Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 104 (2021) 1547-1552

www.elsevier.com/locate/procedia

54th CIRP Conference on Manufacturing Systems

Scalable anomaly detection in manufacturing systems using an interpretable
deep learning approach

Thomas Schlegl®“*, Stefan Schlegl!, Nikolai West?, Jochen Deuse®?

4Institute of Production Systems, TU Dortmund University, Leonhard-Euler-Str. 5, 44227 Dortmund, Germany
bCentre for Advanced Manufacturing, University of Technology Sydney, 11 Broadway, Ultimo NSW 2007, Australia
“BMW Group, Petuelring 130, 80788 Munich, Germany
4BotCraft GmbH, Lichtenbergstrafie 8, 85748 Garching, Germany

* Corresponding author. Tel.: +49-151-601-43345. E-mail address: thomas.schlegl @bmw.de

Abstract

Anomaly detection in manufacturing systems has great potential for the prevention of critical quality faults. In recent years, unsupervised deep
learning has shown to frequently outperform conventional methods for anomaly detection. However, tuning, deploying and debugging deep
learning models is a time-consuming task, limiting their practical applicability in manufacturing systems. We approach this problem by developing
a deep learning model that learns interpretable shapes that can be used for anomaly detection in temporal process data. Application of the model

to assembly tightening processes in the automotive industry shows a significant improvement in model interpretability and scalability.
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1. Introduction

Setting. In many manufacturing operations, detailed tempo-
ral data of the manufacturing processes is recorded and stored
for each part. The unsupervised detection of anomalies in this
process data allows to preemptively detect process or product
faults, that would otherwise go unnoticed [1, 2]. Approaches
based on Deep Learning (DL) have been shown to consistently
outperform conventional machine learning (ML) models for
anomaly detection in time series data [3, 4]. One of the great
challenges in the way of deploying these models is their lim-
ited scalability. Although this is one of the most frequently cited
non-functional requirements for ML-systems [5, 6], there exists
no criteria of what constitutes a scalable model [7, 8]. Never-
theless, it is possible to gain an intuitive understanding of what
we mean by a scalable model by considering the practical chal-
lenges of model deployment. In essence, a model is scalable if
it can be applied to the large number of processes that comprise
a manufacturing system [9] without the effort associated with
model development and deployment becoming unsustainable.
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Motivation. For this effort to remain tractable, the algorithm
must either reliably learn an effective anomaly detection model
or facilitate rapid improvement cycles. Since a one-size-fits-
all model is unrealistic for most real-world settings, scaling
a model will inevitably require such improvement cycles. To
avoid an iterative process of trial-and-error that usually relies
exclusively on model accuracy, we would like to be able to
understand what the model has learned. This would allow a
vastly more efficient improvement process and make it pos-
sible to anticipate model behavior prior to its productive de-
ployment. However, evaluating what a DL-model has learned
is extremely challenging. The convergence of model accuracy
alone says little about whether or not the model has learned a
sensible representation of the data. This is especially true for
unsupervised training, where evaluation of the model is made
difficult by the absence of labels. To this end, we propose an
interpretable DL-model for scalable anomaly detection in man-
ufacturing systems.

Structure. Section 2 recapitulates the rationale behind employ-
ing unsupervised deep learning for anomaly detection and gives
a brief overview of their application in the manufacturing do-
main. This is followed by a discussion of the difficulties as-
sociated with interpreting neural networks and an overview of
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different approaches aimed at tackling them. The research gap
regarding the development of inherently interpretable DL mod-
els is highlighted. Section 3 details the network architecture as
well as the modified convolution operation and custom learn-
ing objective used by our proposed model. More importantly,
we explain the rationale behind these design choices and show
how they allow us to learn interpretable representations that can
be used to detect anomalies. In section 3 we describe the appli-
cation of the model to real-world manufacturing data and com-
pare the results with those of a comparable benchmark model
in section 4. The implications of these results and the limita-
tions of the proposed model are discussed in section 5. A brief
summary of the paper and concluding remarks are provided in
section 6.

2. Literature

This section summarizes the rationale behind using unsuper-
vised DL models and gives a brief overview of their industrial
application to anomaly detection in time series data. This is fol-
lowed by a summary of the challenges identified by researchers
when attempting to scale these models, highlighting the need
for model interpretability. Lastly, different approaches are dis-
cussed that have been proposed to improve model interpretabil-

1ty.
2.1. Unsupervised deep learning for anomaly detection

An often-cited advantage of DL models over conventional
ML approaches is their ability to learn increasingly abstract
hierarchical features from the underlying data [10]. In princi-
ple, therefore, these models are well-suited for unsupervised
learning tasks. Data in the manufacturing domain is generally
characterized by its large size and absence of labels, which of-
ten mandates unsupervised learning approaches. To avoid the
expensive and time-consuming process of defining domain-
specific features [11], conventional ML approaches rely on
unsupervised feature extraction and selection algorithms. DL
models are able to avoid this intermediate step, that is often ac-
companied by a loss of information [12]. Empirical results sug-
gest that this advantage is considerable, as DL models tend to
outperform conventional machine learning approaches in terms
of accuracy [3, 4].

In recent years, researchers have begun to deploy DL-models
for the purpose of anomaly detection in time series data in
industrial settings [4, 13, 1, 14, 15]. These are sequence-to-
sequence models, that learn to model the underlying process
either by predicting subsequent time steps or reconstructing the
input sequence from a low-dimensional projection [16]. The as-
sumption underlying both approaches is that the model will be
unable to replicate an anomalous input sequence if it does not
conform to the same rules as most other sequences. While these
models tend to outperform conventional ML models, their scal-
ability remains challenging. As explained in section 1, the de-
ployability and operability of a DL model in a manufacturing
system depends on the effort required for model debugging and

improvement. To do so effectively, developers must understand
why the model does not deliver satisfactory performance [17].
A growing number of researchers support the notion that model
interpretability is vital for model understanding and thus model
improvement [7, 18, 19].

2.2. Interpretability of deep learning models

In practice, DL models are mostly treated as black-box mod-

els [20]. This is because the patterns and logic of combining
these patterns that are learned by the algorithm are difficult to
interpret [21]. Most pertinent work focuses on the aspect of
model transparency as defined by Lipton et al. [8], by devel-
oping techniques to analyze a trained model to understand the
patterns it has learned. A relatively straightforward approach is
to visualize the activations of individual cells and relate them to
features of the underlying data. By applying this approach to re-
current neural networks (RNN) for language processing tasks,
it was possible to show that some cells learn interpretable fea-
tures, such as keeping track of quotations, while others were
activated seemingly indiscriminately [22]. An extension of this
approach is the targeted maximization of certain activations via
appropriate alterations to the input data. This fictional input data
can then be analyzed to understand the feature the cell is detect-
ing. This effectively amounts to running the neural network in
reverse and is related to the concept underlying Google’s fa-
mous DeepDream computer vision program. Another approach
is to alter points of the input data and analyze the effect on the
prediction of the model to assess the importance of the points
under investigation.
Most of the pertinent literature on model interpretation focuses
on the retrospective evaluation of cell activations. Recently,
however, researchers have suggested that efforts should instead
be directed towards designing inherently interpretable models
[20, 18]. In this paper, we seek to address this research deficit
by proposing a number of design considerations to build an in-
herently interpretable DL model. Broadly speaking, the lack of
interpretability is due to the ability of the algorithm to arbitrar-
ily adjust any set of parameters in order to minimize the training
loss. Since conventional cost functions do not contain a mathe-
matical formulation of interpretability, the algorithm has no in-
centive to learn interpretable representations. The formulation
of an effective loss function can be used to address this issue [8].
This paper addresses the proposed research area of designing a
DL model that is able to learn interpretable temporal represen-
tations from unlabeled time series data. The practical motiva-
tion for this research is to facilitate the evaluation of the model
and enable a more effective deployment process.

3. Method

In the context of applied research, model interpretability is
not an end in itself but instead a means to an end - namely to
facilitate an efficient model improvement process. The ultimate
goal is to use the model for the detection of anomalies in differ-
ent manufacturing processes. To be able to detect meaningful
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anomalies, the model must learn a good representation of the
normal class [17]. Thus, we want the model to learn represen-
tations of normal process behavior that can be both interpreted
by humans and used for anomaly detection. In this section, we
explain the network architecture of the proposed model as well
as the motivation underlying its design choices. The model is
depicted in figure 1. For the purpose of didactic clarity, we sub-
divide the model into two networks (A) and (B) that serve the
two separate tasks of representation learning and anomaly de-
tection, respectively. The same representations that can be man-
ually evaluated by the human model developer are used by the
model itself for anomaly detection. The components pertaining
to each subnet are indicated in figure 1.

input sequence

anomaly score

Fig. 1. Network architecture consisting of subnet (A) for learning interpretable
representations and subnet (B) for the detection of anomalies in the input se-
quence

3.1. Learning interpretable representations

The architecture of network (A) is customized to learn in-
terpretable representations of the shapes that constitute the in-
put sequences. Given a set of sequences, the model learns an
average representation of the predominant shape for each sec-
tion of the sequence. When applied to unlabeled manufacturing
process data, the model will learn characteristic shapes shared
among the majority of fault-free sequences. This is possible,
because fault-free sequences make up the vast majority of avail-
able data in the manufacturing domain, due to the high repeat
accuracy and low fault rate of manufacturing processes. This
prerequisite is crucial to the applicability of the model. While
learning these shapes may seem trivial, understanding how a
class is represented in a model is important to understand what
it has learned [17].

The first step is the convolution of a number of k kernels with
an input sequence / of length /. The number k corresponds to
the number of independent shapes to be learned from the input
sequence and is the only parameter of the model architecture
intended for customization. The result is an activation map M

of size k x [ that shows where each kernel is activated along the
time axis. Rather than using a standard one-dimensional convo-
lution, we have defined a custom convolution operation x that
allows the model to learn weights that can directly reflect the
learned representations. We call x a deviation convolution. The
output C of a standard convolution operation between kernel
weights W and input sequence / is defined as their vector dot
product in equation 1

C=W'I=ZWj'ij (1)
J

In comparison, the output of our custom convolution is defined
as the sum of the absolute distance between the kernel weights
W and the input sequence [ in equation 2.

c=WHI= > (w;—ij’ )
J

Intuitively, the weights W will approach the values of the subse-
quence of [ as the loss approaches zero ¢ — 0. The next step is a
k min-pooling operation on the activation map M that returns a
quadratic pooled activation map m of size k X k. This activation
map m summarizes the activation information of each kernel
within each section of the input sequence /. Without interven-
ing in the learning process, multiple kernels can be activated
simultaneously along the same sections. Intuitively, this makes
it extremely challenging to interpret the kernel weights W, as it
requires separating the superimposing effects of multiple sets of
weights and node activations. This is known as feature entan-
glement and is what makes neural networks notoriously difficult
to interpret [23]. Rather than disentangling these superimpos-
ing effects, we want different kernels to be activated exclusively
at different sections along / with minimal overlap. This would
make it possible to avoid any obfuscating interaction between
them. Our model enforces this separating constraint through a
special loss function. To calculate the loss, we simple sum the
diagonal elements of m. Minimizing this loss via backpropaga-
tion forces each kernel to change its weights in order to obtain a
minimal deviation from / within its respective section. We call
this loss identity loss due its similarity to the diagonal elements
of the identity matrix.

3.2. Anomaly detection

Apart from being human-interpretable, the shapes learned
by the model provide a meaningful input to the RNN for
anomaly detection. The activation matrix M contains informa-
tion about both the extent and location of the coincidence of
the shapes along the input sequence, whereby the element M;;
describes the deviation between the i-th kernel around the j-
th timestep. The columns of M are used as the input vector
for the RNN, which aims to predict subsequent time steps of
the input sequence based on this information. Thus, the model
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learns to reconstruct the input sequence, based on the strength
and order of activations of the k kernels. This model structure,
which is trained minimizing the difference between its output
and the original input is known as an autoencoder. Thus, net-
work (B) used for the detection of anomalies is a single-layer
convolutional-RNN autoencoder. In fact, this structure is often
found on its own in literature, as the CNN directs the attention
of the RNN to a section of the sequence, aiding it in consider-
ing the temporal context of the input sequence. Based on the
reasoning previously outlined in section 2.1, the inverse recon-
struction error is used as a measure of normality.

4. Results

Application to real-world data. To assess the interpretability of
the proposed model, it was applied to a real-world dataset con-
sisting of 10.000 torque sequences of a tightening process in
the automotive assembly industry. The data contains 50 anoma-
lies that were individually labeled by process experts. To put
the results into context, we constructed a second benchmark
model that shared the architecture of subnet (B) as depicted
in figure 1, but contained neither the deviation kernel nor the
identity loss of the proposed model. As such, it is a simple
convoluational-RNN autoencoder trained only on the recon-
struction error. Both models, including the custom deviation
convolution and the identity loss were implemented using the
open source machine learning framework PyTorch. The same
model parameters and solver settings were used for training
both models. Based on this dataset, it is possible to compare
the performance of both models regarding their ability to detect
anomalies. In either case, a separating threshold is required to
distinguish normal from abnormal sequences based on their re-
construction error. To ensure comparability, figure 2 shows the
ROC-curves of both models, constructed by plotting the true
positive rate against the false positive rate for various thresh-
olds. Our proposed model shows a consistent improvement over
the benchmark model. This supports the claim made in 3, that
learning an accurate representation of the normal class greatly
improves the ability to detection anomalies.
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Fig. 2. ROC-curve for the proposed and benchmark models regarding their abil-
ity to detect meaningful anomalies

The proposed model successfully adjusts the weights of its
kernels to match the majority shapes of the input sequence as
discussed in section 3.1. Figure 3 depicts the learned shapes
at the points of their respective maximum coincidence along a
randomly selected sequence from the dataset.
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Fig. 3. Interpretable representations learned by the proposed model

In contrast, the weights learned by the benchmark model in
figure 4 exhibit no discernible relation to the input sequence.
This is unsurprising, as the standard one-dimensional convolu-
tion is unsuited for learning interpretable shapes. Nonetheless,
the benchmark model is able to successfully reconstruct the in-
put sequence with a reconstruction error similar to the proposed
model. In fact, the RNN is able to replicate the input sequence
I with only little input from the CNN. This is evident from the
fact, that most kernel weights W approach zero as the training
progresses, meaning they do not pass on any information to the
RNN.

Kernel 1 Kernel 2 Kernel 3
Time [s] Time [s] Time [s]

Fig. 4. Visualized kernels of the benchmark model

To understand the information that is available to the RNN
for the detection of anomalies, we will take a closer look at the
activation maps M of both models, depicted in figure 5. The ker-
nels of the proposed model are sequentially activated along the
time axis, forming a diagonal pattern of maximum activation.
This is to be expected as a direct consequence of the identity
loss. In case of an abnormality in the sequence, the respective
kernel is only weakly activated at that location and instead ex-
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hibits its maximum activation far from the diagonal. This makes
it relatively easy for the RNN to recognize the abnormal behav-
ior.
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Fig. 5. Activation maps of the benchmark model and the proposed model for
both normal and abnormal tightening curves

5. Discussion

In this section, we will discuss the implications of our find-
ings and take a critical look at the limitations inherent in the de-
sign of the proposed model. While some were deliberate design
choices, others became apparent during our subsequent investi-
gation.

Implications. Our findings show, that the weights of one-
dimensional convolutional kernels can be directly interpreted
as geometric shapes, if the model is (1) taught to minimize the
deviation between the kernel and target shape rather than the
dot product and (2) the kernels are confined to separate sections
during training to prevent their entanglement. Both were real-
ized through a customized learning objective. This illustrates
the importance of a suitable learning objective for solving real-
world objectives.

Limitations. A major drawback of the proposed model is the
intransparency of the RNN, which somewhat relativizes the ad-
vantage of learning interpretable shapes. While all anomalies in
the dataset exhibit local deviations from the normal shape of the
sequence, the model is not sensitive enough to detect smaller
anomalies. Although this information is contained in lower ac-
tivation values in M, the RNN failed to consider it. A second
drawback is the limitations inherent in the learning objective it-
self. The identity loss allows the model to learn only one shape
for each section of the sequence. While this may be sufficient
for processes that exhibit only statistical fluctuations, it is un-
suitable for processes with multiple modes of operation. In this
case, the model will fail to learn a meaningful representation for
the less frequent operating modes. For future work, the model
needs to be enhanced to allow it to learn multiple representa-
tions for each section. One approach is to use the convergence
rate of individual kernels to adapt the model during the training

process. During the investigation, we noted that some kernels
take significantly longer to converge than others for sections
where the input data exhibits increased variance. This informa-
tion could be used to dynamically extend the model. A third
drawback is the hyperparameter that sets the kernel length. To
decrease the deployment effort, this degree of freedom should
be eliminated by having the model learn optimal kernel lengths
that are best suited for the detection of anomalies.

6. Conclusion

We developed a DL model that is being able to learn mean-
ingful temporal representations in the input data. The ability
to visualize and evaluate what the model has learned enables
model developers to evaluate the effectiveness of their training
strategy. This, in turn, allows for shorter development and de-
ployment cycles with less time spent on debugging productive
models. While the results in section 4 show, that the model is
able to beat a comparable benchmark model in terms of accu-
racy for the provided data set, it is not possible to infer a general
model superiority. In this context, it is important to note, that it
is not possible to make general statements about the ability of
any anomaly detection model to detect quality faults. The ques-
tion of whether or not an anomaly is indicative of an underlying
product or process fault can only be answered by a process ex-
pert.
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