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Abstract: Currently there is no unified criterion to evaluate the failure of single-layer latticed domes, and an 

accurate numerical model is usually needed for the nonlinear time-history analysis (NTHA), which the uncertainties 

in practical engineering structures are not considered. The seismic instability of domes subjected to earthquake 

ground motions has not been widely investigated. In this paper, a new approach is developed to automatedly capture 

the instability points in the incremental dynamic analysis (IDA) of single-layer lattice domes by integrating different 

efficient and robust methods. Firstly, the seismic fragility analysis with the instability parameters is carried out using 

the bootstrap calibration method for the perfect domes. Secondly, based on the Sobol sequence, the Quasi-Monte 

Carlo (QMC) sampling method is used to calculate the failure probability of the domes with uncertain parameters 

efficiently, in which the truncated distributions of random parameters are considered. Thirdly, the maximum entropy 

principle (MEP) method is used to improve the computational efficiency in the analyses of structures with 

uncertainties. Finally, the uncertain interval of the domes is determined based on the IDA method. This proposed 

method has been used to investigate the instability of single-layer lattice domes with uncertain parameters. The 

results show that the proposed approach could determine the probability of structural failure with the high efficiency 

and reliability. The limitations of the approach for the parallel computation are also discussed.  
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1. Introduction 

The single-layer latticed dome is widely used because of its large size and light weight. However, its 
dynamic demands are highly nonlinear because its structural resistance capacity is affected by many 
factors,1 including various uncertainty sources in engineering construction. In deterministic methods, 
these sources are ignored in structural modelling. However, considering uncertain sources is necessary 
for the reliability of analysis results. Usually, probabilistic structural analysis methods are used in 
modelling structures with uncertainties. To reduce the computing time, high-precision sampling 
methods are also necessary, especially in nonlinear dynamic time-history response analyses (NDTHRA). 

For modelling a practical structure, uncertain sources can be classified into two categories: the 
uncertainty of the assumed external excitations, such as the uncertain number of selected earthquake 
ground motions, and the uncertain parameters in the numerical model.2 The number of selected ground 
motions is an important uncertain factor in estimating mean structural demands because the trade-off 
between variance and bias of seismic demands is affected by the number of selected ground motions. For 
model parameters, the important uncertain sources mainly include (1) the constitutive models of the 
material, (2) the damping mechanism, (3) the various geometry imperfections, and (4) the internal 
structural load. 

In constitutive models of materials, the elastic modulus and material strength are closely related to 
structural instability;3 nevertheless, the elastic modulus and material strength vary obviously in 
engineering structures. In the damping mechanism, different damping mechanisms exist in single-layer 



latticed domes, which leads to the uncertainty of the evaluation of serviceability limit states.4 In 
deterministic numerical modelling, it is often assumed that the model has no initial imperfections, but 
this is not true in practice. The mechanical behaviours of steel domes are substantially affected by 
imperfections;5, 6 therefore, they are imperfection-insensitive,7 in which random nodal deviations have a 
substantial influence on the stability of domes.8 In addition, the internal structure load is also a key factor, 
whose variation has an important effect on the seismic response of domes.9 In previous studies, each 
uncertain variable is considered to have a specific unbounded probability distribution, but in fact, the 
bounds of each variable exist.10 Therefore, the variables need to be truncated in the specific unbounded 
probability distributions. 

The performance assessment of a structure is usually described in terms of demands and capabilities, 
and the capability refers to the maximum acceptable structural response. The incremental dynamic 
analysis (IDA) method can be used to calculate the seismic demands and capacities and is widely used in 
nonlinear dynamic analyses.11 Originally, IDA was applied to the analyses of concrete structures and 
later applied to other structural systems.12 In IDA, to obtain the dynamic demands under different 
earthquake intensity levels, the constant loading step for the scale factors of the acceleration values is 
used because of its convenience. Based on an IDA curve, the intensity level of the ground motion and the 
structural demand can be described by an intensity measure (IM) and an engineering demand parameter 
(EDP).13 The maximum demands for a single-layer latticed dome have been investigated using IDA.14 
With the benefit of IDA, seismic fragility analysis can be performed to quantify the failure probability of 
a given instability level using a function with the independent variable IM.15 However, the accuracy of 
this fragility function depends on the sample characteristics and sample size. To solve this problem, the 
bootstrap method is used to improve the sample characteristics in a small sample size. Some researchers 
16-18 have carried out engineering applications using the bootstrap method with small sample sizes. This 
method is widely used in management science, risk analysis, and clinical trials fields,19 and it has not 
been widely applied in the analyses of civil structures. In this paper, this method is used in structural 
analyses because of its advantages in statistics. 

When carrying out the analyses of structures with uncertainties, it is noted that an appropriate 
sampling method is important for structural analyses. Among the probabilistic models for uncertainty 
propagation, the Monte Carlo (MC), quasi-Monte Carlo (QMC), and Latin hypercube sampling (LHS) 
methods are widely used due to their general applicability and robustness, and they are the most reliable 
methods for calculating the probability of failure.20 For the direct MC method, its rate of 
convergence	𝑂(1/√𝑛) is very slow,21 while the quasi-Monte Carlo (QMC) method has a smaller error 
convergence order, which is asymptotically equal to 𝑂(1/𝑛).22 Compared with the direct MC method, it 
is evident23 that the QMC method based on the Sobol sequence is a better method, and the results are 
consistent with the theoretical predictions. In this paper, Sobol’ sequence is adopted to perform the QMC 
simulations. Moreover, the maximum entropy principle (MEP) is a statistical tool that predicts the most 
unbiased probability distribution from samples.24 According to the probability distributions of variables, 
it is easy to obtain the probability of structural failure; thus, the MEP can further reduce the sample size 
when capturing the probability of failure. In this paper, the MEP is introduced to calculate the probability 
of failure.   

In the framework of this paper, first, the perfect single-layer latticed dome is investigated using the 
deterministic method to find the instability points under 7 typical earthquake ground motions based on 
IDA, and the displacement characteristics of the dome structure are analysed. The seismic fragility 
analysis of the perfect structure is carried out to describe the probability of structural failure, and two 



methods for solving the probability of structural failure are discussed. Then, the single-layer latticed 
dome with uncertain parameters is investigated using the structural probabilistic methods, in which the 
QMC and the MEP methods are utilized to evaluate the probability of failure, and the efficiency of the 
sampling methods are also compared, including the MC, the QMC, and the LHS methods. Finally, the 
advantages and disadvantages of the used, improved, and proposed methods in this paper are discussed. 
2. Methods based on IDA 
2.1 IDA with a tracing algorithm 

IDA curves can be described by the relationship between IM and EDP. The peak ground acceleration 
(PGA) is a common IM.25 In this study, to find accurate instability points, the statistical maximum 
displacement of all the nodes of a dome (𝑈!"#) was selected as the EDP. 

In terms of the structural instability, at present, there is no unified criterion for judging the instability 
point of domes, and empirical methods are usually considered.1, 26 However, the literature27 provided the 
general regulation on the global stability limit for welded steel-moment frame buildings: the straight line 
slope between consecutive points is less than 0.2 times the elastic slope. In this paper, the regulation of 
the global stability of the domes is introduced for the domes in the absence of a better judgement criterion 
as a reference. Researchers have developed algorithms to determine the instability point. The stepping 
algorithm is a common method to increase the IM until the structure loses stability. Although this method 
is simple and direct, the quality of the IDA curve depends on the size of the step. If the step size is too 
large, it is difficult to capture the exact location of structural instability; if the step size is too small, the 
calculations are time-consuming. Another method is the hunt & fill tracing algorithm,28 which can 
overcome these difficulties by changing its steps automatically. In this paper, a new interpolation 
algorithm is considered to improve the hunt & fill tracing algorithm to accurately calculate the 
incremental dynamic curve and find the instability point. 

 
Fig. 1. The tracing algorithm of IDA. 

The interpolation algorithm used in this paper is described in Fig. 1. The factor 𝑓$%&  increases by a 
constant 𝑏 based on the factor 𝑓$ of the 𝑘'( step, that is, 𝑓$%& = 𝑓$ + 𝑏, as shown in Fig. 1(a). If the 
use of the factor 𝑓$%& results in 𝑈!"# exceeding a specified large value 𝑋, the constant 𝑏 is reduced, 
as shown in Fig. 1(b). The factor of the (𝑘 + 1)'( step is changed to 	𝑓$%&) = 𝑓$%& − (𝑓$%& − 𝑓$)/3 
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until 𝑈!"# is less than 𝑋. Next, the factors corresponding to the displacement interval within the 
range of (0, 𝑈′$%&) are interpolated. The interpolated factor is 𝑓*,, = 𝑓-,, + (𝑓.,, − 𝑓-,,)/3, in which 
𝑓.,, and 𝑓-,, are the large and small factors corresponding to the displacement interval, respectively, as 
shown in Fig. 1(c). Here, to ensure the calculation accuracy, the number of calculations is set to 𝑇 times. 
In this paper, the effect of the calculation times 𝑇 on the accuracy is discussed. In addition, in the above 
calculation process, if 𝑓.,, and 𝑓.,,%& are the same, 𝑈-,,%/ and 𝑈.,,%/ are chosen, which are less 
than 𝑈.,,, as shown in Fig. 1(d). This can reduce the unnecessary calculations that are introduced 
when the displacement is too large. 

The above algorithm avoids the disadvantages of the traditional constant step algorithm and saves 
calculation time because of its characteristic of automatically calculating the magnification factor. 
Therefore, the computing efficiency and accuracy can be greatly improved. A comparison between the 
two algorithms is discussed in this paper. 
2.2 Fragility analysis 

Generally, the fragility function can be expressed in the following form:29 

𝑃0[𝐷 > 𝐶|𝐼𝑀 = 𝑖𝑚] = 1 − 𝛷 ? 123!4123"
56#$"

% %6#$!
%
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in which 𝐷 is the seismic demand; 𝐶 is the structural capacity, which is assumed to be lognormally 
distributed;30 𝜇7 is the median value of the structural capacity; 𝜇* is the median value of the seismic 
demand; and 𝜎12*  and 𝜎127  are the associated logarithmic standard deviations of the demand and 
capacity, respectively. 

In this paper, the second order polynomial was used to fit the data to obtain better fitting 
effectiveness: 

ln𝜇* = 𝛼8 + 𝛼&ln𝐼𝑀 + 𝛼/(ln𝐼𝑀)/                       (2) 
in which 𝛼8, 𝛼&, and 𝛼/ are the coefficients that can be obtained by regression analyses. 𝜎12* can be 
calculated by the following equation:29 
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in which 𝐷, is the data from the IDA curves, and 𝑁 is the size of the data points. In this paper, 𝜇7 and 
𝜎127  are the mean value and the standard deviation of the displacements of the instability points, 
respectively. After the IDAs were performed using the deterministic method, these results were used for 
regression analyses. 

Fragility analysis is a classical method, but its accuracy greatly depends on the size of the earthquake 
motion records. Considering the trade-off between bias and variance and calculation time, the number of 
ground motion records used in structural analyses is usually limited. Therefore, in this paper, the 
bootstrap resampling method is introduced to increase the sample size and improve the estimation 
accuracy of the statistical parameters; see the following section. 
2.3 Bootstrap calibration for the statistical parameters 

The bootstrap method is illustrated in Fig. 2. A new sample set 𝑥∗ with a sample size 𝑛 is extracted 
and generated from the original data set 𝑥 with a sample size 𝑛 using the equal probability method. It 
should be noted that some data in the new set 𝑥 may be the same. The resampling process is carried out 
𝐵 times. Usually, the resampling time of 𝐵=200 is sufficient for estimating standard errors in the 
bootstrap method.31 From the new sample set 𝑥∗, the statistical parameter 𝜃L∗(𝑖) can be computed, 
which can be the mean value, the standard deviation, or the variance. Finally, the mean value and 



variance of the statistical parameters 𝜃L∗(𝑖) can be obtained. This process is able to calibrate the initial 
data set 𝑥.  

 
Fig. 2. Flowchart of the bootstrap method 

In this process, a larger number of resampling times 𝐵 can obtain better accuracy. In this paper, the 
resampling time 𝐵 is set to =104. A simple example is given to describe the accuracy of the method in 
evaluating the standard deviation of the parameters assuming that 𝑋 is a random variable with a normal 
distribution, 𝑋= ∼ 𝑁(1, 0.5/). The standard deviations using the bootstrap method and the LHS method 
are listed in Table 1 under different small sampling sizes. The theoretical value of the standard deviation 
of 𝑋= is	𝜎 = 0.5. From Table 1, it seems that the standard deviations estimated by the bootstrap method 
are the same as those estimated by LHS under small sampling sizes. 

Table 1 Standard deviation 𝜎 with small sample sizes. 

Sample size 𝜎! (bootstrap method) 𝜎! (LHS method) 

7 0.3730 0.4209 

20 0.4937 0.5097 

30 0.4921 0.5058 

40 0.5058 0.5164 

60 0.5057 0.5124 

100 0.5009 0.5031 

Table 2 Accumulative errors of the two methods. 
Sample size error, 𝑒 (bootstrap method) error,	𝑒 (LHS method) 

7 2.4681 2.9326 

20 0.9018 0.9989 

30 0.6321 0.7037 

40 0.4701 0.5147 

60 0.3329 0.3601 

100 0.2237 0.2298 

However, the randomness of resampling has an effect on the statistical value. Therefore, to further 
evaluate the precision of the two methods, each sample process in Table 1 is replicated 1000 times. The 
evaluation formula of the accumulative error is as follows: 

𝑒 = GS (𝑘 − 0.5)/&888
!>&                               (4) 

in which 𝑘 = 𝜎?. The accumulative errors are listed in  
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7 0.3730 0.4209 

20 0.4937 0.5097 

30 0.4921 0.5058 

40 0.5058 0.5164 

60 0.5057 0.5124 

100 0.5009 0.5031 

Table 2. It can be seen that the accumulative error using the bootstrap method was smaller than that using 
the LHS method for each sample process, indicating that compared with the LHS method, the bootstrap 
method has a higher precision in estimating statistical parameters in a small sample size. 
3. Sampling methods 
3.1 Sobol sequence sampling 

In the QMC method, the Sobol sequence is used for sampling because of its uniformity and ease of 
construction. In the 1-dimensional case, the primitive polynomial that has the degree 𝑠 and coefficients 
	𝑎, (between 0 and 1) can be written as: 

𝑝(𝑥) = 𝑥@ + 𝑎&𝑥@4& +⋯+ 𝑎@4&𝑥 + 1				                    (5) 
The detailed construction of 	𝑝(𝑥) can be found in.32 These coefficients of the primitive polynomial 

can define a sequence of odd integers with the following recursive relation: 
𝑚$ = 2𝑎&𝑚$4&⊕2/𝑎/𝑚$4/⊕⋯⊕2@4&𝑎@4&𝑚$4@%&⊕2@𝑚$4@⊕𝑚$4@		        (6) 

in which ⊕ is the bit-by-bit exclusive-or operation, and 	𝑚$ is less than 2$; here, 𝑘 = 1,2,… , 𝑠. The 
direction number is defined as: 

𝑣$ =
!*
/*

                                    (7) 

The Sobol points can be recursively generated by the following equation:33 
𝑥$%& = 𝑥$ ⊕𝑣A*                              (8) 

in which the symbol 𝑐$ represents the index of the rightmost zero bit in the binary representation of the 
integrate 𝑘. The literature33, 34 provides more details for creating the Sobol sequence. 

However, the QMC method still requires a large number of calculations to obtain the probability of 
failure. To reduce the computing number, the MEP is used in this paper, as shown in the following 
section. 
3.2 Maximum entropy principle 

The MEP can obtain the probability density function (PDF) 𝑓(𝑥) of the estimated demand (such as 
the displacement) by maximizing the entropy, 𝐻(𝑋) . The PDF can be solved by the following 
expressions:24 
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in which 𝑏, is the origin moment of the 𝑖'( order, 𝑚 is the highest order of the origin moment in the 
sample, and	𝑁 is the sample size. Thus, 𝑓(𝑥) can be expressed as:24 

𝑓(𝑥) = 𝑒4(C+%9 C&
,
&() D-)                              (10) 

in which 𝜆, denotes a Lagrange multiplier, and 𝜆8 is expressed as: 

𝜆8 = ln(∫ 𝑒49 C&
,
&() D-𝑑𝑥)                             (11) 

To solve 𝜆, with high efficiency, an unconstrained minimization method is used:35 

min			∫ 𝑒49 C&
,
&() (D-4E&)𝑑𝑥                             (12) 



Thus, 𝜆8 and 𝑓(𝑥) can be solved by Eqs. (11). In this paper, the above calculation was implemented by 
the genetic algorithm (GA). 
4. Application 
4.1 Dome structure 

In this paper, the above proposed methods are applied to a single-layer latticed dome, which has a span 
of 60 m, a height of 12 m and a span-rise ratio of 5, as shown in Fig. 3 and             Fig. 4, 
respectively. The sizes of the tubular steel members used are listed in Table 3. The steel material 
properties of the members in the perfect dome are shown in Table 4. A load of 150 kg/m2 was assumed, 
and the mass was concentrated at the joints. Both geometric nonlinearity and material nonlinearity were 
considered. The numerical analyses were carried out using the commercial FEM software ABAQUS. 
The source code of all the above algorithms is written in Python language. In the numerical model, each 
member was modelled with two beam elements with pipe cross sections. 

In this paper, the structural reliability is evaluated by the failure probability of structures with 
uncertainties subjected to earthquake ground motions. The probability of failure 𝑃0  for structure 
instability is defined as: 

𝑃0 = 𝑃[𝑦(𝑥&, 𝑥/, . . . 𝑥F) − 𝑦∗ ≥ 0]                         (13) 
where 𝑥 is the input variable, 𝑦(𝑥&, 𝑥/, . . . 𝑥F) is the corresponding structural response, and 𝑦∗ is the 
structural instability point obtained based on the IDA of the perfect structure. 

 
Fig. 3. Plane view of a dome.            Fig. 4. Elevation view of a dome. 

Table 3 Cross sections of the members. 

Member Size/mm 

Ridge member Φ=155; 𝑡=5.2 

Hoop member Φ=155; 𝑡=5.2 

Diagonal member Φ=148; 𝑡=5 

Table 4 Material Properties. 

Material parameters Value 

Elastic modulus /GPa 206 

Yield strength, fy /MPa 235 

Ultimate strength, fu /MPa 350 

Ultimate strain 0.25 
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Poisson's ratio 0.3 

Material density /(kg/m3) 7800 

4.2 Stochastic parameters 
In this paper, the stochastic parameters considered include the node deviations, the load, the elastic 

modulus and yielding strength of the steel material, and the structural damping ratio, which are listed in 
Table 5. These stochastic parameters are collected from various sources36-39 and are assumed to be 
independent. In practical engineering, the above variables have upper and lower bounds,10 and they 
cannot be in the range of (−∞,+∞). In this paper, the truncated distribution functions of the variables 
are used in structural analyses. The values are considered in the interval of [𝜇 − 2𝜎, 𝜇 + 2𝜎],40 which 
can ensure that the probability that the variable values are within the range is 95.5% for variables with 
a normal distribution. 

Table 5 Random parameters of the dome. 

Name 
Mean 

COV Distribution 
Reference36-39 In this paper 

Elastic modulus /GPa 206 206 0.03  Normal 

Yield strength /MPa 251 235 0.081 Lognormal 

Node deviation /m L/500 0.12 0.5  Normal 

Load /(kg/m2) 143 150 0.1  Normal 

Damping ratio 2% 2% 0.4  Normal 

The nodal deviations are assumed to follow a normal distribution of 𝑋 ∼ 𝑁(0, (𝑅 2⁄ )/),8 in which 𝑅 
is the maximum nodal deviation, and it is set to 1/500 of the span.41 In terms of damping in the dome, the 
conventional Rayleigh damping model is adopted for modelling structural damping in the dynamic 
structural analyses because of its convenience. The damping ratio in the 𝑘'( mode can be defined as: 

𝜉$ = 𝛼 &
/G*

+ 𝛽 G*
/

                                (2) 

For single-layer latticed domes subjected to earthquakes, a more appropriate damping model is 
recommended,42 in which 𝜔, and 𝜔B are set as 0.667𝜔& and 3𝜔&, respectively, and 𝜔& is the first 
circle frequency. The parameters 𝛼 and 𝛽 can be obtained based on 𝜔,, 𝜔B and 𝜉$. It should be 
noted that in structures with uncertainties, 𝛼 and 𝛽 are updated for each sample structure based on an 
eigenvalue analysis. Here, the structural damping ratio is set to 2%.43 



 

Fig. 5 Samples of the variables: (a) load, (b) elasticity modulus, (c) damping ratio, (d) yielding strength, and (e) 

single node deviation at the top. 
At present, there is no unified criterion for the sample size of structures. Usually, the sample size is 

defined when the characteristics of the stochastic variables or the demand values of the structure tend to 
be stable. To speed up the computing process, a large number of sampling computing tasks can be 
completed in the parallel mode in Python by means of the multi-processing modules. The computer has 
16 CPUs, one of which controls the main process that manipulates the script, and it does not participate in 
computing. Therefore, the calculation speed for the structures with uncertainties can be increased by 
10-15 times for the QMC sampling method. In this paper, the sampling size in the sobol sequence was set 
to 9000. Based on this sampling size, the samples of the stochastic parameters are shown in Fig. . These 
samples effectively reflect the stochastic characteristics of the variables. 
4.3 Earthquake ground motion 

In this paper, three-dimensional earthquake ground motions are applied to the domes. Seven typical 
earthquake ground motion records are selected from the PEER Strong Ground Motion Database. The 
information of these records is listed in Table 6. The gravity load is applied first before the dynamic 
analyses, and then the seismic loads are applied to the domes. 

Table 6 Seven typical earthquake ground motions. 

Number Earthquake Year Station name 
PGA /(m/s2) 

x y z 

1 Big Bear-01 1992 Silent Valley - Poppet Flat 0.589 0.680 0.461 

2 Coyote Lake 1979 Gilroy Array #1 0.922 1.143 0.620 

3 Duzce 1999 Lamont 531 1.211 1.572 0.622 

4 Kobe 1995 Nishi-Akashi 4.736 4.550 3.789 

5 Landers 1992 Twenty-nine Palms 0.786 0.591 0.388 
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6 Livermore-01 1980 Tracy - Sewage Treatment Plant 0.478 0.773 0.222 

7 Morgan Hill 1984 Gilroy Array #1 0.682 0.968 0.924 

4.4 A comparison between the constant step algorithm and the interpolation algorithm 
Based on the above regulation on the global stability, the comparative results between the constant 

step algorithm and the interpolation algorithm in finding instability points are shown in Fig.  under 
the Coyote Lake ground motion, in which IP represents the instability point. For the constant step 
algorithm, 𝑏 is a constant (see Section 2.1), and 𝑇 and 𝑇	′ are the required calculation times for 
finding the instability point. 

According to Fig. 6, it can be seen that the instability point calculated using the constant step 
algorithm is not stable because when the step size is small, the instability point is easily disturbed 
by the negative slope, which makes the calculated instability displacement small (see the green 
point in Fig. 6). In addition, in the constant step algorithm, even if the step size is appropriate, the 
position of the instability point also fluctuates. In addition, the required calculation times 𝑇' in 
the constant algorithm have a substantial effect on the judgement of the instability point. Therefore, 
it is difficult to find the accurate position of instability points with a constant step algorithm. For 
the interpolation algorithm (current algorithm), it is observed that the instability points are stable. 
It is found that 𝑇 in the interpolation algorithm has little effect on the judgement of the instability 
point. Therefore, the interpolation algorithm has more advantages than the constant step algorithm 
in finding the instability point of the dome. 

 
Fig. 6 IDA curve and instability point for different algorithms. 

5. Results 
5.1 IDA of the perfect structure 
5.1.1 IDA curves 

In the IDA, the maximum statistical displacement of the single node, 𝑈!"#, is quantified using the 
following expression: 

𝑈!"# = max	 |,>&,>F(max	 sG𝑈,,H,'/ +𝑈,,I,'/ +𝑈,,J,'/ t)                (3) 

in which 𝑈,,H,', 𝑈,,I,', and 𝑈,,J,' are the displacement components in the 𝑋, 𝑌, and 𝑍 directions at 
time 𝑡 for the 𝑖'( node, respectively, and 𝑛 is the number of nodes in the dome. The IDA curves and 
corresponding instability points of the dome structure under 7 earthquake ground motions are shown in 
Fig. 5. Fig. 7 shows that the maximum PGAs of the earthquake ground motions range from 
approximately 10 m/s2 to 50 m/s2 when the dome loses stability. The mean curve of these IDA curves is 
constructed in Fig. 7, and it is found that the mean curve is close to the one under the earthquake Big 
Bear-01, and the corresponding instability point will be adopted to investigate the probability of failure 
of structures with uncertainties in the following sections. 
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Fig. 5. IDA curves under different earthquakes. 

5.1.2 Displacement characteristics in the IDA 
5.1.2.1 Vertical displacement ratio 

Compared with ordinary buildings, domes tend to lose instability in the vertical direction.44 In this 
paper, this characteristic of the dome is quantified using the vertical displacement ratio (𝑉𝐷𝑅), which is 
defined as: 

𝑉𝐷𝑅 = KL.
/ K

KL0
/ K%KL1

/ K%KL.
/ K

                              (4) 

in which 𝑈H) , 𝑈I) , and 𝑈J)  are the three components of 𝑈!"#  in the 𝑋 , 𝑌 , and 𝑍  directions, 
respectively. 

The VDRs under different earthquakes are shown in Fig. 6. It is observed that the VDR presents a 
characteristic that decreases first and then increases as the PGAs increase, such as the blue dotted curve 
shown in the figure. After the dome loses stability, the VDRs increase sharply. In addition, almost all 
VDRs are larger than 0.5 under these earthquakes, indicating that the vertical displacement component 
plays an important role in the structural instability. 

 
Fig. 6. Vertical displacement ratio (VDR) of the nodes under different earthquakes. 

5.1.2.2 Maximum downward vertical displacement in the dome 
According to the above analysis, |𝑈(' | has a substantial contribution to the maximum statistical 

displacement 𝑈!"#  because of the high VDRs. In this paper, the maximum downward vertical 
displacements (𝑈!"#,*( ) of the nodes in the direction of −𝑍  are further discussed under the 
earthquake Coyote Lake. A comparison between |𝑈J) | and 𝑈!"#,*( is carried out in the process of 
IDA, and the node positions with the maximum displacements are also marked, as listed in Table 
7, in which the smaller the node number, the closer the node position is to the top of the dome. 
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From Table 7, it is found that the values of |𝑈J) | and 𝑈!"#,*( are almost identical, and the node 
positions with the maximum displacements are basically the same, except when the node numbers are 65 
and 80. This indicates that |𝑈(' | or 𝑈!"# can be directly replaced with 𝑈!"#,*( to simplify the 
calculation investigating the characteristics of the structural instability of the dome, similar to the 
descriptions in the literature.10 In addition, when the structure loses stability, it is found in the IDA 
process that the structural instability first originates from the local concavity at the nodes with the larger 
numbers, that is, the nodes that are close to the supports. 

Table 7 A comparison between |𝑈"# | and 𝑈$%&,(". 

|𝑈"# | /m Node No. 𝑈$%&,(" /m Node No. 

0.01 15 0.01 15 

0.07 84 0.07 84 

0.25 80 0.25 80 

0.30 65 0.31 80 

0.53 79 0.53 79 

0.72 79 0.72 79 

0.79 79 0.79 79 

0.81 79 0.81 79 

0.93 68 0.93 68 

2.12 51 2.12 51 

24.72 1 24.72 1 

5.1.2.3 A parametric analysis for 𝑈!"# 
  Usually, the structural displacement response depends on the design parameters. In this paper, the 
effects of the structural internal load and the span-depth ratio on 𝑈!"# are further investigated under 
the earthquake Big Bear-01. Fig. 7(a) shows the effect of the structural load on 𝑈!"#. It can be seen 
that the structural internal load has a very small effect on 𝑈!"# when the PGAs are small; however, 
when the PGAs are large, the effect on 𝑈!"# increases, and as expected, the greater the internal load, the 
greater 𝑈!"# is. Error! Reference source not found. shows the effect of the span-depth ratio on 𝑈!"#. 
The conclusion drawn from Error! Reference source not found. is consistent with that drawn from Fig. 
10(a). 

 

Fig. 7. The effect of the design parameters on 𝑈$%&: (a) structural internal load, and (b) span-depth ratio. 

5.2 Seismic fragility analysis for the perfect structure 
The displacements at the instability points in Fig. 7 are used for fragility analysis. The relationship 

between the EDP and the IM and its fitting curve are shown in Fig. 10. The fitting curve is used to carry 
out the fragility analysis. To increase the fitting precision of this curve, the fitting formula of the 
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quadratic polynomial is utilized. 

 
Fig. 8 Relationship between the EDP and the IM. 

To construct the fragility curve, the statistical parameters are listed in Table 8. A comparison is carried 
out between the unmodified method and modified method. It is observed that the effect of the sample size 
on the precision of the parameters in the unmodified method is substantial, especially for the standard 
deviation, and a larger sample size can obtain a higher precision for the unmodified method. 

Table 8 Statistical parameter estimation with the bootstrap method. 

Statistical parameters Unmodified value Modified value, 𝜃)∗*** 

ln	(𝜇*) -0.146 -0.146 

𝜎+,* (sample size=7) 0.137 0.127 

𝜎+,-	(sample size=84) 0.518 0.518 

According to the above two methods, two seismic fragility curves are shown in Fig. 9. In general, 
these two curves are similar, but when the PGA is small, the probability of instability using the 
unmodified method is higher than that using the modified method; when the PGA is large, the opposite is 
true. The probability of instability is slightly affected by the two methods. 

 
Fig. 9 The uncorrected and corrected seismic fragility curves. 

5.3 Probability of dynamic instability of the structure with uncertainties 
In this section, the probability of dynamic instability of the structure with uncertainties is investigated, 

and the earthquake Big Bear-01 is considered as the external excitation. According to the IDA for the 
perfect structure, 0.705 m is selected as the limit displacement (see Fig. 7). In this section, the calculation 
efficiency of different sampling methods is compared in terms of the probability of structural failure. The 
effect of the sample size on the dynamic demands and the errors of the probability of structural failure are 
also analysed. 
5.3.1 Comparison of the sampling method efficiency 

The scale factor of the earthquake ground motion Big Bear-01 is set to 30. The failure probabilities 
using different sampling methods for the structures with uncertainties are shown in Error! Reference 
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source not found.. It can be seen that the efficiency of LHS and QMC is relatively close, and the 
results converge for both methods when the sample number is close to 2800 in capturing the small 
probability of failure. However, for the direct MC method, the results converge when the sample 
number is close to 5000. Therefore, the calculation efficiency of the QMC and LHS methods in 
capturing the small probability of failure is higher than that of the MC. Although the LHS and QMC 
have similar calculation efficiencies, as an alternative, the QMC method that has not been widely 
investigated in the dynamic analyses of single-layer latticed domes is utilized for sampling. However, 
in estimating the mean structural dynamic demands, the mean value of 𝑈!"# converges when the 
sample size is only close to 1000 because of the use of the truncation sampling method with the sobol 
sequence algorithm, as shown in Fig. 13. 

 
        Fig. 10 Comparison of the sampling methods.     Fig. 11 Effect of the sample size on the dynamic demand. 

In this study, the MEP is used to solve the probability density function of 𝑈!"#. The first four order 
origin moments are used in the MEP method. A comparison is performed between the unmodified 
method and the modified method. The results are shown in Fig. 14. 

Fig. 14(a) shows the results of the unmodified method. It is observed that for the unmodified method, 
it is difficult for the results to converge, especially for the 4'(-order origin moment; thus, the MEP 
method is time-consuming and unreliable for this application. To solve this problem, the modified MEP 
is proposed to improve the samples without changing the failure probability. The modified process is as 
follows: if 𝑈!"# > 𝑘, then 𝑈!"# = 𝑘 (𝑘 > 0.705 m); here, 𝑘 is the cut-off point. The values of 𝑘 are 
listed in Table 9. From Table 9, it can be seen that the probability of instability increases and then 
decreases with increasing 𝑘. Finally, the maximum value is selected as the result of the probability of 
structural failure. 

Fig. 14(b) shows the results of the modified method. The results of the origin moment of each order 
converge when the sample sizes are only close to 500. Therefore, this method can obtain reliable 
calculation results. To further improve the precision, the number of samples is set to 2000 for the 
maximum entropy principle method.  
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1.5 2.62% 

Table 10 lists the final results of the probability of structural failure and the error. From  
Modified MEP 

The cut-off point 𝑘 /m Probability of failure 

0.8 2.22% 

0.9 3.37% 

1.0 3.82% 

1.1 3.77% 

1.2 3.77% 

1.3 3.77% 

1.4 2.94% 

1.5 2.62% 

Table 10, compared with the QMC method, the probability of failure using the modified MEP method 
is less than that using the QMC method. 

When the scale factors are 29 and 28, the final results of the probability of structural failure are listed 
in Tables 11 and 12, respectively. According to Tables 10-12, it is evident that with a decrease in the 
probability of failure, the error of estimating the probability of failure increases. 

 
Fig. 12. The mean values of the origin moment of each order: (a) unmodified and (b) modified. 

Table 9 The probability of failure of the cut-off point. 

Modified MEP 

The cut-off point 𝑘 /m Probability of failure 

0.8 2.22% 

0.9 3.37% 

1.0 3.82% 

1.1 3.77% 

1.2 3.77% 

1.3 3.77% 

1.4 2.94% 

1.5 2.62% 

Table 10 Probability of failure and relative errors of the two methods (scale factor = 30). 
 QMC  Modified MEP 

Probability of failure 3.92%  3.82% 

Relative error  2.55% 

Table 11 Probability of failure and relative errors of the methods (scale factor = 29). 
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Probability of failure 2.12% 2.19% 

Relative error 3.30% 

Table 12 Probability of failure and relative errors of the methods (scale factor = 28). 
 QMC Modified MEP 

Probability of failure  1.12% 1.06% 

Relative error 5.36% 

5.4 Bounds of the IDA curves of the structures with uncertainties 
In the sampling, when the parameters such as the maximum structural internal load, the minimum 

elasticity modulus, the minimum damping ratio, and the minimum yielding strength in a structure with 
uncertainties are drawn at the same time, this is the most dangerous situation for the structure stability, 
and it is determined to be the unfavourable case in this paper. Similarly, according to the analysis, the 
most favourable case can also be defined. It should be noted that for the deviations of the nodes, it is 
difficult to determine the most dangerous effects because of the randomness of their spatial locations; 
therefore, in this case, the node deviations are not considered. Thus, the unfavourable bound of the IDA 
curve under the earthquake Big Bear-01 can be approximately estimated, as shown in Fig. 13. 

From Fig. 13, it can be seen that when the structure loses stability, the PGAs of the two cases are 
17.11 m/s2 and 37.22 m/s2, respectively. This means that when the PGA is larger than 37.22 m/s2, 
whether it is a perfect structure or a structure with uncertainties, the structure will certainly lose 
stability. When the PGA is less than 17.11 m/s2, the probability of structural failure is extremely low, 
which depends on the randomness of the node errors, and the uncertainty of the parameter increases the 
probability of structural failure. 

 
Fig. 13. IDA curves of the unfavourable and favourable cases. 

6. Discussion 
Compared with the conventional methods, the used, improved, and proposed methods in this paper 

are substantial, and the results for the instability and the failure probability analyses have high 
reliability. 

Compared with the constant step algorithm, the interpolation algorithm used in this paper can 
capture the instability points more accurately and steadily. Through improving the statistical parameters 
in the small sample using the bootstrap calibration method, the calculated probability of failure in the 
seismic fragility analysis has a higher precision. 

Compared with the direct MC sampling method, computing the probability of structural failure 
requires less time based on the QMC. The use of the improved MEP method can further reduce the 
calculation time of the probability of structural failure and solve the divergence problem in the 
conventional MEP method. The relative estimation error for the probability of structural failure is 
approximately 5%. 
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With the wide use of parallel computing,13 it is natural to utilize this promising method to speed up 
IDA calculations. However, there are some limitations to the current study. For the IDA interpolation 
algorithm in this paper, it is difficult to use the multicore parallel computing for an IDA curve because 
the follow-up calculation needs the result from the previous step. In addition, in Fig. 15, the node 
deviations are difficult to consider. Therefore, the estimation of the PGA in the unfavourable case is an 
approximation. 
7. Conclusions 

In the present study, the IDA instability algorithm, the modified seismic fragility analysis based on 
the bootstrap calibration method, and the collapse probability of dynamic instability using the QMC 
and MEP methods are investigated for the single-layer latticed dome. According to the above results, 
the following conclusions can be drawn: 
•The vertical displacement ratio (𝑉𝐷𝑅) is quantified, which is within the range of 0.5 and 1, and the 

single-layer latticed dome is a vertical-displacement-sensitive structure. 
•𝑈!"#,4J  can directly replace |𝑈J) |  or 𝑈!"#  to simplify the calculation and can be used to 

investigate the problems of the structural instability. The instability of the structure first comes from the 
nodes that are close to the supports. 
•The structural design parameters, such as the load and span-depth ratio, have a small effect on 𝑈!"# 

when the PGAs are small, but when the PGAs are large, the effect increases. Through the IDA for the 
unfavourable case, the PGA of the earthquake ground motion resulting in structural instability with an 
extremely low failure probability can be approximately estimated. 
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