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Abstract

Machine learning for prediction suffers from asymmetric distribution, such as poste-
rior information, future information and hidden information. With some additional
information only available in training, how to learn a machine learning model with
them remains a key challenge. Despite recent advances in important domains such as
vision and medicine, the standard learning under privileged information paradigm
does not offer a satisfactory solution for learning variational privileged information.
In this thesis, I will introduce how to learn under variational privileged informa-
tion by leveraging asymmetric distribution and machine learning algorithms, specif-
ically via 1) semi-supervised learning, 2) adversarial learning, 3) multi-task learning,
4) slack variable learning in support vector regression. We evaluate the proposed
method in three applications: photo aesthetic assessment enhanced by high-level
aesthetic attributes hidden in photos; music emotion recognition from songs with
the help of implicit information about music elements and musical styles judged by
composers; and multiple object recognition from images with the help of implicit in-
formation about the object’s importance conveyed by the list of manually annotated
image tags. Experiment results demonstrate that the proposed methods are supe-
rior to the classic learning paradigm when solving practical problems. In summary,
in this thesis, we propose privileged machine learning for prediction. The detailed
contents are follow:

1. propose a unified framework to systematically address the aforementioned
three forms of privileged information. The proposed V-SVR+ method integrates con-
tinuous, ordinal, and binary PI into the learning process of support vector regression
(SVR) via three losses. For continuous privileged information, we define a linear cor-
recting (slack) function in the privileged information space to estimate slack variables
in the standard SVR method using privileged information. For the ordinal relations
of privileged information, we first rank the privileged information and then, regard
this ordinal privileged information as auxiliary information used in the learning pro-
cess of the SVR model. For the binary or Boolean privileged information, we infer
a probabilistic dependency between the privileged information and labels from the
summarized privileged information knowledge. Then, we transfer the privileged
information knowledge to constraints and form a constrained optimization problem.

2. propose a novel approach of photo aesthetic assessment under the help of
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4

aesthetic attributes. The aesthetic attributes are used as privileged information (PI),
which is often available during training phase but unavailable in prediction phase
due to the high collection expense. The proposed framework consists of a deep
multi-task network as generator and a fully connected network as discriminator.
Deep multi-task network learns the aesthetic attributes and score simultaneously to
capture their dependencies and extract better feature representations. Specifically, we
use ranking constraint in the label space, similarity constraint and prior probabilities
loss in the privileged information space to make the output of multi-task network
converge to that of ground truth. Adversarial loss is used to identify and distinguish
the predicted privileged information of deep multi-task network from the ground
truth PI distribution. Experimental results on two benchmark databases demonstrate
the superiority of the proposed method to state-of-the-art.

3. propose a novel privileged learning based framework that fully explores the
musical domain knowledge thus to enhance the emotion recognition. Particularly,
to best of our knowledge, we are the first to construct a systematic taxonomy of the
dimension and style-related music information by applying a domain knowledge
of musicology and psychology. Then, we customize Restricted Boltzmann Machine
(RBM) to generate the informative feature representation that captures the intrinsic
dependency between musical elements and music styles. Finally, we formulate the
generated feature representation as privileged information (PI), and develop a PI-
based support vector regression (i.e., SVR+) for music emotion recognition task. Ex-
tensive experimental results on two benchmark databases demonstrate the superior
performance on emotion recognition compared against the state-of-the-art baselines.

4. propose a novel regression algorithm via ordinal Privileged Information, which
takes into consideration of ordinal form of privileged information. By integrating or-
dinal constraint into the learning process, the privileged information and the depen-
dencies in images features can enhance the object recognition. In optimization, we
adopt maximum margin regression model. Alternating Direction Method of Mul-
tipliers (ADMM) is developed to optimize this proposed model. We evaluate the
proposed method on multiple object recognition from images with the help of im-
plicit information about the object’s importance conveyed by the list of manually
annotated image tags. Experimental results demonstrate that the proposed method
can effectively take the advantage of ordinal privileged information.
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