Mohammed, M. F., Alhroob, E., Tao, H. & Lim, C. P., 2020, ‘A

refined fuzzy min-max neural network with new learning procedures for pattern

classification’, IEEE Transactions on Fuzzy Systems, vol. 28, no. 10, pp. 2480 –

2494.

Al Sayaydeh, O. N., Mohammed, M. F. & Lim, C. P., 2019, ‘Survey of fuzzy

min–max neural network for pattern classification variants and applications’,

IEEE Transactions on Fuzzy Systems, vol. 27, no. 4, pp. 635–645.



318

Alibart, F., Zamanidoost, E. & Strukov, D. B., 2013, ‘Pattern classification by

memristive crossbar circuits using ex situ and in situ training’, Nature Commu-

nications, vol. 4, p. 2072.

Altman, N. S., 1992, ‘An introduction to kernel and nearest-neighbor nonparametric

regression’, The American Statistician, vol. 46, no. 3, pp. 175–185.

Amit, Y. & Geman, D., 1997, ‘Shape quantization and recognition with randomized

trees’, Neural Computation, vol. 9, no. 7, pp. 1545–1588.

Andras, P., 2018, ‘Random projection neural network approximation’, Proceedings

of International Joint Conference on Neural Networks (IJCNN), pp. 2380–2387.

Azad, C. & Jha, V. K., 2016, ‘A novel fuzzy min-max neural network and genetic

algorithm-based intrusion detection system’, Proceedings of the Second Interna-

tional Conference on Computer and Communication Technologies, pp. 429–439.

Azad, C. & Jha, V. K., 2017, ‘Fuzzy min–max neural network and particle swarm

optimization based intrusion detection system’, Microsystem Technologies, vol. 23,

no. 4, pp. 907–918.

Bai, T., Zhang, S., Egleston, B. L. & Vucetic, S., 2018, ‘Interpretable representation

learning for healthcare via capturing disease progression through time’, Proceed-

ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, pp. 43–51.

Baldi, P., Sadowski, P. & Whiteson, D., 2014, ‘Searching for exotic particles in

high-energy physics with deep learning’, Nature Communications, vol. 5, p. 4308.

Bargiela, A. & Pedrycz, W., 2003, Granular computing: an introduction, The

Springer international series in engineering and computer science, Springer.

Bargiela, A., Pedrycz, W. & Tanaka, M., 2004, ‘An inclusion/exclusion fuzzy hy-

perbox classifier’, International Journal of Knowledge-based and Intelligent Engi-

neering Systems, vol. 8, no. 2, pp. 91–98.



319

Berthold, M. R. & Huber, K.-P., 1998, ‘Missing values and learning of fuzzy rules’,

Int. J. Uncertain. Fuzziness Knowl.-Based Syst., vol. 6, no. 2, pp. 171–178.

Bertsimas, D. & Dunn, J., 2017, ‘Optimal classification trees’, Machine Learning,

vol. 106, no. 7, pp. 1039–1082.

Biau, G., Devroye, L. & Lugosi, G., 2008, ‘Consistency of random forests and other

averaging classifiers’, Journal of Machine Learning Research, vol. 9, pp. 2015–

2033.

Bortolan, G. & Pedrycz, W., 2007, ‘Hyperbox classifiers for arrhythmia classifica-

tion’, Kybernetes, vol. 36, no. 3/4, pp. 531–547.

Boucheron, S., Bousquet, O. & Lugosi, G., 2005, ‘Theory of classification: a survey

of some recent advances’, ESAIM: Probability and Statistics, vol. 9, p. 323–375.

Breiman, L., 1996, ‘Bagging predictors’, Machine Learning, vol. 24, no. 2, pp. 123–

140.

Breiman, L., 2001, ‘Random forests’, Machine Learning, vol. 45, no. 1, pp. 5–32.

Breiman, L., Friedman, J., Stone, C. J. & Olshen, R., 1984, Classification and

Regression Trees, Chapman and Hall/CRC.

Brouwer, R. K., 2002, ‘A feed-forward network for input that is both categorical

and quantitative’, Neural Networks, vol. 15, no. 7, pp. 881–890.

Budka, M. & Gabrys, B., 2013, ‘Density-preserving sampling: robust and efficient

alternative to cross-validation for error estimation’, IEEE Transactions on Neural

Networks and Learning Systems, vol. 24, no. 1, pp. 22–34.

Burger, C., Redlich, R., Grotegerd, D., Meinert, S., Dohm, K., Schneider, I.,

Zaremba, D., Förster, K., Alferink, J., Bölte, J., Heindel, W., Kugel, H., Arolt, V.

& Dannlowski, U., 2017, ‘Differential abnormal pattern of anterior cingulate gyrus

activation in unipolar and bipolar depression: an fmri and pattern classification

approach’, Neuropsychopharmacology, Nature, vol. 42, p. 1399.



320

Cannings, T. I. & Samworth, R. J., 2017, ‘Random-projection ensemble classifica-

tion’, Journal of the Royal Statistical Society: Series B (Statistical Methodology),

vol. 79, no. 4, pp. 959–1035.

Canzanese, R., Mancoridis, S. & Kam, M., 2015, ‘Run-time classification of mali-

cious processes using system call analysis’, Proceedings of the 10th International

Conference on Malicious and Unwanted Software (MALWARE), pp. 21–28.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H. & Rosen, D. B.,

1992, ‘Fuzzy artmap: A neural network architecture for incremental supervised

learning of analog multidimensional maps’, IEEE Transactions on Neural Net-

works, vol. 3, no. 5, pp. 698–713.

Carpenter, G. A., Grossberg, S. & Rosen, D. B., 1991, ‘Fuzzy art: Fast stable

learning and categorization of analog patterns by an adaptive resonance system’,

Neural Networks, vol. 4, no. 6, pp. 759 – 771.

Castillo, P. R. D. & Cardenosa, J., 2012, ‘Fuzzy min-max neural networks for cat-

egorical data: application to missing data imputation’, Neural Computing and

Applications, vol. 21, no. 6, pp. 1349–1362.

Chang, C.-C. & Lin, C.-J., 2011, ‘Libsvm: A library for support vector machines’,

ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–27:27.

Chen, C. P. & Zhang, C.-Y., 2014, ‘Data-intensive applications, challenges, tech-

niques and technologies: A survey on big data’, Information Sciences, vol. 275,

pp. 314 – 347.

Chen, T. & Guestrin, C., 2016, ‘Xgboost: A scalable tree boosting system’, Proceed-

ings of the 22Nd ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, pp. 785–794.

Cheng, M.-Y., Prayogo, D. & Wu, Y.-W., 2018, ‘Prediction of permanent deforma-

tion in asphalt pavements using a novel symbiotic organisms search–least squares

support vector regression’, Neural Computing and Applications, pp. 1–13.



321

Cheng, Y. & Miao, D., 2011, ‘Rule extraction based on granulation order in interval-

valued fuzzy information system’, Expert System with Applications, vol. 38, no. 10,

pp. 12249–12261.

Coates, A., Huval, B., Wang, T., Wu, D. J., Ng, A. Y. & Catanzaro, B., 2013, ‘Deep

learning with cots hpc systems’, Proceedings of the 30th International Conference

on International Conference on Machine Learning, pp. III–1337–III–1345.

Cuturi, M., 2011, ‘Fast global alignment kernels’, Proceedings of the 28th Interna-

tional Conference on Machine Learning (ICML), pp. 929–936.

Davtalab, R., Dezfoulian, M. H. & Mansoorizadeh, M., 2014, ‘Multi-level fuzzy

min-max neural network classifier’, IEEE Transactions on Neural Networks and

Learning Systems, vol. 25, no. 3, pp. 470–482.

Davtalab, R., Parchami, M., Dezfoulian, M. H., Mansourizade, M. & Akhtar, B.,

2012, ‘M-fmcn: modified fuzzy min-max classifier using compensatory neurons’,

Proceedings of the 11th WSEAS international conference on Artificial Intelli-

gence, Knowledge Engineering and Data Bases, World Scientific and Engineering

Academy and Society (WSEAS), 2183081, pp. 77–82.
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