
An Exploration of Spiking Neural Networks and

their use on Reinforcement Learning Tasks

by Andrew William Rafe

Thesis submitted in fulfilment of the requirements for the degree of

Master of Science (Research) in Computing Sciences

under the supervision of Dr. William Raffe and Dr. Jaime Garcia

University of Technology Sydney

Faculty of Engineering and Information Technology

School of Computer Science

May 2021

Certificate of Original Authorship

I, Andrew William Rafe declare that this thesis, is submitted in fulfilment of the

requirements for the award of MSc (Res) in Computing Sciences, in the School of

Computer Science at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged.

In addition, I certify that all information sources and literature used are indicated

in the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training Pro-

gram.

11th May 2021

ii

Production Note:
Signature removed prior to publication.

This thesis is dedicated to my mum who, in the opening weeks of this research,

lost her long battle with breast cancer. You always taught me to pursue my

interests in life and your immense commitment to your children has given me the

opportunities to do just that.

Acknowledgements

I would like to take this opportunity to thank the people in my life for whom

without them, the completion of this thesis would not have been possible.

Firstly, I would like to show my gratitude to my supervisors who have supported

me throughout and have always been available for me to rack their brains, get

their opinions on the direction of the research and provide me with every needed

support to get this thesis completed. Dr. William Raffe, my primary supervisor,

would always be happy to engage in the technical discussions I needed to be able to

articulate my thought process, and to keep me on track. To Dr. Jaime Garcia, my

co-supervisor, you would always be there to help me through my communication

of the research and has therefore allowed me to excel at presenting my ideas to

a wider skill-based audience. I would also like to thank you both for creating a

wonderful environment in the Game Studio Research Lab and providing me with

the opportunity to teach at the university during the conduct of this research,

greatly widening the skill set that this degree has provided me.

Secondly, I would like to thank all the members, new and old, of the Game Studio

Research Lab which I have had the benefit of watching grow during my time

with them. They would always be available to provide support during stressful

assessment periods and would drop everything to attend the various candidature

assessment stages to provide their moral support. Although we were not able to

be face to face for a large portion of my degree, the online and in person meetups

that we had along the way were some of the highlights of my time during these

years. So, thank you all and I look forward to my continued engagement with the

Game Studio Research Lab in future.

iv

Lastly, but certainly not least, I would like to thank my family. To my dad, Barry,

my sister, Christine, and my brother, Michael, thank you for the continued support

through these difficult years. Through our family gatherings, zoom catchups and

constant family chats, you have all really pushed me to keep going and to produce

the best possible work. You would always be interested in what I was currently

working on and would happily endure my far too detailed recounts of what I was

doing and what I had found.

For all of you, I would like to say thank you and, without you, I would not have

been able to get through this period of my life and I will be forever grateful.

v

Publications

Rafe, A.W., Garcia, J.A. & Raffe, W.L., 2021, June. Exploration Of Encoding And

Decoding Methods For Spiking Neural Networks On The Cart Pole And Lunar Lan-

der Problems Using Evolutionary Training. In 2021 IEEE Congress on Evolution-

ary Computation (CEC), pp. 498-505. IEEE. doi: 10.1109/CEC45853.2021.9504921.

vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Research Gaps and Aims . 4

1.3 Research Questions . 5

1.4 Objectives . 6

1.5 Methodology Constraints . 7

1.6 Out of Scope . 8

1.7 Significance . 8

1.8 Summary . 10

2 Background 11

2.1 Reinforcement Learning (RL) . 11

2.2 Artificial Neural Network (ANN) 13

2.3 Deep Q Learning . 14

2.3.1 Back-Propagation . 14

2.4 Spiking Neural Network (SNN) . 15

2.4.1 Action Potential and Hodgkin-Huxley Model (H-H) 16

2.4.2 Izhikevich Model . 18

2.5 Decoding Outputs into Action Selection 19

2.5.1 Rate Coding . 20

2.5.2 Temporal Coding . 21

2.6 Summary . 22

vii

3 Literature Review 23

3.1 Computational Efficiency of SNNs 23

3.2 Hand Crafted SNNs . 24

3.3 Hebbian Based Learning . 26

3.4 Back-propagation of Spiking Neural Networks 30

3.5 Evolutionary Algorithms applied to Spiking Neural Networks 31

3.6 Coding Strategies . 33

3.7 Discussion and Open Questions . 34

3.7.1 Encoding . 34

3.7.2 Decoding . 35

3.7.3 Noise . 35

3.7.4 Stochastically Firing Neurons 35

3.7.5 Threshold Adaptation . 36

3.7.6 Model Complexity . 36

3.7.7 Domain Complexity . 37

3.8 Summary . 38

4 Methodology 39

4.1 Problem Descriptions . 39

4.1.1 Cart Pole . 39

4.1.2 Lunar Lander . 41

4.2 Input Encoding . 42

4.2.1 Binary Encoding . 43

4.2.2 Double Encoding . 44

4.3 State Exposure Period . 46

4.4 Output Decoding . 46

4.4.1 First To Fire (F2F) . 47

4.4.2 Rate . 48

4.4.3 F2F Reset and Rate Reset 48

4.5 Codebase . 49

viii

4.5.1 Open AI Gym . 49

4.5.2 Spiking Neural Network . 49

4.6 Summary . 50

5 Evolutionary Experiments 51

5.1 Experiment 1 - Initial Experimentation 51

5.1.1 Description of Networks . 52

5.1.2 Description of Genetic Algorithm 52

5.1.3 SNN Decoding Method . 52

5.1.4 Results . 53

5.2 Experiment 2 - Transformed Input Space 55

5.2.1 Input Transformation . 55

5.2.2 Method . 56

5.2.3 Results . 57

5.3 Experiment 3 - Comparitive Analysis 58

5.3.1 Input Encoder . 59

5.3.2 Method . 60

5.3.3 Results . 62

5.3.4 Discussion . 67

5.4 Experiment 4 - Encoding Method Comparisons 69

5.4.1 Other Methods of Encoding 69

5.4.2 Method . 71

5.4.3 Results . 71

5.4.4 Discussion . 73

5.5 Summary . 74

6 Hebbian Based Experiments 75

6.1 Experiment 5 - R-STDP . 75

6.1.1 Method . 76

6.1.2 Results . 76

6.2 Experiment 6 - R-STDP Weight Constraining 77

ix

6.2.1 Method . 78

6.2.2 Results . 79

6.3 Experiment 7 - EF-STDP . 80

6.3.1 Method . 80

6.3.2 Results . 81

6.4 Experiment 8 - EF-STDP Search for Better Learning Rates 83

6.4.1 Method . 84

6.4.2 Results . 85

6.5 Summary . 85

7 Conclusions and Future Work 87

7.1 Answers to Research Questions . 90

7.1.1 RQ1: Are SNN structures suitable at solving RL problems? 90

7.1.2 RQ2: What network constraining and network coding meth-

ods improve training in RL environments? 91

7.1.3 RQ3: Due to the inability to use gradient based algorithms

for the training of SNNs, are non-evolutionary learning tech-

niques effective at solving RL problems? 94

7.1.4 Research Questions Conclusions 95

7.2 Limitations . 95

7.2.1 Technical Limitations . 96

7.2.2 Algorithmic Limitations . 96

7.3 Future Work . 97

x

List of Figures

2.1 A visual description of a Markov Decision Process (Sutton and Barto

2018) . 12

2.2 An example of a set of action potentials occurring according to the

Hodgkin and Huxley membrane capacitance model. 17

2.3 An example of random input into an Izhikevich neuron model with

the parameters from equation 2.3 19

4.1 A screen shot of the Cart Pole experiment. 41

4.2 A screen shot of the Lunar Lander environment. 42

5.1 The best fitness achieved each generation. The random mutations

on the SNNs weights are identical to the mutations of the ANNs. . 53

5.2 The best fitness achieved each generation. The random mutations

on the SNNs weights were 10 times more than those for the ANN

signified by the GW label. The exposure times of 5, 10, 20, 50 and

100 were tested with a first-to-fire (F2F) decoding method for the

SNNs. 54

5.3 Average fitness over 10 separate executions of the algorithm for the

best agent in each generation for each of the time exposures tested. 58

5.4 An example of the input encoders connection to the SNN. In this

example, the SNN has no hidden layer as the Input Encoder layer

are not made up of IZ neurons and simply act as a pre-processing

step for state space information. 59

xi

5.5 The generation to reach the goal for single layer networks across all

exposure periods and decoding methods for the Cart Pole problem. 64

5.6 The generation to reach the goal formultilayer networks with 16

hidden neurons across all exposure periods and decoding methods

for the Cart Pole problem. 65

5.7 The generation to reach the goal for multilayer networks with 32

hidden neurons across all exposure periods and decoding methods

for the Cart Pole problem. 66

5.8 The number of random actions taken on average for each of the

exposure periods tested and decoding methods used for single layer

networks in the Cart Pole problem. 67

5.9 A comparison of direct encoding methods using a network with no

hidden layers in the Cart Pole problem. 72

5.10 A comparison of probability encoding methods using a network with

no hidden layers in the Cart Pole problem. 73

6.1 Average fitness per 100-episode blocks for networks in the Cart Pole

problem using R-STDP for learning with exposure periods of 60. . 77

6.2 Average fitness per 100-episode blocks for networks in the Cart Pole

problem using R-STDP with Weight Constraining methods. 79

6.3 Average fitness of 5 separate trials over each learning cycle for each

of the exposure periods tested. 81

6.4 The average final fitness for the exposure period and learning rate

combinations after 100 learning cycles 84

6.5 The learning rate fitness peaks of the moving average. 85

xii

List of Tables

4.1 The original state space that the environment produces 40

4.2 The transformed state space for Lunar Lander to remove negative

inputs. 42

4.3 The transformed state space in order for the inputs to work with

the SNNs . 43

4.4 The transformed state space for Lunar Lander to remove negative

inputs. 45

5.1 The Transformed State Space to Remove Negative Input Values. . . 56

5.2 Table of results for Cart Pole experiment showing the highest av-

erage fitness achieved and the generation it achieved the goal by

each decoding method, exposure period and network structure with

a goal fitness of greater than 195.0. 62

5.3 Table of results for Lunar Lander experiment showing the highest

average fitness achieved and the generation it achieved the goal (if

goal was achieved) by each decoding method, exposure period and

network structure with a goal fitness of greater than 200.0. 63

5.4 Correlation Coefficients for Cart Pole problem between the gener-

ation that each trial reached completion and the exposure period

used for that trial. 66

xiii

Abstract

Artificial neural networks have recently been the prominent architecture for rein-

forcement learning tasks. However, there is emerging evidence that spiking neural

networks can perform just as well and can retain this performance across similar

environments. Spiking neural networks are experiencing a surge in popularity due

to their potential for large efficiency gains when compared to their traditional ar-

tificial neural network counterparts. Though, when attempting to replicate the

successes of artificial neural networks, challenges are faced due to their vastly dif-

ferent architectures and therefore differing methods for training and optimisation.

As spiking neural networks are considered more biologically plausible, methods of

training inspired by natural learning have been proposed. These methods have

been minimally applied to complex reinforcement learning domains, instead typi-

cally focusing on supervised learning problems. This thesis aims to explore the use

of spiking neural networks in reinforcement learning domains. Methods of evolu-

tionary and spike timing based training will be explored. Additionally, an in-depth

analysis of different encoding and decoding methods is conducted. This research

also addresses the trends in the effect of the time period that a state is exposed to

a spiking neural network on the performance of the networks.

xiv

Chapter 1

Introduction

Artificial neural networks (ANN) have been used to far exceed the performance

of humans in a range of virtual control tasks. However, they are proving to be

inefficient to train (Strubell et al. 2019), and fail at generalizing across similar

tasks (Markowska-Kaczmar and Koldowski 2015). There is emerging evidence that

spiking neural network (SNN) architectures can be more efficient (Neil et al. 2016)

and retain performance across varied tasks (Markowska-Kaczmar and Koldowski

2015), though there is minimal focus on utilizing these networks for reinforcement

learning in the literature. More work is needed on developing algorithms to train

networks of spiking neurons for reinforcement learning tasks and compare their

performance and generalisability to state of the art training methods for ANNs.

SNNs have recently seen a surge in popularity due to their apparent benefits in

efficiency over ANN methods (Zambrano and Bohte 2016). However, SNNs have

been historically difficult to train on complex reinforcement learning (RL) prob-

lems due to their inability to utilise gradient based optimisation. RL is a technique

whereby an artificial agent learns based off of reward signals awarded in the envi-

ronment (Sutton and Barto 2018). It is important that training methods for SNNs

in RL environments are developed and tested on domains of equal complexity to

problems solved by state-of-the-art ANN methods so that these efficiency benefits

can be more widely utilised.

The inception of a new field of computer science in neuromorphic computing

1

CHAPTER 1. INTRODUCTION

(NC) is recognition of the possible benefits of using SNNs. Davies et al. (2018)

identified that traditional computational architectures of modern computers do

not allow for the efficient modelling of SNN architectures. Being able to utilise

abundant parallel processes is beneficial as only very few variable updates per

neuron are required in order to both propagate messages through the network as

well as undergoing training. Improving the viability of training algorithms utilising

SNNs when dealing with incredibly complex network structures and sizes will lead

to greatly increased efficiency when transitioning to NC for RL tasks (Wunderlich

et al. 2019).

1.1 Motivation

Researchers have been drawn to using video games to test their machine learning

algorithms for decades. Techniques for machine learning have been demonstrated

with some ground-breaking achievements in recent history. Researchers were able

to conquer the ancient games of Chess and Go after Deep Blue beat world chess

champion Garry Kasparov in 1997 (Campbell et al. 2002) and AlphaGo beat the

European Go champion Fan Hui in 2015 (Borowiec 2016). Recently Alpha Zero

has beaten the best Chess and Go bots in 2018 (Silver et al. 2018), and even more

recently the defeat of two world champion StarCraft II players 5 to 0 by the agent

Alpha Star (Vinyals et al. 2019). Variations of a wide range of algorithms were

used to make these machine learning achievements, however, most relied on the use

of artificial neural networks for decision making. Alpha Zero utilised pure RL with

self-play from scratch and Alpha Star used a combination of supervised learning

for early development and adversarial RL techniques for later stage development.

What they both have in common is the use of deep ANNs and only the ability to

solve their very specific limited versions of the games that they were applied to.

Additionally, both required immense computing power and time to master their

specific tasks. Apply these systems to slightly varied rule sets or scenarios, and

they are unable to even achieve regular human level play. This lack of flexibility

2

CHAPTER 1. INTRODUCTION

to similar tasks and these large computational requirements makes these methods

unable to be realistically adapted into real world robotics technologies and everyday

applications (Strubell et al. 2019).

There is emerging evidence that complex SNN architectures can be applied

much more efficiently on neuromorphic hardware requiring less computational

power for execution (Wunderlich et al. 2019). However, SNNs have not been

demonstrated on tasks of the level of complexity achieved by Alpha Star and Al-

pha Zero. This is primarily due to the inability to use gradient based optimization

algorithms which both Alpha Star and Alpha Zero utilised. Research into RL

on SNN architectures is still in its infancy. In terms of generalisability, there is

evidence that SNNs have some ability to transfer understanding of one scenario

into a similar but different task (Markowska-Kaczmar and Koldowski 2015). This

raises the question as to whether SNN architectures, which are more biologically

plausible than ANNs, could be useful in overcoming problems of efficiency and

generalisability in this field.

Moreover, pure RL on ANN architectures has still struggled on stochastic,

noisy, maze-like, and sparse reward environments. Mnih et al. (2015) in their

Deep Q Learning experiments were able to far surpass human level performance

for a range of games in the Arcade Learning Environment, a machine learning

research framework currently supported by OpenAI on their Gym infrastructure

(Brockman et al. 2016). The most impressive being its domination of video pinball

where it performed at 2539% that of human level. Interestingly, this method failed

at surpassing human level performance on a number of games, including Ms Pac-

Man where the artificial agent only reached 13% of human performance. Arguably

these types of problems are more aligned to real world problems and therefore raises

the question as to whether deep RL methods on ANNs are capable for complex,

stochastic, real world applications.

Even though RL methods on ANNs have accomplished amazing feats in the

past, a question emerges as to whether more computational power or slight varia-

tions to these training algorithms will be enough to shift this field into applicable

3

CHAPTER 1. INTRODUCTION

real-world scenarios. Alternatively, are the architectures that these methods are

being applied to, capable of such useful real-world applications? This question sits

as the motivation for research into RL algorithms for SNN architectures. Not only

are they a more biologically based architecture but it has been proposed that they

are more efficient and can be applied to low energy neuromorphic computers (Ta-

vanaei et al. 2019). However, there is more need to develop algorithms and test a

variety of encoding and decoding strategies applied for input and action selection.

1.2 Research Gaps and Aims

From the initial research into the field of SNNs for RL, a number of gaps in the

literature were discovered.

� Although starting to be widely used for supervised and unsupervised learn-

ing, SNNs have minimally been demonstrated on complex RL domains.

� There are very few algorithms used for training SNNs in RL environments.

� There are a number of different methods for encoding the inputs and decod-

ing the outputs in a SNN with minimal comparative analysis between the

different methods in RL environments.

The gaps outlined above are the result of a comprehensive literature review into

the use of SNNs in RL environments as shown in Chapter 3, as well as more widely

in supervised and unsupervised learning domains. This has led to the development

of a set of aims.

The aims of this thesis revolve around the experimentation of a range of RL

algorithms for SNN architectures as well as investigating network structure and

spike train coding methods. They can be broken into the following four main aims:

1. To test whether specific network structures including single and multi-layered

networks are capable of solving RL problems with some comparison to ANN

structures.

4

CHAPTER 1. INTRODUCTION

2. To investigate encoding and decoding methods for extracting useful informa-

tion for action selection in virtual environments.

3. To investigate how the exposure periods affect network performance.

4. To adapt non-evolutionary and biologically plausible learning techniques to

networks operating in certain RL domains.

These aims and the identified research gaps have led to the development of key

research questions to be answered throughout this thesis.

1.3 Research Questions

The following research questions have been created in order to address the aims

identified. These research questions will be used as identifiers throughout this

thesis for a clear recognition of the specific questions being tested at each stage.

(RQ1) Are SNN structures suitable at solving RL problems?

(RQ1 - A) Using evolutionary approaches to training, are SNNs without

hidden layers (single layer networks) effective at solving RL problems?

(RQ1 - B) Using evolutionary approaches to training, are SNNs with

hidden layers (multi-layer networks) effective at solving RL problems?

(RQ2) What network constraining and network coding methods improve

training in RL environments?

(RQ2 - A) What affect does the exposure period of the state space to

the network have on network performance?

(RQ2 - B) What methods are effective at decoding spike train signals

into action selection?

(RQ2 - C) What methods are effective at encoding state space informa-

tion into spike train signals?

5

CHAPTER 1. INTRODUCTION

(RQ2 - D) What methods effectively constrain the strengthening and

weakening of synapse weights?

(RQ3) Due to the inability to use gradient based algorithms for the training

of SNNs, are non-evolutionary learning techniques effective at solving RL

problems?

(RQ3 - A) Can learning methods based on spike timing (Hebbian learn-

ing methods) effectively solve RL problems?

(RQ3 - B) Can learning methods that incorporate aspects of evolution-

ary and spike timing training effectively solve RL problems?

1.4 Objectives

In order to answer the research questions outlined in the previous section, a number

of key objectives and sub-objectives have been developed.

1. Using evolutionary methods, train SNNs to accomplish a number of RL tasks

in the OpenAI gym environment (Brockman et al. 2016).

(a) Utilising the Sutton and Barto (2018) cart pole experiment implemented

on the gym environment, train and compare ANN and SNN performance

using similar genetic algorithms for both (RQ1) and compare different

output decoding strategies (RQ2 - B).

(b) Utilising the Lunar Lander RL problem from the Brockman et al. (2016)

gym environment, explore the performance of SNNs using evolutionary

training on this more complex RL problem (RQ1).

(c) Utilising both Cart Pole and Lunar Lander, explore the affect that ex-

posure period has on agent training (RQ2 - A).

(d) For both problems in the evolutionary context, investigate different en-

coding strategies for converting the regular state space information into

SNN readable spike trains (RQ2 - C)

6

CHAPTER 1. INTRODUCTION

2. Using spike timing-based methods, train SNNs in the Cart Pole problem from

the Open AI gym(Brockman et al. 2016).

(a) Test and compare different spike timing-based training methods on the

Cart Pole problem and also compare their achievements compared to

the evolutionary techniques (RQ3).

(b) Test different methods of weight constraining techniques that will not

necessarily be an issue in the evolutionary training framework (RQ2 -

D).

These objectives and the methodology for each of the associated experiments

will be explored in more detail in Chapters 4 and 5.

1.5 Methodology Constraints

The data collected to measure the performance of the SNNs against the RL prob-

lems is quantitative. The data will be collected from the rewards awarded to the

agents over the course of their learning generations. In order to draw meaningful

conclusions, it is imperative that, when comparing the performance of different

network structures, coding methods and training algorithms, there is a consistent

number of trials or generations depending on the training methods used as well

as the same number of repeated tests for each. The specific number of trials and

repetitions will be dependent on the complexity of the environment that they will

be training in. Additionally, this thesis will compare the use of the same set of

original inputs between networks with the understanding that SNNs will need a

separate encoding method to transfer the states into a temporal message, however

it will undertake this encoding with those same original inputs presented by the

RL environment. Finally, when comparing different encoding and decoding meth-

ods of the SNNs, the only thing differing between the networks will be the method

of converting the state space into temporal information and the extraction of the

information from the final layer of the network for action selection. This set of

7

CHAPTER 1. INTRODUCTION

methodology constraints is imperative for drawing meaningful conclusions to the

research questions.

1.6 Out of Scope

Although the computational efficiency of execution and training is paramount in

the success of SNN architectures for RL tasks, the analysis of this will be ruled

out of scope. There is evidence that traditional computing architectures are not

efficient at modelling SNNs (Davies et al. 2018). Neuromorphic hardware is still

in its infancy of development making gaining access to these technologies difficult.

As a result, comparing efficiencies between ANNs and SNNs can only be achieved

on traditional computing hardware. It appears that the benefits in efficiency will

emerge through the application of effective RL algorithms on SNNs on neuro-

morphic based hardware and so this comparison on traditional computing will be

irrelevant to the overall task of demonstrating whether the algorithms perform as

efficiently when compared to common methods. Utilising neuromorphic comput-

ing for creation of SNN agents would be difficult due to the lack of availability

of the technology as well as greatly increase the scope of the problem. For these

reasons, testing the computational efficiency of SNN architectures will be ruled out

of scope.

1.7 Significance

There are four main areas that this thesis will contribute to knowledge in the

field of SNNs for RL problems. Firstly, the development and testing of a variety of

training methods for SNNs in RL problems. Secondly, a comparison in performance

between these set of algorithms and the state-of-the-art ANN training methods.

Thirdly, the identification and development of the best methods for encoding and

decoding information in a SNN. Finally, the exploration of the affect that the

length of exposure of the state to the network has on network performance. These

8

CHAPTER 1. INTRODUCTION

will be discussed in this section.

1. Effective training algorithms for SNNs in RL domains are still in their infancy

with many in the field identifying a lack of direct training methods (Bing

et al. 2018) (Kaiser et al. 2016). Therefore, the development and testing of

these algorithms is a valuable contribution to the field adding to the growing

interest in finding effective methods for training.

2. A common criticism in the supervised and unsupervised learning domains

for SNN architectures is their inability to match the performance of state-

of-the-art ANN methods (Neil et al. 2016). This comparison has minimally

been done in the field of RL. This thesis will add a minor contribution to the

comparison of ANNs and SNNs and their performance on the Cart Pole RL

problem.

3. Unlike traditional ANN architectures where the decision for action selection

is based on a simple activation function in the final layer of the network, SNNs

have to deal with their information being encoded in a temporal way. There

are a number of different methods to firstly convert the state information into

a temporal fashion and secondly, to turn this temporal information back into

a useful form to be used for action selection. There is conflicting evidence

to which of these methods is the most effective so this thesis will act as a

comparison of these methods. This will be significant as it will unify results

among different methods and different environments.

4. Rarely discussed in literature is the effect that exposure periods have on the

learning performance of SNNs. This research will attempt to contribute to

this area by identifying trends over a range of different exposure periods.

9

CHAPTER 1. INTRODUCTION

1.8 Summary

This chapter introduced the problem, suggested the aims and research questions,

limited the scope and set out the significance for this research. Fundamentally,

the research and experimentation in this thesis is an exploration of spiking neural

networks specifically in the comparative analysis of different components of the

network architecture, as well as an investigation into both evolutionary and spike

based training methods on two reinforcement learning problems. The comparative

analysis will look at multiple methods of encoding and decoding as well as investi-

gating the effect that different state exposure periods have on the performance of

the networks in solving the reinforcement learning problems. It will additionally

look at the effect of different network shapes and training methods. In order to

better understand the terminology and techniques that will be used in order to

answer the research questions, the following chapter will cover the background.

10

Chapter 2

Background

The previouse chapter introduced the problem and set out the bounds of this re-

search. It laid out a range of terminologies and methods that must be described

in detail in order to understand the research questions and the method of solving

these questions. This chapter will introduce the basic concepts necessary for an un-

derstanding of those research questions. Firstly, an introduction to the concepts of

reinforcement learning will be made. Secondly, an explanation of the current state

of the art methods using artificial neural networks with Deep Q Learning, with an

identification of the challenges that these methods face. Thirdly, an explanation

of networks of spiking neurons and lastly, an introduction to the various methods

of handling SNN signals. Within this chapter, justifications for selecting certain

network mechanisms will be made as there are a variety of different methods for

modelling these types of networks.

2.1 Reinforcement Learning (RL)

Reinforcement Learning (RL) is a field of machine learning whereby an agent learns

from reward signals awarded during interaction with an environment. This process

can be modelled in its simplest form as a Markov Decision Process (MDP) (Sutton

and Barto 2018).

The MDP describes the interaction that an agent has with an environment

11

CHAPTER 2. BACKGROUND

Figure 2.1: A visual description of a Markov Decision Process (Sutton and Barto 2018)

during a reinforcement learning task. The agent receives some input on the state

of the environment as well of the reward signal it received from the environment.

This input allows the agent to make a decision on the action that should be taken.

This action is fed into the environment which will update based on that action thus

generating a new state representation and a new reward signal. The challenge of

reinforcement learning is teaching the agent which actions can net the most reward

in an environment (Sutton and Barto 2018). These rewards can be both positive,

in order to encourage certain behaviour, or negative, in order to punish the agent

for taking certain actions or ending up in certain damaging states. Central to the

challenge in RL is the trade-off between exploration and exploitation (Sutton and

Barto 2018). The agent does not know the actions that it can take to net the

high rewards until it tries them at some point during development, the exploration

side of things. But during exploration the agent may need to exploit actions of

high reward in order to progress and explore actions further in the environment.

Yanguas-Gil (2018) suggests that there is a growing consensus in the fact that our

central neural systems are affected by external reward signals in the world that re-

inforce our trends of behaviour. They demonstrate this in a simple insect brain but

suggest that wider ranges of animals also undergo these processes of learning. This

is supported by Mozafari et al. (2018) that for humans, the connections between

neurons are strengthened and weakened according to the reward signals that our

environment give off which in turn alters our behaviour. The similarities between

12

CHAPTER 2. BACKGROUND

real world learning and reinforcement learning tasks make this an important area

of research.

2.2 Artificial Neural Network (ANN)

Artificial neural networks are widely used as function approximators in machine

learning tasks. ANNs are made up of a series of interconnected neurons. A neuron

takes in a set of inputs, does some processing on those inputs, and produces a single

output value. These neurons are connected to one another in a layered format.

A neurons output will be sent to all of the next layer neurons down weighted

connections. Traditionally a neuron will sum all of the incoming neuron values

multiplied by the respective weighted connections that they travelled down. They

will then pass this summed value into what is called an activation function which

will do some processing on that value usually clamping or restricting the types of

output that it can give out.

For internal network neurons these activation functions usually consist of what

are called rectified linear units (ReLU) (Zeiler et al. 2013). ReLUs will produce

zero output if their sum of incoming inputs is less than zero and normal positive

output otherwise. Functions like the ReLU are continuous activation functions and

pass on the data received and processed onto all of its connected neurons. ANNs

are traditionally made up of an input layer followed by zero to many hidden layers

with each layer connected to the next followed by a final output layer. These layers

can be fully connected with each neuron in the previous layer connected to every

other neuron in the next layer. This is not always the case and can either have

a subset of fully connected connections or even have connections to previous or

future layers.

A deep artificial neural network is a network made up of two or more hidden lay-

ers. These ANNs are becoming troublesome for approximating complex functions

and machine learning problems as they are growing in size. They are hindered by

computational efficiency in the propagation of data as well as plagued by several

13

CHAPTER 2. BACKGROUND

problems of optimisation of the weighted connections using Deep Q Learning in

both efficiency and performance.

2.3 Deep Q Learning

Q-Learning is a process in RL whereby a network or policy learns values associated

with particular state action pairs. These values should, if trained correctly, repre-

sent the predicted reward value of the next state if the agent were to take a specific

action. The decision on which action to take is based off which of the state action

pairs has the highest predicted value (Sutton and Barto 2018). The method of Q

Learning utilising deep ANNs, often referred to as Deep Q Learning is a perfect

method for comparing the ability of SNNs utilising natural learning algorithms.

This method is the current state of the art for the Arcade Learning Environment

(ALE) (Mnih et al. 2015). Variations of the Deep Q Learning method such as

Double Q Learning (van Hasselt et al. 2016) have been able to surpass the original

Deep Q Learning methods in the Arcade Learning Environment but has not been

widely researched against other problem sets. Deep Q Learning on the other hand

is widely used in other reinforcement learning tasks and is therefore more suitable

to use as a comparison due to its wider reach and research base.

2.3.1 Back-Propagation

Generally, networks that utilise Deep Q Learning for training, as a part of the

training, also use back-propagation for the altering of the weighted connections in

the neural network. It works on some loss function or error function calculated at

the output layer of the network. The partial derivatives are then calculated for the

loss function with respect to every one of the weights in the network. This then

alters the weights in the direction of the negative gradient of this partial derivative

in order to minimise this loss function (Lee et al. 2016). In large networks, back-

propagation can be incredibly time consuming and is therefore usually conducted

on the average of these gradients over a large number of training cycles.

14

CHAPTER 2. BACKGROUND

2.4 Spiking Neural Network (SNN)

Spiking neural networks (SNNs), although similar in structure to artificial neural

networks (ANN), work in a fundamentally different way. Both their structures are

made up of several layers of neurons connected to one another through weighted

connections or synapses. The difference comes from how the signals are sent down

these connections (Mozafari et al. 2018). ANNs will propagate data through a

continuous iteration of neuron values down each of their connections every iteration

of execution. SNNs differ in that their propagation of data is done through discrete

binary spikes. Neurons will build in some potential until such a point that a

threshold is surpassed where a spike will be passed down its connections which

will work to build or diminish the potentials of those connected neurons (Burkitt

2006). Once a neuron has spiked it will enter a period of refractory where it is

unable to spike and ignores any incoming input. Mapping a neuron spiking over

time produces a spike train. This temporal information on a neuron’s activity can

be used to extract information on action selection or classification when they occur

in some output layer.

The interaction of neurons in a SNN attempt to imitate the biological pro-

cesses existent in mammalian brains. The extent to which realism of cognitive

neuronal level structure is replicated in these systems brings about several meth-

ods of modelling these types of networks. Generally, the more realistic the neurons

and synapses in the network are, the more computation is required during process-

ing. This trade-off seems to be a common occurrence in the literature. The most

general and computationally fastest method is using the Leaky Integrate and Fire

(LIF) neuron model (Stevens and Zador 1998) (Burkitt 2006). The most accu-

rate model originates from the work by Hodgkin and Huxley (1952), known as the

Hodgkin-Huxley model (H-H), through their study of membrane capacitance at

the ionic level. Due to the complexity of this model, it is considered the most com-

putationally inefficient. Izhikevich (2003) proposes a model to bridge the realism

and computational efficiency gap between the LIF and H-H models.

15

CHAPTER 2. BACKGROUND

2.4.1 Action Potential and Hodgkin-Huxley Model (H-H)

The neurons in SNNs are based off of neuronal membrane structures described

by Hodgkin and Huxley (1952). It is therefore important to have an understand-

ing of what is happening inside a membrane at the point that the membrane

voltage surpasses the threshold value. The difference between the voltage inside

the membrane compared to outside the membrane at its resting potential is ap-

proximately -70mV. When exposed to outside stimulus from another neuron for

example, positive charge is added to this membrane making its membrane poten-

tial less negative. If this additional positive charge causes the membrane to exceed

some threshold (approximately -55mV), the voltage gated sodium channel (VGSC)

will open causing sodium ions outside the membrane to flood inside. This creates

depolarisation as the charge of the membrane flips from negative to positive and

the charge outside the membrane flips to negative. When the membrane potential

exceeds the peak voltage approximately 30mV, the VGSC is inhibited preventing

more sodium ions from entering the membrane. Both the VGSC and the voltage

gated potassium channel (VGPC) are triggered to open at the same time when

the membrane potential exceeds the threshold however the VGPC takes a longer

period of time to open meaning a delay between the sodium ions flooding through

and the potassium ions leaving. When the VGPC is open, as potassium ions are

more concentrated inside the membrane, it causes them to flood out rapidly drop-

ping the membrane voltage back into the negative. This process of flipping from

positive back to negative is known as repolarisation.

When the membrane potential drops below its threshold both the VGSC and

VGPC gates close. Similar to when it exceeds the threshold the VGPC takes longer

to close than the VGSC which has already been inhibited after reaching the peak

potential. Therefore, potassium ions will continue to travel out of the membrane

while the VGPC takes time to close. This drops the potential to less than its

resting potential causing the membrane to enter a period of hyper-polarisation.

Through the use of separate channels called the sodium potassium pump (SPP)

16

CHAPTER 2. BACKGROUND

and the potassium leak channel (PLC) the membrane will return to its equilibrium

at the resting potential.

Figure 2.2: An example of a set of action potentials occurring according to the Hodgkin and

Huxley membrane capacitance model.

Figure 2.2 shows an example of the membrane potential mapped over time in

a single membrane. In this example, this membrane has undergone two action

potentials. The period of time between when the potential exceeds the threshold

through to it reaching the peak voltage and then dropping back below the threshold

is known as the absolute refractory period. During this time, the membrane will

not respond to external stimulus and cannot undergo another action potential.

The period between dropping below the threshold through to the membrane being

in a state of hyper-polarisation to it returning to its resting potential is known

as the relative refractory period. During this time, the membrane can undergo

another action potential if there is enough external stimulus however it requires

more input than is otherwise necessary than when the membrane voltage is at its

resting potential, so an action potential is less likely.

We can model this entire process for use in an SNN however the model would

be required to deal with the movement of ions and timings of opening and closing

VGSC and VGPC gates which would add to the computational cost. This model

is known as the Hodgkin and Huxley (H-H) model (Hodgkin and Huxley 1952).

This high cost has led to the development of simplified models that are able to

process large numbers of individual membranes simultaneously as is required to

17

CHAPTER 2. BACKGROUND

replicate a neural system.

2.4.2 Izhikevich Model

Izhikevich (2003) identifies that H-H type models are restricted by the amount of

computation required to accurately model the neural system. He proposes a model

that matches this level of accuracy but removes a lot of the complexity of the ionic

level H-H model. The IZ model revolves around two basic piecewise equations.

v(t+ 1) =

v(t) + 0.04v(t)2 + 5v(t) + 140− u(t) + I(t) if v(t) < 30

c if v(t) >= 30

(2.1)

u(t+ 1) =

u(t) + a(bv(t)− u(t)) if v(t) < 30

u(t) + d if v(t) >= 30

(2.2)

I refers to the injection into the neuron, v is the membrane potential, u is the

recovery variable and t is the current time-step. The other four variables, namely

a, b, c and d are the parameters that affect the behaviour of the neuron. Firstly

a describes the time scale of the recovery variable with smaller values resulting

in slower recovery. Secondly, b describes the sensitivity of the recovery variable

to ”sub-threshold fluctuations of the membrane potential” (Izhikevich 2003). c

determines the reset value after a spike occurs. Finally, d describes the behaviour

of the reset of the recovery variable post spike.

a = 0.02

b = 0.2

c = −65

d = 2

(2.3)

Equation 2.3 describes typical values found in regular spiking neurons.

When v exceeds the peak voltage of 30mV, both the membrane potential and

the recovery variable, u, resets according to specified rules outlined in equations

18

CHAPTER 2. BACKGROUND

2.1 and 2.2 respectively.

Figure 2.3: An example of random input into an Izhikevich neuron model with the parameters

from equation 2.3

Comparing Figure 2.2 with Figure 2.3 it shows that the IZ neuron model is

good at estimating the same properties of the H-H model. The action potential

occurs around the -55mV threshold. Once the potential exceeds some peak voltage

it enters a period of hyper polarisation before levelling back off at the resting

potential. All this is done without needing to model the complexity of the ionic

level movement in the neuron.

2.5 Decoding Outputs into Action Selection

In traditional ANN architectures, the final layer generally uses a soft-max acti-

vation function, σ, applied which both normalises the output vector as well as

represents the possible action selections based on how likely the network deter-

mines the action taken will lead to a maximised value. An argmax function would

then be applied to select this highest predicted value action.

However, in a spiking architecture, there is no ability to decode the outputs

in this way due to their binary nature. This binary characteristic means that

information is not encoded on particular neuron values but in the spike trains that

these neurons produce (Kiselev 2016). Therefore, a method is needed to convert

this spike train information into appropriate action selection. There are a number

19

CHAPTER 2. BACKGROUND

of different ways proposed to accomplish this and this section will investigate these

in detail. Fundamentally, these different types for coding can be broken into two

main categories: temporal coding and rate coding.

2.5.1 Rate Coding

Rate coding methods rely on the fact that the carriage of information is based on

the frequency of spikes occurring in a neuron (Li and Tsien 2017).

Temporal averaging is a method whereby the average firing rate is calculated

for an individual neuron based on the time of exposure of the particular stimulus.

This can be defined by Equation 2.4.

R =
nsp

T
(2.4)

Where R is the average firing rate of a single neuron over a single trial, nsp is

the number of spikes over the time of exposure of a particular stimulus and T is

the total time of exposure of the stimulus. The output neuron that produces the

largest of these temporal averages will be used for action selection. In order to pro-

duce more accurate temporal averaging, the time of exposure of the stimulus can

be increased. It needs to be sufficiently long to be able to infer relevant informa-

tion. This method can experience issues with the possibility of the same temporal

average over multiple output neurons especially when the time of exposure of the

stimulus is small.

This can be improved by analysing the average spike rate of a single neuron over

multiple trials as the noisy nature of input to the network may make spike rates

differ from one trial to the next. Taking the average spike rate over multiple trials,

as described in Equation 2.5, allows for a more accurate comparison of multiple

output neurons when deciding on an action to select.

R =
Σk
i=1n

sp
i

Tk
(2.5)

The variable k in Equation 2.5 refers to the number of trials of an exposure

20

CHAPTER 2. BACKGROUND

of a stimulus to a single neuron. This method is almost the same as Equation

2.4 however results in the consideration of multiple separate trials to come to a

conclusion of which action to take. In real neural systems it is not possible for

this to be the coding method for deciding action selection as a decision is made

with only one exposure to an event. However, in artificial systems this can be

used to ensure the correct action is taken when using rate coding. This is a slow

process due to the repeated trials of multiple exposures of a stimulus. Population

averaging is similar to that of the temporal averaging over trials method however

it is based on the assumption that there is a pool of neurons responsible for action

selection. If we find the average rate of firing over that population of neurons,

we can get a more accurate reading of which pool is being the most stimulating

over a certain time period. This allows for the improvement of accuracy over the

temporal average method while the network only needs to be exposed to a single

trial.

2.5.2 Temporal Coding

Temporal coding assumes that the carriage of information is dependent on the

precise spike timings (Li and Tsien 2017). This means exposure of a state for a

fixed time period is not needed in order to appropriately select an action to take.

First-to-spike time coding selects the action based on the neuron that was first to

fire since the exposure of the new state to the network (VanRullen et al. 2005).

This improves on the number of exposures needed using the rate coding methods

due to the action being selected as soon as a single spike occurs in the output layer.

However, it is most likely not the biological method of decoding action selection

as the individual neurons may not have any reference to the behaviour of other

neurons tasked with action selection and therefore would not know which of them

are first to spike (Li and Tsien 2017).

21

CHAPTER 2. BACKGROUND

2.6 Summary

This chapter outlined the underlying definitions and descriptions of the concepts

outlined in the research questions. This included a brief overview of the current

state of the art methods of traditional ANNs for the types of RL problems that

will be investigated in the following chapters, and an introduction to the SNN

structures and mechanisms for modelling. There are multiple ways of modelling

these types of networks with the identified IZ neuron model being selected for use

in this research. This selection was justified on the improved biological accuracy

of neuron behaviour when compared to the LIF neuron model, with the more

efficient execution of the network on traditional hardware when compared to the

H-H neuron model. Additonally, the justification to analyse both temporal and

rate based decoding methods was based on their consistent and non-comparitive

use in the literature. The background laid out in this chapter therefore furthers

the framework of the research that will be conducted in future chapters.

The following chapter will take a more extensive look at the literature, specifically

related to the applications of the processes outlined in this chapter. It will identify

certain open questions in the field and relate them back to the specified research

questions from Chapter 1.

22

Chapter 3

Literature Review

The previous chapter outlined the basic concepts needed to understand the research

questions. One thing that the previous chapter lacked was a detailed description

of training algorithms for SNNs and therefore requires an investigation in the form

of a literature review. This chapter reflects the current state of research into the

use of SNNs for a range of machine learning tasks. Although supervised and unsu-

pervised learning problems are explored, the focus is on their use in RL. Firstly, a

review was conducted into the wider use of SNNs throughout machine learning do-

mains. Secondly, a more specific review into virtual agent control using SNNs was

conducted. These reviews have been merged into the relevant headings throughout

this chapter. The major findings of these reviews highlight the minimal research

into complex RL domains with the common occurrence of difficulty of training

of the networks. They also hint at various gains in efficiency and generalisability

compared to ANNs however these also have minimal research focus in the cur-

rent literature. The chapter will conclude with a discussion of the identified open

questions in this field.

3.1 Computational Efficiency of SNNs

The benefits of utilising networks of spiking neurons over those of continuously

activated neurons found in traditional ANNs seems like a logical computational

23

CHAPTER 3. LITERATURE REVIEW

efficiency gain as there are less hardware operations being conducted in order to

propagate the data through the network (Tavanaei et al. 2019). Experimentally,

Neil et al. (2016) demonstrates how, for classification tasks, using an appropriate

optimization algorithm for converted deep SNNs, far less computation is needed

to maintain similar levels of accuracy of traditional ANNs. Although these SNNs

did not undergo direct training but instead were converted from a trained ANN, it

highlights the computational efficiency of execution but not training. They explore

several different algorithms and their normalised counterparts to determine which,

if any, are able to both maintain 98% accuracy on the MNIST Digit data set (Lecun

et al. 1998) and are able to execute the classification in a more computationally

efficient manner. Additionally, Cao et al. (2015) demonstrated that converting a

trained convolutional ANN into a network of spiking neurons, they were able to

maintain the accuracy in a image recognition task whilst allowing the model to run

much more efficiently on specific spike based hardware. Due to the structure of a

SNN, those that spike less are more computationally efficient. Comparing that to

an ANN where all neurons need to send their activation values down all of their

weights, a SNN only needs to send that information when a spike occurs. The

most interesting question however comes from whether the networks themselves

are able to be trained more efficiently than an ANN which neither of Neil et al.

(2016) and Cao et al. (2015) do. There has been minimal research into this direct

computational comparison of training. This has been identified as a major research

gap and is most likely caused by the difficulty of training SNNs due to their vastly

different architecture to ANNs.

3.2 Hand Crafted SNNs

A number of papers utilise a hand-crafted SNN with none of the following experi-

ments undertaking parameter optimization or learning during execution. However,

it is still worth investigating the range of problems that SNNs of a hand crafted

nature are able to solve.

24

CHAPTER 3. LITERATURE REVIEW

Gamez et al. (2013) attempt to craft a SNN capable of deceiving judges in a

Turing test like experiment. It utilises the Unreal Tournament 2004 video game

(Tournament 2004) with its objective of replicating human like behaviour in a

first person shooter environment. They identify the subjectivity of using human

judges to determine how human like the artificial agent is, and instead proposes

human like metrics collected through observations and data from a range of human

players. They then craft their SNN agent to maximise these human-like metrics.

The tedious nature of hand crafting these parameters and network structure limits

the optimisation ability. This was identified by Gamez et al. (2013) for possible

improvements to their global workspace architecture in future by implementing

forms of parameter optimization and learning.

Mitchell et al. (2016) demonstrate the use of a SNN for planning in a simulation

where a robot must do a number of sub objectives in order to achieve an overall

objective of sanding and spray painting an object. The objectives must be achieved

in the correct sequence so the hand crafted networks is broken into modules for

each sub objective. This is a similar structure to the global workspace architecture

proposed by Gamez et al. (2013). They were able to craft a network capable of

achieving the desired tasks however neuron and synaptic parameters were static

meaning no training was undertaken. Should the objectives of the system change,

the network would have to be recreated according to another set of plans.

Kamali Sarvestani et al. (2013) attempted to replicate types of instinctual

behaviours in lamprey, a very basic ancient sea animal that is believed to have

exhibited limited behaviours. Using a hand crafted SNN in a form similar to a

Braitenberg machine (Braitenberg 1986), they were able to exhibit behaviours of

escape, avoidance and approach of certain environmental stimulus. Similarly to

Gamez et al. (2013) and Mitchell et al. (2016) it did this through tiers of sub

modules with varying degrees of importance.

Olmsted (2011) replicated the behaviours of a sea snail foraging for food. They

were able to imitate exploratory behaviours for searching for food and moving

towards food sources when they were detected. They structured their network

25

CHAPTER 3. LITERATURE REVIEW

by hand crafting neuron parameter values to imitate AND, INCLUSIVE OR and

other conditional logical gates. When arranged in their network it exhibited the

instinctual behaviours identified.

All of these papers successfully implement a SNN for agent control in a virtual

environment, however, all had static, hand crafted parameters with no ability

to improve the performance of their tasks. They demonstrate the capability of

networks to bring rise to interesting behaviour, but for future progress in the

use of SNNs it is imperative that natural learning algorithms can be applied and

demonstrated to improve on a set of metrics related to how well they completed

these tasks.

3.3 Hebbian Based Learning

As SNNs offer a more biologically plausible neural network architecture (Shim and

Li 2017), many have looked to biology and psychology research to understand

methods of training an architecture of this kind. Hebbian Learning (Hebb 1949)

has emerged as the leading basis for a lot of training algorithms for use on SNNs

due to its theory on the structure of learning in mammalian brains. Hebb posits

that when a pre-synaptic neuron fires which in turn leads to the firing of a post-

synaptic neuron, the connection between the two is strengthened. Inversely, if

a post-synaptic neuron has fired without the assistance of a pre-synaptic neuron

then the connection between those two is weakened (Hebb 1949). This simple

theory is relevant to SNNs due to them being a computational representation of

the biological mammalian brain. This has become known more commonly as Spike-

Timing-Dependant Plasticity (STPD) (Mozafari et al. 2018) (Bing et al. 2018) and

has led to several spin-off algorithms based off the original contributions by Hebb

(1949). STDP itself is actually an unsupervised learning algorithm which works

well at identifying trends and patterns in unlabelled data (Shim and Li 2017).

However its reward-modulated STDP counterpart (R-STDP) has been proposed

for reinforcement learning tasks (Mozafari et al. 2018) (Bing et al. 2018).

26

CHAPTER 3. LITERATURE REVIEW

Both Mozafari et al. (2018) and Bing et al. (2018) demonstrate the effectiveness

of using the R-STDP variations of the unsupervised STDP. Bing et al. (2018) utilise

the method in a real world robotics task with the goal of training a robot to stay

within its lane markings on a variety of different tracks. They demonstrate the

effectiveness with a comparison to an experiment conducted by Kaiser et al. (2016)

where they use a robot utilising a SNN to do a similar task. The only difference

being that Kaiser et al. (2016) used hand crafted weights and feature detectors

to create their network as they claimed that there were no good optimisation

algorithms developed for SNNs. Bing et al. (2018) demonstrates that through the

use of R-STDP for training of a spiking neural network it was eventually able to

well outperform the hand crafted vehicle on the metrics of staying within its lane

markings. Even when used on ever increasing complexity tracks which utilised

different types of lane markings at different points in the track it was still able to

maintain a closer fit to the lanes center line than Kaiser et al. (2016). Mozafari et al.

(2018) demonstrates the same training algorithm as Bing et al. (2018) however

does so on a natural image classification task. Their results demonstrate four

fundamental properties of using the SNN with R-STDP when compared to the

traditional methods for natural image classification. Firstly that it was able to

match the robustness of current state of the art methods for image classification.

Secondly, as the SNN utilises only one spike per image per neuron, it greatly

reduces the computational cost of classification, a characteristic backed up by Neil

et al. (2016). Thirdly, the classification is done in a more biologically plausible and

similar way to the methods used by human brains to classify images. Finally, the

use of R-STDP means the networks learn in more biologically plausible ways, as

detailed by Hebb (1949), when compared to the traditional deep learning methods.

R-STDP can be applied to SNNs for a variety of tasks as demonstrated through

the robotic control of Bing et al. (2018) and the image classification performance

of Mozafari et al. (2018).

Shim and Li (2017) builds on the research of the R-STDP algorithm with

their proposition of the multiplicative reward modulated spike-timing-dependant

27

CHAPTER 3. LITERATURE REVIEW

plasticity (M-RM-STDP). They demonstrate this algorithm on a robotic collision

avoidance task whereby they place the robot in a starting location with a variety of

obstacles in the environment with the task of the robot reaching a target location.

Shim and Li (2017), as a comparison to their algorithm, compare the traditional q-

learning methods applied to ANNs. Their results demonstrate that their robot that

learnt through M-RM-STDP far outperforms the q-learning robot. Their use of a

product of multiple components to control the degree of changing of the weights

in their network led to shorter learning speeds than additive and base reward

modulated STDP algorithms. Shim and Li (2017) demonstrates the computational

efficiencies of using their proposed variation of the STDP algorithm, as well as its

performance gains on traditional methods of robot collision avoidance therefore

highlighting the importance of more research in this field.

Wang et al. (2016) proposes the use of a simplified Hodgkin-Huxley membrane

model with comparable efficiencies to that of the Leaky Integrate and Fire neuron.

Using this method they utilise a Q-Learning type training algorithm to teach a

virtual agent to play the game of Flappy Bird. However the details of the precise

workings of this method in the confines of a SNN is minimal. They propose an

interesting use of time delayed neurons to produce contextual state input. The first

of two neurons in a perception layer are fed spike inputs from the pixels of an image

with the second receiving similar spike information but channelled through a time

delayed neuron. This produces contextual information about general movement

within the game world. This is similar to the method used in traditional ANN

input pre-processing for temporal video input where several previous frames are

passed into the network or some subtraction of frames occurs.

Daucé (2009) suggests utilising a local policy gradient learning mechanism with

global reward. Where regular policy gradient RL algorithms use value functions

to predict future rewards from some specific state and action pair, this method

avoids the use of the value function by directly shaping the parameters using

a local estimation of gradient at the individual neuronal level. The benefits of

using localised learning means that the only information needed for learning is the

28

CHAPTER 3. LITERATURE REVIEW

neurons firing pattern as well as the firing pattern of its pre-synaptic neuron. The

single global reward can be spread across all neurons for the localised learning to

take place in a Hebbian fashion. Using this method, Daucé (2009) was able to

train a virtual eye to focus on some target in the environment with no information

regarding the direction to the target, only a global reward signal related to how

well it was looking at the target area.

Wunderlich et al. (2019) demonstrated the training of an agent on simple neu-

romorphic hardware to play a basic game inspired by Pong whereby the agent

must bounce a ball off its paddle and into a wall and repeat trying to prevent the

ball from passing its paddle. Rewards were allocated based on the centrality of

the ball compared to the agents paddle. Using a R-STDP algorithm for neuronal

level learning they were able to train an agent to play the game optimally. Inter-

estingly they implemented this algorithm both on simple neuromorphic hardware

and a simulated neuromorphic environment running on a traditional CPU com-

puter. The neuromorphic hardware was able to learn the optimal strategy in just

25 seconds compared to 40 minutes in the simulation. Although this game was a

simplified version of pong it highlights the extraordinary efficiency gains neuromor-

phic hardware could bring for problems of this nature. Future implementations on

a full version of the game of Pong using pixel inputs implemented on neuromorphic

hardware, we believe, would be a first.

Müller et al. (2018) used R-STDP for a navigation and collision avoidance task

in a virtual field, attempting to replicate learning conditions of the honey bee.

Their R-STDP algorithm only had an affect on the final hidden layer’s synapses

with the output layer. This method was able to replicate simple navigation of

the honeybee in environments with minimal obstacles. When expanded to more

complex paths in more complex environments, their network struggled to effectively

navigate. They identify that their network is not suitable for those complex paths

and that separate network modules would be needed to improve the navigations

systems.

Vitanza et al. (2015) implement multiple SNN agents in an environment with

29

CHAPTER 3. LITERATURE REVIEW

the task of reaching certain objectives before other agents. Similarly to Gamez

et al. (2013) and Mitchell et al. (2016), multiple network modules are used to

support different sub-objectives. Due to the competitive nature of this environ-

ment with the exposure to multiple other agents, a sub-objective of not colliding

with other agents is necessary. They implement a collision avoidance block which

contains sensory inputs that spike when nearby an obstacle with a separate block

of inputs dealing with information about its wider environment. The agents be-

haviour in the environment is altered through traditional means of STDP however

it makes use of a global reward signal which controls threshold adaptation. This

is the only one of the reviewed papers to train neuron thresholds. The use of these

techniques and the exposure to other agents in the environment form some predic-

tive behaviour whereby agents will pick objectives that they assess other agents

are not travelling to. This predictive behaviour is interesting and unique amongst

the other papers reviewed.

3.4 Back-propagation of Spiking Neural Networks

As back-propagation has been such a successful method of optimising artificial neu-

ral networks in the past, being able to apply these methods to networks of spiking

neurons is important. As explained, SNNs are not intrinsically differentiable and

therefore in their basic form are unable to undergo the process of back-propagation.

Wu et al. (2018) was able to overcome the non-differentiable nature of the Leaky

IF neuron model by approximating a derivative based on spike characteristics such

as neuron potentials and spike frequency. They were able to match performance

of a supervised ANN on an object detection task. Lee et al. (2016) using a similar

method was able to, with a convolutional spiking neural network, outperform a con-

volutional ANN in the MNIST digit dataset (Lecun et al. 1998). Back-propagation

is still a viable option. By estimating derivatives we can still use gradient descent

methods in order to optimise the weighted connections. However, if interested in

replicating biological processes, it seems evident that back-propagation is in no

30

CHAPTER 3. LITERATURE REVIEW

way a natural process used in mammalian brains (Tavanaei et al. 2019). Although

back-propagation has been recently successful in supervised learning tasks when

applied to SNNs it will be ruled out of scope due to the complications in selecting

appropriate estimates for the derivative as well as the method being an unlikely

natural process used in the human brain.

3.5 Evolutionary Algorithms applied to Spiking

Neural Networks

Evolutionary and genetic algorithms on neural networks have been promisingly

used to solve complex optimisation problems in the past. Generally, experiments

surrounding evolutionary algorithms and their use on ANNs have been divided

into two areas. Namely, the optimisation of the weights in a static neural net-

work (Yee and Teo 2011) and the optimisation of the structure in a topologically

changing network. Often, in the case of the later, both optimisation of weights

and structure is used (Hausknecht et al. 2012). Although evolutionary algorithms

are not specifically a reinforcement learning algorithm, they can be used to solve

reinforcement learning tasks with the fitness of the individual agents within gener-

ations being modelled off of the reward signals that are awarded during play. Their

use on spiking neural networks is demonstrated by Yee and Teo (2011) on their

application to a driving simulator called TORCS whereby they were able to train

an agent to drive three increasingly complex tracks. However their arbitrary use

of reward factors influencing the agents fitness highlights the issues surrounding

multi-objective optimisation in evolutionary algorithms. Slade and Zhang (2018)

attempt to implement a topological and weight evolution on an SNN to implement

the XOR logical gate. Although their results were promising in that they were

able to create systems that could classify according to XOR, the size and complex-

ity of the networks created where worse than ANN implementations of the XOR

network.

31

CHAPTER 3. LITERATURE REVIEW

Markowska-Kaczmar and Koldowski (2015) in their use of a SNN for a top-

down racing simulator use an evolutionary algorithm to optimize the Izhikevich

(IZ) neuron model parameters. Interestingly this is the only one of the reviewed

papers to include a comparison to a traditional ANN method also utilising a ge-

netic algorithm for training. They first trained both the SNN and ANN on a

simple racetrack with gentle and uncomplicated curves. The average fitness of the

ANN was always better than the agents using SNNs. The trained networks were

then exposed to two more complex tracks where the SNNs faired much better than

the ANN counterparts. This demonstrates the greater general ability of SNNs

interacting with unforeseen environments where as the ANNs were simply opti-

mising the environment that they are exposed to. Further exploration of this idea

is important in the search for general AI as, like biological systems, being able to

quickly adapt to new environments from past experiences is an important ability.

However the nature of the fitness function is limiting in this particular experiment

due to it being calculated off a predefined optimal racing line, instead of the agents

being exposed to more complex learning through more need for exploration.

Eskandari et al. (2016), similarly to Markowska-Kaczmar and Koldowski (2015)

evolve the IZ neuron parameters in their experiment of simple creatures exploring

a 2-dimensional environment searching for food. They test both the evolution of a

large colony of different more complex neuron structured creatures with colonies of

multiple identical simpler creatures. They found that utilising the multiple colony

approach leads to a more expansive exploration leading to better outcomes quicker.

Even though the complexity of the SNNs were greater in the individual creature

trials, that complexity did not assist in its ability to perform better. However, both

sets of experiments were trained for the same number of trials. They did not test

whether the individual agents could surpass the abilities of the simpler creatures

if given more time to explore the environment and its neuron parameters.

Evolutionary algorithms work well at optimising the performance of SNNs.

They demonstrate the generalisability of SNNs as well showing that more complex

network structures do not give rise to better performing agents necessarily.

32

CHAPTER 3. LITERATURE REVIEW

3.6 Coding Strategies

In order to address RQ3, research was conducted into coding strategies, both

decoding and encoding, adopted by SNNs used in literature. Biologically, Vreeken

(2003) suggests rate coding methods are incompatible with our understanding of

neurons due to the speed that they process information. It is suggested that

for a human to recognise a face for example, ten synaptic steps are made from

the retina to the temporal lobe with each step taking around 10ms. Vreeken

(2003) therefore suggests that ”such a time-window is much too little to allow

an averaging mechanism like rate-coding”. Qiu et al. (2018) suggests overcoming

this hurdle by introducing an underlying current throughout the entire network

in order to produce more spiking activity therefore any external stimulus will

change the spike rate in the output layer even in short exposure periods. Eskandari

et al. (2016) overcomes the limitations of rate decoding by having very long state

exposure periods with their creature only selecting actions every 600 network steps.

Additionally, Bing et al. (2018) proposes and demonstrates that the spiking rates

of output neurons can be used in continuous action spaces where they changed

the turn speed of a motor based on the rate of firing. Rate coding seems to be a

viable strategy for decoding information from a SNN in artificial systems albeit by

implementing strategies to overcome the limitations proposed with short exposure

periods.

Comparatively, VanRullen et al. (2005) indicates that there is evidence in cer-

tain locations in the brain that temporal coding methods such as first-to-fire (F2F)

are used by animals. This suggests that in some instances, the precise spike timings

may be important in deciding actions. They also discuss issues with this method

when a continuous sensory input is being fed into the network that the networks

that use F2F may need to be reset or deactivated in between action selections to

prevent the incorrect firing of other neurons. If this is the case then there needs to

be some internal signal that is connect to an entire neural system to trigger this

resetting or deactivating behaviour (VanRullen et al. 2005).

33

CHAPTER 3. LITERATURE REVIEW

3.7 Discussion and Open Questions

This section will touch on some of the recurring questions posed throughout the

reviewed papers. This includes encoding and decoding of temporal spike train

information, the effect of noise on the system, the possible use of stochastically

firing neurons, threshold adaptation and the complexity of both the domains and

the models used.

3.7.1 Encoding

It is necessary to encode an analogue signal and convert them into a form that is

compatible with a SNNs spike train input. States of a virtual environment often

involve the use of large numbers of scalar values representing things such as pixel

colour and intensity or distance and direction to an object in the world. These

must be converted to some temporal mapping of that scalar in the form of a spike

train. Often this is done by assuming the value is some mean firing rate and using

that to generate a Poisson distributed spike train (Wang et al. 2016)(Gamez et al.

2013) often called rate coding. However, having some randomness involved with

the encoding of the input will result in noise being injected into the system. More

research is needed into the most effective and worthwhile methods of encoding

input in SNNs.

34

CHAPTER 3. LITERATURE REVIEW

3.7.2 Decoding

A SNNs output layer must be decoded from the temporal mapping of its spikes

into some action selection. This can be done in an opposite way to rate coding

whereby the mean firing rate can be extracted from a certain time window with

the most frequently spiking output neuron, which is mapped to some action, will

be selected (Gamez et al. 2013). This method would introduce a kind of reaction

time in the system depending on the time window used to find the average firing

rate. There are occasions where these mean firing rates will be identical depending

on the time window used for extracting the mean firing rate, or the existence of

noise in the system.

3.7.3 Noise

Although the effect of noise in a SNN is an open question, several of the reviewed

papers identify that the noise forces exploration in the environment. Exploration

is an important aspect of optimising agent control in a virtual environment and is

one of the cornerstones of reinforcement learning Sutton and Barto (2018). Addi-

tionally, this noise can help to decrease the likelihood of identical output decoded

firing rates when making a decision on the action to take. Olmsted (2011) and

Daucé (2009) deem noise to be a crucial aspect of their networks so much so that

it is separately injected through the use of randomly spiking neurons integrated

into the system.

3.7.4 Stochastically Firing Neurons

The three definitions for SNN models, namely the LIF, IZ and the H-H models,

will deterministically fire the neurons every time their neuron potential exceeds

their threshold. This means that when the network is exposed to the same inputs

over multiple occurrences, it should fire in the same way every time. There is

evidence that the human brain does not work entirely in this way. It appears that

when analysing individual neurons when exposed to the same stimulus on multiple

35

CHAPTER 3. LITERATURE REVIEW

occurrences, there is noise that appears in the resultant spike trains (Buesing et al.

2011) (Domingos 2018). This would imply that biological neural systems are not

deterministic and instead stochastic. There are suggestions that these stochastic

properties emerge from complex biological phenomena, difficult to model in com-

putationally efficient ways (Tuma et al. 2016). Simplified methods of modelling

this noise can be done by making the threshold not a trigger but some probabilis-

tic region, whereby the closer the neuron potential is to the threshold the higher

the probability of spiking. Daucé (2009) highlights the importance of stochasti-

cally firing neurons for exploration and identifies that noise can contribute to the

stochastic nature of firing. So instead of utilising a probabilistic region for neuron

threshold, injecting noise is enough to produce randomly firing neurons. It is worth

investigating whether probabilistic neuron thresholds could replace the supposed

need for noise injection for agent control in virtual environments.

3.7.5 Threshold Adaptation

Vitanza et al. (2015) is the only paper reviewed that both trains the synaptic

weights as well as the threshold values. They demonstrated that utilising reward

based threshold adaptation with STDP for weight training showed much better

results than exclusively using STDP. Applying threshold adaptation along with

other forms of synaptic weight training such as evolutionary or R-STDP algorithms

would be a first for agent control in virtual environments and is an important area

of future research.

3.7.6 Model Complexity

Many of these papers conduct their experiments in neuromorphic simulations as

opposed to directly implementing them on neuromorphic hardware. Wunderlich

et al. (2019) conducted the only experiment in which their algorithms were tested

on neuromorphic hardware. They observed that their training algorithm performed

almost 100 times faster on neuromorphic hardware as it did in neuromorphic sim-

36

CHAPTER 3. LITERATURE REVIEW

ulation. This demonstration of large efficiency gains when compared to the neu-

romorphic simulation shows the greater need to test algorithms of these forms

directly on neuromorphic hardware and compare their efficiencies to similar ANN

training algorithms. Additionally, the majority of the papers utilised small SNNs

with less than 100 neurons. Comparing that to state of the art ANNs for virtual

agent control whereby they often utilise hundreds of thousands of neurons (Silver

et al. 2018), it is crucial that networks of this size with several hidden layers of neu-

rons be tested to see if the training methods outlined continue to function in deep

SNNs. The wider use of neuromorphic computing will assist in testing networks

of these comparable sizes.

3.7.7 Domain Complexity

Largely, the tasks attempted by the reviewed papers are simple virtual environ-

ments with minimal objectives. Several attempted to replicate basic animal be-

haviour such as foraging for food (Kamali Sarvestani et al. 2013) (Olmsted 2011)

or navigation and collision avoidance in relatively uncomplicated environments

(Müller et al. 2018). Video games that were utilised were simplified versions, fully

observable and deterministic environments (Wang et al. 2016) (Wunderlich et al.

2019). There are no examples of environments of a stochastic nature and those that

are partially observable contain simplified input such as with (Gamez et al. 2013).

Demonstrations on more complex environments are important for the testing of

the promising algorithms demonstrated in the papers reviewed. In order for the

uptake of neuromorphic computing for complex virtual spatio-temporal problem

sets to be widely investigated by the research community, the demonstration of

these SNN optimisation strategies need to be applied to problems of greater com-

plexity. Future work is needed to implement efficient algorithms for the training

of an agent to play a variety of the Atari 2600 suite of games (Mnih et al. 2013)

and to be able to match performance of current state of the art ANN methods.

Exploring a SNNs ability to generalise gameplay across a number of these games

is also an important future step.

37

CHAPTER 3. LITERATURE REVIEW

3.8 Summary

This chapter outlined and reviewed the current state of the literature in the field of

SNNs. It looked at both their general use in the wider machine learning domain,

as well as their specific use in the RL domains. Various open questions were identi-

fied, most of which will lie outside the scope of this research however, were notable

for possible future work. Questions over encoding and decoding methods as well as

the effect that the length of exposure (otherwise referred to as the state exposure

period) has on network performance are questions that fall within the scope of this

research. This further strengthens the framework for what should be tested when

experimenting with the SNNs. In order to answer those open questions, a compar-

itive analysis of the different identified methods are needed. It is often the case in

the literature that the author will select a type of encoding or decoding method

and a certain state exposure period without much justification. This furthers the

significance of this research as comparatively analysing the performance of these

different methods will allow for a more informed selection of the components of the

network architecture before applying it to their specific problems. Additionally,

depending on the types of encoding methods used, the open question on noise in

the network will be relevant. Through testing, identifying which encoding methods

produce the most noise as well as the effect that the noise has on performance will

help with answering that open question. The following two chapters will attempt

to address some of these open questions through experimentation as they relate to

the research questions identified in Chapter 1.

38

Chapter 4

Methodology

This chapter contains a description and explanation of the methodologies, tech-

niques and code-base used for the Experimentation chapters to follow. It includes

a detailed description of the virtual environment problems used, the methods of

encoding and decoding, a definition and description of the state exposure period

and the code base used for experimentation. More specific explanations supporting

individual experiments will be covered in the appropriate sections in Chapters 5

and 6.

4.1 Problem Descriptions

This section outlines the two virtual environments used during testing. The first

subsection is a description of the Cart Pole problem and the second subsection

describes the Lunar Lander environment supplied by the python OpenAI Gym

(Brockman et al. 2016) framework.

4.1.1 Cart Pole

The goal of the cart pole problem, also known as the inverted pendulum problem,

is to balance an upright pole on a cart that can either move left or right at each

step in the episode. The episode is terminated if the angle of the pole is greater

39

CHAPTER 4. METHODOLOGY

than 12 degrees from the Y axis, the cart reaches further than 2.4 units from the

origin point or the episode length is greater than 200 steps. A reward of 1 is

received by the agent for each step of the episode including the terminating step.

The problem is considered solved if an agent receives a total episode reward of

greater than or equal to 195 over 100 consecutive episodes. However, the first

experiment conducted had an episode length of 1000 and an average reward of 900

or more over 100 consecutive episodes as the goal. This was changed for future

experiments to bring it in line with benchmark comparisons in the literature as well

as decreasing the time taken to run each experiment. The Cart Pole environment

produces a state space of four float values representing the cart position from

center point, the cart velocity, the pole angle and the current velocity of the tip

of the pole. Negative state space values represent the current state in terms of

movement to the left and positive to the right. With an Izhikevich neuron model,

negative inputs mean that the input neuron will rarely, if ever spike and will

therefore not pass this information onto future layers. It is therefore required to

eliminate negative values from the state space. This removal of negative input

was handled differently in different experiments and will be addressed in those

applicable sections. A screenshot of the virtual environment is provided in Figure

4.1 and the original state space is described in Table 4.1.

Input Num Description Min Max

0 Cart Position -2.4 2.4

1 Cart Velocity -Inf Inf

2 Pole Angle -0.209 rad (-12 deg) 0.209 rad (12 deg)

3 Pole Velocity at Tip -Inf Inf

Table 4.1: The original state space that the environment produces

The restrictions on the cart position and pole angle are due to the failure of

the trial if they are to exceed those values, i.e., either the cart hits the edge of the

screen or the pole has fallen over.

40

CHAPTER 4. METHODOLOGY

Figure 4.1: A screen shot of the Cart Pole experiment.

4.1.2 Lunar Lander

The Lunar Lander problem requires the landing of a lunar module in a 2D envi-

ronment within a landing zone. The landing zone is always in the same position

however the surrounding landscape is procedurally generated in each episode. It

includes four actions being the left, right and main thrusters as well as an action

for doing nothing. The episode terminates if the lander crashes or comes to rest.

A reward of 200 or greater over 100 consecutive episodes is required for the trial

to be a success. Around 100 to 140 reward comes from moving from the top of

the screen to the bottom and also for having zero speed. An additional 10 reward

points come from each leg making contact with the ground. If the lander body

touches the ground, it is considered crashed and gets -100 reward and if both legs

are in contact and the body is at rest, an additional 100 points are awarded. Sim-

ilarly with the Cart Pole problem, input values that could be negative or positive

need to be transformed into a different set of inputs to remove negative values

when using this problem with the Izhikevich neuron model. The transformation

methods used during experimentation are detailed in the next section. A screen-

shot of the lunar lander environment is provided in Figure 4.2 and the original

state space of the lunar lander problem is outlined in Table 4.2.

41

CHAPTER 4. METHODOLOGY

Figure 4.2: A screen shot of the Lunar Lander environment.

Input Description Min Max

0 Module X Position −∞ ∞

1 Module Y Position −∞ ∞

2 X Velocity −∞ ∞

3 Y Velocity −∞ ∞

4 Module Rotational Angle -π π

5 Module Angular Velocity -∞ ∞

6 Left leg contact with ground 0 1

7 Right leg contact with ground 0 1

Table 4.2: The transformed state space for Lunar Lander to remove negative inputs.

4.2 Input Encoding

As briefly described in the previous section, state spaces that include negative val-

ues must be transformed such that all inputs into the SNN using Izhikevich model

neurons are positive. Two methods of transformation are discussed and used in the

experimentation including binary encoding and double encoding. This section will

outline these methods and demonstrate the transformation of the state spaces on

the two problems utilised in this research. The equation detailed in Equation 2.1

42

CHAPTER 4. METHODOLOGY

does allow for spikes to occur with negative input however it requires much more

negative stimulation than it does positive. Additionally, this was posited to be an

unintended consequence of the Izhikevich formula as it does not appear to occur in

biological neurons. Therefore, some form of transformation of these inputs needed

to take place. The initial thought was to take the absolute value of the inputs in

order to transform all to positive values however the sign of all inputs is important

information in determining which direction you would want to move either the cart

or the lunar module in. So absolute values would remove that information from

the network. In order to preserve the sign whilst keeping all inputs positive, two

methods of input transformation have been applied and tested.

4.2.1 Binary Encoding

The idea behind binary encoding, a method that did not appear in the literature,

was to double each input for both tasks with the first input of each pair becoming

the magnitude of the original input value, and the second becoming a binary signal

where 0 is used for a negative value or occurences to the left of the environment

and a 1 representing an input value that is positive or to the right of the virtual

environment. An example of transforming the cart pole state space is outlined in

Table 4.3.

Input Description Min Max

0 Cart position 0 2.4

1 Cart right of center 0 1

2 Cart velocity 0 ∞

3 Cart moving right 0 1

4 Pole angle 0 0.209

5 Pole leaning right 0 1

6 Pole velocity at tip 0 ∞

7 Pole velocity to the right 0 1

Table 4.3: The transformed state space in order for the inputs to work with the SNNs

43

CHAPTER 4. METHODOLOGY

This binary encoding method was used for the intial experimentation in the

cart pole environments however from more detailed analysis of the literature, a

method of double encoding was utilised for the majority of experiments.

4.2.2 Double Encoding

Double encoding (Wiklendt et al. 2009)(Markowska-Kaczmar and Koldowski 2015)

similarly splits a single input value where there is a possibility of a negative value

and replaces it with two input values. The first input represents the positive mag-

nitude of the input value, like in binary encoding, and the second input represents

the negative magnitude of the original input value. If, for example, a value of 1.3

was parsed to the network as one of the state space input values, the first input of

the pair would be 1.3 and the second input of the pair would be 0. If the value was

instead -1.3, the first input would be 0 and the second would be 1.3. A demon-

stration of the input transformation of the lunar lander environment is detailed in

Table 4.4.

44

CHAPTER 4. METHODOLOGY

Input Description Min Max

0 Positive X position magnitude 0 ∞

1 Negative X position magnitude 0 ∞

2 Positive Y position magnitude 0 ∞

3 Negative Y position magnitude 0 ∞

4 Positive X velocity 0 ∞

5 Negative X velocity 0 ∞

6 Positive Y velocity 0 ∞

7 Negative Y velocity 0 ∞

8 Positive module rotational angle 0 π

9 Negative module rotation angle 0 π

10 Positive module rotational velocity 0 ∞

11 Negative module rotational velocity 0 ∞

12 Left leg contact with ground 0 1

13 Right leg contact with ground 0 1

Table 4.4: The transformed state space for Lunar Lander to remove negative inputs.

45

CHAPTER 4. METHODOLOGY

4.3 State Exposure Period

As SNNs are required to produce spike trains for action selection, it is necessary

to expose networks to a particular state for a certain period of time. Often this is

described in millisecond exposures however for the purposes of this research, the

state exposure period will simply reflect the number of network execution cycles

that the network undergoes over the course of a single step in an episode. A single

network execution cycle occurs as follows.

1. The episode state is exposed to the input neurons.

2. The input neurons calculate their new potentials based on the injection from

the episode state.

3. The outputs (either 0 if no spike occured or 1 if a spike did occur) from the

current layer are calculated and their injection into the next layer connected

neurons is multiplied by the connection weights.

4. The injection is then received by the next layer neurons causing the calcula-

tion of the next layer neuron membrane potentials.

5. Repeat steps 3 and 4 until reaching the output layer.

6. The output layer membrane potentials are calculated and any resulting spikes

are recorded.

This network execution cycle is repeated n times, where n is the state exposure

period. When the number of execution cycles that are requested are run, or a

condition of one of the decoding methods is met, the spike trains of the output

neurons will then be used to determine which action the agent should take.

4.4 Output Decoding

As described in Section 2.5, decoding methods for SNNs can be broken into two

categories, namely temporal and rate coding. This section will discuss in more

46

CHAPTER 4. METHODOLOGY

detail the specific decoding methods used during experimentation. In all decoding

methods used, each action that the agent can take in the environment is associated

with a single Izhikevich neuron in the output layer of the network. During each

of the episode steps and the time period of exposure, the output neurons’ action

potentials are recorded and analysed to determine the action to take. The first

to fire (F2F) and rate decoding methods will be explained in more detail in the

following as well as the outlining of both of their reset variant decoding methods.

In the following experimentation chapters, the decoding method used in each of

the experiments will be explicitly stated in both the graphs used in the results as

well as during the experiment explanations.

4.4.1 First To Fire (F2F)

The first to fire (F2F) decoding method is a temporal coding method whereby

the specific spike timing of an output neuron determines the action to be taken

during that episode step (Li and Tsien 2017). During the exposure period of a

single step in the environments episode, the first output neuron to undergo an

action potential will cause the network to select the action that is associated with

that output neuron. As soon as this action has been determined, the agent will

provide the RL environment with the action to take. This agent will then receive a

reward dictated by the rules of the problem and a new episode step will begin. The

exposure period of the episode step to the network will determine the maximum

length of time that the network will wait for an output spike. If no spike occurs in

this timeframe, then a random action will be selected and the episode will progress

to the next step. If an output spike does occur within the timeframe, then the

episode step will be progressed before the entire exposure period has elapsed. If

two or more output neurons spike on the same network time-step, then a random

action will be selected out of the output neurons that spiked.

47

CHAPTER 4. METHODOLOGY

4.4.2 Rate

The rate decoding method assumes that the carriage of information in the SNN

is dependent on the frequency of spikes occurring over the state exposure period.

Similarly to F2F, rate decoding has a single output neuron associated with each

of the possible actions that an agent can take within the environment. When

the full state exposure period has elapsed, the output neuron that has spiked the

most frequently over that period will be the action that is taken by the agent. If

no output neuron was to fire over that period, then a random action would be

selected and the episode would progress to the next step. If two or more output

neurons were to spike with the same frequency over the state exposure period, then

a random action will be selected from the set of output neurons that spiked the

most frequently.

4.4.3 F2F Reset and Rate Reset

The reset variants of both F2F and rate decoding methods will clear the neurons

within the SNN of the residual charge remaining from the previous steps in the

episode whenever an action is determined. For example, using the normal F2F

decoding method, after one output neuron fires, the action is selected and the

episode progresses to the next step. The charge in the neurons from the previous

exposures will remain. With the F2F reset decoding method, the residual charge

will be cleared and the network is reset to its original conditions awaiting input

from the next episodes steps state. The reset variants of F2F and rate decoding

work in the same way as one another in that after each step, the network is reset

to its default state.

48

CHAPTER 4. METHODOLOGY

4.5 Codebase

This section will outline the codebase used for the running of the experiments

including the use of the Open AI gym (Brockman et al. 2016) interface and

the developed SNN codebase accessible at https://github.com/andrewrafeUTS/

SNNTechnicalAppendix.

4.5.1 Open AI Gym

The Open AI gym (Brockman et al. 2016) is a framework provided by Open AI

for developing and comparing reinforcement learning algorithms. The framework

provides access to a large number of virtual environments with a consistent inter-

face across all problems. The two environments utilised and described in Section

4.1 are both accessible through the Python interface after importing the gym and

numpy (Harris et al. 2020) packages. These environments can be accessed using

the following python commands:

gym.make(‘CartPole-v1’)

gym.make(‘LunarLander-v2’)

4.5.2 Spiking Neural Network

Due to the unavailability of well documented SNN code and to improve ease of

interfacing with the gym (Brockman et al. 2016) package, the code to control the

SNNs was developed for this research. The code was based off of the Izhikevich

(Izhikevich 2003) neuron model (described in Section 2.4.2.) and was inspired by

the formation of networks by adding layers of neurons to a network object and

then connecting those layers together with specified connection weights like in the

python package pandas (pandas development team 2020). SNNs are constructed

by sequentially adding layers of a specified neuron type. These neurons types

can either be input encoder neurons, used for the input layer of the network, or

izhikevich nodes, neurons that abide by the equations outlined in Section 2.4.2.

49

CHAPTER 4. METHODOLOGY

These networks when executing, can have one of the four decoding methods for

determining action selection, namely f2f, f2f reset, rate or rate reset. More detailed

explanation of this code with provided examples is accessible through GitHub at

https://github.com/andrewrafeUTS/SNNTechnicalAppendix.

4.6 Summary

This chapter outlined standard methods and techniques used across all experiments

in the following two chapters. It introduced the two virtual environments explored

provided by the Open AI gym (Brockman et al. 2016) interface by describing the

standard state spaces and reward structures. Secondly, it provided an explana-

tion and examples of the two state space transformation methods used, namely

the binary encoding and double encoding methods. Thirdly, the state exposure

period methodology was defined, a method utilised in all experiments conducted

in the following chapters. Fourthly, the four standard decoding methods tested

were explained in detail with specific examples given. Finally, a description and

link to the codebase was provided.

The following two chapters will provide the results of the experimentation of evolu-

tionary and natural learning algorithms applied to SNNs of varying network struc-

tures, state exposure periods, encoding methods and decoding methods as they

relate to answering the proposed research questions. The specific algorithms will

be described in more detail in those sections as they vary greatly across different

experiments.

50

Chapter 5

Evolutionary Experiments

This chapter contains a detailed description of the Evolutionary experiments con-

ducted with SNNs. It covers the initial experimentation where a SNN is compared

to an ANN using the same evolutionary algorithm. The second experiment ex-

plores the effect that changing the encoding method has on the performance of the

SNN. The third experiment conducts similar trials to those covered in the first two

experiments in more depth to be able to effectively answer RQ1 and RQ2. The

final evolutionary experiment trials different types of encoding methods found in

the literature to further provide evidence for RQ2.

5.1 Experiment 1 - Initial Experimentation

The first of the Cart Pole experiments was in response to RQ1 and RQ2. Firstly, it

was to investigate whether there is a SNN with no hidden layers that exists that can

solve the Cart Pole RL environment. Secondly, it included initial experimentation

of a direct encoding method where the input values were passed into the first layer

Izhikevich neurons with a simple scaling applied. Thirdly, the temporal first-to-

fire (F2F) decoding method was used for action selection. Finally, although not

explicitly stated in the research questions, a simple comparison of a single layer

ANN was used to compare the performance of SNNs against a widely used network

architecture.

51

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

5.1.1 Description of Networks

In order to abide by the methodology constraints, the ANN and SNN network

structures must be of the same size with the same number of connections. The

networks consisted of 8 neurons in the input layer and is fully connected to the final

output layer of 2 neurons. These networks therefore have no hidden layers and a

total of 16 weighted connections. The inputs are consistent with those identified

in Table 4.3 however these inputs are transformed for input into the SNN with

a simple multiplication of 10 times. This is to ensure that spiking occurs in the

input layer and is not lost by the leaking of the neurons.

5.1.2 Description of Genetic Algorithm

The populations for each of the tests were 100. These 100 networks all start

off with random weights between -1 and 1 or -10 and 10 for the greater weight

experiments. After each generation, the top 20 of the population are selected for

crossover where two parents are selected with each individual weight of the next

generation agent created by randomly selecting between the two parent agents. For

all of the weights of this new agent, there is a 10% chance that the weight will be

increased by a small random amount (between 0 and 0.1 or 0 and 1 for the greater

weights experiment), a 10% chance of a decrease in weight by the same amount

and finally a 1% chance of a flip to the sign of the weight. Every new agent over

every generation undergoes the same transformation. As this was conducted as an

initial exploratory experiment, only 1 trial for each of the provided network types

was conducted. Although this seems limiting to draw any useful conclusions, it

was helpful in determining the direction of future experiments and this algorithm

was used in future experiments to create more meaningful conclusions.

5.1.3 SNN Decoding Method

As described in Chapter 2, the F2F method will choose the action based on the

first neuron to fire in the output layer after the start of the exposure of a new state.

52

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

In order to prevent long execution times, a maximum exposure period was set with

that parameter becoming one of the measured characteristics of the network.

5.1.4 Results

The first decoding method to be tested extensively was the F2F method. It was

found that the larger the time window to capture the spike, the greater the agent’s

ability to perform better over time. As can be seen from Figure 5.1, the SNN

with an exposure period of 50 and 100 time-steps per state achieved better than

the time periods of 5, 10 and 20. However, they were still unable to achieve the

900-fitness goal that the ANN was able to achieve in 43 generations.

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40 45

Fi
tn
es
s

Generation

SNN-F2F-5 SNN-F2F-10 SNN-F2F-20 SNN-F2F-50 SNN-F2F-100 ANN

Figure 5.1: The best fitness achieved each generation. The random mutations on the SNNs

weights are identical to the mutations of the ANNs.

It was identified that the weights of the SNN were too low to encourage frequent

firing of the output layer and therefore in smaller time windows, even in the case

of 50 exposures, the output layer was not regularly firing. So, for the second

experiment, the same parameters for the SNNs were tested however this time, the

magnitude of the random mutations and the initial weights were 10 times that

53

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

of the original experiment. Figure 5.2 shows how this increase to the weights

drastically improved the performance of the 20, 50 and 100 time-step exposure

SNNs with the 50 and 100 exposure networks being able to reach the goal within

the 50-generation limit at generation 39 and 22 respectively.

Increasing the mutation chances and the original weights in the ANN by 10

times didn’t seem to have an effect on the ANN network. This is thought to be

because the magnitude of the signal isn’t as important in the ANN as the inputs

are passed onto further layers every iteration anyway. There is no threshold at

which it passes on this information as is the case with the SNNs.

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40 45

Fi
tn
es
s

Generation

SNN-F2F-5 SNN-F2F-10 SNN-F2F-20 SNN-F2F-50 SNN-F2F-100 ANN

Figure 5.2: The best fitness achieved each generation. The random mutations on the SNNs

weights were 10 times more than those for the ANN signified by the GW label. The exposure

times of 5, 10, 20, 50 and 100 were tested with a first-to-fire (F2F) decoding method for the

SNNs.

Although this initial experiment is relatively simplistic, some key areas of focus

for future experimentation were identified. Firstly, the need to have large weights

compared to those of ANNs was identified. Although larger weights are more ef-

fective for first-to-fire decoding methods, will it be that other decoding methods

also require the larger weights. It makes sense to have larger weights in order to

54

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

encourage spiking behaviour in the network, however, when attempting to max-

imise efficiency, which this research will not cover, the goal would be to minimise

spiking frequency therefore minimising computation. Both negative weights and

magnitude of network weights have been identified as key areas for further research.

Secondly, it appears that the shorter exposure periods do not produce adequate

spiking activity in the input layer and therefore does not translate to much, if any,

spiking activity in the output layer leading to the inability to make an informed

decision. There is more research needed into getting lower-level exposure periods

to work more effectively.

An Izhikevich SNN using an evolutionary algorithm for training was able to

match the performance of an ANN using a similar evolutionary process on the Cart

Pole RL benchmark. This shows promise for SNNs where the performance seems

able to match and exceed ANNs when using F2F decoding methods with exposure

times of 50 or 100 iterations. It also sets a strong foundation for the ability of

SNNs going forward with evidence being collected for both RQ1 and RQ2 when

more vigorous experimentation is conducted on training and decoding methods.

5.2 Experiment 2 - Transformed Input Space

To align with the standard benchmarking rules for the cart pole problems, future

experiments including this one will be capped to episode lengths of 200 steps with

a successful network being able to achieve an average fitness of 195 or more over

100 consecutive episodes.

5.2.1 Input Transformation

The agent is traditionally fed with four input variables however these have been

transformed into eight inputs to remove negative values as is the requirement

with the used encoding method and with Izhikivech neurons. The final inputs are

outlined in Table 5.1. This differs from the previous experiment in that instead

of using binary encoding to identify the sign, a method called double encoding

55

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

Input Description Min Max Scale Factor

0 Cart Position Right of Center 0 2.4 0.208

1 Cart Position Left of Center 0 2.4 0.208

2 Cart Speed Right 0 ∞ 0.250

3 Cart Speed Left 0 ∞ 0.250

4 Pole Angle to the Right 0 0.209 2.40

5 Pole Angle to the Left 0 0.209 2.40

6 Pole Tip Speed Right 0 ∞ 0.250

7 Pole Tip Speed Left 0 ∞ 0.250

Table 5.1: The Transformed State Space to Remove Negative Input Values.

(Wiklendt et al. 2009)(Markowska-Kaczmar and Koldowski 2015) was used where

a single input value that has the possibility of including negative values is split

into two neurons where one represents the positive magnitude, and the other the

negative magnitude. This was conducted as a pre-processing step when a new

state was supplied to the agent. Additionally, an observation from the previous

experiment was that some neurons in the input layer were spiking much more

frequently than others due to them having averagely larger magnitudes. Therefore,

for each input, a scale factor (which was selected empirically) was selected to

normalise the range of input data and prevent individual neurons from dominating

the spiking activity in the network. These scale factors and adjusted state space

are identified in Table 5.1.

5.2.2 Method

The population of networks (N=50) were exposed to the problem for five consec-

utive episodes with a maximum episode length of 200 steps with no change to

56

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

connection weights. The average total reward of these five episodes is used as the

achieved fitness of the agent. The top 20% of agents (N=10) are identified using

these fitness scores and they are prevented from experiencing weight changes in

the next generation. The other 80% of agents (N=40) obtain their new weights

through a random crossover of two of the agents from the top 20%. These weights

are then randomly mutated according to a set of predefined rules. These rules are

10% chance of increasing the weight value by a random amount between 0 and 1,

10% chance of decreasing the weight value by a random amount between 0 and 1,

and a 1% chance of flipping the sign of the weight. The top agent is then subjected

to 100 consecutive episodes with no weight changes to evaluate its average fitness.

If that average fitness is above 195 out of episodes with a max length of 200, then

the algorithm terminates and has been successful. Otherwise, the generations will

continue as described until 150 generations have been conducted and the algorithm

terminates as a failure.

5.2.3 Results

The results shown in Figure 5.3 display the average fitness for the best agent in each

generation over 10 separate evolutionary processes for each of the time exposure

periods tested.

Those networks that used time exposures of 100, 50 and 25 were able to solve

the problem successfully. The more exposures of a state that the networks were

given, the fewer generations were needed to solve the problem. For the networks

given 10 state exposures, they showed a similar increase in fitness initially but

were not able to reach the solved fitness level. The network with 1 state exposure

per step was unable to improve and resulted in comparable fitness to agents that

select random actions. This was due to very little spiking activity occurring in the

output layer resulting in the taking of random actions on a majority of steps in an

episode.

Although the encoding method was suitable in creating well performing agents

in this approach, the somewhat arbitrary conversion of the input values to spiking

57

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Fi
tn
es
s

Generation

SNN-F2F-1 SNN-F2F-10 SNN-F2F-25 SNN-F2F-50 SNN-F2F-100

Figure 5.3: Average fitness over 10 separate executions of the algorithm for the best agent in

each generation for each of the time exposures tested.

probabilities may not be suitable for other problems and therefore, more general

encoding approaches for problems with differently scaled state space values should

be developed and tested.

5.3 Experiment 3 - Comparitive Analysis

As outlined in the previous experiment, the arbitrary encoding of input variables

into the input layer of the network poses a problem for generalising the evolutionary

processes. In this section, a novel input encoder is proposed, and a detailed analysis

of different decoding methods and exposure periods is conducted. It is worth noting

that, for the Cart Pole inputs, the Scale Factors outlined in Table 5.1 is not used

but the removing of negative inputs in the pre-processing step is still done. In the

conduct of this experiment, the Lunar Lander problem was also attempted.

58

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

5.3.1 Input Encoder

One of the major differences with SNNs compared to ANNs is how information

is parsed into and extracted from the network, otherwise known as encoding and

decoding respectively. For encoding, the state information from the reinforcement

learning problem must be converted into a spike train to be fed into the network.

The original Cart Pole and Lunar Lander state spaces are made up of positive

and negative input values often denoting direction where negative is positional or

velocity in the left direction and positive in the right direction. Therefore, for each

of the inputs where a negative value is possible, these have been split into two

input values where one represents the left direction and the other the right also

known as double encoding. If the original input value was negative, then the left

direction input would be the positive magnitude of the original value and the right

direction input would be zero. If the input was positive, then the left direction

input would be zero and the right direction input would be the same value as the

original input value.

Input Encoder SNN

Figure 5.4: An example of the input encoders connection to the SNN. In this example, the SNN

has no hidden layer as the Input Encoder layer are not made up of IZ neurons and simply act as

a pre-processing step for state space information.

59

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

A similar issue with the inputs of both problems when compared to pixel input

information is the non-normalized nature of them. Where pixel information is

often represented with inputs between 0.0 and 1.0, these could be scaled equally

among all inputs to encourage spiking behaviour in the input layer. However, both

of the problems have differently scaled inputs, some of which often become greater

than 1 and some that never cross a threshold of 0.1. Therefore, scaling them in a

uniform way leads to unequal importance being placed on particular input values.

Therefore, an additional input encoder layer was added to the network which acts

as a simple multiplier of the inputs by some learned weight and injected into the

first SNN layer of the network demonstrated in Figure 5.4. This mapping of input

encoder to SNN first layer nodes is one to one, as in each initial layer SNN node

has one input encoder node which is directly attached to it with some weight value.

This is the scale that the input is changed by before being injected into the SNN.

This is not being counted as a layer in the network as it is simply a pre-processing

step of the input before being fed into the network however the weights of the input

encoder are learned through the same evolutionary process used by the SNNs.

5.3.2 Method

For each of the experiments conducted, a population of 50 initially random agents

were produced with weight values ranging from -20.0 to 80.0 for Izhikevich neurons

and input encoder layer weights ranging from 0.0 to 150.0. Each trial had a

maximum of 50 generations or would be concluded when the problem solution

requirements were met. Each agent conducted 5 separate episodes and the average

of all episode rewards was the fitness of that agent for that particular generation.

If any of the networks achieved the goal over the 5-episode average, that network

was run through 100 consecutive episodes to determine if the overall goal was

achieved as set out by the problems. If it was, then the experiment was concluded

otherwise the evolutionary process would continue. After all agents conducted

their individual trials, the top 10 agents were prevented from undergoing any

evolutionary changes. For the remaining 40 agents, their weights were replaced by

60

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

the random crossover of two of the top 10 agents. Each weight was replaced by

either the first parent (P = 0.5) or second parent (P = 0.5) weight value. They

then underwent a random mutation phase where each weight in the network was

transformed according to Equations 5.1, 5.2 and 5.3.

X ∼ U(0.0, 1.0) (5.1)

w′ =

w + 10α if 0.00 ≤ X < 0.01

w − 10α if 0.01 ≤ X < 0.02

w + α if 0.02 ≤ X < 0.12

w − α if 0.12 ≤ X < 0.22

(5.2)

α′ = αλ (5.3)

X refers to some mutation chance value selected from a uniform distribution,

w′ is the new transformed weight and w is the weight after crossover, α is the

learning rate, which is 10.0 at the beginning of training, α′ is the new learning

rate after decay λ which is constant at 0.99. X is calculated separately for each

weight. These values were selected empirically as a result of conducting a range

of hyperparameter experiments. These experiments also demonstrate a benefit in

using a decaying learning rate. For each network, each weight is updated according

to Equation 5.2 once per generation. The learning rate update from Equation 5.3

occurs once per generation.

For both Cart Pole and Lunar Lander, a random benchmark trial was run as

the control. This random benchmark involved running agents in batches identical

to those used in the evolutionary trials whereby over 50 generations, 50 batches

of 5 episodes were run with an agent that selects a random action at each episode

step. Over the single generation, the best average fitness of a 5-episode run was

recorded as the fitness of that generation. Also, for both problems, exposure

periods of 20, 40, 60, 80 and 100 were used. Networks with and without hidden

61

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

Highest Achieved Fitness / Solved Generation

Decoding Method Exposure Period No Hidden 16 Hidden 32 Hidden Random

F2F 20 196.80 / 14 196.82 / 37 196.55 / 45

47.0667 / -

40 197.10 / 13 195.27 / 26 196.41 / 61

60 197.00 / 6 196.00 / 21 197.31 / 36

80 196.28 / 7 195.36 / 23 197.07 / 30

100 197.87 / 6 195.47 / 24 197.25 / 31

F2F RESET 20 195.75 / 16 199.49 / 21 195.47 / 18

40 198.07 / 7 197.52 / 11 196.52 / 20

60 197.1 / 8 198.13 / 14 195.42 / 17

80 195.56 / 7 196.22 / 17 197.27 / 12

100 198.54 / 6 199.52 / 11 195.48 / 17

RATE 20 195.31 / 31 195.54 / 56 195.58 / 31

40 195.45 / 14 195.26 / 23 198.27 / 22

60 195.27 / 7 196.38 /23 196.85 / 26

80 196.16 / 9 195.08 / 19 196.43 / 19

100 197.55 / 6 195.00 / 12 195.22 / 18

RATE RESET 20 196.92 / 18 197.20 / 20 196.84 / 22

40 197.25 / 7 197.60 / 24 196.81 / 21

60 198.00 / 9 197.91 / 17 195.31 / 17

80 196.72 / 5 198.13 / 12 195.40 / 14

100 195.09 / 4 197.87 / 16 197.27 / 12

Table 5.2: Table of results for Cart Pole experiment showing the highest average fitness achieved

and the generation it achieved the goal by each decoding method, exposure period and network

structure with a goal fitness of greater than 195.0.

layers were tested. For those multi-layered networks, a single hidden layer of 16

and 32 neurons was used. All networks used the Input Encoder method and F2F,

F2F Reset, Rate and Rate Reset methods were used for decoding. Three separate

trials were conducted for each of the decoding methods and each of the exposure

periods and the average fitness of each generation were used for analysis.

5.3.3 Results

Over all four decoding methods, all exposure period intervals and over both the

single and multi-layered network combinations, the SNN was able to produce goal

62

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

Highest Achieved Fitness / Solved Generation

Decoding Method Exposure Period No Hidden 16 Hidden 32 Hidden Random

F2F 20 190.93 / - 33.59 / - -6.33 / -

-71.3948 / -

40 184.24 / - 27.09 / - -32.34 / -

60 192.98 / - 6.04 / - 44.16 / -

80 89.18 / - 35.51 / - 25.56 / -

100 136.17 / - 20.68 / - 27.15 / -

F2F RESET 20 148.79 / - 26.90 / - 8.49 / -

40 199.31 / - 157.42 / - 45.50 / -

60 194.85 / - 63.52 / - -2.01 / -

80 176.84 / - 129.51 / - 20.32 / -

100 188.74 / - 156.28 / - 29.39 / -

RATE 20 172.08 / - 13.42 / - 16.52 / -

40 192.04 / - -9.42 / - 1.87 / -

60 184.68 / - 10.44 / - 9.21 / -

80 59.78 / - 70.07 / - 67.91 / -

100 128.73 / - 44.90 / - 2.15 / -

RATE RESET 20 185.46 / - 77.04 / - 51.16 / -

40 57.47 / - 131.91 / - 68.64 / -

60 202.26 / 92 54.72 / - 64.59 / -

80 167.50 / - 52.84 / - 53.97 / -

100 133.73 / - 41.02 / - 61.37 / -

Table 5.3: Table of results for Lunar Lander experiment showing the highest average fitness

achieved and the generation it achieved the goal (if goal was achieved) by each decoding method,

exposure period and network structure with a goal fitness of greater than 200.0.

achieving agents in the Cart Pole problem as shown in Table 5.2. For single layer

networks, there is no significant difference in the generations needed to reach the

goal across all four decoding methods. The only slight difference appears to be in

a better capacity for F2F and F2F Reset methods to solve the problem in fewer

generations in lower exposure periods. When looking at an exposure period of 20,

F2F and F2F reset were able to solve the problem in 14 and 16 generations respec-

tively whereas Rate and Rate Reset decoding methods took 31 and 18 generations

respectively. This is largely due to Rate based decoding methods at lower exposure

periods tending not to produce multiple spikes per output neuron and therefore

63

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

0

5

10

15

20

25

30

35

20 40 60 80 100

G
en

er
a�

o
n

 t
o

 R
ea

ch
 G

o
al

Exposure Period

F2F F2F_RESET RATE RATE_RESET

Figure 5.5: The generation to reach the goal for single layer networks across all exposure periods

and decoding methods for the Cart Pole problem.

a calculation of the rate of firing of the neurons often results in the taking of a

random action due to the rates across both output neurons being the same. As

greater exposure periods are used, the output neurons are more likely to produce

more variance in the rate of spiking of the output neurons and that disadvantage

goes away.

When looking at the number of random moves taken by a goal achieving agent, as

demonstrated in Figure 5.8, it is clear that the longer the exposure period, the less

random actions that are taken. Random actions occurred if the decoding method

over the exposure period was not able to determine an action to take. The occur-

rence of random actions is far fewer when using temporal decoding methods like

F2F and F2F Reset in higher exposure periods. For lower exposure periods, occur-

rences of random action taking is fairly consistent between all decoding methods

with rate-based decoding selecting random actions only slightly more often than

temporal decoding.

As is demonstrated in Table 5.4, a clear negative correlation has emerged between

the exposure period and the number of generations needed to reach the goal in

64

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

0

10

20

30

40

50

60

20 40 60 80 100

G
en

er
a�

o
n

 t
o

 R
ea

ch
 G

o
al

Exposure Period

F2F F2F_RESET RATE RATE_RESET

Figure 5.6: The generation to reach the goal formultilayer networks with 16 hidden neurons

across all exposure periods and decoding methods for the Cart Pole problem.

the Cart Pole problem. This negative correlation is consistent across all decoding

methods and network structures used in this experiment. This trend appears to

level off at the higher exposure periods indicating that there may be an optimal

exposure period for this problem and introduces a trade-off between the execution

time of the network and the number of generations that will be needed to reach the

goal. The larger the exposure period, the more execution time is needed as more

network steps are required per episode step. This levelling off appears to occur at

around the 60-exposure period mark as evidenced in Figure 5.5, 5.6 and 5.7.

For the Lunar Lander problem, no multi-layer network was able to achieve the

goal with fitness rarely reaching above 100. The F2F Reset and Rate Reset decod-

ing methods were able to achieve the highest average fitness across all exposure

periods when compared to the other decoding methods as can be seen in Table

5.3. The single layer networks came close to achieving the goal state in almost

all of the decoding methods and exposure periods utilised and was able to aver-

agely achieve the goal in one occurrence with the use of the Rate Reset decoding

method at 60 exposure periods. The fact that this occurred at generation 92 out

65

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

of the tested 100 generations indicates that given more time, other network struc-

tures may have been able to solve the problem. Introducing more neurons in the

multi-layer networks meant that the highest achieved fitness over those 100 gen-

erations were consistently lower in networks with more neurons. This is expected

as more neurons means more synapse weights to learn and more generations that

are needed to improve fitness.

0

10

20

30

40

50

60

70

20 40 60 80 100

G
en

er
a�

o
n

 t
o

 R
ea

ch
 G

o
al

Exposure Period

F2F F2F_RESET RATE RATE_RESET

Figure 5.7: The generation to reach the goal for multilayer networks with 32 hidden neurons

across all exposure periods and decoding methods for the Cart Pole problem.

NO HIDDEN 16 HIDDEN 32 HIDDEN

F2F -0.88 -0.73 -0.73

F2F RESET -0.77 -0.52 –0.54

RATE -0.84 -0.85 -0.86

RATE RESET -0.85 -0.70 -0.99

Table 5.4: Correlation Coefficients for Cart Pole problem between the generation that each trial

reached completion and the exposure period used for that trial.

66

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

0

10

20

30

40

50

60

70

80

20 40 60 80 100

A
ve

ra
ge

 R
an

d
o

m
 A

c�
o

n
s

Ta
ke

n

Exposure Period

F2F F2F_RESET RATE RATE_RESET

Figure 5.8: The number of random actions taken on average for each of the exposure periods

tested and decoding methods used for single layer networks in the Cart Pole problem.

5.3.4 Discussion

Possible trends emerged in the negative correlation between the exposure period

and the generations taken to reach a certain fitness when looking at the results of

the Cart Pole experiment. This suggests that minimising the chance of random

actions being chosen due to none of the output neurons firing in the output layer

or, in the case of rate decoding, the same number of spikes over more than one

output neuron over the exposure period, hinders the rate of learning in the net-

work. Due to the failure of most Lunar Lander trials to reach the goal, it makes it

difficult to confirm this trend and therefore requires more investigation. Similarly,

the number of trials and exposure periods tested prevents strong conclusions be-

ing made about this correlation. It is worth expanding the number of trials and

exposure periods tested to formulate better evidence of this. Additionally, inves-

tigating whether this trend continues in non-evolutionary training methods such

as with Hebbian learning processes Hebb (1949) including Reward based Spike

Timing Dependant Plasticity Bing et al. (2018) and with alternate reinforcement

learning problems. This would determine whether this trade-off between network

67

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

efficiency, by lowering the number of exposure periods, and network accuracy by

increasing the number of exposure periods is a universal trait of SNNs.

The input encoder proposed in this paper was successful at learning state space

data pre-processing before being fed into the IZ SNN for the Cart Pole problem and

for some individual Lunar Lander trials when using all tested decoding methods.

This is significant for evolutionary learning as it can use the same algorithm for

both learned pre-processing and network learning. As long as negative inputs are

removed from the state space, this input encoder method can be used without any

other pre-processing of state space information. Although this method may work

well for evolutionary training of SNNs, future investigations into training those

pre-processing weights in the input encoder using a non-evolutionary framework is

needed for comparison.

It is clear that the reset variants of both F2F and Rate decoding methods achieves

better fitness over less generations when compared to their non-reset variants,

which is evident by both the Cart Pole and Lunar Lander networks. This is most

likely a result of not needing information of previous states to select the optimal

action in the current state. Not resetting the network to its default between steps

introduces noise into the next state interpretation. This may not be the case for all

problems where having some residual knowledge of previous states may be useful.

It does however suggest that in these two problems, that previous state knowledge

is not important. The failure of the Lunar Lander networks to reach the goal fitness

is most likely a result of a lack of generations in training or incorrect network shape

specifically evident by the poor fitness of the multi-layer networks. Additionally,

the noisiness of the results of the Lunar Lander experiments indicates that more

individual trials for each set of parameters needs to be included.

68

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

5.4 Experiment 4 - Encoding Method Compar-

isons

Although the Input Encoder method worked effectively in the previous experiment,

there will be challenges using this method with a non-evolutionary approach due to

the non-spiking behaviour of that pre-processing layer. Therefore, other methods

of encoding should be compared and evaluated against each other to find the most

appropriate method that could be used in non-evolutionary learning due to their

inclusion of spiking activity.

5.4.1 Other Methods of Encoding

Unless specified otherwise, all of the encoding methods tested in this experi-

ment will use Double Encoding (Wiklendt et al. 2009)(Markowska-Kaczmar and

Koldowski 2015) to remove the negative input values. This method simply just

splits the positive and negative components of a state input into two inputs repre-

senting those positive and negative components. The exception to the use of this

will be using the Binary Flag Encoding introduced in Experiment 1 and Table 4.3

however this will be explicitly stated. Fundamentally, the decoding methods can

be split into two main categories: direct encoding methods and probability based

encoding methods.

Direct Encoding (DE)

DE was the method used in Experiment 1 and Experiment 2 in this Chapter.

Essentially it uses the direct state space values produced by the problem and feeds

them into the first layer of the network which comprises of regular IZ neurons.

As identified in Experiment 1, using the base values supplied by the problem was

inadequate. It required a simple scale to be applied to those inputs in order to

encourage spiking activity in the input layer. Therefore, the 10x scale factor for

inputs will be used before feeding them into the first layer.

69

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

Direct Encoding with Binary Flag Encoding (DBE)

The DBE method will be the same as described in DE however will utilise the

Binary Flag Encoding instead of the Double Encoding that is used by all the other

methods. This will also use the 10x scale factors to encourage spiking behaviour

in the input layer.

Direct Scaled Encoding (DSE)

The DSE method will utilise the scale factors described in Table 5.1. The inputs

will be scaled by those factors, then multiplied by 10 like in the DE method and

then will be fed as injections into the first layer of regular IZ neurons.

Probability Encoding (PE)

The PE method involves utilising the input values not as direct injection into the

network, but as a probability of causing a spike to occur at any individual timestep

in the first layer. Take for example, the 2nd input value of 0.43. This would cause

the 2nd input neuron to spike with a 43% chance. If the value is greater than 1.0,

then the input neuron is guaranteed to spike on that timestep.

Normalised Probability Encoding (NPE)

The NPE method is similar to the PE method except the state input values are

normalised to sum to 1 and then used as probability of causing spikes to occur on

input neurons.

Scaled Probability Encoding (SPE)

SPE is similar to PE except the values are scaled by their scale factors described

in Table 5.1. Those scaled values then act as probabilities of spiking for the input

layer neurons.

70

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

Scaled Normalised Probability Encoding (SNPE)

SNPE is a combination of the NPE and SPE methods where the inputs are scaled

by their scale factors, normalised and then used as probabilities of spiking for the

input layer neurons.

5.4.2 Method

Due to the introduction of more parameters needed for testing, the exposure peri-

ods tested in Experiment 3 and the four decoding methods also compared in Ex-

periment 3 will be selected from the best performing methods whilst attempting to

minimise processing time required for the conduct of the experiments. Therefore,

an exposure period of 60 with the F2F Reset and Rate Reset decoding methods

will be used. The exposure period was selected due to the reduced number of

generations required to reach the goal and the diminishing returns of the longer

exposure periods. Additionally, the two decoding methods chosen were the Reset

types of the F2F and Rate decoding methods due to the more rapid initial im-

provement demonstrated. Additionally, only networks with no hidden layers will

be tested. The conduct of this experiment will only look at the Cart Pole problem

due to the ability for all types of network parameters in the previous experiment

to solve this problem.

All networks will undergo the same evolutionary algorithms set out in the previ-

ous experiment such that comparisons can be made easily between these methods

and the Input Encoder method. The combination of encoding method and de-

coding method with an exposure period of 60 network iterations per timestep,

will each run 5 separate trials with the results representing the average fitness per

generation over those trials.

5.4.3 Results

All methods of Direct Encoding using both F2F Reset and Rate Reset were able

to achieve the goal of 195 or more over 100 consecutive episodes as can be seen

71

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

DE F2F_R DE RATE_R DBE F2F_R DBE RATE_R DSE F2F_R DSE RATE_R

Figure 5.9: A comparison of direct encoding methods using a network with no hidden layers in

the Cart Pole problem.

in Figure 5.9. This includes the DE, DBE and DSE encoding methods. DE and

DSE both utilised Double Encoding methods to remove negative input however,

DBE which did not use the traditional double encoding method but a binary flag

to represent whether the original input was negative or not, was successful as well.

DSE outperformed all other methods of encoding with rapid improvement in the

first few generations and reaching the goal after only a few generations. DBE

performed the worst out of the direct encoding methods but still better than all

other forms of probability encoding. The other forms of encoding methods, namely

the probability encoding types were not successful in reaching the Cart Pole goal as

demonstrated in Figure 5.10. These methods however did come close to reaching

the goal and showed steady improvement over the initial generations. The SNPE

method performed the best out of all of the probability encoding methods with the

SPE performing the worst. PE and NPE methods achieved very similar results to

one another.

72

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A
ve

ra
ge

 F
it

n
es

s

Genera�on

PE F2F_R PE RATE_R NPE F2F_R NPE RATE_R

SPE F2F_R SPE RATE_R SNPE F2F_R SNPE RATE_R

Figure 5.10: A comparison of probability encoding methods using a network with no hidden

layers in the Cart Pole problem.

5.4.4 Discussion

Direct encoding methods achieved far better results than the probability encod-

ing methods. DSE performing the best suggest that having standardised inputs

between 0 and 1 produce more consistent spiking behaviour in the input layer

and does not cause only a few inputs to have a dominating effect on the spiking

behaviour of the entire network. Double Encoding methods appear to be better

at handling negative input conversion than the binary flag encoding methods evi-

denced with the better performance of the DE and DSE methods when compared

to the DBE method. This difference in performance is however relatively small for

this problem.

Comparing direct encoding with probability encoding suggests that the noise cre-

ated by having probability-based spiking in the input layer leads to worse action

taking agents. This may be because it is harder to learn weights when spiking

activity in the input layer is not consistent across generations. SNPE methods,

73

CHAPTER 5. EVOLUTIONARY EXPERIMENTS

which produce less spiking activity in the input layer due to the normalisation

of the input vector, causes better learning performance in the initial generations.

This when compared to SPE, which causes much more spiking activity in the in-

put layer, suggests that having too much spiking activity reduces the ability of the

networks to make informed action selections.

5.5 Summary

This research has identified some interesting trends that need to be investigated

further. Firstly, the reset variants of the F2F and Rate based decoding methods

seem to have a steeper initial learning than other methods especially evident in

multi-layer networks. Secondly, a higher exposure period tends to produce goal

reaching agents in less generations than lower exposure periods, specifically evi-

dent in the Cart Pole experiment. This therefore introduces a trade-off between

network accuracy and network efficiency when choosing an exposure period for a

SNN. Thirdly, the input encoder method proposed allows for evolutionary train-

ing of networks and evolutionary learning of state pre-processing using the same

algorithm, simplifying the need for complex pre-processing algorithms and mak-

ing it a more general method for input encoding. Fourthly, although there is no

clear benefit from using either temporal decoding or rate-based decoding, tempo-

ral decoding methods like F2F seem to produce better performing agents at lower

exposure periods when compared to Rate based decoding. Finally, DE and DSE

methods seem to be the most suitable encoding methods where evolutionary train-

ing of weights is not possible. Both achieved similar results to those as the Input

Encoder method but could be used in non-evolutionary training.

74

Chapter 6

Hebbian Based Experiments

This chapter includes a detailed description of non-evolutionary experiments con-

ducted with SNNs. Due to the difficulties of producing goal achieving agents in

the Lunar Lander problem in the previous chapter, this chapter will focus solely

on the use of the Cart Pole problem described in Section 4.1.1. These experiments

were conducted to further address RQ2 and start the investigation into RQ3.

6.1 Experiment 5 - R-STDP

This experiment was based off of the use of R-STDP in experiments conducted by

both Mozafari et al. (2018) and Bing et al. (2018). Both demonstrated the use

of R-STDP on relatively simplistic reinforcement learning problems and therefore

demonstrating its use on Cart Pole, arguably a slightly more advanced problem,

will be useful. Before conducting the experiment, it was hypothesised that the

continuous reward structure of the Cart Pole problem will pose a problem for the

direct application of this algorithm as no negative rewards are given and therefore

applications of modulating either Long Term Potentiation (LTP) or Long-Term

Depression (LTD) by the reward signal will not happen. Regardless, testing the

affect R-STDP from the literature will help determine some initial problems with

the non-evolutionary approaches to training.

75

CHAPTER 6. HEBBIAN BASED EXPERIMENTS

6.1.1 Method

Networks using F2F Reset and Rate Reset decoding methods with the best per-

forming DSE encoding method from Experiment 4 were used for the conduct of this

experiment. All networks were exposed to the state for 60 exposure periods due to

determining this exposure period as a good trade-off between possible performance

and limited execution time.

X ∼ U(0.0, α) (6.1)

∆wpre,post =

X if 0 <= tpost − tpre < 10

−X if − 10 < tpost − tpre < 0

0 otherwise

(6.2)

For those spiking patterns where the pre-synaptic neuron spike was followed by

a post-synaptic spike more recently than it was preceded by the post synaptic

spike, the weights were increased by a random value obtained from a uniform

distribution described in 6.1 which will be called long term potentiation (LTP).

Additionally, if the pre-synaptic neuron spike was preceded by a post-synaptic

neuron spike more recently than it was followed by a post-synaptic spike, then the

weights were decreased by the random value from 6.1 which is referred to as Long

Term Depression (LTD). α refers to the learning rate of the network which for

this experiment was 0.1. These weight changes were conducted every episode for

5000 episodes and the average of blocks of 100 episodes were recorded and used

for analysis.

6.1.2 Results

Figure 6.1 clearly shows that R-STDP was incapable of being applied directly to

the Cart Pole problem with networks producing results in line with expected fitness

of agents selecting random actions. All tests showed the explosion of weights in

the network causing spiking the output neurons to spike every network iteration

meaning that random actions were being taken almost all of the time. This suggests

that some mechanism to control weight expansion using STDP methods is needed.

76

CHAPTER 6. HEBBIAN BASED EXPERIMENTS

0

5

10

15

20

25

30

1 11 21 31 41

A
ve

ra
ge

 F
it

n
es

s

100s of Episodes

F2F_R RATE_R

Figure 6.1: Average fitness per 100-episode blocks for networks in the Cart Pole problem using

R-STDP for learning with exposure periods of 60.

The results of different forms of weight constraining methods can be seen in the

next experiment.

6.2 Experiment 6 - R-STDP Weight Constraining

This experiment was conducted to address the weight explosions identified in the

previous experiment. There is a possibility that the results of the previous ex-

periment are linked to the weight explosion problem and therefore it is important

to test methods of constraining the weights and seeing whether that improves the

performance of the literature based R-STDP method. This experiment will address

three different weight constraining methods, namely Pre-Synaptic Normalisation,

Post-Synaptic Normalisation and Weight Decay. The first two deal with the lock-

ing the outgoing or incoming weights of the neurons to some value. Therefore, the

weights change with accordance to the R-STDP algorithm and these new weights

then undergo a normalisation process to force the new weights to sum to that max-

imum value. For the final decay method, the weight changes happen according to

the R-STDP algorithm and then the weights will decay by some decay value forcing

the weights to remain closer to zero. So for negative weights , the decay forces an

77

CHAPTER 6. HEBBIAN BASED EXPERIMENTS

increase to the weight values and for positive weights, the decay forces a decrease

to the weight values. These three methods will be tested and then compared back

to the non-weight constraining experiment conducted previously.

6.2.1 Method

The following experiment was conducted inline with the same method from the

previous experiment using Equation 6.2 to deal with episodic weight changes. The

same method was used so that easy comparisons between the experiments are

possible. After an episode of training using R-STDP, the weights are then altered

according to the following weight constraining methods.

Pre-Synaptic Normalisation

Will force the outgoing weights from a neuron to sum to a specified amount. The

pre-synaptic normalisation amount used in this experiment was 100.0.

Post-Synaptic Normalisation

Will force the incoming weights to a neuron to sum to a specified amount. The

post-synaptic normalisation amount used in this experiment was 200.0.

Weight Decay

After each episode, will decay weights by a specified proportion with positive

weights decreasing by that proportion and negative weights increasing by that

proportion in order to stabilise the weights around 0.

w′ = w − wλ (6.3)

The weight decay described in Equation 6.3 occurs at the conclusion of an episode

and after the R-STDP weight changes are conducted. The w′ refers to the new

weight, w refers to the current weight and λ refers to the weight decay value which

should always be between 0 and 1. The weight decay value used for this experiment

is 0.05.

78

CHAPTER 6. HEBBIAN BASED EXPERIMENTS

0

5

10

15

20

25

30

1 11 21 31 41

A
ve

ra
ge

 F
it

n
es

s

100s of Episodes

Pre-Synap�c F2F_R Pre-Synap�c RATE_R Post-Synap�c F2F_R

Post-Synap�c RATE_R Decay F2F_R Decay RATE_R

Figure 6.2: Average fitness per 100-episode blocks for networks in the Cart Pole problem using

R-STDP with Weight Constraining methods.

6.2.2 Results

Utilising these weight constraining methods produced almost identical results to

those networks that used no constraining methods and operated similarly to agents

that selected random actions each step from previous evolutionary experiments.

This suggests that the weight constraining methods are not to blame for the poor

performance of the R-STDP method on the Cart Pole problem. Fundamentally,

the issue may arise from the reward structure of the Cart Pole problem where it re-

ceives continuous rewards regardless of the outcome of the episode or step. Future

work to experiment with different reward structures for the Cart Pole problem

is needed. It is worth noting that network weight values using the weight de-

cay method better reflected similar weights to those learned through evolutionary

methods and demonstrated a much more consistent spread of positive and nega-

tive weight values. Both the pre and post-synaptic normalisation methods often

resulted in one weight dominating and reaching the maximum normalisation value

with others being very small or 0. This is similar to the weight explosion problem

from Experiment 5, where some or one weight ended up becoming very large there-

fore dominating the network spiking activity producing too much spiking activity.

79

CHAPTER 6. HEBBIAN BASED EXPERIMENTS

Although the literature based R-STDP algorithm was incapable of producing well

performing agents, the comparison of produced weights suggests that a weight de-

cay method for constraining the weight explosion problem is more desirable than

using the pre or post-synaptic normalisation methods.

6.3 Experiment 7 - EF-STDP

This section proposes a training method inspired by Spike Timing Dependant Plas-

ticity (STDP) in the literature and the evolutionary techniques used in the previous

chapter. This method is called Episodic Fitness based Spike Timing Dependant

Plasticity (EF-STDP). This section utilises the transformed state spaces for Cart

Pole described in Table 5.1 and utilises the DSE encoding method.

6.3.1 Method

The population of networks (N=50) were independently exposed to the Cart Pole

problem for 100 learning cycles with a maximum episode length of 200 steps. The

spiking patterns, total reward, and action history was recorded for each of 100

consecutive episodes on the same network with no changes to the weights during

those consecutive episodes. Using the total reward information, the top 20% of

episodes were identified, and the spiking patterns of those episodes were used to

determine the changing of the weights. For those spiking patterns where the pre-

synaptic neuron spike was followed by a post-synaptic spike more recently than it

was preceded by the post synaptic spike, the weights were increased by a random

value obtained from a uniform distribution described in Equation 6.1 which will

be called long term potentiation (LTP).

For those pre-synaptic spikes that were preceded more recently by a post-synaptic

spike than one that followed, underwent a weight decrease of a random uniform

value, again described by Equation 6.1, which will be called long term depression

(LTD). This is formalised in Equation 6.2. An inverse rule was used for the bottom

20% of episodes where LTD was used when the post-synaptic spike followed the

80

CHAPTER 6. HEBBIAN BASED EXPERIMENTS

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90

Fi
tn
es
s

Generation

SNN-F2F-1 SNN-F2F-10 SNN-F2F-25 SNN-F2F-50 SNN-F2F-100

Figure 6.3: Average fitness of 5 separate trials over each learning cycle for each of the exposure

periods tested.

pre-synaptic spike and LTP was used when the post-synaptic spike preceded the

pre-synaptic one. In order to prevent the explosion of connection weights either to

really large positive values or large negative values, the network, after undergoing

a learning cycle, used the weight decay technique specified in Experiment 6 and

described in Equation 6.3.

6.3.2 Results

For trials with 1 exposure, the same trend was observed when compared to the EA

method as the minimal spiking activity in the input layer led to random action

selection by the output layer in most instances. For 10, 25 and 100 exposure

periods, an upwards trend in agent fitness was observed however they appeared

to get stuck in local optimums. The only exposure period that had some trials

succeed was 50 and this may be due to a favourable α value.

The DSE method was effective at producing networks with adequate spiking

behaviour to produce agents with enough information to make a decision. How-

ever, it required the explicit transformation of the initial values to values between

81

CHAPTER 6. HEBBIAN BASED EXPERIMENTS

0 and 1. This means that this method may be more difficult to generally employ

on large numbers of input variables with differently defined maximum values. This

same problem was encountered in Experiment 2 when using evolutionary processes

but could not be overcome as simply as with the Input Encoder used in Experi-

ment 3 as training those weights without evolution is difficult. The Input Encoder

weights don’t spike, they simply multiply the incoming injection to the input layer

and therefore the processes of STDP cannot be applied. However, the method

used in this experiment may be useful for pixel-based information with consistent

maximum values across all inputs. This was also tested with a normalized proba-

bility encoding where the eight values were normalized to sum to 1 and these new

values used as the probability of spiking in one instance of exposure. Even when

multiplied by some scaling factor, the normalized probability method produced

uneven weighting on those inputs that were often much larger than others. The

normalized probability method was observed to not produce enough spiking activ-

ity in the input layer therefore producing less spiking in the output layer leading

to worse performance by agents using this method.

A rate based decoding method was used where the output neuron with the

highest average spiking rate over the exposure period was selected. For those

instances where neither output neuron spiked, or they spiked the same amount in

the exposure period, then a random action was selected. This explains the observed

behaviour for the 1 exposure period trials as it corresponds to what is expected for

random action selection. This method appears to be effective in selecting actions in

the other exposure period situations. It appears that with more information (i.e.,

longer exposure periods), the networks were better at selecting the appropriate

action to take and this is evident through the less training cycles needed to reach

the learning goal using the EA method for those with longer exposure periods. It

is not clear whether this is related to more information being input or allowing for

more spiking behaviour in the output layers to make a more informed decision.

The stagnation of fitness in the EF-STDP method without reaching the goal

average fitness of 195 indicates the networks are becoming stuck in a local optimum.

82

CHAPTER 6. HEBBIAN BASED EXPERIMENTS

This stagnation is most likely a result of a lack of exploration of the state space.

Additionally, the initial weights of the network are important as some of the trials

never exceeded the ability of random action selection whereas others that did

improve tended to have a rapid improvement in the early learning cycles with

stagnation later in training. In some instances, after stagnating for large periods

of time, rapid increases in fitness were observed. This signifies a breaking out

of those local optimums possibly due to the randomness in the weight changes.

This requires further work to improve for the lack of exploration in the current

algorithm.

Additionally, more work is needed in identifying better performing α values and

how different α values perform for different η values. This may include recrafting

equation 6.1 as it is observed that some α values work better for lower exposure

periods and others work better for higher exposure periods but a single range of α

values that work well over all η values has not been found.

6.4 Experiment 8 - EF-STDP Search for Better

Learning Rates

In line with the discussion from the previous experiment and the accompanying

results, it was clear that the calculation for the learning rate outlined in Equation

6.1 was not great at producing appropriate learning rates for various exposure

periods. From observation, with differing α values, different exposure periods

performed better than the rest. Therefore, it is important to discover how the α

values are related to η (exposure period). The equation in the previous experiment

to decide the learning rate of the was linear as can be seen in Equation 6.4.

lr =
α

η
(6.4)

As this did not result in good fitness for a range of different η values, the best

relationship to calculate the learning rate depending on the exposure period may

83

CHAPTER 6. HEBBIAN BASED EXPERIMENTS

0

20

40

60

80

100

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

A
ve

ra
ge

 F
in

al
 F

it
n

es
s

Learning Rate

10 Exposures 20 Exposures 30 Exposures

40 Exposures 50 Exposures 100 Exposures

Figure 6.4: The average final fitness for the exposure period and learning rate combinations

after 100 learning cycles

not be linear. Therefore, an exploratory experiment needed to be conducted to

determine the best learning rate equation for the EF-STDP method.

6.4.1 Method

The value of X as identified in Equation 6.1 was not calculated based on that

equation but instead multiple X values were used for all exposure periods tested in

the previous experiment. This is to identify a possible link between learning rate

and exposure period and in order to find a more appropriate equation for a general

α value among all η values. For η values of 10, 20, 30, 40 and 50, learning rates

ranging from 0.001 to 2.001 were used with increments of 0.100. Six trials were

conducted for each combination of learning rate and η value where 100 learning

cycles were conducted. The average final fitness of these combinations was plotted

as can be seen in Figure 6.4.

The moving averages of a period of 2 were plotted and the resultant learning

rate of the peak of the moving average was then plotted in Figure 6.5

84

CHAPTER 6. HEBBIAN BASED EXPERIMENTS

y = 1.3145e-0.015x

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160

Le
ar

n
in

g
R

at
e

Exposure Period

Moving Average Peaks Expon. (Moving Average Peaks)

Figure 6.5: The learning rate fitness peaks of the moving average.

6.4.2 Results

From Figure 6.5, an exponential line of best fit was the most appropriate predictor

of the learning rate that should be used for a specific exposure period that would

result in the production of agents with the best fitness. Therefore, for the EF-

STDP method, the selection of a learning rate will be done using equation 6.5.

lr = 1.3145e−0.015η (6.5)

More extensive trials are needed to identify if this is the best way of calculating

learning rates in terms of the exposure periods of the networks.

6.5 Summary

R-STDP algorithms found in the literature cannot be easily applied to more com-

plex RL problems as identified in Experiment 5 and 6. Most likely, the poor

performance of the algorithm was a result of the continuous reward signal received

by the agent in the Cart Pole problem as hypothesised in Experiment 5. Exper-

imenting with alternate reward structures is necessary if R-STDP is to work in

85

CHAPTER 6. HEBBIAN BASED EXPERIMENTS

its current form. Additionally, due to the inability of these networks to perform

well in the Cart Pole problem, an analysis of different weight constraining meth-

ods is difficult. Although it was found that weight decay constraining methods

produce the most similar weight distributions to those in the evolutionary experi-

ments, rating its performance alongside the other weight constraining methods is

not possible. The novel EF-STDP algorithm showed that spike timing dependant

learning does allow agents to perform better than random action taking however,

no goal achieving agent was produced. This is assumed to be due to a lack of

exploration of the state space as is necessary with traditional ANN RL algorithms

to prevent the networks from becoming stuck in local optimums. In conclusion,

spike timing Hebbian training methods requires much more work to make SNNs a

viable alternative to the state-of-the-art ANN RL methods.

86

Chapter 7

Conclusions and Future Work

The aim of this thesis was to explore the use of spiking neural networks (SNNs)

within the reinforcement learning (RL) domain. In order to achieve this, it was bro-

ken into three research areas. Firstly, to test whether the structure of a SNN was

capable of solving problems within this domain in both single and multi-layer for-

mats, and this was done by using well established evolutionary methods. Secondly,

if the SNNs were able to solve these types of problems, were there non-evolutionary

methods that were capable of training the weights of these networks to provide a so-

lution to the tested problems. Thirdly, to test different network structures, weight

constraining, encoding, and decoding methods to determine which provide better

outcomes for the learning process and which are capable of solving the problems

tested.

Initial experimentation looked at the comparison between using evolutionary pro-

cesses to train a standard artificial neural network (ANN) and compare that to a

SNN with the same network structure. This identified an initial issue of the SNN

in that the magnitude of the input values into the first layer are important in order

to encourage spiking activity in the network compared to the ANN where this is

not an issue. Increasing the magnitude of the state space values of the problem

produced SNNs that were capable of reaching the goal state. Interestingly, this

goal state for higher exposure periods of 100 were reached in far fewer generations

than that of the ANN.

87

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Due to the identification that injection of just a few state space values dominated

the spiking behaviour of the network led to the transformed input space experi-

ment. This experiment attempted to scale the input values to only operate between

0 and 1. This led to a more even spread of spiking activity in the input layer and

therefore, no set of input values dominating the network. As a result of the scaling

of the input values, networks with lower exposure periods, namely the 25 exposure

periods were also able to achieve the problem goal, which is preferable as lower

exposure periods lead to more efficient network learning and execution as less net-

work iterations are required to make a decision.

Because of the non-normalized nature of the input values in both the Cart Pole

and Lunar Lander experiments, the empirically tuned state space values required a

large number of pre-processing experiments to decide on the required scale factors

of the input values. This therefore led to the development of the novel Input En-

coder method which attempted to use the same evolutionary process for training

the weights of the network, to also train the scale factors of the input values. This

method was successful over all decoding methods and exposure periods tested when

used with the Cart Pole problem. The Lunar Lander testing created networks that

were able to solve the problem, however, averagely did not produce goal reaching

agents.

One of the major issues with using an Input Encoder for training networks in

non-evolutionary methods is the training of those scale factor weights cannot take

advantage of traditional spike-based learning as the pre-processing layer does not

exhibit the same spiking behaviour as the main network. Therefore, an experi-

ment was conducted to test a range of different encoding methods using the same

evolutionary processes to see which of those encoding methods were capable at pro-

ducing goal achieving agents. Methods of Direct Encoding (DE) and their variants

were able to produce these goal achieving agents in all circumstances in the Cart

Pole problem. Probability Encoding (PE) methods and their variants were not

able to produce these goal achieving agents however did show initial learning and

a stagnation at high fitness levels.

88

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Reward Modulated Spike Timing Dependant Plasticity (R-STDP) methods out-

lined in the literature were incapable of producing agents that showed any sign

of initial learning in this research. Although R-STDP was routinely mentioned in

literature as a non-evolutionary based training method for SNNs in RL problems,

this was only demonstrated on simple problems and was not, in its current form,

able to produce goal achieving agents in Cart Pole through the experimentation

conducted in this research. Therefore, it was decided to attempt to use Spike Tim-

ing Dependant Plasticity (STDP) in conjunction with evolutionary fitness-based

methods for training. This led to the development of the novel Episodic Fitness

based Spike Timing Dependant Plasticity (EF-STDP) algorithm. This method did

show rapid initial learning using Direct Encoding methods and rate-based decod-

ing. However, the agents appeared to become stuck in local optimums suggesting

that the networks lacked exploration of the state space and therefore were not able

to achieve the goal. Non-evolutionary training methods including STDP methods

for RL requires more work to make SNNs a viable alternative to ANNs for RL

problems and although attempted in this research, produced the weakest answer

to all of the research questions proposed.

In the remainder of this chapter, the research questions will be outlined and an-

swered with reference to the experiments conducted throughout this project, as

well as a description of the limitations of this research and some possible areas for

future work.

89

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1 Answers to Research Questions

This section will answer the three research questions posed in Chapter 1 and will

do so with reference to the experimentation conducted and outlined in Chapter 4

and 5.

7.1.1 RQ1: Are SNN structures suitable at solving RL

problems?

RQ1 - A: Using evolutionary approaches for training, are SNNs without

hidden layers effective at solving RL problems?

Most of the answers to this question can be found in Experiment 3 in Section 4.4.

Utilising both the Cart Pole and Lunar Lander RL problems, individual single layer

networks utilising a range of different encoding and decoding methods were able

to achieve solutions to the problems. Cart Pole, although the simplest of the two

problems, allowed for the quick learning using an evolutionary method to produce

a goal achieving agent. In all circumstances, the single layer networks produced a

solution to this problem. Therefore, for simple RL problems, single layer SNNs are

effective to use as a network architecture to produce a solution. When looking at a

more complex RL problem like Lunar Lander the answer is not as clear. Although

individual networks were able to achieve solutions to this problem, some were not

within the specified generational limit. However, it is still clear that there existed

a solution to this problem using a single layered SNN. Therefore, we can conclude

that single layer SNNs are effective at solving a range of RL problems. However,

this research does not conclude that these single layer networks are suitable at

solving all RL problems. It can be assumed, just like with regular ANNs, some

problems require the use of a hidden layer to solve.

90

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

RQ1 - B: Using evolutionary approaches for training, are SNNs with a

hidden layer effective at solving RL problems?

Similar to the answer above, the evidence for this answer comes from Experiment

3 in Section 4.4. Utilising the simple RL problem of Cart Pole, all networks that

utilised a hidden layer with either 16 or 32 hidden neurons were able to achieve the

goal fitness. Comparing that to the more complex Lunar Lander problem, none

of these same network structures were able to achieve a solution. However, the

networks did show improvement over generations using the evolutionary algorithm

and achieved average finesses well above that of the random benchmark. Therefore,

this research can conclude that multi-layer SNNs are effective at solving simple RL

problems and can be used to produce well performing agents in more complex RL

problems. However, similar to the previous answer, it cannot be concluded that

SNNs are an effective architecture at solving all RL problems.

7.1.2 RQ2: What network constraining and network cod-

ing methods improve training in RL environments?

RQ2 - A: What affect does the exposure period of the state space to

the network have on network performance?

Throughout all evolutionary experiments from Chapter 4, a clear negative corre-

lation emerges between the length of the exposure period and the generation for

the network to achieve the goal fitness. Additionally, for those networks unable to

reach a solution, the greater the exposure period of the network, the more rapid

the initial fitness increases over generations. Although this phenomenon appeared

throughout these experiments, it appears that this trend would not continue in ex-

posure periods greater than a certain threshold. For example, in Experiment 3 in

Section 4.4 with exposure periods of 80 and 100, this trend does not appear. It can

therefore be suggested that there is a certain exposure period where the benefit of

steeper learning becomes non-existent or not important. Not only is this important

for judging how to make the most effective SNNs, but it also introduces a trade

91

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

off when executing these networks on traditional computing hardware. This trade

off becomes between how steep the learning is compared to the time of execution

for each step in the episode. It is also clear when looking at Experiment 1 and

Experiment 2 (Section 4.2 and 4.3 respectively), that there are a lower bound of

exposure periods that produce ineffective networks for the specific RL problem.

For example, using a Direct Encoding method in Experiment 1, exposure periods

of 1, 5, 10 and 20 were incapable of producing solutions to the Cart Pole problem.

This is proposed to be because there is not enough spiking activity in the network

over that time frame to be able to choose a well-informed action. Therefore, not

only is there an upper bound to the benefits of higher exposure periods, but there

also exists a lower bound under which networks cannot make correct or informed

decisions on what action to take in the environment.

RQ2 - B: What methods are effective at decoding spike train signals

into action selection?

The two main categories of decoding method explored in this research are Temporal

and Rate based decoding. The former specifies that the precise spike timings are

important for action selection and the latter suggests that the frequency of spikes

occurring in a neuron is important for action selection. Two temporal decoding

methods were utilised, namely the First to Fire (F2F) and First to Fire Reset

(F2F R) and two rate based decoding methods were used, namely Rate and Rate

Reset (Rate R) methods. No clear difference in the performance between the two

main categories emerged throughout the research. However, the main distinction

between the two occurred at lower exposure periods. F2F and F2F R appeared to

perform better at exposure periods of 20 and 40 when compared to Rate and Rate

R. This was assumed to be because lower exposure periods do not give the network

enough output layer spiking activity to produce multiple spikes over the exposure

time period and is therefore more likely that a random action will be taken in

rate-based methods. For exposure periods of 60, 80 and 100, no clear difference

between Temporal and Rate based methods emerged. The more interesting result

92

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

came from the comparison between the normal and reset counterparts of the two

decoding methods. From the results of Experiment 3, it is clear that the reset

counterparts of both F2F and Rate decoding methods caused more rapid learning

reaching goal achieving agents in far fewer generations. Most likely this is due

to less noise from previous episode steps remaining in the networks and they can

therefore make a more informed decision on that episode step in isolation from

other steps. However, this may not be the case for other RL problems where

knowledge of previous states is useful for deciding an action.

RQ2 - C: What methods are effective at encoding state space informa-

tion into spike train signals?

From the results of both Experiment 3 and Experiment 4, it appears that direct

encoding methods perform much better than probability based encoding methods.

The novel Input Encoder proposed in Experiment 3 performed well at both the

Cart Pole and Lunar Lander problems and is essentially the same as the Direct

Scaled Encoding (DSE) method explored in Experiment 4. The difference being

that the scale factors of the Input Encoder were learned and the scale factors of the

DSE algorithm were hand crafted. Both injected the scaled input values directly

into a first layer of IZ neurons. Probability based encoding methods produced more

noise in the network as the same state would produce different spiking activity in

the input layer on different trials. It is therefore more difficult for a network to learn

the weights due to that noise. Therefore, methods that use Direct Encoding into

a SNN with scaled inputs that also utilises Double Encoding to remove negative

input values seems to be the most appropriate encoding method for RL problems

out of the methods tested.

RQ2 - D: What methods effectively constrain the strengthening and

weakening of synapse weights?

Due to the unrestricted nature of weight changes in non-evolutionary training

leading to the weight explosion problem, methods of constraining the weights are

93

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

necessary. Due to the difficulty in getting non-evolutionary training working on

the problems explored in this research, it is hard to answer this question conclu-

sively. Methods of pre-synaptic normalisation, post-synaptic normalisation and

weight decay were tested. Pre- and post-synaptic normalisation methods often

led to the pooling of weights at their threshold values which caused networks to

have very similar weights across all synapses. On the other hand, weight de-

cay methods provided a method for keeping a range of different synapse strengths

spread throughout the network creating weights that look more like those produced

through evolutionary training. This brought with it is own challenges of introduc-

ing a new hyperparameter that needed to be tuned which could, if too big, make all

the weights too small and if too small, create the same weight explosion problem

as identified with no constraining method. Although these methods could not be

tested extensively due to the inability to produce working algorithms for the Cart

Pole or Lunar Lander problems, observationally, this research suggests that weight

decay methods are more effective than the pre- and post-synaptic normalisation

methods.

7.1.3 RQ3: Due to the inability to use gradient based algo-

rithms for the training of SNNs, are non-evolutionary

learning techniques effective at solving RL problems?

This question has the least evidence sourced through this research compared to

the other questions and therefore a conclusive answer is not able to be given. More

research in this area is required to form a better answer to these sub questions and

will be explored in the Limitations and Future Work section.

RQ3 - A: Can learning methods based on spike timing effectively solve

RL problems?

Although not able to be shown in this research, the literature suggests that for

simple RL problems, STDP variants are capable of solving RL problems. However,

94

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

those methods used in the literature appear not to be able to be easily applied to

more complex RL problems. This requires far more research into non-evolutionary

training techniques to answer conclusively.

RQ3 - B: Can learning methods that incorporate aspects of evolutionary

and spike timing training effectively solve RL problems?

The novel EF-STDP algorithm proposed in this research showed more promising

results when compared to the traditional R-STDP. This method showed initial

improvement in the early episodes of training however appeared to get stuck in local

optimums. This suggests that this method lacks the crucial exploratory capabilities

of other traditional ANN RL algorithms. Applying random mutations networks

with stagnating fitness may be able to add this exploratory ability however was

unable to be tested in this research. This question will also be further explored in

the Future Work section of this Chapter.

7.1.4 Research Questions Conclusions

The evolutionary experiments conducted in Chapter 4 allowed for conclusive an-

swers to RQ1 and RQ2 (excluding RQ2-D). However, the inability to demonstrate

well performing agents trained through non-evolutionary methods led to difficul-

ties answering RQ3. This research therefore suggests that much more work must

be done in future to be able to answer RQ3 conclusively.

7.2 Limitations

This section will cover the limitations of this research in respect to answering the

research questions in the previous section. The limitations can be broken into two

main categories: technical limitations and algorithmic limitations.

95

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2.1 Technical Limitations

As identified by Davies et al. (2018), traditional computer hardware struggles to

efficiently model SNN architectures as it does not allow for the abundant use of

parallel processes. These networks are drastically more efficient on neuromorphic

based hardware. However, through the conduct of this research, using neuromor-

phic computing was not possible due to the difficulty in accessing the technology

as it is still being actively developed. Therefore, the magnitude of the experiments

conducted had to be limited in order to deal with the inefficient processing of the

networks on traditional hardware. This meant fewer trials per experiment had to

be conducted therefore making it more difficult to identify trends as results data

from average trial runs was often noisy due to the variations between trials. This

also restricted the ability to run evolutionary algorithms for large numbers of gen-

erations due to the immense processing time required. This was especially evident

when trialling with the Lunar Lander problem as attempting to analyse trends over

100 generations of training was impractical due to time it would take to process.

Additionally, access to computing hardware was limited during the research period

which also limited the number of trials able to be run, especially when paired with

the slow execution time of SNNs on traditional hardware. Therefore, the technical

limitations of traditional computing hardware meant the scale of experiments run

had to be limited. This research attempted to achieve results that were adequate

to identify possible trends whilst minimising the execution time of the networks.

7.2.2 Algorithmic Limitations

One of the major issues of an SNN using IZ neurons (Izhikevich 2003) is the

number of hyperparameters surrounding the behaviour of individual neurons in the

network. Namely the a, b, c, and d parameters outlined in Equation 2.1 and 2.2, as

well as the peak voltage variable. It was therefore difficult to have an in-depth look

at the effect that changes to those variables has on the performance of the network

due to the technical limitations described in the previous subsection. Furthermore,

96

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

the inability to get forms of R-STDP working, hindered the analysis that could be

done on that algorithm. This was most likely a result of the reward structure of

the Cart Pole problem, but due to an inadequacy of time, testing differing reward

structures such as discounting rewards or punishing rewards for certain actions

could not be conducted. This made it difficult to draw any reasonable conclusions

from the R-STDP experiments. When working on the novel EF-STDP method, it

introduced more hyperparameters which made it increasingly difficult to extract

useful analysis from it. The hyperparameter experiment conducted attempted to

address this issue but the extensive testing of the results of this hyperparameter

experiment was unable to be done due to time constraints. Majorly, the algorithmic

limitations identified in this research is the range of different hyperparameters

coupled with the slow execution times of the networks. This led to the inability

to extensively run hyperparameter experimentation which may have resulted in

worse performance for the networks.

7.3 Future Work

This section will cover possible future work to both continue to gather evidence for

the research questions, and also further work in the field of SNNs for RL problems.

The weakest answer produced in this research was around non-evolutionary meth-

ods of training SNNs. It is clear from the literature that uses of SNNs in either

supervised or unsupervised learning environments are more prominent, however,

they still are unable to reach the same performance and efficiency levels as their

ANN counterparts. This is predominately due to the lack of research into this

method, as well as an issue with simulating these networks efficiently on tradi-

tional computing hardware. When adapting algorithms for SNNs developed in

the supervised and unsupervised learning domains for the RL domain, the liter-

ature clearly shows that these methods are well outperformed by the traditional

back-propagation techniques of ANNs. With the development of new computing

techniques, such as neuromorphic computing, the efficiency viability of SNNs will

97

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

be met and is predicted to be more efficient than current ANN techniques on

traditional hardware (Wunderlich et al. 2019). Testing the methods developed in

this research on neuromorphic hardware for reproducibility of results will paint

a clearer picture as to whether there are benefits over existing hardware for net-

work efficiency and will allow more detailed trials to be run. The requirement of

making SNNs viable in RL domains comes from further development of these non-

evolutionary techniques. This could be done by improving on current R-STDP

methods, development of novel learning methods or the continuation of research

into the proposed EF-STDP method.

Outlined in Experiment 3, some difficulties arose around the evolution of SNNs in

the Lunar Lander problem. This could be addressed by running the networks for

more generations than currently tested. A future experiment that does this will be

able to further confirm the trends found when using the Cart Pole problem, such as

the negative correlation between exposure period and generation to reach goal, as

well as the trend of less random actions being taken when longer exposure periods

are used. Additionally, investigating a range of different evolutionary algorithms

including using methods of Neuro-Evolution of Augmenting Topologies (Stanley

and Miikkulainen 2002) to alter the network structure during learning would be

useful future work.

Izhikevich (2003) describes that changes to the parameters of the IZ neurons, as

described in Equations 2.1 and 2.2, results in the replication of a range of differ-

ently behaving spiking neurons found in the brain. Testing combinations of these

neuron parameters for different layers in the network would be useful to identify

trends and to be able to analyse the effect that those parameters have on the

performance of the networks. It could be that certain different types of spiking

neurons may work better for shorter or longer exposure periods or may work better

with a different type of spiking neuron in the input layer compared to the output

layer. This would be a useful contribution to the development and analysis of the

IZ SNN structure and is intended to be done in future. Additionally, investigat-

ing adapting parameters during learning has the possibility of making parameter

98

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

selection more generalised to be able to take on parameters that maximise agent

fitness.

The work outlined in this section would be incredibly useful in furthering research

into the use of SNNs for RL problems. As SNNs are representations of biologi-

cal neurons, a deeper understanding of neuroscience may also lead to the break-

throughs needed to develop learning techniques for these biologically representative

networks. Additionally, continuing to build on spike timing dependant learning

methods to reach the performance levels of traditional RL training for ANNs is

needed. In order for SNNs to offer itself as a viable alternative to traditional ANNs

for RL problems, robust and effective training methods must be developed.

99

Bibliography

Bing, Z., Meschede, C., Huang, K., Chen, G., Rohrbein, F., Akl, M. & Knoll,

A., 2018, ‘End to end learning of spiking neural network based on r-stdp for

a lane keeping vehicle’, 2018 IEEE International Conference on Robotics and

Automation (ICRA), pp. 1–8.

Borowiec, S., 2016, ‘Alphago seals 4-1 victory over go grandmaster lee sedol’, The

Guardian, vol. 15.

Braitenberg, V., 1986, Vehicles: Experiments in synthetic psychology, MIT press.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang,

J. & Zaremba, W., 2016, ‘Openai gym’, CoRR, vol. abs/1606.01540, ¡ http:

//arxiv.org/abs/1606.01540¿ .

Buesing, L., Bill, J., Nessler, B. & Maass, W., 2011, ‘Neural dynamics as sampling:

a model for stochastic computation in recurrent networks of spiking neurons’,

PLoS computational biology, vol. 7, no. 11, p. e1002211.

Burkitt, A. N., 2006, ‘A review of the integrate-and-fire neuron model: I. homoge-

neous synaptic input’, Biological cybernetics, vol. 95, no. 1, pp. 1–19.

Campbell, M., Hoane Jr, A. J. & Hsu, F.-h., 2002, ‘Deep blue’, Artificial intelli-

gence, vol. 134, no. 1-2, pp. 57–83.

Cao, Y., Chen, Y. & Khosla, D., 2015, ‘Spiking deep convolutional neural networks

for energy-efficient object recognition’, International Journal of Computer Vi-

sion, vol. 113, no. 1, pp. 54–66.

100

BIBLIOGRAPHY

Daucé, E., 2009, ‘A model of neuronal specialization using hebbian policy-gradient

with “slow” noise’, Alippi, C., Polycarpou, M., Panayiotou, C. & Ellinas, G.

(eds.) Artificial Neural Networks – ICANN 2009, Springer Berlin Heidelberg,

Berlin, Heidelberg, pp. 218–228.

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., Dimou, G.,

Joshi, P., Imam, N., Jain, S., Liao, Y., Lin, C., Lines, A., Liu, R., Mathaikutty,

D., McCoy, S., Paul, A., Tse, J., Venkataramanan, G., Weng, Y., Wild, A.,

Yang, Y. & Wang, H., 2018, ‘Loihi: A neuromorphic manycore processor with

on-chip learning’, IEEE Micro, vol. 38, no. 1, pp. 82–99.

Domingos, P., 2018, The Master Algorithm: How the Quest for the Ultimate Learn-

ing Machine Will Remake Our World, Basic Books, Inc., New York, NY, USA.

Eskandari, E., Ahmadi, A., Gomar, S., Ahmadi, M. & Saif, M., 2016, ‘Evolving

spiking neural networks of artificial creatures using genetic algorithm’, 2016

International Joint Conference on Neural Networks (IJCNN), pp. 411–418.

Gamez, D., Fountas, Z. & Fidjeland, A. K., 2013, ‘A neurally controlled computer

game avatar with humanlike behavior’, IEEE Transactions on Computational

Intelligence and AI in Games, vol. 5, no. 1, pp. 1–14.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,

Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus,

M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del

Ŕıo, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy,

T., Weckesser, W., Abbasi, H., Gohlke, C. & Oliphant, T. E., 2020, ‘Array

programming with NumPy’, Nature, vol. 585, p. 357–362.

Hausknecht, M., Khandelwal, P., Miikkulainen, R. & Stone, P., 2012, ‘Hyperneat-

ggp: A hyperneat-based atari general game player’, Proceedings of the 14th

Annual Conference on Genetic and Evolutionary Computation, GECCO ’12,

ACM, New York, NY, USA, pp. 217–224, ¡ http://doi.acm.org/10.1145/

2330163.2330195¿ .

101

BIBLIOGRAPHY

Hebb, D. O., 1949, The Organization of Behavior: A Neuropsychological Theory,

Lawrence Erlbaum Associates.

Hodgkin, A. L. & Huxley, A. F., 1952, ‘A quantitative description of membrane

current and its application to conduction and excitation in nerve’, The Journal

of physiology, vol. 117, no. 4, pp. 500–544.

Izhikevich, E. M., 2003, ‘Simple model of spiking neurons’, IEEE Transactions on

neural networks, vol. 14, no. 6, pp. 1569–1572.

Kaiser, J., Tieck, J. C. V., Hubschneider, C., Wolf, P., Weber, M., Hoff, M.,

Friedrich, A., Wojtasik, K., Roennau, A., Kohlhaas, R. et al., 2016, ‘Towards

a framework for end-to-end control of a simulated vehicle with spiking neural

networks’, 2016 IEEE International Conference on Simulation, Modeling, and

Programming for Autonomous Robots (SIMPAR), IEEE, pp. 127–134.

Kamali Sarvestani, I., Kozlov, A., Harischandra, N., Grillner, S. & Ekeberg, Ö.,

2013, ‘A computational model of visually guided locomotion in lamprey’, Bio-

logical Cybernetics, vol. 107, no. 5, pp. 497–512, ¡ https://doi.org/10.1007/

s00422-012-0524-4¿ .

Kiselev, M., 2016, ‘Rate coding vs. temporal coding – is optimum between?’, .

Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P., 1998, ‘Gradient-based learning

applied to document recognition’, Proceedings of the IEEE, vol. 86, no. 11, pp.

2278–2324.

Lee, J. H., Delbruck, T. & Pfeiffer, M., 2016, ‘Training deep spiking neural net-

works using backpropagation’, Frontiers in Neuroscience, vol. 10, p. 508, ¡

https://www.frontiersin.org/article/10.3389/fnins.2016.00508¿ .

Li, M. & Tsien, J. Z., 2017, ‘Neural code—neural self-information theory on how

cell-assembly code rises from spike time and neuronal variability’, Frontiers in

cellular neuroscience, vol. 11, p. 236.

102

BIBLIOGRAPHY

Markowska-Kaczmar, U. & Koldowski, M., 2015, ‘Spiking neural network vs

multilayer perceptron: who is the winner in the racing car computer game’,

Soft Computing, vol. 19, no. 12, pp. 3465–3478, ¡ https://doi.org/10.1007/

s00500-014-1515-2¿ .

Mitchell, I., Huyck, C. & Evans, C., 2016, ‘Planeural: spiking neural networks that

plan’, Procedia Computer Science, vol. 88, pp. 198–204.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.

& Riedmiller, M., 2013, ‘Playing atari with deep reinforcement learning’, arXiv

preprint arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G. et al., 2015, ‘Human-

level control through deep reinforcement learning’, Nature, vol. 518, no. 7540, p.

529.

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A. &

Ganjtabesh, M., 2018, ‘First-spike-based visual categorization using reward-

modulated stdp’, IEEE Transactions on Neural Networks and Learning Systems,

vol. 29, no. 12, pp. 6178–6190.

Müller, J., Nawrot, M., Menzel, R. & Landgraf, T., 2018, ‘A neural network model

for familiarity and context learning during honeybee foraging flights’, Biolog-

ical Cybernetics, vol. 112, no. 1, pp. 113–126, ¡ https://doi.org/10.1007/

s00422-017-0732-z¿ .

Neil, D., Pfeiffer, M. & Liu, S.-C., 2016, ‘Learning to be efficient: Algorithms for

training low-latency, low-compute deep spiking neural networks’, Proceedings of

the 31st annual ACM Symposium on Applied Computing, ACM, pp. 293–298.

Olmsted, D. D., 2011, ‘Foraging behavior in a 3-d virtual sea snail having a spik-

ing neural network brain’, The 2011 International Joint Conference on Neural

Networks, pp. 90–94.

103

BIBLIOGRAPHY

pandas development team, T., 2020, ‘pandas-dev/pandas: Pandas’, ¡ https://

doi.org/10.5281/zenodo.3509134¿ .

Qiu, H., Garratt, M., Howard, D. & Anavatti, S., 2018, ‘Evolving spiking neu-

ral networks for nonlinear control problems’, 2018 IEEE Symposium Series on

Computational Intelligence (SSCI), IEEE, pp. 1367–1373.

Shim, M. S. & Li, P., 2017, ‘Biologically inspired reinforcement learning for mo-

bile robot collision avoidance’, 2017 International Joint Conference on Neural

Networks (IJCNN), pp. 3098–3105.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,

M., Sifre, L., Kumaran, D., Graepel, T. et al., 2018, ‘A general reinforcement

learning algorithm that masters chess, shogi, and go through self-play’, Science,

vol. 362, no. 6419, pp. 1140–1144.

Slade, S. & Zhang, L., 2018, ‘Topological evolution of spiking neural networks’,

2018 International Joint Conference on Neural Networks (IJCNN), IEEE, pp.

1–9.

Stanley, K. O. & Miikkulainen, R., 2002, ‘Evolving neural networks through aug-

menting topologies’, Evolutionary computation, vol. 10, no. 2, pp. 99–127.

Stevens, C. F. & Zador, A. M., 1998, ‘Input synchrony and the irregular firing of

cortical neurons’, Nature neuroscience, vol. 1, no. 3, p. 210.

Strubell, E., Ganesh, A. & McCallum, A., 2019, ‘Energy and policy considerations

for deep learning in nlp’, arXiv preprint arXiv:1906.02243.

Sutton, R. S. & Barto, A. G., 2018, Reinforcement learning: An introduction, MIT

press.

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T. & Maida,

A., 2019, ‘Deep learning in spiking neural networks’, Neural Networks, vol.

104

BIBLIOGRAPHY

111, pp. 47 – 63, ¡ http://www.sciencedirect.com/science/article/pii/

S0893608018303332¿ .

Tournament, U., 2004, ‘Epic games’, .

Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E., 2016,

‘Stochastic phase-change neurons’, Nature nanotechnology, vol. 11, no. 8, p. 693.

van Hasselt, H., Guez, A. & Silver, D., 2016, ‘Deep reinforcement learning with

double q-learning’, ¡ https://www.aaai.org/ocs/index.php/AAAI/AAAI16/

paper/view/12389/11847¿ .

VanRullen, R., Guyonneau, R. & Thorpe, S. J., 2005, ‘Spike times make sense’,

Trends in neurosciences, vol. 28, no. 1, pp. 1–4.

Vinyals, O., Babuschkin, I., Chung, J., Mathieu, M., Jaderberg, M., Czarnecki,

W. M., Dudzik, A., Huang, A., Georgiev, P., Powell, R., Ewalds, T., Hor-

gan, D., Kroiss, M., Danihelka, I., Agapiou, J., Oh, J., Dalibard, V., Choi,

D., Sifre, L., Sulsky, Y., Vezhnevets, S., Molloy, J., Cai, T., Budden, D.,

Paine, T., Gulcehre, C., Wang, Z., Pfaff, T., Pohlen, T., Wu, Y., Yogatama,

D., Cohen, J., McKinney, K., Smith, O., Schaul, T., Lillicrap, T., Apps,

C., Kavukcuoglu, K., Hassabis, D. & Silver, D., 2019, ‘AlphaStar: Master-

ing the Real-Time Strategy Game StarCraft II’, https://deepmind.com/blog/

alphastar-mastering-real-time-strategy-game-starcraft-ii/.

Vitanza, A., Patané, L. & Arena, P., 2015, ‘Spiking neural controllers in multi-

agent competitive systems for adaptive targeted motor learning’, Journal of the

Franklin Institute, vol. 352, no. 8, pp. 3122–3143.

Vreeken, J., 2003, ‘Spiking neural networks, an introduction’, .

Wang, G., Zeng, Y. & Xu, B., 2016, ‘A spiking neural network based autonomous

reinforcement learning model and its application in decision making’, Liu, C.-

L., Hussain, A., Luo, B., Tan, K. C., Zeng, Y. & Zhang, Z. (eds.) Advances in

105

BIBLIOGRAPHY

Brain Inspired Cognitive Systems, Springer International Publishing, Cham, pp.

125–137.

Wiklendt, L., Chalup, S. & Middleton, R., 2009, ‘A small spiking neural network

with lqr control applied to the acrobot’, Neural Computing and Applications,

vol. 18, no. 4, pp. 369–375.

Wu, Y., Deng, L., Li, G., Zhu, J. & Shi, L., 2018, ‘Spatio-temporal backpropaga-

tion for training high-performance spiking neural networks’, Frontiers in neuro-

science, vol. 12.

Wunderlich, T., Kungl, A. F., Müller, E., Hartel, A., Stradmann, Y., Aamir, S. A.,

Grübl, A., Heimbrecht, A., Schreiber, K., Stöckel, D., Pehle, C., Billaudelle, S.,

Kiene, G., Mauch, C., Schemmel, J., Meier, K. & Petrovici, M. A., 2019, ‘Demon-

strating advantages of neuromorphic computation: A pilot study’, Frontiers in

Neuroscience, vol. 13, p. 260, ¡ https://www.frontiersin.org/article/10.

3389/fnins.2019.00260¿ .

Yanguas-Gil, A., 2018, ‘Going small: Using the insect brain as a model system for

edge processing applications’, Proceedings of the 2018 on Great Lakes Symposium

on VLSI, GLSVLSI ’18, ACM, New York, NY, USA, pp. 373–378, ¡ http:

//doi.acm.org/10.1145/3194554.3194610¿ .

Yee, E. & Teo, J., 2011, ‘Evolutionary spiking neural networks as racing car

controllers’, 2011 11th International Conference on Hybrid Intelligent Systems

(HIS), pp. 411–416.

Zambrano, D. & Bohte, S. M., 2016, ‘Fast and efficient asynchronous neural com-

putation with adapting spiking neural networks’, .

Zeiler, M. D., Ranzato, M., Monga, R., Mao, M., Yang, K., Le, Q. V., Nguyen,

P., Senior, A., Vanhoucke, V., Dean, J. et al., 2013, ‘On rectified linear units for

speech processing’, 2013 IEEE International Conference on Acoustics, Speech

and Signal Processing, IEEE, pp. 3517–3521.

106

	Title Page
	Certificate of Original Authorship
	Acknowledgements
	Publications
	Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Research Gaps and Aims
	1.3 Research Questions
	1.4 Objectives
	1.5 Methodology Constraints
	1.6 Out of Scope
	1.7 Significance
	1.8 Summary

	Chapter 2 Background
	2.1 Reinforcement Learning (RL)
	2.2 Artificial Neural Network (ANN)
	2.3 Deep Q Learning
	2.3.1 Back-Propagation

	2.4 Spiking Neural Network (SNN)
	2.4.1 Action Potential and Hodgkin-Huxley Model (H-H)
	2.4.2 Izhikevich Model

	2.5 Decoding Outputs into Action Selection
	2.5.1 Rate Coding
	2.5.2 Temporal Coding

	2.6 Summary

	Chapter 3 Literature Review
	3.1 Computational Efficiency of SNNs
	3.2 Hand Crafted SNNs
	3.3 Hebbian Based Learning
	3.4 Back-propagation of Spiking Neural Networks
	3.5 Evolutionary Algorithms applied to Spiking Neural Networks
	3.6 Coding Strategies
	3.7 Discussion and Open Questions
	3.7.1 Encoding
	3.7.2 Decoding
	3.7.3 Noise
	3.7.4 Stochastically Firing Neurons
	3.7.5 Threshold Adaptation
	3.7.6 Model Complexity
	3.7.7 Domain Complexity

	3.8 Summary

	Chapter 4 Methodology
	4.1 Problem Descriptions
	4.1.1 Cart Pole
	4.1.2 Lunar Lander

	4.2 Input Encoding
	4.2.1 Binary Encoding
	4.2.2 Double Encoding

	4.3 State Exposure Period
	4.4 Output Decoding
	4.4.1 First To Fire (F2F)
	4.4.2 Rate
	4.4.3 F2F Reset and Rate Reset

	4.5 Codebase
	4.5.1 Open AI Gym
	4.5.2 Spiking Neural Network

	4.6 Summary

	Chapter 5 Evolutionary Experiments
	5.1 Experiment 1 - Initial Experimentation
	5.1.1 Description of Networks
	5.1.2 Description of Genetic Algorithm
	5.1.3 SNN Decoding Method
	5.1.4 Results

	5.2 Experiment 2 - Transformed Input Space
	5.2.1 Input Transformation
	5.2.2 Method
	5.2.3 Results

	5.3 Experiment 3 - Comparitive Analysis
	5.3.1 Input Encoder
	5.3.2 Method
	5.3.3 Results
	5.3.4 Discussion

	5.4 Experiment 4 - Encoding Method Comparisons
	5.4.1 Other Methods of Encoding
	5.4.2 Method
	5.4.3 Results
	5.4.4 Discussion

	5.5 Summary

	Chapter 6 Hebbian Based Experiments
	6.1 Experiment 5 - R-STDP
	6.1.1 Method
	6.1.2 Results

	6.2 Experiment 6 - R-STDP Weight Constraining
	6.2.1 Method
	6.2.2 Results

	6.3 Experiment 7 - EF-STDP
	6.3.1 Method
	6.3.2 Results

	6.4 Experiment 8 - EF-STDP Search for Better Learning Rates
	6.4.1 Method
	6.4.2 Results

	6.5 Summary

	Chapter 7 Conclusions and Future Work
	7.1 Answers to Research Questions
	7.1.1 RQ1: Are SNN structures suitable at solving RL problems?
	7.1.2 RQ2: What network constraining and network coding methods improve training in RL environments?
	7.1.3 RQ3: Due to the inability to use gradient based algorithms for the training of SNNs, are non-evolutionary learning techniques e ective at solving RL problems?
	7.1.4 Research Questions Conclusions

	7.2 Limitations
	7.2.1 Technical Limitations
	7.2.2 Algorithmic Limitations

	7.3 Future Work

	Bibliography

