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Abstract—A reduced-order model of a converter-dominated
microgrid system may not resemble its full-order system
associated with uncertainties. This paper aims to provide a
singular perturbation-based contraction framework for model
order reduction in converter-dominated uncertain microgrid
systems. For this purpose, the concerned microgrid system
is modeled as a generalized multi-timescale system, and
certain sufficient conditions are derived such that convergence
between the trajectories of the uncertain full-order and
the corresponding reduced-order model can be guaranteed.
The contraction theory-based strategy also provides explicit
parameter-dependent expressions for quantifying discrepancies.
The derived results are utilized to analyze the inverter-based
microgrid system’s convergence behavior and obtain uncertainty
bounds on its parameters. Further, the effects of modeling
uncertainties and different loading conditions on the reduced-
order model’s validity are also discussed. It is observed that for
any uncertainty associated with the microgrid parameters that
are within the bounds of checkable conditions, the states of the
reduced-order microgrid model converge to that of the uncertain
full-order system. Further, it is also shown that the obtained
discrepancy expressions are more precise than state of the art.

Index Terms—Contraction, Partial contraction, timescale, mi-
crogrid system, multi-microgrid system.

I. INTRODUCTION

LARGE installations of distributed generators (DGs) have
increased significantly in recent years to harness clean

energy and reduce greenhouse gas emissions. Such scattered
DGs have been looked upon for clustering to form a multi-
microgrid (MMG) system [1], [2]. An MMG system forms a
building block for future smart grids and provides an excel-
lent opportunity to manage large-scale DGs’ operations with
composite dynamic behaviors. The power flow interactions
between the small-size large-scale inverter-based microgrids
(IBMGs) introduce increased complexity for analyzing a high-
dimensional MMG system. A reduced-order model of an
IBMG system obtained by preserving the power control loop
states and discarding the myriad ones can provide a convenient
and feasible way to analyze the power flow behavior and
design secondary and tertiary controllers [3]–[10].

Model order reduction techniques for large-scale systems
can be broadly divided into different mathematical methods
based on polynomial approximation, optimization, singular
perturbation, balanced truncation, Hankel norm approxima-
tion, etc. [11]–[14]. However, there is no universal model order
reduction method that suits all purposes and all classes of
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real-world systems. Thus, the choice of a particular technique
depends on the application domain and operating conditions
[12], [15], [16]. For example, it was found that the singular
perturbation (SP) technique can be a suitable choice for low-
frequency operation, whereas balanced truncation may be a
better option in high-frequency applications [12], [16]. The
SP-based model reduction can preserve the physical realiza-
tion, which means that the internal state variables of the
reduced-order system correspond to the actual system state
trajectories [12]. Further, the SP-based model order reduction
uses the physical properties of a large system that often exists
in multiple timescales; this means the system’s internal state
variables evolve at different speeds.

A system with multiple timescales is conveniently rep-
resented by a singularly perturbed system (SPS) form of
representation [17]. In an SPS form of representation, the fast-
evolving states are represented by multiplying their derivatives
with singular perturbation parameters (SPP or ε). The SPP is
generally modeled from the time constant of the fast dynamics,
and the reduced-order model is obtained by suppressing the
SPP (ε → 0) such that the fast dynamics are reduced to
an algebraic equation. The root of the algebraic equation is
commonly referred to as the slow manifold. The obtained
reduced-order model can approximate the corresponding full-
order model if the fast states converge to the slow manifold
and the SPP is sufficiently small. Conventionally, techniques
such as Lyapunov stability analysis and Tikhonov’s theorem
have been used to obtain the bound on the SPP (ε∗) [10], [15]–
[18]. However, with these approaches, the derived discrepancy
expressions between the full-order system and the reduced-
order model are independent of the SPP. In other words, one
cannot quantify the discrepancy behavior between the reduced-
order model and full-order system when the SPP is varying
within the obtained bound (ε ≤ ε∗). Recently, in [19]–[22]
contraction theory was explored to not only obtain the bound
on the SPP but also express the discrepancy in terms of SPP.
The main limitation of the approach followed in [19]–[22]
is that it requires the evolution of the slow manifold to be
upper bounded by a constant. As the slow manifold dynamics
depends on the states, this condition may restrict the states to
only evolve inside certain bounded regions and will result in
a conservative discrepancy expression.

The SP-based model order reduction techniques have been
utilized for the analysis of islanded IBMG systems [7]–[10].
So far in the literature, SP-based model reduction for IBMGs
has focused either on exploiting the technique to obtain a
simpler mathematical model for time/frequency domain anal-
ysis or using the obtained reduced-order models for controller
design (secondary/tertiary). However, in a practical scenario,
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IBMGs may be affected by external disturbances, parameter
uncertainties, and modeling errors. Thus, any analysis or
controller design based on the reduced-order model obtained
from a nominal full-order system may produce erroneous
results when implemented in an actual uncertain system. This
argument signifies the importance of investigating the bounds
on external disturbances and parameter fluctuations under
which the reduced-order model can be said to be valid.

To address the above limitations in discrepancy measures of
model-order reduction techniques and provide a quantitative
framework for the model-order reduction of an IBMG system,
this paper proposes a generalized contraction theory-based
setup for analyzing the convergence behavior of a reduced-
order IBMG model with an uncertain full-order system. The
main contributions of the paper are to:
(i) Analyze different time-scales present in an IBMG system
and provide an improved model order reduction algorithm
based on the SP method. Further, appropriate mapping terms
are provided to facilitate the interconnections between the
reduced-order IBMG models in an MMG environment.
(ii) Provide a generalized contraction theory-based framework
for SP-based model order reduction in an uncertain multi-
timescale system. The framework derives certain checkable
conditions based on the norm of uncertainties to examine the
reduced-order model’s validity. Further, explicit expressions
for discrepancies in the state trajectories are provided in terms
of SPP.
(iii) Implement and validate the proposed quantitative frame-
work for the model order reduction of an uncertain IBMG
system for different scenarios such as parameter uncertainties,
modeling errors, shifts in operating points and exogenous
signals arising from the cross-coupling effect.

The paper is organized as follows: Section II presents the
IBMG’s timescales, model reduction, and mapping expres-
sions for realizing an MMG system. Section III provides the
quantitative bound for the SPP under systems’ parametric and
modeling uncertainties. Section IV presents the convergence
analysis in the IBMG system under various case studies.
Finally, in Section V, conclusions are drawn.

II. MODEL ORDER REDUCTION OF AN IBMG SYSTEM IN
AN MMG ENVIRONMENT

In a typical MMG system, as shown in Fig.1, each IBMG
can either operate autonomously under grid fault conditions
or can exchange power with other IBMGs through an external
network to form a reliable power network [1], [2]. Each
IBMG as shown in Fig.1 constitutes multiple states, and when
these IBMGs are interconnected to form an MMG system,
the resultant system becomes a huge dynamical system. A
reduced-order model of such an MMG system will assist in
simplifying analysis and design. One approach is to reduce
the MMG system as a whole. However, with this approach,
one has to obtain the reduced-order model of the MMG
each time an IBMG is connected or disconnected. Another
approach is to obtain reduced-order model of each IBMG and
interconnect them through appropriate mapping expression.
With the latter approach, the advantages of modularity and
scalability are achieved. In this regard, first, a model order
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Fig. 1. Schematic diagram of a multimicrogrid (MMG) system.

reduction methodology for an IBMG is discussed, then the
mapping expressions for interconnecting the reduced-order
models of IBMGs are discussed.
A. System Description of an IBMG

In Fig.1, the IBMG#1 represents the islanded microgrid
system whose dynamic model has been discussed in [23]. The
IBMG#1 consists of three inverter-based distributed generators
(IBDGs) and an internal network with two power lines. The
dynamics of the IBMG#1 system can be given as:

Ẋmg = AmgXmg (1)

where Xmg = [∆xinv1,∆xinv2,∆xinv3,∆ilineDQ 1, ∆ilineDQ 2]
T rep-

resents the associated states, and the state matrix Amg is given
as (2):

Amg =



AI1 [0] [0] BI1L1 [0]
BI2I1 AI2 [0] BI2L1 BI2L2
BI3I1 [0] AI3 [0] BI3L2[

BL1I1+
BL1I10

]
BL1I2 [0] AL1 BL1L2

BL2I10
BL2I2 BL2I3 BL2L1 AL2

 (2)

The Amg matrix has been defined in Appendix A.
The states of an ith inverter are given as

xinv i = [∆δi,∆Pi,∆Qi,∆φdi,∆φqi,∆γdi,∆γqi,

∆ildi,∆ilqi,∆vodi,∆voqi,∆iodi,∆ioqi]
T (3)
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Fig. 2. Eigenvalue plot for the IBMG1 a) Eigenvalue of IBMG1 showing multiple time scales b) Eigenvalue in the range of −106 to −26 c) Eigenvalue in
the range of −3000 to −1000 and d) Eigenvalue in the range of −120 to 0.

where ∆δi represents the angle between an individual inverter
reference frame with its common reference frame, ∆Pi and ∆Qi
represent filtered real and reactive power states respectively,
∆φdi and ∆φqi represent the states of the voltage controller, and
∆γdi and ∆γqi represent the states of the current controller.
The states ∆ildqi,∆vodqi,∆iodqi represent the output LC filter
inductance current, capacitance voltage and coupling induc-
tance current respectively. The states ilineDQ j = [ilineD j, ilineQ j]

T

represent the direct and quadrature axis line current of the
jth line. The load dynamics are neglected in the analysis by
considering resistive loads for simplicity.

The dynamics of IBMG#1 (1) consists of 43 states (13 states
of each inverter and two states of each power line) and can be
examined for possible order reduction by using the singular
perturbation-based technique.
B. Timescale Separations and SPS Form of IBMG

A system involving multiple timescale dynamics may be
suitably represented in SPS form [17]. One of the convenient
approaches for visualizing multiple timescales involved in a
system is through the plotting of eigenvalues. A system with
eigenvalues in different clusters represents different timescales
involved in that system [18]. The eigenvalues of the IBMG
system (1) are plotted in Fig.2 and can be seen to exist in
three different clusters (timescale). The participation of the
states in these modes differentiates their timescale behavior.

Fig.2 shows that the states ∆ilineDQ and ∆iodq participate
with the modes present in the region −10×106 to −2×106

of the real axis. The states ∆φdq,∆γdq,∆ildq,∆vodq participate
with the modes present in the region −3000 to −2000 of the
real axis. It can be observed that some modes in this timescale
also participate in the network dynamics states (∆ilineDQ and
∆iodq). One can observe that the high frequency components
in the eigenvalues shown in Fig.2(b) are filtered out by the
capacitor filter (C f ) in Fig.2(c). The states participating with
the modes in the region −120 to 0 of the real axis are from
the inverters’ power control loops. It can also be observed that
four modes in this timescale participate in the states of current
loop, internal network and coupling inductance (∆φ ,∆ilineDQ
and iodq). This participation of ∆ilineDQ and iodq in the slow
modes shows the existence of cross-coupling terms and can be
verified from the expressions in Appendix A. From the above

TABLE I
PARAMETERS THAT DEFINE SPP

ε Expression Nominal value (P0)

ε2 max{
Lline1

2rn
,

Lline2
2rn

, Lc
rn
} max{{1.59,9.23,3.5}×10−7}

ε1 max{ L f
K2

pc
, 1

Kiv
,C f } max{{0.122,26,0.5}×10−4}

observation on the eigenvalues clusters, it can be said that the
IBMG system (1) exhibits three timescale behaviors.

The above analysis through the participation factor can
also be verified from the IBMG dynamics given by the first
principle (2). The power network dynamics and coupling
inductors are observed to be scaled by the time constant Lline

2rn

and LC
rLC+rn

, respectively, whose values lie in the range 10−6.

Similarly, the time constant for the LCL filters ( L f
r f +Kpc

) and

the power control loop ( 1
ωc

) lie in the range of 10−3 and 10−1,
respectively. From the above two different analyses, it can be
concluded that the IBMG dynamics exist in three timescales.
Based on the above analysis, the microgrid dynamics (1) can
be rewritten in three timescale SPS forms as: ∆ẋ

ε1∆ż1
ε2∆ż2

=

 ϕ11 ϕ12 ϕ13
ϕ21 ϕ22 ϕ23
ϕ31 ϕ32 ϕ33

 ∆x
∆z1
∆z2

= [Φ]

 ∆x
∆z1
∆z2


(4)

where the ε1,2 are the SPPs, whose values are presented
in Table I. The states are categorized into different groups
depending upon their rate of evolution in the micro-
grid dynamics, which are x = {∆δi,∆Pi,∆Qi ∆φdqi}, ∆z1 =
{∆γdqi,∆ildqi,∆vodqi} and ∆z2 = {∆iodqi,∆ilineDQ j} for i ∈
{1,2,3} and j ∈ {1,2}. The state matrix ‘Φ’ is obtained after
appropriate transformation as Φ = E p(TAmgT−1), where ‘T ’
is a matrix that rearranges the rows of the Amg in (1), and the
‘E p’ is a diagonal matrix consisting of SPPs (diag(1,ε1,ε2)).

The obtained IBMG dynamics in SPS (4) may be used for
model order reduction by following the SP technique [17].
However, the SP technique for model order reduction is given
for a standard two-timescale system. Systems such as (4) with
multiple timescales can be iteratively reduced to a lower order
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Algorithm 1 Multi-Timescale Model Order Reduction

1: # Given a multi-timescale system represented as (5):

ẋ = f (x,z1, ..,zr,zr+1, ..,zn)
ε1ż1 = g1(x,z1, ..,zr,zr+1, ..,zn,ε1)

.
εnżn = gn(x,z1, ..,zr,zr+1, ..,zn,εn)

(5)

2: # Create a function matrix FG from (5) as:

FG = [ f ,g1, ..,gn]
T (6)

3: # Start running the loop for the order reduction of (5):
for i = n :−1 : 1

4: # Separate the states and the function matrix FG in (5) to
a two-timescale form as:

Xi = [x,z1, ..,zi−1]
T ; Zi = [zi] (7)

Fi(Xi,Zi, t) = [Ii×i, [0]i×1]×FG (8)
Gi(Xi,Zi,εi) = [[0]1×i,1]×FG (9)

where I and [0] represent the identity matrix and zero
vector of appropriate dimensions, respectively.

5: # Reformulate (5) in two-timescale form as (10):

Ẋi = Fi(Xi,Zi, t) (10)
εiŻi = Gi(Xi,Zi,εi) (11)

6: # Suppress the SPP(εi → 0) and obtain the algebraic
expression (ϑi(Xi)) for Zi dynamics :

Gi(Xi,Zi) = 0; ϑi(Xi) = Zi (12)

7: # Obtain the reduced-order model of (10) in terms of Xi:

ẋred i = Fi(Xi,ϑi(Xi), t) (13)

8: # Update the nonlinear function matrix FG:

FG = [Fi] (14)

9: # Repeat the loop to obtain the final reduced-order model:
end for

by converting the multiple-timescale system to two timescales
for each ε as shown in Algorithm 1.
C. IBMG Model Order Reduction

The multi-timescale IBMG model (4) is reduced to power
control loop states by following Algorithm 1 and letting the
resultant reduced-order model be represented as:

ẋred = Aredxred (15)

where xred = {∆δi,∆Pi,∆Qi,∆φdqi} and Ared are the states
and state matrix of the reduced-order model respectively. The
states trajectories of the full-order system and reduced-order
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model are shown in Fig.3 by considering the initial conditions
of the states as 5% of the IBMG operating condition.

An interesting observation can be made from Fig.4(a) that
the initial discrepancy between the states of the reduced-
order model and the full-order system is high during the
period t ≤ 0.0026 seconds (from Table I it can be seen that
the timescale separation is given by ε1 = 0.0026). This can
be explained as the xred(t) dynamics contains the algebraic
solution of Z(t) dynamics in the form of ϑ(x(t)), whereas
in the full-order system the dynamics of Z(t) influence the
solution of x(t). However, after the initial large discrepancy,
the state trajectories of the reduced-order model and full-
order model follow each other. The relative error is calculated
as ||X(t)− xred(t)||/||X(t)||, and is plotted in Fig.4(b) for
t ≥ 0.003 seconds. It can be observed that the relative error
is within 7%, and the reduced-order model can be used for
various analysis and design purposes.
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D. Mapping Between Reduced-Order Models of IBMGs

When multiple IBMGs are interconnected to form an MMG
system, the internal network power lines of an IBMG exchange
currents with that of the external network. However, in the
reduced-order model for an IBMG obtained in (15), the states
of the internal network dynamics are not present. Under such
a scenario, the model order reduction based on the SP method
is required to be carried out while incorporating external
network dynamics as coupling inputs. The resultant reduced-
order model will have mapping terms between the reduced-
order models of IBMGs.

Let the dynamics for an MMG system consist of ‘n’ number
of IBMGs and ‘m’ number of lines in the external network.
For simplicity, let us consider each IBMG as consisting of ‘ni’
number of IBDGs and ‘nn’ number of internal network lines.
The dynamics of such an MMG system is given as:

ẊMGi =[AMGi ]((13ni+2nn)×(13ni+2nn))XMGi

+[BMGiExN ]((13ni+2nn)×2m)xExN

+[BMGiωcom ]((13ni+2nn)×(13ni+2nn)XMG1

ẋExN =[AExN ](2m×2m)xExN +
n

∑
i=1

[BExNMGi ](2m×(13ni+2nn))XMGi

(16)

where xMGi , AMGi , BMGiExN and BMGiωcom are the states, state
matrix, coupling matrix to external network and coupling ma-
trix to reference IBMG (for common reference) respectively.
The IBMG#1 is considered to include the reference IBDG for
the whole MMG system.

Like the internal network dynamics, the external network
dynamics also lies in a fast timescale with respect to the
power control loop states. The complete MMG system (16)
can be represented in SPS form as given in expression (17)
(similar to the procedure followed for (4)). The reduced-order
model for the IBMG system can be obtained by following
Algorithm 1 (ε→ 0), and the external network dynamics that
interconnect different IBMGs can be reduced to an algebraic
expression by suppressing its SPP (εExN → 0). The reduced-
order differential-algebraic model of an MMG system is given
as:

ẋMGredi =[AMGredi ](5ni×5ni)xMGredi − [BMGiExNred ](5ni×2m)xExN

+[BMGrediωcom ](5ni×5ni)xMGred1

xExN =− [AExNred ]
−1
(2m×2m)[BExNMGred ](2m×5nin)

 xMGred1
.

xMGredn


(18)

where xMGredi and AMGredi are the reduced-order model
of ith IBMG states in terms of the power control loop
and state matrix, respectively. The matrix [BMGiExNred ] and
[AExNred ]

−1[BExNMGred ] form the mapping matrix between the
IBMGs. All the involved terms in the expressions are provided
in Appendix B.

It can be observed from (16) and (18) that the full-order
MMG system of order ‘13nin + 2nnn + 2m’ is reduced to
‘5nin’. Further, it should be noted that the reduced-order model
state matrix ‘AMGredi ’ for an IBMG is the same as the state
matrix obtained earlier in (15), and the mapping between the
IBMGi with the other IBMGs are given through the matrix
[BMGiExNred ][AExNred ]

−1[BExNMGred ].

E. Discrepancy between Reduced-Order and Full-Order
IBMG Models under Uncertainties

Fig.4(a) shows the discrepancies between the states for
the reduced-order model and full-order system with nominal
parameters. However, the parameters of the microgrid (1) may
vary due to uncertainties in environmental conditions, human
factors or ageing. Under these cases, there will be an increase
in discrepancies between the uncertain full-order system and
the reduced-order model compared with the one shown in
Fig.4(a). A case study on the behavior of such discrepancies is
illustrated in Fig.5 for variations in the parameters of L f . It can
be observed that the discrepancy increases with the increase
in parameters variations from its nominal value, and after a
certain limit it explodes.

The reduced-order models obtained from other model-order
reduction techniques such as Hankel model reduction or bal-
anced stochastic model truncation will also experience such
an increase in discrepancy behavior as shown in Fig.6. In
these model-order reduction techniques, the criteria for model-
order reduction is to measure the full-order system’s states
energy, and in the reduce-order model the high energy states
are retained by discarding the low energy ones [24], [25]. In
these techniques, it is difficult to establish a direct relationship
between the parameter variation in an uncertain system and the
discrepancy between the reduced-order model and uncertain
full-order system. In the SP-based model order reduction, the
reduced-order model is obtained by considering the different
timescales present in a system, where the fast state dynamics
are discarded, and the slow ones are retained. These systems
can be represented in SPS form as represented in (4) and
(17), where the SPP models the timescale separation. In this
case, there is a direct relationship between the model reduction
criteria (ε→ 0) and the system parameters. Thus, the effect of

ẋMGi =[ϕMGi(1,1)](5ni×5ni)xMGi +[ϕMGi(1,2)](5ni×(8ni+2nn))zMGi +[ψMGiExN(1)](5ni×2m)xExN +[ψMGiωcom(1)](5ni×5ni)xMG1

ε żMGi =[ϕMGi(2,1)]((8ni+2nn)×5ni)xMGi +[ϕMGi(2,2)]((8ni+2nn)×(8ni+2nn))zMGi +[ψMGiExN(2)]((8ni+2nn)×2m)xExN

+[ψMGiωcom(2)]((8ni+2nn)×5ni)xMG1

εExN ẋExN =[ϕExN ](2m×2m)xExN +
n

∑
i=1

[
[ψExNMGi(1)](2m×5ni)

[ψExNMGi(2)](2m×(8ni+2nn))

][ xMGi

zMGi

]
((13n+2nn)×1)

(17)
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variations in system parameters on the discrepancy between
the reduced-order model and full-order system can be estab-
lished through an expression. This forms the motivation in this
paper for investigating SP-based order reduction in forming
a quantitative framework. In the previous documented works
on this aspect, the approach had some conservative bounds
and provided some limited results on the effect of modeling
uncertainties [19]–[22]. The following section discusses these
limitations and provides new generalized theoretical results.

III. SPS AND ITS QUANTITATIVE ANALYSIS

This section provides a contraction-based convergence anal-
ysis for the general class of SPS, which is later utilized
to analyze the impact of uncertainties on the model order
reduction of uncertain IBMG.

A. Description of SPS

Let the simplified representation for the standard two-
timescale system (10) be given as:

ẋ = f (x,z, t)

ε ż = g(x,z,ε)
(19)

where ε ∈ (0,1) is a small real number, x is a vector of slow
state variables, z is a vector of fast state variables (the state z
evolves with respect to t/ε). The terms f and g are nonlinear
functions that govern the dynamics of the system (19).

As explained earlier, if the equation g(z,x)=0 in (19) has
a unique root z = ϑ(x) (also called slow manifold), then the
overall system (19) can be degenerated into a lower order
system by suppressing the SPP (ε → 0).

Let the reduced slow dynamics be given as:

ẋred = f (xred ,ϑ(xred), t) (20)

where xred represents the states of the reduced-order model.
It should be noted that the state variable x(t) in the full-
order system (19) and xred(t) in the reduced-order model (20)
represent the same state variables in the two different models.

Let us consider y = z− ϑ (for notational simplicity ϑ

represents ϑ(x) for the rest of the paper); where y represents
the discrepancy between the state z and the slow manifold ϑ .
In other words, ẏ (referred to as boundary layer dynamics)
captures the dynamics for the transition from z state to ϑ

variable and can be written as:

ε ẏ = g(x,y+ϑ ,ε)− ε
∂ϑ

∂x
f (x,z, t) (21)

It should be noted that the state x(t) in (19) evolves in a slow
timescale, whereas the boundary layer dynamics (21) evolves
in a fast timescale.

The SP-based model order reduction exploits the limit ε→ 0
and stability of boundary layer dynamics (21) to approximate
the states x of (19) as xred of (20). The subsequent parts of
this section will explicitly derive the convergence between the
pairs (x,xred) and (z,ϑ ) respectively, both in the presence and
absence of uncertainties in the system (19). As contraction
theory is used as the main tool for these derivations, certain
definitions are presented for the ease of readability.

B. Contraction and Partial Contraction

Definition 3.1 (Contraction): A sufficiently smooth dynam-
ical system ẋ = f (x, t) is contracting if any pair of trajecto-
ries (x1(t),x2(t)) exponentially converge towards each other,
starting from arbitrary initial conditions [26]. The contraction
region is defined as the part of state space, inside which the
inequality (Θ̇+Θ

∂ f
∂x )Θ

−1 +((Θ̇+Θ
∂ f
∂x )Θ

−1)T ≤−2λ I holds
true for a non-singular matrix Θ (also called associated metric
transformation) and a positive constant λ (also called the
contraction rate) [22].

Definition 3.2 (Partial Contraction): A system ẋ = f (x,y, t)
is referred to as partially contracting in x, if a virtual/auxiliary
system defined by ż= f (z,y, t) is contracting in z for any value
of y,∀t > 0 [19], [27].

Due to the exponentially convergent nature of trajectories in
a contracting/partially contracting system, the corresponding
systems are robust to norm bounded and finite gain-type
uncertainties [26], [28], [29]. The analysis carried out in the
following subsections is built upon these robustness properties.

C. Convergence Analysis of SPS

Consider the boundary layer dynamics (21). For an ideal
case, it can be assumed that during the evolution of y(t) the
state x(t) is frozen (ẋ = 0). This case represents the nominal
boundary layer dynamics of (21) and can be given as:

ε ẏn = g(x,yn +ϑ ,ε) (22)

The discrepancy between the y(t) and yn(t) i.e y(t)−yn(t), is
governed by the term −ε

∂ϑ

∂x f (x,z, t), which can also be seen
as a perturbation term to nominal boundary layer dynamics.



7

In [19]–[22], the concept of contraction and partial contrac-
tion theory have been explored to observe the convergence
between y(t) (21) and yn(t) (22). It has been shown that
convergence is possible if the expressions (22) contract in
y(t) for any x(t), with a metric Θz and a rate λz

ε
. In these

approaches, the bound considered on the perturbation term
is given as || ∂ϑ

∂x f (x,z)|| ≤ d, where d is a real number or
constant. However, it can be observed that the perturbation
term ∂ϑx

∂x f (x,z) is a function of states x(t) and z(t). By
bounding the perturbation term through a constant, the impact
of state evolution on the boundary layer dynamics is not
reflected.

In this paper, the bounds on the perturbation term
( ∂ϑ

∂x f (x,z)) have been reexamined. The basic idea is to ex-
ploit the timescale involved in (19) to obtain the bound on
∂ϑ

∂x f (x,z). It can be observed that the z(t) evolves in the same
timescale as y(t), whereas the x(t) is in a freeze state. With
this idea, the evolution of ϑ(x(t)) can be written as:

∂ϑ

∂x
f (x,z, t) =

∂ϑ

∂x
f (x,ϑ , t)+

∂ϑ

∂x
( f (x,z, t)− f (x,ϑ , t)).

(23)
The term ∂ϑ

∂x f (x,ϑ , t) involves only the x(t) state variable,
thus it evolves slower compared to the fast variable y(t)
and therefore can be represented by a constant. After simple
manipulation and exploitation of the Lipschitz property (25),
the bound on the perturbation term is given as:

||∂ϑ

∂x
f (x,z, t)|| ≤ c1 + c2||z−ϑ ||= c1 + c2||y|| (24)

where c1,c2 ∈ R+ and the Lipschitz inequality with α1 as a
Lipschitz constant is given as:

|| f (x,z, t)− f (x,ϑ , t)|| ≤ α1||z−ϑ ||. (25)

For the obtained bounding condition (24), the following
Lemma may be given as:

Lemma 3.1: Let the unperturbed nominal dynamics of (21)
be partially contracting in y(t) with a transformation metric
Θz and a rate λz

ε
. Suppose y0 is the forward bounded solution

of the unperturbed nominal dynamics (22) inside the region of
interest such that ||yn(t)|| ≤ yo, ∀t ≥ 0. If the perturbation term
satisfies (24) and ε ≤ λz

χzc2
, where χz is condition number of Θz,

then the discrepancy between the boundary layer trajectories
y(t) and the nominal trajectories yn(t) can be quantified as
(26):

||y(t)− yn(t)|| ≤ χze(−
λz−εc2χz

ε
)t ||y(0)− yn(0)||

+
(c1 + c2yo)χz

λz− εc2χz
ε. (26)

Proof: See the Appendix D.
The Lemma 3.1 provides a precondition to check that if ε ≤

λz/c2χz is satisfied, then the discrepancy between the nominal
boundary layer and the boundary layer dynamics exponentially
decays to a bounded space (see Fig.7).

Similarly, replacing y(t) with z(t)−ϑ(t), bounding ||yn|| ≤
y0 and using triangle inequality we can obtain the discrepancy

between the trajectories z(t) of the original full-order system
and the slow manifold ϑ(t) as:

||z(t)−ϑ(t)|| ≤ χze(−
λz−εc2χz

ε
)t ||z(0)−ϑ(0)||

+
(c1 + c2yo)χz

λz− εc2χz
ε + yo. (27)

Now, to obtain the expression on the discrepancy between the
state of the full-order and the reduced-order model (||x(t)−
xred(t)||), the x(t) dynamics in (19) may be rewritten as:

ẋ = f (x,ϑ , t)+ f (x,z, t)− f (x,ϑ , t). (28)

Using (25) in (28) and after simple manipulation, the following
expression can be obtained as

||ẋ|| ≤ || f (x,ϑ , t)||+α1||z−ϑ ||. (29)

It can be observed that the expression in (29) obtained from
the full-order slow state variable dynamics (ẋ from (19)) is
a perturbed dynamics of the reduced-order expression (20).
Thus, if the states of the reduced-order model (20) converge
with the corresponding slow state variables of the full-order
system, then the reduced-order model can be said to be valid.
The following theorem provides the bounds on the discrepancy
between the states of the reduced-order model and that of the
full-order system.

Theorem 3.2: Let the premises of the Lemma 3.1 hold true
for the SPS (19), and the reduced-order dynamics (20) is
partially contracting in xred(t) with a transformation metric
Θx. If the SPP satisfies the condition

ε ≤ λz

c2χz
; (30)

then the states of the reduced-order model exponentially
converge towards the trajectories of the corresponding full-
order system, and these bounds may be quantified as:

||x(t)− xred(t)|| ≤ χx||x(0)− xred(0)||e−λxt

+ ε(Cx2(1− e−λxt)+Cx1(e−λxt − e
−(λz−εc2χz)

ε
t)) (31)

where Cx1 =
χxα1χz||z(0)−ϑ(x(0))||

λz−εc2χz−ελx
, Cx2 =

χxα1
λx

( (c1+c2yo)χzε

λz−εc2χz
+yo).

Proof: With Q(t) = ||Θx(x(t)− xred(t))|| and using (29) and
(20) we have Q̇(t) ≤ FxQ(t)+α1||z−ϑ ||, where Fx = (Θ̇x +

Θx
∂ f
∂x )Θx

−1. Further, using (27) and following the procedure
similar to Appendix D, the expression (31) can be obtained.

From the discrepancy expression (31), the gain Cx1 deter-
mines the steady state discrepancy bound, and other terms
determine the transients.

The upper bound on the discrepancy between the states
shown in (31) is found to be less conservative (see Table
III) than that given in [19]–[22]. This can be explained by
comparing the denominators of the terms Cx1 and Cx2, which
have λz−c2ε instead of only λz. This is achieved by relaxing
the conservative bounds on || ∂ϑ

∂x f (x,z, t)|| in (24).
D. Convergence Analysis of SPS Under Modeling Uncertain-
ties

Similarly, the parameters that are not associated with SPP
may vary for different reasons. Let us capture these variations
into modeling uncertainty terms and obtain certain validating
conditions as in T heorem 3.2.

134246
Sticky Note
:

134246
Cross-Out

134246
Inserted Text
considered



8

1) Uncertainties in z− subsystem: Let us consider a case
in which the fast subsystem is perturbed by an additive
uncertainty, i.e,

ε ż = g(x,z,ε)+∆g(x,z,ε). (32)

The boundary layer dynamics in this case becomes

ε ẏ = g(x,y+ϑ ,ε)+∆g(x,y+ϑ ,ε)− ε
∂ϑ

∂x
f (x,z, t) (33)

where the modeling uncertainty term ∆g(x,z,ε) is a function
of two states: x(t) and z(t). By comparing the (33) and (22), it
can be observed that the perturbation to the nominal boundary
layer dynamics is augmented by the term ∆g(x,z,ε).

The bounds on ∆g(x,z,ε) can be obtained similarly to the
previous section by exploiting the timescale separation be-
tween x(t) and z(t). The bound can be obtained as ∆g(x,z,ε)≤
c3||z||+ c4, and after simplification can also be expressed as
∆g(x,y+ϑ ,ε) ≤ c3||y||+ c4

′, where c4
′ = c4 + c3||ϑ ||. Thus,

the bound on perturbation term to the nominal boundary layer
dynamics in this case can be given as:

||∆g(x,y+ϑ ,ε)− ε
∂ϑ

∂x
f (x,z, t)|| ≤ ε(c1

′+ c2||y||)+ c3||y||.
(34)

where c1
′ = c1 +

c′4
ε
,c2,c3 ∈ R+.

Using Lemma 3.1, it can be derived that the trajectories of
perturbed boundary layer dynamics (33) converge towards the
trajectories of nominal dynamics (22), if the condition (35) is
satisfied:

c3χz + εc2χz ≤ λz⇒ ε ≤ 1
c2
(

λz

χz
− c3). (35)

It can be observed that the uncertainty term ∆g(x,z,ε) modifies
the previous bounding condition (30) by deducting it with c3

c2
(see Fig.8(a)), where c3 is contributed by the upper bound of
∆g(x,z,ε).

Thus, the bounds on ||y(t)− yn(t)||, ||z(t)−ϑ(x(t))|| and
||x(t)−xred(t)|| can be obtained following a similar procedure
as is carried out in the previous section. The robustness result
for the validity of the reduced-order model under ∆g(x,z,ε)
is given in the following theorem.

Theorem 3.3: Let the z-subsystem of the SPS (19) be
associated with uncertainties as shown in (32). Assume that the
uncertainty term is bounded as ∆g(x,y+ϑ ,ε) ≤ c3||y||+ c4

′

and the reduced-order dynamics (20) is partially contracting
in xred(t), with a transformation metric Θx and a contraction
rate λx. If the SPP satisfies the condition (35), then the
convergence of the state trajectories between the reduced-order
model xred(t) (20) with that of the uncertain full-order system
(19) occurs. Moreover, the discrepancies between the states
may be quantified as (36):

‖x(t)− xred(t)‖ ≤ χx ‖x(0)− xred(0)‖e−λxt + ε(Cx1(e−λxt

− e−(
λz−εc2χz−c3χx

ε
)t)+Cx2(1− e−λxt)) (36)

where Cx2 = χxα1
λx

(
(c′1+c2y0)χzε+c3y0χz

λz−c3χz−εc2χz
+ y0

)
and Cx1 =

χxα1χz‖z(0)−ϑ(x(0))‖
λz−εc2χz−c3χz−ελx

.

Proof: Consider the nominal system (22) and the perturbed
system (33). Following the proof in Appendix D, The perturba-
tion term can be written as dϑ = ∆(x,y+ϑ ,ε)−ε

∂ϑ

∂x f (x,z, t),
whose upper bound is given as (34). The discrepancy ||z−ϑ ||,
can be derived following similar line of arguments as given
in the Appendix D. Define Q(t) ≤ ||Θx(x(t)− xred(t))|| and
using (29) and (20), we have Q̇(t) = FxQ(t)+α1||z−ϑ ||. In
this case, the expression (27) is slightly modified as in (33) and
following the procedure similar to Appendix D the expression
(36) is obtained.

Comparing the discrepancy expression (31) and (36), it can
be observed that the modeling uncertainty in z−subsystem
alters both the transient and steady-state bounds as the gains
Cx1, Cx2 and the exponential terms associated with the gain
Cx1 are changed.

2) Uncertainties in the x−subsystem: Further, let us now
consider that the slow subsystem in (19) is associated with
modeling uncertainties along with the fast subsystem and is
represented as:

ẋ = f (x,z, t)+∆ f (x,z, t). (37)

The boundary layer dynamics (21) in this case where the
modeling uncertainties are present in both the dynamics of
x(t) (37) and z(t) (32) is given as:

ε ẏ = g(x,y+ϑ ,ε)+∆g(x,y+ϑ ,ε)

− ε
∂ϑ

∂x
( f (x,z, t)+∆ f (x,z, t)) (38)

It can be observed that the perturbation to the nominal
boundary dynamics (22) in this case is given by the term
∆g(x,y+ϑ ,ε)− ε

∂ϑ

∂x ( f (x,z, t)+∆ f (x,z, t)).
Exploiting the timescale difference, the term ∆ f (x,z, t) can

be bounded in terms of the state x(t) as ‖∆ f (x,z, t)‖ ≤ d1 +
d2 ‖x‖, where d1,d2 ∈ R+, and

||∂ϑ

∂x
∆ f (x,y+ϑ , t)|| ≤ d2cd1||y||+ cd2 (39)

where cd2 = (d1+d2cd ||ϑ ||)|| ∂ϑ

∂x ||, cd1 = cd || ∂ϑ

∂x || . Using (34)
and (39), the bound on the perturbation term in the expression
(38) is given as:

||∆g(x,y+ϑ ,ε)− ε
∂ϑ

∂x
( f (x,z, t)+∆ f (x,y+ϑ , t))||

≤ ε((c′1 + cd2)+(c2 +d2cd1)||y||)+ c3||y|| (40)

Exploiting the Lemma 3.1 and proceeding along similar lines,
it can be derived that the trajectory of the perturbed boundary
layer dynamics (38) converges with that of the nominal one
(22) when the condition (44) is satisfied

ε ≤ 1
(c2 +d2cd1)

(
λz

χz
− c3). (41)

The modeling uncertainty ∆ f (x,z, t) further modifies the
bounding condition on SPP. When compared with the con-
dition (35), the bounding on SPP is decreased further with an
increase in the denominator part of the expression (41).
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However, in contrast to the previous sections, the expression
in (28) is now associated with additional terms as shown in
(42):

ẋ = f (x,ϑ , t)+ f (x,z, t)− f (x,ϑ , t)+∆ f (x,z, t). (42)

As the state x(t) can be bounded through the triangle inequality
as ‖x‖ ≤ ‖x− xred‖+‖xred‖, the bounds on ∆ f (x,z, t) can be
given as:

∆ f (x,z, t)≤ d
′
1 +d2||x− xred ||. (43)

where d′1 = d1 + ||xred ||d2.
The result for the convergence of the reduced-order

model with its full-order system under uncertainties in the
x−subsystem is given by the following theorem.

Theorem 3.4: For an uncertain SPS (19), whose z and x
subsystems are represented as (32) and (37) respectively, let
the hypothesis of the Theorem 3.3 holds true. If the SPP satisfy
the condition (41) and d2 in (43) satisfies

d2 ≤
λx

χx
, (44)

then the validity of the reduced-order model (15) holds true.
Further, the discrepancies can be quantified as:

‖x(t)− xred(t)‖ ≤ χx ‖x(0)− xred(0)‖e−(λx−d2χx)t

+ εCx2(1− e−(λx−d2χx)t)

+ εCx1(e−(λx−d2χx)t − e−(
λz−χz(ε(c2+cd1)+c3)

ε
)t) (45)

where Cx1 = χxα1χz‖z(0)−ϑx(0)‖
λz−(ε(c2+d2cd1)+c3)χz−ε(λx−d2χx)

, Cx2 =(
((c′1+cd2)+(c2+d2cd1)y0)ε+c3y0χz

λz−c3χz−ε(c2+d2cd1)χz
+ y0 +d′1

)
α1

λx−d2χx
.

Proof: Using (42) and (43), the inequality is obtained as
||ẋ|| ≤ || f (x,ϑ , t)||+α||z−ϑ ||+d

′
1 +d2||x− xred ||. Using this

inequality appropriately as in the proof of Lemma3.1 and
considering Q(t) = ||Θx(x(t)− xred(t))|| we have ||Q̇(t)|| ≤
FxQ(t) + d2Q(t) + α(||z− ϑ ||+ d

′
1). Further, solving using

the matrix measure on Fx, the discrepancy expression can be
obtained as (45).

It should be noted that when the x−subsystem is associated
with modeling uncertainties then, in addition to the bounding
condition on the SPP (41), there is an additional bounding
condition on the uncertainty term ∆ f (x,z, t) given by (44).
However, the trajectory of the uncertain SPS (32) and (37)
still converge towards the reduced order system (20).

E. A Linear System Case

A linear time-invariant (L.T.I.) system with modeling un-
certainties as ∆1(x,z) and ∆2(x,z) is represented in (46):

ẋ = A11x+A12z+∆1(x,z)
ε ż = A21x+A22z+∆2(x,z)

(46)

The obtained results in T heorem 3.2, T heorem 3.3 and
T heorem 3.4 can be extended for the linear system (46). The
reduced-order system for (46) is given as (47):

ẋred = Aredxred (47)

where Ared = A11−A12A22
−1A21.

The slow manifold for the system (46) is given as ϑ =

−A−1
22 A21x, the Lipschitz constant (α1) is bounded as α1 ≥

||A12|| and the nominal boundary layer dynamics is given as
ẏn = A22yn.

For an L.T.I. system (46), the associated transformation
matrix Θ can be considered as Θ = I [26]. Then, the resulting
contraction condition can be given as A+AT ≤ β I. Using the
Rayleigh inequality, we can assign β = 2(max{λ}), where λ

is the maximum value of the eigenvalue of A. Thus, the λz =
2(max eigenvalue o f A22) and λx = 2(max eigenvalue o f A11)
for the (46). For the system (46) without uncertainties i.e ∆1
=0 and ∆2 =0, the bounds on the boundary layer dynamics is
obtained as:

ε ẏ≤ A22y+ ε(c1 + c2y) (48)

where c2 = ||A22
−1A21A12|| and c1 =

||A22
−1A21(A11−A12A−1

22 A21)||||x||.
If ∆1 and ∆2 terms are included, then appropriate
changes may be easily incorporated through the
addition of bounding terms ∆2(x,z) ≤ c4 + c3||z|| and
∆1(x,z) ≤ d1 + d2||x||. Under such a case, the cd , cd1
and cd2 in the expressions (39) may be defined as cd =
||(AT

21A21)
−1AT

21A22||, cd1 = ||(AT
21A21)

−1AT
21A22||||A−1

22 A21||
and cd2 = d1 +d2cd ||A−1

22 A21||2||x||.

IV. CONVERGENCE ANALYSIS IN THE IBMG SYSTEM

After obtaining the theoretical results in the form of
T heorem 3.2, T heorem 3.3 and T heorem 3.4 on the discrep-
ancy between a reduced-order model with its uncertain full-
order system, in this section these are used to analyze the
reduced-order model (15) validity with respect to the uncertain
full-order IBMG system (1).

A. Uncertain Cases in IBMG

1) Case 1: Uncertainty in SPP Parameters: The parameters
that are defining ε1 and ε2 are shown in Table I. The effect
of uncertainties in these parameters on the validity of the
reduced-order model is studied using the results obtained in
T heorem 3.2.

It should be noted that for any variations in the system
parameters the contraction rate λz and c2 in the condition
(30) will change. Table II summarizes the parameter uncer-
tainties bounds under which the condition (30) is satisfied.
The convergence and divergence trajectories of discrepancies
with respect to the condition (30) are plotted in Fig.7. It
can be observed from Fig.7 that for any uncertainties in the
parameters governing SPP, the convergence between the state
trajectories of the reduced-order model and full-order system
holds true until the condition (30) is satisfied. These results
presented in Table II would not have been possible with the
approach followed in [19]–[22].

Table II shows the bounds on IBMG parameter uncertainties
within which the convergence occurs but does not say anything
about the effect of parameter uncertainty on discrepancies. In
many practical applications, it is desired that the discrepancy
between the reduced-order model and the full-order model
must be within a certain bound. In such cases, the expression
given in (31) can be used to quantify the IBMG parameters’
uncertainty bound.
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TABLE II
UPPER BOUNDS OF PARAMETER UNCERTAINTY BEYOND

WHICH (30) FAILS TO HOLD

Parameters Multiplicative ε2 λz c2
(Nominal Uncertainty

P0) (×∆P0)
Lc 1.26×103 0.441×10−3 0.547 1.24×103

Lline1 7×103 1.114×10−3 0.258 0.232×103

Parameters Multiplicative ε1 λz c2
(Nominal Uncertainty

P0) (×∆P0)
C f 3.3×102 1.65×10−2 6.068 0.368×103

L f 2.41 26×10−4 747.4 3.619×105

Kpc 1/11 0.31×10−2 330.84 2.4335×105

Kiv 1/4.9 1.62×10−2 752.3 4.644×104
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Fig. 7. The plot of discrepancy showing that when the given condition (30)
is satisfied, then convergence occurs a) for ε1 with uncertainty in Lc b) for
ε1 with uncertainty in Lline1 c) for ε2 with uncertainty in L f and Kpc d) for
ε2 with uncertainty in C f and Kiv.

To illustrate the above case, let the desired bound on
the discrepancy due to uncertainties be given as 10%. In
mathematical terms, this can be expressed as:

||xred(t)−X f ulluncertn(t)||
||xred(t)−X f ullnom(t)||

≤ 110% (49)

where xred(t), X f ulluncertn(t) and X f ullnom(t) represent the ob-
tained reduced-order model, full-order system with parameter
uncertainties and full-order with nominal parameter, respec-
tively.

Table III logs the IBMG parameters’ uncertainty bound for
a discrepancy less than 10% by using the iterative simulations
method, the given expression (31) and the expression in [19].
From the listed bounds on the IBMG parameters in Table
III, it can be observed that the bounds obtained using the
expression (31) are much closer to those in the simulation
than the bounds obtained through [19]. Thus, the expression
(31) provides an updated and improved discrepancy expression
compared with the one given in [19] and can be used to obtain

TABLE III
UPPER BOUND OF PARAMETER UNCERTAINTY SUCH THAT

THE DISCREPANCY IS LESS THAN 10%

Parameters Simulation Using (31) Using [19]
(Nominal P0) +∆P0 (Additive Uncertainty)
Lc 8.15×10−6 7.58×10−6 6.32×10−6

Lline1 0.0997 0.0926 0.0782
Lline2 1×10−4 0.926×10−4 0.816×10−4

C f 1.745×10−5 1.702×10−5 1.340×10−5

L f 9.5×10−4 9.2×10−4 6.17×10−4

Kpc -9.52 -9.31 -7.54
Kiv -17.55 -17.23 -14.15
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Fig. 8. Discrepancy behavior for modeling uncertainty in z-dynamics (∆2) a)
The bounds on the parameter C f decrease with uncertainty ∆2 = 10× [φ21φ22]
b) The new bound on parameter C f is 0.0076F.

the parameter uncertainty bound such that the discrepancy is
within the desired limit.

2) Case 2: Robustness to Modeling Uncertainty: Let the
parametric uncertainties that are not associated with SPP (ε)
be represented through modeling uncertainties ∆1 and ∆2 as
shown in the expression (46). Assuming that the unmodeled
dynamics associated with the IBMG (4) are Lipschitz in nature
and satisfy the condition similar to (24) (discussed in Section
III-D), the validity of the reduced-order model (15) can be
realized through the results given in T heorem 3.3 and T heorem
3.4.

a) Modeling Uncertainties in z−dynamics: The condi-
tion (35) on SPP shows that the modeling uncertainty in
z−dynamics decreases the SPP bound given in (30) by a
factor of c3

c2
. This implies that the bounds on IBMG pa-

rameter uncertainties presented in Table II will decrease for
the modeling uncertainty present in z−dynamics. This effect
can be demonstrated in Fig.8(a) for the parameter C f of the
IBMG under the modeling uncertainty ∆2 = 10× [φ21 φ22 0].
It can be observed that under the modeling uncertainty (∆2)
the discrepancy trajectory diverges for the earlier obtained
bound on the parameter C f i.e 0.0165F . The new bound for
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Fig. 10. The effect of high loading condition a) Plot of states norm trajectories
for linear and quadratic approximated models. b) Plot of relative discrepancy
between the reduced-order model and full-order IBMG system for different
loading conditions.

C f under modeling uncertainty ∆2 can be obtained using the
expression (35), where c3 = 3.308. The plot for discrepancy
with C f = 0.0075F and C f = 0.0082F is shown in Fig.8(b).
A similar analysis can be carried for other variables in Table
II under certain modeling uncertainty ∆2.

b) Modeling Uncertainty in x−dynamics: It has been
shown in Section III-D that under the modeling uncertainty
in x− dynamics, the state trajectories of the reduced-order
model and uncertain full-order system converge if the con-
dition d2 ≤ λx/χx is satisfied. Let the microgrid dynamics
(4) be associated with uncertainty ∆1 = K f actor[φ11 φ12 0]
, where K f actor determines the amount of uncertainty. The
d2 = ||φ11||= 38.3049, λx = 2×31.41, thus the K f actor = 1.64.
The discrepancy trajectory plotted in Fig.9 shows that if the
modeling uncertainty ∆1 satisfies d2≤ λx/χx then convergence
between the reduced-order system and the uncertain IBMG
system occurs.

B. High Loading Condition

In all the above case studies 5%, perturbation from the
operating condition, which is a light loading condition, is

IBDG1 IBDG2 IBDG3 IBDG1 IBDG2

IBMG1 IBMG2

line1 line2 Exline line1

load1 load2 load1 load2

Fig. 11. Schematic diagram of the test MMGs.

considered. In this case study, the effect of a high loading
condition is examined.

Equation (1) is a linear model of an IBMG system. A large
loading condition may shift the operating point, and its impact
can be better analyzed by considering the nonlinear model. Let
the nonlinear dynamics of the IBMG system be represented
as:

ẊMG = fMG(XMG) (50)

where the fMG is the nonlinear function of the IBMG’s states.
Let us define the operating point of (50) as XMG(0). The Taylor
series expansion of (50) around the operating point XMG(0)
can be given as:

ẊMG = fMG(XMG(0))+ J( fMG)(XMG−XMG(0))+0.5I⊗
(XMG−XMG(0))T H( fMG)(XMG−XMG(0))+H.O.T., (51)

where J( fMG) and H( fMG) = ∇J( fMG) are the Jacobian and
Hessian matrix obtained on fMG, respectively. The I is an
identity matrix, and the operator ∇ and ⊗ are Gradient and
Kronecker products, respectively, and H.O.T. represents the
higher-order terms. In the expression (51), the perturbation
from the operating point is given by XMG−XMG(0). It can
be observed that the Taylor series expansion is dependent on
perturbation and depending upon the amount of perturbation,
an appropriate approximate model can be realized.

The norm of state response for 5% perturbation in the linear
approximation model (neglecting the H( fMG) and H.O.T. as
obtained in (1)) and quadratic approximation model (neglect-
ing the H.O.T.) are plotted in Fig.10(a). It can be observed
that both the trajectories are almost the same, thus for the 5%
perturbation the nonlinear IBMG system may be approximated
to a linear model to arrive at a simplistic expression. However,
as the loading increases, the effect of the higher-order term be-
comes evident. Now, the reduced-order model (15) is obtained
using the linear model (1) of IBMG. Thus, it is evident that,
under high loading conditions, the error between the reduced-
order model and the nonlinear IBMG system will increase
with an increase in loading conditions. Fig.10(b) shows the
relative error between the states of the reduced-order model
and nonlinear IBMG system. It can be observed that the
transient discrepancy increases under a high loading condition;
however, the steady-state discrepancy reaches zero.

C. Reduced Order IBMG Model in MMGs Scenario

In all the above case studies, the discrepancy behavior
between the reduced-order IBMG model and its full-order
system has been analyzed for an autonomous system. In this
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Fig. 12. Real and reactive power states trajectories for the full-order and the
corresponding reduced-order MMG system a) ∆P1 for IBMG1, b) ∆P2 for
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case study, the behavior of the obtained reduced-order models
for different IBMGs in an MMG scenario is examined. To
examine this effect, a testbed of an MMG system is formu-
lated as shown in Fig.11. The formulated MMGs consists of
two IBMGs (IBMG1 and IBMG2) interconnected through an
external network. IBMG1 is the same as that considered in
Section II, and IBMG2 consists of two IBDGs. All the IBDGs
have the same values for parameters, whereas the values for
internal and external network parameters are given in the Table

of Appendix C .
As the IBMGs are reduced in terms of the power control

loop, the trajectories of the real and reactive power states for
full- and reduced-order models are shown in Fig.12. It can
be observed from Fig.12 that the states of the reduced-order
IBMGs converge with their full-order counterparts within
0.2 seconds. However, if the states trajectories in Fig.12 are
compared with Fig.3, it can be observed that the discrepancy
during transient is higher in the MMG scenario than that of
the autonomous IBMG. This result is expected because in the
MMG scenario, the exogenous inputs to each IBMG (coupling
effect between IBMGs) act like a disturbance.

V. CONCLUSION

This paper presents a quantitative analysis of the conver-
gence behavior of a reduced-order IBMG model obtained
through the SP method with its uncertain full-order system.
To perform the quantitative analysis, new results in the form
of theorems on discrepancy expressions for a generalized
uncertain system have been developed by exploiting partial
contraction theory. It is observed that the IBMG system
exhibits multi-timescales behavior and can be reduced in terms
of the power control loop using the SP method. The obtained
reduced-order model is based on nominal system parameters
of the IBMG, and its behavior can drastically differ from the
full-order IBMG system associated with uncertainties in pa-
rameters. The discrepancy behavior and quantitative bounds on
IBMG system parameters are achieved through the results in
theorems. It is observed that for any uncertainty in parameters
within the given bounds on SPP (30) the reduced-order model
converges to the uncertain full-order IBMG system. Further,
the effects of different loading conditions on the reduced-
order model behavior with respect to its full-order counterpart
are also analyzed. Finally, the efficacy of integrating different
reduced-order IBMGs is examined in an MMG scenario. The
extension of the proposed technique to deal with controller
design aspects could be a subject for future studies.

APPENDIX A
ELEMENTS OF THE IBMG STATE MATRIX

The elements of Amg in (1) ∀k ∈ {1,2,3} ∀i ∈ {1,2} are:

AIk =


aPP aPC aPV0 aPi0
aCP aCC aCV0 aCi0
aV0P aV0C aV0V0 aV0i0
ai0P ai0C ai0V0 ai0i0

 ;

aPP =

 0 −mp 0
0 −ωc 0
0 0 −ωc

 ;aPC = [0](3×6);

aPVo =

 0 0
ωcIodk ωcIoqk
−ωcIoqk ωcIodk

 aPio =

 0 0
ωcVodk ωcVoqk
ωcVoqk −ωcVodk

 ;

aCP =


0 0 −nq
0 0 0
0 0 −nqKpc
0 0 0
0 −mpIlq 0
0 mpIld 0

 ;
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aCC =


[0]2×2 [0]2×2 [0]2×2

Kiv[I]2×2 [0]2×2 −[I]2×2

KpcKiv
L f

[I]2×2
Kic
L f

[I]2×2

[
aCC(5,5) aCC(5,6)
aCC(6,5) aCC(6,6)

]
 ;

where aCC(5,5) = aCC(6,6) =
−r f−K2

pc
L f

, aCC(6,5) =−ω0 +ωnKpc

and aCC(5,6) = ω0−ωnKpc.

aCV0 =



−1 0
0 −1
−KPV −ωnC f
ωnC f −KPV

−1−KpcKpv
L f

−ωnC f Kpc
L f

ωnC f Kpc
L f

−1−KpcKpv
L f


;aCi0 =

 [0](2×2)
F [I](2×2)

FKpc
L f

[I](2×2)

 ;

aV0P =

[
0 −mpVoqk 0
0 mpVodk 0

]
aV0C =

[
[0](4×2)
(1/c f )[I]

]T

;

aV0V0 =

[
0 ω0
−ω0 0

]
;aV0i0 = (−1/c f )[I](2×2);

ai0P =

 −VbDk
sinδk+VbQk

cosδk−Ioqk rn

Lc
−mpIoqk 0

−VbDk
cosδk−VbQk

sinδk−Iodk
rn

Lc
mpIodk 0

 ;

ai0C = [0](2×6);ai0V0 = 1/Lc[I](2×2);

ai0i0 =

[
−rLC+rn

Lc
ω0

−ω0
−rLC+rn

Lc

]
;

ALi =

 −rlinei−2rn
Llinei

ω0

−ω0
−rlinei−2rn

Llinei

 ;

BIiI1 =

[
0 mp [0]
[0 0 0](12×13)

]
;BLiL3−i =

rn

Llinei

[I](2×2);

BLiI10
=

[
0
0
−mpIlineQi

mpIlineDi

[
0
0

]
4×11

]
;

BIkLi = (−1)k+i+1 rn

Lc

 [0 0](11×2)
cosδk sinδk
−sinδk cosδk

 ;

BLiIk =

K
[

(−Iodk sinδk− Ioqk cosδk) [0](1×10) [cosδk − sinδk]
(Iodk cosδk− Ioqk cosδk) [0](1×10) [sinδk cosδk]

]
;

where K = (−1)(i+k) rn
Llinei

.

APPENDIX B
ELEMENTS OF MMGS DYNAMICS (18)

AMGired = ϕMGi(1,1)−ϕMGi(1,2)ϕ
−1
MGi(2,2)

ϕMGi(2,1) (52)

BMGiExNred = ϕMGi(1,2)ϕ
−1
MGi(2,2)

ψMGiExN(2) (53)

AExNred =
n

∑
i=1

ψExNMGi(2)ϕ
−1
MGi(2,2)

ψMGiExN(2)−ϕExN (54)

BExNMGired =
n

∑
i=1

ψExNMGi(1)

−
n

∑
i=1

ψExNMGi(2)ϕ
−1
MGi(2,2)

ϕMGi(2,1) (55)

BMGiredωcom = ψMGiωcom(1)−ϕMGi(1,2)ϕ
−1
MGi(2,2)

ψMGiωcom(2)

(56)

APPENDIX C
NOMINAL VALUES OF IBMG PARAMETERS

TABLE IV
INVERTER PARAMETERS NOMINAL VALUE (P0)

mp 9.4e-5 Kiv 390 ωc 31.41
nq 1.3e-3 Kic 16000 F 0.75

Kpv 0.05 C f 50e-6 F Lc 0.35e-3 H
Kpc 10.5 r f 0.1 ohm L f 1.35e-3 H
ω0 2π50 rad/sec

TABLE V
NETWORK PARAMETERS

Internal IBMG#1
XLine1 0.1 ohm RLine1 0.23 ohm
XLine2 0.58 ohm RLine2 0.35 ohm

Internal IBMG#2
XLine3 0.58 ohm RLine3 0.35 ohm

External
XExLine1 0.3 ohm RExLine1 0.69 ohm

TABLE VI
LOAD PARAMETERS

IBMG#1 ohm H IBMG#2 ohm H
RLoad1 25 LLoad1 0 RLoad1 15 LLoad1 0
RLoad2 20 LLoad2 0 RLoad2 20 LLoad2 0

APPENDIX D
PROOF OF Lemma 3.1:

The nominal contracting dynamics is ε ẏn = g(x,yn +ϑ ,ε),
and the perturbed contracting dynamics is expressed as ε ẏ =
g(x,y+ϑ ,ε)+εdϑ , where dϑ =− ∂ϑ

∂x f (x,z, t). Hence, we can
write:

ε
d
dt
(y− yn) = g(x,y+ϑ ,ε)−g(x,yn +ϑ ,ε)+ εdϑ . (57)

By defining a variation
∫

δy= y−yn, the differential dynamics
of (57) can be derived as [26], [28]:

εδ ẏ =
∂g
∂y

δy+ εdϑ . (58)

As the nominal system is contracting with a transformation
metric Θz, a new variation can be defined as

δω = Θzδy (59)

whose derivative can be derived as:

εδ ω̇ = (εΘ̇z +Θz
∂g
∂y

)Θz
−1︸ ︷︷ ︸

Fz

δω + εΘzdϑ . (60)
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Taking the norm on both sides and by the negative definiteness
of Fz (Fz +FT

z ≤−λzI, where λz ∈ R+),

ε||δω̇|| ≤ −λz||δω||+ ε||Θzdϑ ||. (61)

Let r1 =
∫
||δy|| and r2 =

∫
||δω||. From the definition (59),

||Θz||−1r2 ≤ r1 ≤ ||Θ−1
z ||r2, (62)

and the finite gain property of dϑ (24),

||dϑ || ≤ c1 + c2||y|| ≤ c1 + c2||y− yn||+ c2yo, (63)

where yo is the forward bounded solution of yn. Therefore, the
following can be derived using (61), (62) and (63)

ε ṙ2 ≤−λzr2 + ε||Θz||(c2r1 + c1 + c2yo), (64)

ε ṙ2 ≤−λzr2 + ε||Θz||(c2||Θ−1
z ||r2 + c1 + c2yo)), (65)

ε ṙ2 ≤−λzr2 + εχzc2r2 + ε||Θz||(c1 + c2yo). (66)

where χz is the condition number of Θz. Using δy = Θz
−1

δω

and (62) in (66), further integrating over time the bound (26)
can be obtained.
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