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Abstract: Amongst the most common causes of death globally, stroke is one of top three affecting
over 100 million people worldwide annually. There are two classes of stroke, namely ischemic stroke
(due to impairment of blood supply, accounting for ~70% of all strokes) and hemorrhagic stroke
(due to bleeding), both of which can result, if untreated, in permanently damaged brain tissue. The
discovery that the affected brain tissue (i.e., ‘ischemic penumbra’) can be salvaged from permanent
damage and the bourgeoning growth in computer aided diagnosis has led to major advances in stroke
management. Abiding to the Preferred Reporting Items for Systematic Review and Meta–Analyses
(PRISMA) guidelines, we have surveyed a total of 177 research papers published between 2010
and 2021 to highlight the current status and challenges faced by computer aided diagnosis (CAD),
machine learning (ML) and deep learning (DL) based techniques for CT and MRI as prime modalities
for stroke detection and lesion region segmentation. This work concludes by showcasing the current
requirement of this domain, the preferred modality, and prospective research areas.

Keywords: Ischemic brain stroke; machine learning; deep learning; CAD

1. Introduction

In the recent past, stroke has become the foremost cause of mortality and health–
disability worldwide, causing over 6.6 million deaths annually [1], and with up to 50% of
survivors being chronically disabled [2]. Economic impacts post–treatment and for post–
stroke care are substantial [1,2]. Risk factors for stroke are both non–modifiable/inherent
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and modifiable. Former risk factors include age, gender and genetic factors: with stroke
incidence being higher in older individuals and men [3]. Hypertension, smoking, high
alcohol consumption, waist–to–hip ratio, and diet are amongst the modifiable risk factor
for stroke, particularly ischemic stroke [4].

Brain strokes are of two types: ischemic (due to intracerebral vessel occlusion) and
hemorrhagic (due to intracerebral bleeding), as depicted in Figure 1.

Figure 1. Ischemic and hemorrhagic brain stroke.

Ischemic strokes are globally more common, accounting for at least 70% of all strokes.
It is most often caused by thrombosis (clots) secondary to large artery atherosclerosis, or
emboli from the heart in cardiac disease, such as atrial fibrillation [5]. Other causes of
ischemic stroke are small vessel disease, arterial dissections (tears), vasculitis, hypotensive
vasoconstriction [5], and hematological disorders (for example, sickle cell anemia, which is
a leading cause of pediatric stroke in Africa) [6]. Epidemiological patterns vary between
countries. The reductions in incidence, mortality, and disability–adjusted life years in
ischemic strokes in high–income countries, largely attributed to improved lifestyles and
rapid detection and treatments, has not yet been seen in low and middle–income coun-
tries [7]. This widening health inequity is a major challenge, which needs to be urgently
tackled, and more emphasis must to be given to democratize cost effective AI solutions
for diagnosis and stratifications. In India, the largest contributors to total neurological
disorder were strokes (37.9%), causing 7.4% of total deaths [8]. Stratification by gender for
the Indian population is shown in Figure 2.

Figure 2. Age–specific incidence rate of strokes by gender in India, 2019.

Although hemorrhagic strokes account for 10–15% of total stroke incidence, they are
associated with very high mortality and morbidity, which has not improved globally over
the last 20 years. Mortality is >50% with half of the deaths occurring in the first two days.
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Only 20% of patients manage to gain independent activity daily living (ADL) six months
after a hemorrhagic stroke. Uncontrolled hypertension and vascular malfunction are the
leading causes of hemorrhagic stokes [9,10].

Since the 1970s, it has been recognized that following an acute stroke there are hypo–
perfused brain regions, the ‘penumbral regions’, which are supplied by alternative blood
flow pathways to the one which is occluded. These penumbral regions can potentially be
rescued from permanent cell death if identified in time for reperfusion therapy (restoration
of normal blood supply), as well as treatments for the underlying cause of an individ-
ual’s stroke [11]. For ischemic stroke due to thromboembolism (the most common cause
of strokes) this would include intravenous thrombolysis medication therapy. The time
window for a successful and most effective treatment is very small [12]. For example,
best outcomes for the thrombolytic medication alteplase are achieved when this is started
within 3 h [13]. This ultra–rapid, tailored management approach, ideally within dedicated
stroke units, is a key recommendation of the World Stroke Organization’s global guidelines,
and essential in reducing mortality and morbidity [14].

However, intravenous thrombolysis is contraindicated if there is presence of hem-
orrhage in the infarcted area. Therefore, stroke guidelines recommend that all patients
who are candidates for reperfusion therapies should undergo immediate neuroimaging,
ideally with MRI, and all other suspected stroke patients should have an urgent brain com-
puted tomogram (CT) or magnetic resonance imaging (MRI), preferably within 60 min [15].
Moreover, if reperfusion therapy has been escalated, repeat neuroimaging, approximately
24 h after therapy administration, is recommended to identify early complication such as
hemorrhagic transformation, and to reassess the infarcted core. This is crucial to decide
the next appropriate treatments (for example, anti–thrombotic therapies and deep vein
thrombosis prophylaxis) [16].

Thus, accurate interpretation of neuroimaging to guide most appropriate treatment
decisions (‘image–based treatment guidance’) is a key part of modern optimal stroke
management. This can be very challenging, and dependent on highly skilled radiologists
working under intense time pressures, who are able to carefully analyze a very large
amount of radiological data to accurately identify normal and infarcted regions (‘lesion
segmentation’), as well as underlying pathophysiological mechanisms such as arterial
occlusions. The optimal approach to neuroimaging analysis has been intensively studied,
and the possibility of incorporation of artificial intelligence, machine learning (ML), and
deep learning (DL), has been increasingly explored [17]. Figure 3 shows the current role AI
plays in the brain stroke process.

Figure 3. Schematic to showcase applications of AI in stroke management.

Both CT and MRI are used in stroke management globally [18]. A more time–saving
imaging modality is CT, and this is usually the first line of imaging. MRIs, on the other
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hand, employ electromagnetic waves to produce superior image resolution of the brain.
An MRI with diffusion weighted sequence (DWI) is able to identify hyper–acute stroke
events as early as within minutes of onset [19]. Thus, although CT scanners are more
accessible globally, less expensive and quicker than MRIs, MRIs are more sensitive to
detect acute ischemic events, and thus recommended (especially when there is a potential
for reperfusion therapy) [20,21]. However, recent developments in CT technology, such
as perfusion CT (CTP) to identify ischemic penumbra combined with CT angiography
(CTA) to identify occluded vessels, represent promising alternatives to allow fast response
and associated assessment of stroke patients in cases where MRI machines are either too
expensive, inaccessible, or contraindicated [22].

The review articles in the literature have extensively investigated and discussed
the recent advancements in neuroimaging, various techniques employed for detection
and lesion segmentation (lesion stage wise by Yue), and the challenges involved in these
techniques [23–27]. Although these studies have contributed tremendously, there is still
scope for a deeper and more exhaustive study particularly based on modalities and their
suitability to the current conditions. Moreover, we have identified that there was a need
for a single comprehensive work amalgamating details of the recent development in all
areas of this domain.

1.1. Review Objective

The main objective of this paper, besides discussing the most recent developments in
diagnostic techniques, is to provide the reader with:

• A comprehensive overview of various modalities involved in neuroimaging, their
characteristics, and requirement. We compare the most prominent ones and make
remarks on their suitability, accessibility and viability. This will be useful in prioritizing
future research avenues;

• An all–inclusive overview of a host of recent techniques (with special focus on prog-
nosis) for stroke classification, detection and lesion segmentation categorized on the
basis of modality used, techniques employed, datasets used (with benchmarks) (see
Table 1) and the challenges faced;

• The areas of plausible future research.
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Table 1. Datasets and Benchmarks.

Modality Database Data Size Area Classes Ground Truth Data Info

MRI ISLES 2015

SISS: 28(train)
36(test)

SPES: 30(train)
20(test)

SISS: sub–acute
ischemic stroke lesion

segmentation
SPES: acute stroke

outcome/penumbra
estimation

SISS: Lesions were classified
as sub–acute infarct and

Infarct lesions.
SPES: target mismatch =

perfusion–restriction label
minus diffusion–restriction

label

SISS: Segmentation by
an Expert

http://www.isles-challenge.org/ISLES2015
(accessed on 4 October 2021).

MRI ISLES 2016 35(train) 19(test)

Dataset provides a
regression and

segmentation and a task:
Task 1: prediction of

Lesion outcome
Task 2: prediction of

Clinical outcome

MODIFIED RANKIN SCALE
(MRS) The 90 days mRS is a
scale to assess the degree of
disability 90 days after a
stroke incidence (Task II
assessment) (Grade: G)
G 0 No Symptoms.
G 1 No significant disability

despite symptoms;
G 2 Slight disability; need

assistance
G 3 Moderate disability
G 4 Moderately severe

disability;
G 5 Severe disability;
G 6 Dead.

Final lesion volume
(Task 1) as manually and
the clinical mRM score
(Task 2) denoting the

extent of disability

http://www.isles-challenge.org/ISLES2016/
Highest IDC = 3.37

MRI– (DWI,
ADC) ISLES 2017 43(train) 32(test)

Acute ischemic stroke
(Challenge for stroke
lesions segmentation,
core and penumbra

separation)

Ground–truth
segmentation maps
manually drawn on

scans

Lesion outcome (prediction) based on acute
MRI data.

http://www.isles-challenge.org/ISLES2017/
Highest IDC = 4.53

CBF, MTT,
CBV, TMAX,

CTP
ISLES 2018 63(train) 40(test) Penumbra–core

separation using CT
Expert segmentations of

the infarct lesions.

Acute ischemic stroke patients with 8 hrs. of
stroke onset and MRI DWI within 3 h. after

CTP. http://www.isles-challenge.org/

http://www.isles-challenge.org/ISLES2015
http://www.isles-challenge.org/ISLES2016/
http://www.isles-challenge.org/ISLES2017/
http://www.isles-challenge.org/
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1.2. Article Search

A systematic literature review was performed following PRISMA guidelines. A com-
prehensive database search was conducted to identify peer–reviewed articles published
between 2010 and 2021 including the following terms ‘Ischemic Stroke’, ’Hemorrhagic
Stroke’, ‘Lesion Segmentation’, ‘Prognosis of Brain Strokes’, ‘Lesion Detection and Segmen-
tation’, ‘Penumbra Core’ and ‘Neuroimaging’. Search engines used were: Science Direct,
IEEE Xplore, Spice, Springer and Wiley.

1.3. Selection of Articles

Studies published between 2010 and 2021 which strictly adhere to the subject area
and a few earlier survey methods, case definitions and concept studies were considered.
The entire process was carried out with three level filtering. 676 articles were initially
collected and 322 publications were filtered out as they were not relevant to the subject and
domain. A further 121 were filtered out due to the type of methods employed. 177 were
finally shortlisted for analysis based on relevance, type of publication, modality and
implementation details of technical aspects. Figure 4 shows articles selection process. To
the best of our knowledge, we have gathered all publications between 2010 and 2021
covering this subject.

Figure 4. Articles selection process based on the PRISMA guidelines.

This systematic review has been written following the PRISMA guidelines. The
inclusion and exclusion criteria are mentioned in Table 2.
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Table 2. The exclusion and inclusion criteria.

Inclusion Exclusion
Studies pertaining to Studies pertaining to
1. CT and MRI (including variants) 1. Treatment of strokes (Exclusively)
2. Ischemic and hemorrhagic strokes 2. Pure Statistical and Biological methods of treatment.
3. Measurement of the degree of the infarct and damage. 3. Technical working and advancement of algorithms
4. Prognosis of strokes and the likelihood of damage 4. Lesions extraneous to strokes
5. Lesion detection and segmentation (core and penumbra region)
6. ML and DL techniques for segmentation of lesion regions
7. Latest architectures in DL techniques and factorization
techniques for feature–specific algorithms.

1.4. Analysis of Articles

177 papers which met the inclusion and exclusion criteria were analyzed and stratified
based on imaging modality, techniques applied (ML/DL), and the types of problem addressed.

1.5. Paper Structure

Here, we mention the structure of the paper. In Section 2, a brief overview is provided
of the basics of imaging in the brain stroke domain. It begins by describing the considered
modalities with their description and working principles. Section 4 contains the prospects
of deep learning and a comprehensive review of various techniques/architectures for
stroke (ischemic/hemorrhagic) detection and lesion region segmentation and prognosis. In
Section 5 we discuss learning, research gaps, and future scope. Finally, Section 6 contains
the compendium of the research work. Figure 5 shows the structure of this paper.

Figure 5. Structure of the review process.

2. Brief Perspective on Brain Stroke Imaging

Neurological abnormalities are captured through CT and MRI. CT perfusion imaging
has been used to assess the degree of the ischemic penumbra, infarcted core and to aid
treatment decision. CT in the acute setting is mainly to identify contraindication to throm-
bolysis and to exclude stroke mimics. In this section we present a brief overview of stroke
imaging techniques and the modalities employed for diagnosis and treatment. Table 3 and
Figure 5 provide detailed description of the considered modalities.

2.1. Ischemic Stroke

Reduced cerebral blood flow (CBF) due to the occlusion of blood vessels lead to
ischemic stroke. Although ischemia tolerance differs between tissue types, these types
of strokes can be fatal when there is large vessel occlusion [28]. The deprived tissue
begins losing essential nutrients and oxygen and excretes toxins which accumulate and
impact normal function. Failure of recanalization of blood vessels ultimately can lead to
tissue infarction (death) [28]. Features such as hyper–dense middle cerebral artery (MCA),
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cerebral swelling caused by sulcal or ventricular effacement, and focal parenchymal hypo–
attenuation are most relevant to stroke assessment [29].

Ischemic core volume on baseline non–contrast CT (NCCT), CT perfusion (CTP), or
diffusion–weighted magnetic resonance imaging (DWI) (Figure 6 shows the comparison of
these modalities) is now widely used to drive key therapeutic decisions both in the early
and late (beyond 6 h after last known time well) time windows [30]. Besides accessibility,
speed, and patient tolerance, NCCT, when viewed in appropriate window width and
window length, can detect early hyper–acute ischemic alterations which helps to predict
both final outcome and the risk of secondary hemorrhagic changes [31]. DWI has been
shown to contribute significantly to the early detection of acute ischemic infarction, which
can be seen as a hyper–intense signal, due to the drop in diffusivity [32].

Figure 6. Various neuroimaging modalities. (a) CT Angiography, (b) CT Perfusion, (c) T1–weighted
imaging, (d) T2–weighted imaging, (e) FLAIR (fluid attenuated inversion recovery), (f) DWI (diffu-
sion weighted imaging).
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Table 3. Modalities at a Glance.

Modality Description

NCCT (CT) CT uses a beam of X–rays followed by a process of high–powered computers to generate images of soft tissues and bones. Overall
sensitivity of 57–71% and 12% in the first 24 h, 3 h respectively [31,32]

Perfusion CT
These scans help identify areas adequately supplied with blood (perfused) and provide detailed information about blood flow to the brain.
Regions which demonstrate matched defects in MTT and CBV represent the unsalvageable infarct core, whereas regions with prolonged MTT, but preserved CBV are
considered to be the ischemic penumbra, and are potentially salvageable [32]

Angiography CT CT angiography is a type of medical test that combines a CT scan with an injection of a special dye to produce pictures of blood vessels and tissues. Within an intracranial
vessel it may also identify thrombus, and may guide for intra–arterial thrombolysis or clot retrieval [32]

MRI MRI is based on the magnetization properties of atomic nuclei. Protons in the water nuclei of tissues are excited and relaxed, and subsequently capturing the released
energy. Based on the relaxation time, T1 and T2 tissues are characterized [32].

T1 weighted (MRI)
Characterized by shorter relaxation time. Following noticeable changes in scans [32]
1. CSF appears dark 2. White matter appears light 3. Cortex appears gray 4. Inflammation appears dark

T2 weighted (MRI)
Characterized by longer relaxation time. Following noticeable changes in scans [32]
1. CSF appears bright 2. White matter appears dark gray 3. Cortex appears light gray 4. Inflammation appear bright

Flair (MRI)
Characterized by longer relaxation time than T2 weighted images. Following noticeable changes in scans [32]
1. CSF appears dark 2. White Matter appears dark gray 3. Cortex appears light gray 4. Inflammation appears bright

DWI (MRI)

Detect the random movements of water protons. Spontaneous movements, rapidly become restricted in ischemic brain tissue which appear bright in scans. It is an
extremely sensitive method for detecting acute stroke. [32]
Apparent diffusion coefficient (ADC) is a measure of the magnitude of diffusion (of water molecules) within tissue. Rough values (10−6 mm2/s):
1. CSF: 3000–3400 2. White matter: 670–800 3. Cortex: 800–1000

CSF, cerebral spinal fluid; CBV, cerebral blood volume; MTT, mean transit time.
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2.2. Hemorrhagic Stroke

Spontaneous extravasation of blood due to rupture of a vessel causes hemorrhagic
stroke. The CT appearance of hemorrhage is proportional to the density of hemoglobin
protein (relative to plasma concentrations) within the hematoma. Immediately following a
vessel rupture, attenuation of CT is given in terms of Hounsfield units, which is a linear,
quantitative measurement of radio density [33]. Contrast–enhanced CT angiogram (CTA)
can identify patients at high risk of hemorrhage enlargement (HE) by revealing a ‘spot
sign’, which indicates an active bleeding point within the hematoma. MRI, on the other
hand, can detect previously resolved bleed and clinically silent cerebral microbleeds that
are not detectable on CT. This is due to the detection of hemosiderin which is an end
result of blood clot resolution [34]. Detection of hemosiderin provides information on
previous history of hemorrhages that may have gone undetected [35]. Table 4 presents the
radiological features shown by the considered modalities in different classes of stroke.

Table 4. Radiological features based on modalities.

Stroke Ischemic Hemorrhagic

Modality Acute (0–7 days) Subacute
(1–3 Weeks)

Chronic
(>3 Weeks)

Acute
(0–7 Days)

Subacute
(1–3 Weeks)

Chronic
(>3 Weeks)

NCCT

Loss of grey–white
matter

differentiation, and
hypo attenuation

(low density,
obstruction) of

deep nuclei [31,32]

Attenuation of the
cortex [31,32]

Hypo density
region [31,32]

Hyper dense
with fluid levels

[33]

Less intense
with

ring–like
profile [33]

Iso dense or
modest

confined
hypo

density [33]

T1 Low T1 signal [32] Low T1 signal [32] Low T1 signal
[32]

Iso intensity or
slight hypo

intensity with
thin hyper

intense rim in
the periphery

[32,33]

Hyper
intensity
[32,33]

Hypo
intensity
[32,33]

T2 infarct remains
Hyper intense [32]

Hyper intensity
[32]

High T2 signal
[32]

Hypo intense
with hyper

intense
perilesional rim

[32,33]

Hyper
intensity
[32,33]

Hypo
intensity

[32]

DWI

Decreased ADC
values with

maximal signal
reduction within 1
to 4 days marked

with hyper
intensity [32]

First ADC values
rise and return

close to baseline,
despite normal

ADC values
irreversible tissue
necrosis is present

(DWI remains
hyper intense) [32]

ADC signal
high [32] ADC: 0.70 [35] ADC: 0.72

[35]
ADC: 2.56

[35]

ADC, apparent diffusion coefficient.

3. Machine Intelligence in Lesion Segmentation and Stroke Detection

Lesion segmentation and identification of brain abnormality has long been a subject of
research, and many resulting developments have been made. Computer aided techniques
with statistical analysis have improved the process and model accuracy. However, as many
of these tools rely on human intervention or for crafting specialized features, these methods
are computationally expensive and suffer from a lack of generalizability. In contrast, ma-
chine learning algorithms can learn from hidden data and offer great flexibility. However,
these too have the problem of addressing handcrafted features and being specific to the
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available dataset. Hence, it is prudent to develop a technique with many parameters to
learn and acquire the important features, thereby sparing manual work. Introduction of
such systems in medical practice, if accurate and sensitive, may be cost effective, freeing
clinicians to focus on other areas of patient management. In regions where skilled radiol-
ogists are limited, an automated technique can improve accessibility and equity in high
quality medical care. Most importantly, they have the ability to improve the early detection
of stroke and facilitate improved outcomes guided by accurate neuroimaging [36].

These deep learning networks are known as global function approximators, making
them ideal tools for the case with non–uniform relationships between parameters. As these
have learnable parameters in multitude, they are highly efficient in capturing minute and
salient information [37]. However, there are some difficulties, the first being that they are
‘data hungry’, and sufficient data may, in some cases, be difficult to provide, leading to
the need for data augmentation. Secondly most networks are massive in terms of layers
and hence the changes in derivatives might not effectively initiate earlier neurons. Thirdly,
as the computations depend on decision logic, higher–level computational machinery is
required, such as the use of graphics processing units (GPUs) or tensor processing units
(TPUs). Due to rapid growth in healthcare and computational infrastructure, deep learning
in many ways has stood the test of time to emerge as an efficient tool for such applications.

The following sections provide an overview on the current techniques with CT and
MRI as primary modalities for ischemic and hemorrhage stroke detection.

3.1. Computer Aided—Statistical Techniques

Schemes with detection technique aided by computer processing (CAD) can help
identify patterns or abnormality that might be missed in preliminary clinical diagnosis,
and with the automatic feature extraction may improve disease detection. These can be
broadly grouped into two types: (a) region of interest (ROI) detection followed by stroke
prediction, and (b) segmentation. In the following section we discuss relevant papers in
the same order.

3.1.1. CT Based Methods

Techniques from the past decade have evolved tremendously from region identifica-
tion, feature extraction through image enhancement through computer to identify stroke,
and early detection which is critical to guide most appropriate therapies and improve
health care outcomes. Tang et al., proposed a way to isolate the region of interest of geomet-
ric shapes to analyze CT scans for prompt discovery of ischemic stroke [38]. The algorithm
contains a series of filters using radii of pixel to obtain the region of interest and produce a
binary mask. The technique performs the identification for detecting brain midline using
statistical analysis. Sajjadi et al., proposed a filter bank algorithm (adaptive partial median
filer), called the àtrous algorithm to clear the noise and enhance the image for detecting
early signs of ischemic stroke [39].

To deal with case of misses by experts, due to the low sensitivity of NCCT in detecting
cerebral infarctions, Nowinski et al., proposed a quick, less intensive and automatic method
to detect, isolate and assess ischemic infarct from a single NCCT scan [40]. Filho et al.,
proposed a method based on extracting radiological density patterns of the brain to detect
and categorize the occurrence of stroke. Five classifiers were applied and compared for
ischemic stroke detection in CT images [41]. Flottman et al., experimented with threshold–
free prediction of brain infarct from CTP imaging in case of core to penumbra lesion
mismatch [42]. Sakai et al., compared Bayesian versus singular value deconvolution for
estimation of ischemic core volume as a discriminant. He used a CTP–CBF threshold <30%
of a normal brain [43]. As early identification of stroke can be tremendously advantageous,
Lo et al., developed a feature set extracted and enhanced by the Ranklet transform to feed
the ML classifier for the early detection of hyper–acute ischemic stroke [44]. Shervin K
et al., presented a study to determine the finest CTP parameters and associated threshold to
clearly discriminate between benign and at–risk penumbra region without reperfusion [45].
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Kheradmand et al., conducted a study which showed that in cases of operfusion CT, Time
to peak when compared with mean transit time is a more accurate parameter to identify the
“at–risk” tissue [46]. Kawiorski M et al., conducted a study which emphasizes the utility of
perfusion CT to identify the potentially salvageable tissues by corroborating the presence
of correlation between the clinical and radiological aspects [47].

Bhaduria et al., presented a unique region growing based segmentation technique
wherein fuzzy c mean facilitates identification of active contour and thereafter propagation
through region–based method for intracranial hemorrhage (ICH) detection [48]. Haan et al.,
proposed the clusterize algorithm as a semi–automated lesion segmentation approach
to speed up the demarcation process without reducing precision [49]. Yahiaoui et al.,
enhanced brain CT imagery using the Laplacian pyramid (LP) and then a Fuzzy C mean
clustering algorithm for segmentation of ischemic stroke [50]. In grayscale threshold–
based techniques, Reboucas et al., proposed a new and more stable level set approach for
stroke segmentation in CT brain imagery [51]. Kumar et al., proposed an entropy based
unsupervised segmentation techniques for brain ICH [52]. Vasconcelos et al., proposed a
faster method for extracting featuring using adaptive brain tissue density analysis coupled
with federated learning to aid in stroke detection and classification [53].

3.1.2. MRI Based Methods

A standard MRI for acute stroke protocol consists of multiple sequences, from ba-
sic T1–weighted, T2–weighted, fluid attenuated inversion recovery (FLAIR), diffusion
weighted imaging (DWI), susceptibility–weighted imaging (SWI) and MR angiography
(MRA) (doi:10.1148/rg.325115760). This multispectral application is time consuming. In
this regard, Nabizadeh et al., proposed an intensity–based segmentation technique opti-
mized by gravitational algorithm for automatic stroke detection and segmentation using
single–spectral MRI [54]. Ghosh et al., performed comparative analysis of three techniques
for segmentation, namely modified watershed segmentation (MWS), symmetry integrated
region growing (SIRG), and hierarchical region splitting (HRS) for the detection of hypoxic
ischemic injuries [55]. In the case of segmentation, a lack of a sharp boundary delineation
hinders and delays the identification process. Cauley et al., tested a hypothesis and proved
that image intensity inhomogeneity provides a sign for identifying the subtle hypo–density
regionals which, in turn, is characteristic of ischemic infarct [56]. Ledig C et al., pro-
posed a probabilistic framework for automatic segmentation of MRI using “multi–atlas
label propagation” [57]. Farsani et al., proposed a fully automated lesion segmentation
method, which works on diffusion restriction characteristics of the acute stroke images [58].
Moeskops et al., proposed a voxel based automatic segmentation into several tissue classes
using CNN with different patch sizes and kernel sizes to acquire multi–scale information
about each voxel [59]. Oula et al., presented a simultaneous processing approach which
combines brain segmenting techniques with a novel spatial lesion model for identifying
distinct brain structures using a restricted Boltzmann machine [60]. Si et al., proposed a
wavelet transform based supervised segmentation technique optimized by Grammatical
Bee Colony algorithm [61]. Tom et al., presented a probabilistic technique for calculating
intensities of both normal and at risk (pathological) tissue without the need of a training
set [62]. Ji et al., performed accurate segmentation of brain tissue from the MR image based
Gaussian mixture model (GMM) [63]. Kamnitsas et al., proposed an architecture which
addresses the challenging task of brain lesion segmentation, making it more efficient and
adaptive to the class imbalance problem [64]. Figure 7 presents a generalized pictorial
representation of the pipeline of processes, and a summary of all techniques is presented
in Table 5.
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Figure 7. General block diagram of a typical ML–based CAD system.

Table 5. Summary of computer aided statistical techniques for lesion segmentation and stroke detection.

Articles Modality Technique Outcome Year

Tang et al. [38] CT Image texture analysis through Circular
Adaptive Region of Interest method SROC: [0.99–0.94] 2011

Sajjadi et al. [39] CT Translation–invariant wavelet for image
enhancement Higher information image extracted 2011

Nowinski et al. [40] NCCT Analyzing hemisphere attenuation values
using percentile difference ratios

SAcc is 83.2%. The early detection
accuracy (<3 h) is 78.4%. 2013

Filho et al. [41] CT Analysis of brain tissue density 2017

Flottman et al. [42] CT Novel threshold free method 2017

Lo et al. [44] NCCT
Local contract enhancement using Ranklet

Transformation and probability based
detection

GLCM Ranklet
SACC 71% 81% 2019

Bhaduria et al. [48] CT
Segmenting through the features of both
fuzzy clustering and region–based active

contour model
SDC: 0.92 2014

Haan et al. [49] CT, DWI,
T2FLAIR

Clustering algorithm for lesion
demarcation in AIS

Reduced processing time to on
average 17.8 min/patient 2015

YAHIAOUI et al.
[50] CT

Differentiation of brain pathology area
(hypodense) from its adjacent normal

parenchym (i.e., contrast enhancement)
using Laplacian Pyramid

Laplacian Pyramid algorithm gives
Better and faster (10.46 s) result than

DWT, especially in small sized lesions.
2016

Reboucas et al. [51] CT
Level set based approach on brain
densities (radiological) method to

generate stroke segmentation

Segmentation time and SACC
LSBRD (proposed) 1.76, 99%

Watershed 3.10, 92%
Region Growing 4.81, 93%

2017

Kumar et al. [52] CT Entropy based segmentation SACC: 99.87 (avg) 2020

Vasconcelos et al.
[53] CT Adaptive Brain Tissue Density Analysis CACC: 98.13% 2020

Nabizadeh et al.
[54] MRI Histogram–based gravitational

optimization algorithm SACC: 91.5%(strokes) 2014

Ghosh et al. [55]
Hierarchical Region Splitting, Symmetry
Integrated Region Growing and Modified

Watershed Segmentation
2014

Ledig et al. [57] MRI
Refinement using Multi–Atlas Label

based context with
Expectation–Maximization.

64.7% SACC using acute–phase 2015

Farsani et al. [58] MRI Diffusion restricted characterisitics CACC: 73% 2016

Moeskops et al. [59] MRI CNN SDC: 0.84–0.91 2017

Ji et al. [63] MRI Gaussian Mixture Model SACC: 5% more than baseline model 2017

Kamnitsas et al.
[64] MRI

A 11 layered dual pathway architecture
for joint processing of adjacent image

patches (DeepMedic)

SDC on training data of BRATS 2015
DeepMedic + CRF 89 .8

DeepMedic 89 .7
2017

SROC, receiver output receiver; GLCM, gray–level co–occurrence matrix; SACC, segmentation accuracy; SDC, segmentation dice coefficient,
CACC, classification accuracy.
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3.2. Machine Learning Methods
3.2.1. Ischemic Stroke

CT based methods:

For CT images, an ischemic stroke appears as a dark or low attenuation (hypodense)
region, well contrasted against its surroundings. For early detection, manual processing
via a clinical expert has traditionally been the most effective, but it is time–consuming
(especially under the time pressures of acute stroke management). Hence, an emphasis is
given to automation of detection using machine learning techniques. Rajini et al., developed
an approach for segmentation with amalgamation of texture analysis and the midline shift
tracing algorithm [65]. Quantifying cerebrospinal fluid (CSF) volumetric changes over time
is a potential biomarker for cerebral edema, and these studies performed this by using
ML [66,67]. Guberina et al., performed the Alberta stroke program using ML techniques to
detect early infarction sign [68]. As the features extracted from MRI yield better results, we
see a major use of ML techniques with MRI.

MRI based methods:

To date, MRI is the most sensitive modality to detect hyperacute stroke by determining
early cellular swelling due to ischemia. Brain ischemia produces effects that are time
variant. Hence, dynamic changes are seen in MRI, from early hyperacute (0–6 h of onset)
to chronic (≥3 months) staging [69,70]. Teruyuki et al., found that in case of acute stroke,
mismatch of abnormalities between images of perfusion–weighted MR and DWI could
help identify the penumbral region [71]. Maier et al., presented a comparison study of
different ML based classification methods for ischemic stroke lesion segmentation [72].
Mitra et al., explored the probabilistic method of Bayesian–Markov random field (MRF)
for segment (FLAIR) MRI and employed random forests (RFs) to extract highly probable
lesion areas [73]. Bharathi et al., explored ways to enhance segmentation quality using
handcrafted and unsupervised techniques and derived features [74]. Yoo et al., performed
a study to determine optimum thresholds of MRI modality parameters to aid the decision
to provide reperfusion therapy on the onset of stroke symptoms [75]. Maier et al., proposed
an automatic method of extra tree forests for voxel–based classification with an emphasis
on reproducibility and robustness to noise [76].

Ensemble techniques have been widely employed for better results. Mark et al., ap-
plied five ML algorithms (viz. generalized linear, additive model, adaptive boosting, SVM,
and RFs) to outline intense cerebral ischemic tissues that can recover after reperfusion [77].
Bagging technique such as RFs have been popular amongst most of the detection work,
perhaps due to their high resilience to variance. Muschelli et al., and Qaiser et al., ex-
perimented with RF customized features (local moment details, MRI’s scan, smooth and
median intensities) to predict the presence of ischemic penumbra and segmentation [78,79].
Fusing and cascading classifiers distributed across reference space and grouped to be
classified with high–level region–specific RFs have yielded good results [80]. Hanna et al.,
presented a technique for segmentation using RFs with context–based clustering tech-
niques [81]. Jerman et al., integrated an unsupervised segmentation technique with RFs
(supervised) [82]. Mckinley et al., proposed an automatic method for segmenting ischemic
penumbra using spatial and textural features on “Segmentation Forests” [83]. Robben
et al., proposed a segmentation technique using cascading extremely randomized forest
classifiers [84]. Chen H et al., proposed a segmentation technique using dense conditional
random fields to enhance the probability maps which are then used to train RFs [85]. To
deal with the issue of model generalization and the inability to be specific to cater to the
highly dynamic expressions of pathology, Goetz et al., proposed a methodology which
adaptively samples optimal images from a training set to train classifiers (thereby sup-
porting heterogeneous databases) [86]. Few have experimented with other supervised
techniques either distance based (k–nearest neighbor) or probabilistic (Gaussian Naïve
Bayes) [87,88]. Karthik et al., utilized the discrete curvelet transformation with a few
statistical parameters as features on different scales to train the RBF kernel SVM model and
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ANN [89]. ML models have the tendency to become complex in lieu of better performance.
Pereira et al., proposed an unsupervised technique (RBM) for feature learning and to feed
the RF classifier for penumbra estimation and evaluation of tumor segmentation [90]. Lin
et al., conducted a study to assess quality and identify potentially erroneous measurements
due to the presence of outliers. He evaluated and confirmed the suitability of a density–
based detection method [91]. Subudhia et al., have used Delaunay triangulation (DT) for
optimizing segmentation and tuned the parameters through “Fractional Order Darwinian
particle swarm optimization” (FODPSO), for automatic segmentation of stroke lesions [92].
Table 6 contains a summary of these techniques.

Table 6. Summary of various ML techniques applied for stroke detection (ischemic) and segmentation.

Articles Modality Technique Outcome Year

Filho et al. [41] CT
Feature extraction based on density patterns (radiological) and
classification of strokes through Bayesian, SVM, kNN, MLP, and

OPF classifiers

Fastest extraction time
IACC: 99.30% 2017

Rajini et al. [65] CT
Symmetry (mid line shift) based segmentation; image texture

analysis using GLCC and classification using SVM, k–NN,
ANN, decision tree

SVM IACC: 98% 2013

Maier et al. [72] MRI Generalized Linear Models, RFs and CNN are evaluated and
compared with each other for sub–acute ischemic stroke patients AdaBoost IDC: 0.69 2015

Mitra et al. [73] FLAIR MRI Bayesian–Markov Random Field and RF IDC: 0.60 ± 0.12 2014

Bharathi et al. [74]
MRI T1, T2,
DWI and

FLAIR

Feature Extraction using GLCM and unsupervised extraction
Kmeans clustering; and training RF classifier for detection of

ischemic stroke lesion
IDC: 0.88 IACC 0.82 2019

Maier et al. [76]
T1w, T2w,

FLAIR and
DWI

Extra Tree Forest framework for voxel–wise classification IDC: 0.65 ± 0.18 2015

McKinley et al.
[83] MRI T1, T2 Spatial

Random Forest
ISLES (leave one out)

IDC: 0.85 (±0.06) 2015

Robben et al. [84]
T1w– and

T2w, Flair and
DWI

cascaded extremely randomized trees
IDC

SISS 0.57 ± 0.28
SPES 0.82 ± 0.07

2016

Chen et al. [85] MRI random forests (cascaded) with dense conditional randomfields ISLES 2015/BRATS 2018
IDC of 0.51 ± 0.29/0.86 2020

Griffanti et al. [87] T2 and FLAIR k–nearest neighbor IICC: 0.99 2016

Griffis et al. [88] T1 Gaussian naïve Bayes IDC 0.66 2016

Karthik et al. [89] MRI

Multidirectional features based on Discrete curvelet transform
and watershed algorithm for fetching the ROI and then

applying support vector machines to develop the classification
system.

IACC 99.1% 2017

Pereira et al. [90] MRI Unsupervised feature learning through RBM with RF classifier IDC 0.81 ± 0.84 2018

Lin et al. [91] CT
DBSCAN, hierarchical DBSCAN (HDBSCAN)

and local outlier factor (LOF) for identification of erroneous
stroke detection

DBSCAN (Avg) IACC 96.9 2019

Subudhia et al.
[92] MRI Delaunay triangulation based segmentation optimized by

Darwinian particle swarm optimization IACC of 0.95 2018

Peixoto et al. [93] CT SCM, SVM, MLP ISPEC = 99.1%[highest] 2018

Garg et al. [94] Electronic
Data (NLP)

Classification of Ischemic Stroke Subtype (TOAST) using ML
(RF, GBM, KNN, XGBOOST, SVM, Extra Trees) and NLP

Kappa stacking:
combined data = 0.57 2019

GLCM, gray–level co–occurrence matrix; DC, dice coefficient; IDC, ischemic stroke dice coefficient; IACC, accuracy; IICC, intra class
correlation coefficient; IPREC, ischemic precision; IFS, ischemic FScore; ISPEC, ischemic specificity; ISENS, ischemic sensitivity.

3.2.2. Hemorrhagic Strokes

Intracranial hemorrhage is defined as bleeding that occurs inside the brain parenchyma.
Chen et al., showed an interesting way for detection of brain hemorrhagic diagnosis using
Internet of Things [95]. Gillebert et al., present a method to automatically delineate infarct
and hemorrhage in stroke CT imagery [96]. The process involves normalized CT images
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from stroke patients into a template space, and the subsequent voxel–wise comparison
with a group of control CT images for defining areas with hypo– or hyper–intense signals.
Diagnosing ICH is straight forward. However, identifying early hemorrhagic transfor-
mation in ischemic stroke can be challenging. Thrombolysis (fibrinolytic therapy), is the
process of breakdown of clots (blood) formed in vessels using medication. This could
be lifesaving in case of ischemic stroke but disastrous in cases of hemorrhage. Hence,
there must be a method to first identify the stroke before administering thrombolysis.
Bentley et al., conducted a study with the ML (SVM) model for predicting the presence of
ICH [97]. In Figure 8, the stages for lesion segmentation, identification, and classification
of stroke regions for machine learning techniques are shown. Table 6 contains a summary
of these techniques.

Figure 8. Generalized stages for lesion segmentation, identification, and classification of stroke regions.

3.3. Deep Learning Methods
3.3.1. Ischemic Strokes

CT based methods:

CNNs are widely useful for adaptability and recent experiments provide evidence
of good results using 3D CNN, which captures volumetric information. Chin et al., ad-
dressed the difficult task of segmenting acute ischemic lesions, due to their subtle nature
as compared with traditional CNN [98]. Identification of highly dynamic texture and
intensity variations in pathology is a difficult task using NCCT given the poor visibility.
Lisowska et al., investigated the betterment in working accuracy of CNN when appended
with spatial information (ATLAS). Although this network performed better due to this
incorporation, it was found to be less useful in the case of ischemia [99]. Abulnaga et al.,
extracted contextual information using a pyramid pooling net (pyramid scene parsing
network) [100]. Lucas et al., developed a 3D U–net to predict the final form of lesion with
trained clinical knowledge (core and penumbra shapes) represented in lower dimension by
a convolutional auto–encoder [101].

Many variants of recurrent networks have been utilized for stroke detection. Vargas
et al., built a Res–CNN stacked with a (long short–term memory (LSTM) layer) to check
the presence of ischemic stroke [102]. Barman et al., devised a deep symmetry sensitive
network (in lines of Siamese networks and inception modules) to analyze symmetrical
information [103]. Clèrigues et al., used asymmetric res–encoder–decoder model CT
imagery for detecting core infarcts using 2D patches [104]. Shinohara et al., proposed a
DCNN model to identify a hyperdense middle cerebral artery (a clinical sign indicating
blockage of the artery) to segment regions of ischemic lesion [105]. Due to the wide
scale of hypo densities in CT images, it is prudent to utilize an ensemble technique for
better generalization and specific results. Barros et al., used three different CNNs for
segmentation of subtle, intermediate, and clear hypo–dense lesions. It was seen to be
reliable and provided excellent correlation with the reference infarct volume [106].

Oman et al., explored the possibility of appending cerebral hemispheric comparison
CTA and NCCT as input in addition to CTA to possibly improve the performance of CNN
in the detection of AIS. It was reported to have two–fold benefits first being the increased
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specificity in ischemic lesion detection specificity and second to decrease the number of
false positives [107]. Hu et al., proposed a faster, efficient network for lesion segmenta-
tion [108]. Islam et al., proposed a training segmentation model using adversarial learning,
as this would detect and rectify higher order inconsistencies between the segmentation
maps produced by ground–truth and the segmentor. The model consists of a segmentor
(generative model) which generates the synthesized model, and a discriminative model
that estimates the likelihood of a sample being from ground truth data [109]. Bertels et al.,
proposed a CNN model with the data present in a nearby (contra–lateral side) voxel for
voxel–wise lesion segmentation of the core lesion [110]. Kuang et al., proposed a novel
multi–task learning approach i.e., EIS–Net, to segment early Infarct and score “Alberta
Stroke Program Early CT Score (ASPECTS)” simultaneously on baseline NCCT scans of
AIS patients [111]. Avetisian et al., experimented with altered U–Net CNN architecture by
slimming the encoder for the detection of stroke [112]. Robben et al., used a data driven and
deconvolution free approach to have a deep learning network to predict the final infract
volume [113]. Wang et al., proposed a method to extract features using the RF classifier for
automatic stroke lesion 3D segmentation [114].

MRI based methods:

MRI, with its inherent excellent soft tissue contrast resolution of the whole brain,
offers a simple post–processing operation and provide the flexible ability to simultaneously
perform diffusion imaging. However, co–existing MRI findings such as underlying cere-
bral deep white matter chronic micro–ischemia and indistinct stroke area can sometimes
be difficult to segment. CNN have proved to better performing for semantic segmenta-
tion [115]. Havaei et al., proposed a CNN based two–pathway framework trained directly
on modality, where each path focused on smaller and larger details [116]. Stier et al., built
and evaluated a DL model to predict tissue survival outcome based on sampled (randomly)
local patches of the hypo–perfusion (Tmax) feature measured immediately after the onset
of symptoms [117]. Dou et al., proposed an automatic 3D CNN model for performing a
detection operation using a cascading framework [118]. Choi et al., proposed an ensemble
of DNNs for the technical tasks of prognosis of post–treatment in case of stroke. This study
gave a multiphase learning technique to address the class imbalance problem [119]. As
this process is deep and heavily parametrized, and would certainly take a longer time to
converge, there are scopes to enhance the computational efficiency and improve time/space
constraints.

Although diffusion–weighted MR imaging (DWI) is sensitive to the lesions, manually
localizing and quantifying them is costly and challenging in terms of time and resources.
Wang et al., proposed an attention–based DNN with synthesized pseudo–DWI from
perfusion maps to obtain superior image quality for better segmentation [120]. Chen et al.,
proposed model framework consists of two CNNs for segmentation (automatic) of DWI
based stroke lesions in DWI. The architecture contains an ensemble of two DeconvNets
for detection of lesion, followed by a second CNN (MUSCLE Net) for refinement and
identifying and removing false positives [121]. Lucas et al., studied the use of classical
fully–connected neural networks (FC–NN) (151 features) based on handcrafted featuring,
and compared the results with DCNN and RF models in terms of accuracy and convergence
time. FCNN achieved much shorter runtimes [122]. Alex et al., proposed a de–noising auto–
encoder model for unsupervised feature learning of brain lesion detection, segmentation,
and reducing false positives [123]. Giacalone et al., employed the local spatial information
(temporal) for prediction of final lesion [124]. Perfusion imaging is essential to assess
penumbra area and infarcted core due to its ability to measure blood flow, transition
times and dispersion. Lucas et al., implemented an extension of U–Net, and added skip
connections after an alternative 3x3 Conv Block. Surface distance proved to be more
useful than pixel/voxel matching for irregular shape and to avoid low scores [125]. Bento
et al., performed a study and build an architecture for identification of atherosclerosis
areas [126]. Song et al., proposed a novel generative technique consisting of extractor
(features from CTP), generators (DWI based features) and segmentor [127]. Liu et al.,
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proposed a 2D–slice–based segmentation method with a residual–structured FCN (Res–
FCN) on the multi–spectral MRI process. Many blocks of CNN were involved for better
feature extraction [128]. Zhang et al., proposed a deep 3D CNN for automatic segmentation
by extended DenseNets to 3D and tapped their potential on AIS segmentation from DWI.
They employed a Deep supervision technique and Dice objective function to improve
optimization [129].

Chen et al., proposed a novel voxel–wise residual network (VoxResNet) with a set
of effective training schemes to address segmentation in the complicated anatomical en-
vironment of the brain and the large variations of brain tissue [130]. Li et al., presented a
2D ensemble FCNN based architecture to spot hyper–intense regions in fluid attenuated
inverse recovery (FLAIR) and T2 weighted imagery [131]. It is seen to achieve best results
on hand crafted features, which in turn are complex and often lack the ability to distinguish
between affected and normal tissue. Praveen et al., proposed a stacked sparse auto encoder
framework for automatically learning and selecting features followed by the SVM classifier
to accurately segment stroke lesions from brain MR images [132]. Due to the limited num-
ber of labelled and high–resolution scans, currently many investigators generate synthetic
data and train the model adversely. Alex et al., proposed a semi–supervised technique
with a generative adversarial network (GAN) for brain lesion segmentation [133]. Li et al.,
proposed an 2D dilated deep residual network to capture contextual information for seg-
mentation task [134]. Luna et al., proposed a novel 3D CNN based with transition layers
between encoding and decoding process to increase the impact of features maps in latter
phase [135]. Winzeck et al., investigated whether an ensemble of convolutional neural
networks trained on a multi–parametric DWI (MRI) mapping outperforms single networks
trained on solo DWI parametric maps [136]. Liu et al., proposed a DCCN (Res–CNN)
to automatically segment acute ischemic stroke area from multi–modality MRIs. In con-
trast to the single modality version, use of multimodality helps to improve segmentation
performance [137]. Karthik et al., proposed a supervised DFCN, with leaky ReLU as the
activation in the last two layers of the network for a precise reconstruction (absent in
U–Nets) [138]. Li et al., presented a unique end–to–end brain tumor segmentation method
by modifying the up–skip connection between the encoder and decoder, and adopting
the inception module (7×7 high receptor convolutional layers) in each block to help the
network learn richer representations [139]. Malla et al., explored the scope to evaluate the
impact of enhanced ML techniques, advancements, transfer learning, and post–processing
in the segmentation of stroke areas. [140].

These studies underscored the importance of multi-scale features and contextual
features and ways to capture long range dependencies [141,142]. Liu et al., proposed a
DCNN for stroke MRI based segmentation to address overfitting [143]. Chin et al., showed
that ensemble techniques like cascading could be used for post stroke analysis to improve
results [144]. Studies have been performed to perform segmentation using neighborhood
or symmetry information [145,146]. Rajan et al., proposed adversarial trained res–net
model to showcase the effectiveness of a boundary weighted loss function [147]. Lui
et al., improved the performance of segmentation using attention mechanism [148]. Zhang
et al., proposed multi-plane fusion architecture for stroke segmentation [149]. Amin et al.,
employed a high pass filter image to make prominent the in–homogeneity field effect
of the MR slicing, and fused it with the input slices [150]. Bui et al., proposed a novel
fully automatic Dense Net (adversarially trained) for predicting volumetric probability
maps [151]. Xue et al., proposed a multi–modal multi–path convolutional neural network
system for automating stroke area segmentation by analyzing brain–behavior relationships,
thereby eliminating the need for manual segmentation. Joshi et al., proposed an encoder–
decoder CNN (dilated) for an ischemic lesion segmentation task; this helped in preventing
data loss which can occur during max–pooling [152].

The penumbra is the area surrounding an ischemic event, which can be salvaged if
prompt treatment is received. Delineation of the penumbra in relation to the infarcted
core is important for stroke treatment and monitoring the treatment success. Gupta
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et al., proposed a multi–sequence network for the segmentation of ischemic lesions and
to differentiate between core and penumbra. Both the core and penumbra sequences are
fed into a U–Net type network [153]. Kumar et al., proposed DeepNet framework for
ischemic segmentation [154]. Satish et al., presented an automatic method for identification
of core and penumbra regions in ischemic lesions using DWI and perfusion–weighted
imaging (PWI). In the absence of the availability of more labeled data, the CNN is trained
adversarially (i.e., synthesizing images, applying a segmentation loss (cross–entropy)),
with aggregated losses from three discriminators (two of which have the relativistic visual
Turing test) [155]. Figure 9 shows the stages for lesion segmentation, identification, and
classification of stroke regions for deep learning techniques. Table 7 contains a summary of
these techniques.

Figure 9. Generalized stages for lesion segmentation, identification, and classification of stroke regions.
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Table 7. Summary of various DL methods applied for IS detection and segmentation.

Articles Modality Technique Loss Function Outcome Year
Lisowska et al. [99] NCCT Bilateral CNN + Atlas squared hinge loss IAUC: 0.964 2020

Abulnaga et al.
[100] CTP Pyramid Scene Parsing Network Focal Loss IDC:0.54 ± 0.009 2017

Vargas et al. [102] CTP CNN LSTM [Train 356, Validation 40] IACC: 87.5% 2018

Barman et al. [103] CT A

DeepSymNet Two identical CNNs
with 3 Inception module for learning

the low and high level volume 3D
representation common to the two

brain hemispheres.

L–1 difference IAUC: 91.4% 2019

Clèrigues et al.
[104]

CT,
CT–PWI

CBF, CBV&
MTT

DL based segmentation approach
using 2D patch based for of the acute

stroke lesion core.

To minimize the effects
of class imbalance

Generalized Dice Loss
(GDL) with the cross

entropy loss.

IDSC improvement
of 4.5% over the
baseline [ISLES

2018]

2019

Shinohara et al.
[105] NCCT Xception architecture pre–trained on

the ImageNet database classification loss
ISPEC: 89.7% IACC:

86.5% 2020

Barros et al. [106] NCCT

CNN with two convolutional layers
(256 nodes, 64/128 feature resp.)

followed by 2 FCN. Each dense layer
has. Max–polling layer with a 2 × 2

kernel and a 2 × 2 stride.

Severe IACC: 0.98
Intermediate IACC:

0.93
Subtle IACC: 0.66

2019

Oman et al. [107] CTA,
NCCT 3D CNN IDC: 0.61 2019

Hu et al. [108] 3D MRI 3D residual framework Focal Loss BRATS 2015
IDC: 0.86 (whole) 2020

Bertels et al. [110] CTP Contra Lateral Information CNN Binary cross–entropy IDC: 0.45 [ISLES
2018] 2018

Kuang et al. [111] NCCT
EIS–Net Triple–CNN with three triple

encoders and one de–coder with
multi–level attention gate modules.

Combination of
weighted binary cross

entropy and
Generalized

Dice–Coefficient.

IACC: EIS–Net
85.7% 2021

Avetisian et al.
[112] NCCT

Dual Path Network which fusing the
features of Res–Nets and

densely–connected networks
Focal Loss IDC: 0.703 2020

Wang et al. [114] MRI 3D RF trained on ISLES dataset Hybrid loss function IDC: 0.16 ± 0.31
[test] 2016

Havaei M [116] T1, T2, T1C
and Flair

CNN (two pathways cascaded
architecture) cross–entropy loss SISS IDC: 0.69

SPES IDC: 0.85 2020

Chen et al. [121] DWI CNN Cross Entropy IDC: 0.67 [avg] 2016

Lucas et al. [121]
FLAIR,

DWI, T1,
and T2

FCNN–MatConvNet cross–entropy loss IDC: 0.59 2017

Alex et al. [123] T1, T2,T1C
FLAIR Stacked denoising autoencoders High and Low

Grade Glioma 2017

Lucas et al. [125] MRI Res–UNets
Weighted sum of a

classification and soft
QDice metric

33% lower
surface distance

than U–Net
2017
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Table 7. Cont.

Articles Modality Technique Loss Function Outcome Year

Liu et al. [128] MRI FCN (Res–FCN) Customized Loss
Function IDC: 0.645 2018

Zhang et al. [129] DWI 3D FC–DenseNet
Customized Loss

function + Dice Loss
function

IDC: 0.79 [Best] 2018

Chen et al. [130] 3D MRI
VoxResNet: Stacked residual modules
with convolutional/de–convolutional

(total 25 volumetric)

spatial information
loss

IDC
GM 86.15
WM 89.46
CSF 84.25

2018

Li et al. [131] MRI FLAIR

Two convolutional layers are
repeatedly employed,

each with ReLU and a 2 × 2 (max
pooling), down–sampling with stride

2

Dice Loss MICCAI 2017
IDSC: 0.80 2018

Praveen et al. [132]
FLAIR,

DWI, T1,
and T2

Stacked Sparse autoencoder layers
and support vector machine classifier

as the output layer.
Mean Squared Loss ISLES 2015

IDC: 0.943 ± 0.057 2018

Li et al. [134] CT,
DPWI, CBF Deep Residual Dilated U-Net Cross–entropy loss MICCAI

IDC: 0.81 2018

Luna et al. [135] MRI 3D CNN normalized categorical
cross entropy loss

MRBrainS18
Weighted DC 4.44 2019

Winzeck et al.
[136] MRI Ensemble Res–CNN: Costumed Loss

Function IDC: 82.2% 2019

Li et al. [139] T1, T2, T1c
and FLAIR

U–Net structure with a new
cross–layer architecture (up skip
connection) and incorporating

inception modules

DSC
[train] IDC:

BRATS 15 0.89
BRATS 17 0.876

2018

Malla et al. [140] MRI CNN [Deepmedic] Dice Similarity
Coefficient

17% improved IDC:
over BS 2019

Yang et al. [141] T1 MRI
Cross–level fusion with context

(inference) network for stroke lesion
segmentation (chronic)

DLF ATLAS
IDC: 0.58 2019

Qi et al. [142] MRI

X–Net (a nonlocal operation to
capture long–ranged dependencies)

or the chronic stroke lesion
segmentation

DLF ATLAS
IDC: 0.48 2019

Liu et al. [143] MRI multi-kernel DCNN with pixel
dropout DLF SPES

IDC: 0.79 2019

Chin et al. [144] MRI Cascaded Networks (U-Net)
Train (Private

Dataset)
IDC: 0.44

2020

Liu et al. [148] MRI Attention–based DRANet. DLF
(748 Images
Sub-acute)

IDC: 0.76 (Best)
2016

ZHANG et al.
[149] DWI A triple–branch DSN architecture

with a multi–plane fusion network
Customized Loss

Function
ISLES 2015 SSIS

IDC: 0.62 2020

Amin et al. [150] MRI Auto encoders [segmentation] IDC: 0.96 (BRATS) 2020

Bui et al. [151] MRI 3D Dense Net modified DLF MRBrainS18
IDC 0.87 2019
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Table 7. Cont.

Articles Modality Technique Loss Function Outcome Year

Joshi et al. [152] DWI-MRI Dilated and Transposed CNN Binary cross entropy
plus the dice loss

ISLES 2015–2017
(train 25000,

validation 4000)
IDC: 0.85

(validation) and
IJACD: 0.78

2018

Gupta et al. [153] MRI

Multi–Sequence Network
architecture: Conv. Layers, Pooling

Layers (2 × 2), Up sampling layers (2
× 2), Dropout Layers,

Binary Cross–entropy

ISLES 2015
Core Esti IDC: 0.68

Penumbra Esti.
IDC: 0.82

2019

Kumar et al. [154] MRI Classifier–Segmenter network
(modified UNet for segmentation)

multi–scale loss
function (customized)

ISLES 2017–SPES
dataset IDC: 0.83 2020

Satish et al. [155] DWI, PWI
Adversarial Architecture:

Encoder–decoder as segmentor.
Discriminators: CNN

cross–entropy ISLES 2015
IDC: 0.82 2020

DLF, dice loss function; IACC, accuracy; IICC, intra class correlation coefficient; IPREC, ischemic precision; IFS, ischemic FScore; ISPEC,
ischemic specificity; ISENS, ischemic sensitivity.

3.3.2. Hemorrhagic Stroke

Phong et al., compared three types of CNN: LeNet, GoogleLeNet, and Inception
ResNet to determine the best method for hemorrhagic stroke detection [156]. Majumdar
et al., trained a CNN with improved performance by computing the mean output for
rotations of input images [157]. Arbabshirani et al., proposed and tested a predictive DL
model capable of detecting ICH [158]. Kuo et al., dealt with a challenge to identify minute
and subtle abnormality in a large 3D volume with superior sensitivity, through an end–to–
end patch–based FCN model network that performs joint classification and segmentation
on CT images [159]. Patel et al., proposed a 3D CNN with a combination of contextual
information to detect and segment stroke lesions [160]. Cho et al., proposed a deep learning
model that was constructed on two convolutional neural networks and dual FCN to detect
bleeding, for classification into five types of ICH for lesion segmentation [161]. The limited
hardware poses a problem in computation for deep learning networks, and there exists a
tradeoff between hardware and input size (i.e., learning via contextual information). Patel
et al., tried a method for the identification of ICH in 3D NCCT. The method combines a CNN
and RNN through bidirectional long short–term memory (LSTM) for ICH identification at
the image level [162]. Barros et al., proposed and developed CNN for the detection and
volumetric segmentation of subarachnoid hemorrhage (SAH) in non–contrast computed
tomography (NCCT) [163]. Lee et al., trained a DL model for detection of ICH without
backpropagation [164]. Xu et al., introduced the continuous monitoring of health vitals
wirelessly through IoT, which is termed ‘Health of Things’. The system is capable of
classifying CT imagery into uninjured and stroke and thereafter, the segmentation process is
carried out via a combination of Masked RNN and ML algorithm [165]. Li et al., proposed a
U–net based DL framework to detect and segment hemorrhagic strokes based automatically
on CT brain images.

Experiments are conducted to add a symmetrical constraint by using flipped images
as input [166]. Arab et al., developed and evaluated an automated DL method with
CNN and deep supervision CNN for precise hematoma (blood clot) segmentation and
volumetric quantification in CT images [167]. The combination of CNN with LSTM has
yielded good results but shows limited accuracy in performance, as many types use pre–
trained models. Grewal et al., proposed a RADNET joint CNN and LSTM model which
emulates a radiologist for ICH detection, by performing segmentation at multiple levels of
granularity and including a binary classification of intracranial hemorrhage [168]. Burduja
et al., proposed a light and efficient network for detecting ICH, consisting of the CNN and
LSTM [169]. A summarized review with details is highlighted in Table 8.
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Table 8. Summary of various methods applied for stroke detection (hemorrhagic).

Modality Articles Technique Loss Function Outcome Year

CT Phong et al. [156]
LeNet, GoogLeNet, and

Inception–ResNet
Private Dataset of 1700 records

F1 Score 0.997 (LeNet) 2017

CT Majumdar et al.
[157]

9 (3 × 3) convolutional blocks, (2
× 2) max–pooling, BN and ReLU

81% HSENS per lesion
98% HSPEC per case 2018

NCCT Patel et al. [160]
CNN with two distinct pathways

integrating contextual
information

categorical cross
entropy HDC: 0.91 2019

CT Cho et al. [161] FCN–8s HACC: 98.28% 2019

CT Patel et al. [162] CNN and RNN Binary Cross Entropy HACC: 0.87 2019

NCCT Barros et al. [163] CNN HDC: 0.63 ± 0.16 2020

NCCT Lee et al. [164] CNN HAUC: 0.903 2020

CT Xu et al. [165] Masked RNN and ML

Model[Resnet50+
MLP+MobileNET]

IACC:
EM 99.89 [Best]

2020

CT Li et al. [166] Pre–trained Dilated UNet HDC: 0.8033 2021

NCCT Arab et al. [167]
U–Net with deep supervision.

Encoder: Residual block Decoder:
Convl layers

Dice similarity
coefficients HDC: 0.84 ± 0.06 2020

CT Grewal et al. [168] Recurrent Attention DenseNet,
bidirectional LSTM layer HACC: 0.8182 2018

NCCT Burduja et al. [169] CNN & LSTM Binary cross–entropy HLL: 0.04989 2020

ICC, infraclass correlation coefficients; HDSC, dice similarity coefficient; ASSD, average symmetric surface distance; HLL, log loss; HSENS,
Sensitivity, HSPEC: Specificity.

3.3.3. Combined Stroke

Pereira et al., present a model for stroke detection in CT using CNN optimized by PSO;
the shallower network obtained better accuracy than the deeper version [170]. Marbun et al.,
employed CNN with proper preprocessing of images (gray scaling, histogram equalization
etc.) for classification of type of stroke [171]. Carlos CMD et al., presented an IoT enabled
framework with CNN as the main classifier to identify a healthy or a stroke affected brain
from CT images [172]. Kunag et al., proposed to segment ischemic and hemorrhagic infarct
simultaneously using a U–Net based architecture. The input is divided into four disjoint
regions and CNN was employed to generate probability maps for ischemic, hemorrhagic,
and other infarcts [173]. Xuea et al., used multi–modal MRI for classification of types of
strokes [174].

4. Discussion
4.1. Non–ML/DL Based Techniques

Several papers were surveyed under this topic to understand various approaches
and techniques. It was found that all of these basically fall under several major categories:
region growth, texture extraction (linear, non–linear, and spatial and frequency domain),
enhancement and analysis and contour based. Time complexity was largely governed
by modality type in consideration with the degree of imaging modals. Although many
algorithms have automated the processes, much of this work still requires manual inter-
vention and supervision. Work towards consideration of data encompassing various other
parameters such as age and essential clinical parameters could be helpful in making a more
comprehensive analysis.
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4.2. ML Based Techniques

Publications in this domain may be classified into three major types: (1) classifica-
tion based on discriminants such as texture, brain tissue density, contour–based analysis;
(2) purely probabilistic types; and (3) hybrid types, where the results are refined by other
methods. Although the former is efficient in terms of reducing time complexity and pro-
cessing, they suffer from the need of specialist intervention to indicate region and to affirm
the stroke type. Furthermore, for effective demarcation there is a need for optimal radiation
attenuation, which poses as considerable challenge. Most of the texture–based algorithms
have the drawback of missing barely visible lesions due to subtle intensity differences,
scan image quality, and intensity inhomogeneity, which causes high false positive rates. A
system with medical expert assistance to aid in the technical detection could prove helpful
for network training [175]. It is therefore expected that future research directions will
include the development of intensity resilient algorithms which perhaps could be coupled
with better image enhancement techniques.

4.3. DL Based Techniques

Emergence of deep learning has established a new paradigm in the domain of stroke
detection. Many papers have shown remarkable progress in terms of time, accuracy, and
adaptability. Their ability to customize feature importance and to identify discriminating
features including the presence of hyperdense vessels (sign of a large vessel occlusion),
and disturbed symmetry of vascular and brain tissue textures, has been primarily used for
prognosis and automatic detection of lesions. Architectures such as CNN with 3D kernels
have been extensively explored with many modifications in loss functions (specialized
focus) and adaptations to novel model architectures (U–Nets, ResNets, etc.) have led to
improved efficiency. However, CNN architectures are limited in accuracy when segmenting
ischemic stroke areas, and their heterogeneity in location, shape, size, image intensity, and
texture are the main reasons for their reduced level of efficacy, especially in this imaging
modality. Although such techniques rely on self–extraction of features, it was found that
many yielded better results after providing additional information including the use of
atlas coordinates to show dependency. In CNN architectures, the kernel size determines
the ROI, thereby affecting diagnostic performance. Smaller kernels lead to missing specific
regions and bigger kernels lead to heavy parametrization. Hence, a tradeoff is imperative.
Most of the considered datasets seem to be highly imbalanced leading to overfitting; this
could be solved by incorporating precision or recall based upon an objective function with
data fusion [175]. Moreover, data augmentation techniques and generation of synthetic
data using GAN may need to be utilized. We found a lesser number of papers dedicated to
the delineation of core and penumbra regions separately. Hence, further research should
be extended in that direction.

4.4. Preferred Choice of Diagnostic Imaging

There is no single globally preferred choice in modality either for lesion separation
or stroke detection; all have their benefits and are specific to certain tasks. In our study
we found that there is an urgent need for better imaging analysis technology to improve
inference, and a need for advancements in imaging techniques, as detection of incom-
plete infarction in the acute stroke setting on MRI or CT is currently not feasible (since
current CT and MRI modalities are subjected to partial volume averaging as well as very
limited spatial and tissue resolution). Yet in practical scenarios, accessibility must be the
primary concern for such applications. As CT is readily accessible, affordable, and less
contraindicated, especially for hemorrhagic stroke analysis, it is seen as a natural choice
for implementation [175]. In most of the analyses we found that CT is useful in many
applications, providing acceptable results and often the best results. We noticed many
papers which employed raw CT as their base modality. In advanced cases, perfusion
CT addresses many critical unknowns in the acute stroke triage, and it is apt in the task
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of delineating the operational penumbra from the infarct core. In application of acute
intracranial ischemic/hemorrhage NCCT this was seen as extensively useful.

More work should be carried out in the advancement of CT or its variants in applica-
tion of networks to explore the core as a potential area to improve stroke analysis. We do
not claim that CT is better than MRI for this purpose, but from a practical standpoint there
is reason to enhance the processing of CT data for preliminary diagnostics and prior to the
use of higher advanced modalities in following stages.

4.5. Time Complexity

Time complexity is a measure of the time consumption of algorithms as a function
of inputs, preferably measured for the worst–case scenario to set the upper limit [176].
Although it is an important metric for gauging algorithms, it is tenuous when used for
complex domains such as segmentation, detection, and prediction of intricate regions, as
they are often an amalgamation of many techniques working either sequentially or in
parallel. In this review, few studies have reported the time taken for processing per input
or relative improvement in terms of time while also providing a detailed analysis of their
algorithm in terms of time and space complexity. Including a section on “computational
and space complexity” of their model can be one of the evaluation parameters used to
assess the performance of the model.

4.6. Prognosis

The ultimate goal of ischemic stroke treatment is to recanalize an occluded vessel and
enable damage control. It is important for timely and precise decision–making, which
ultimately affects patient outcomes. This study attended to the detail of stroke prognosis,
plausibility of treatment options, and relevance. We studied many research papers which
performed and successfully executed analysis to aid in diagnosis and prognosis. A sum-
mary is illustrated in Table 9. There were many dimensions that investigators used such as
prediction of infarct growth over time and predicting the functional outcome of ischemic
stroke patients, but these were limited by insufficient data, lack of manual supervision, and
massive size. As many studies have pointed out, the most probable reason behind stroke is
older age, lifestyle, low level of physical activity, unhealthy diet, hypertension, smoking,
and diabetes mellitus, which makes the prognosis based on a specific source difficult. In
this regard, we wish to encourage the research community to explore the areas of personal-
ized diagnostics with many sources of consideration. Deep learning models utilizing image
features coupled with other information about the patient could yield better and more
accurate results. The capturing of data can be carried out via a home medical teleport, or
from nearby health centers, and then transmitted to cloud–based models via mobile apps,
even in remote regions of the world with lesser available services. Cloud–based models
trained and maintained using federated learning are potentially much more reliable than
current methods and could revolutionize this field.
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Table 9. Summary of different methods applied for prognosis of strokes.

Articles Modality Technique Prediction Year

Rebouças et al. [51] CT
Feature extraction based on density patterns

(radiological) and classification of strokes through
kNN, SVM, MLP, OPF and Bayesian classifiers

Identify & classify the
occurrence of strokes (extent

and severity).
2017

Robben et al. [84] CTP Modifed DeepMedic Final infarct volume 2019

Bentley et al. [97] CT SVM with an HAUC: 0.744 Predict symptomatic
intracranial hemorrhage 2014

Stier et al. [117] Tmax MRI CNN with 2 Conv layers, 2 6x6 pooling layers,
trained with 100 epochs for Binary prediction Tissue Fate Features in AIS 2016

Choi et al. [119] MRI
Lesion outcome prediction—3D Res

U–Net—CNN Clinical outcome
prediction–CNN–Log Regression

Automated prognosis for
post–treatment ischemic stroke 2016

Chen et al. [121] CT CNN Early stroke detection
(ischemic) system with CNN 2017

Lucas et al. [122] CT 3D U–net appended with Convolutional
auto–encoder 2018

Lucas et al. [125] CT 3D UNets Predict Ischemic Stroke
Growth 2018

Bento et al. [126] SVM IACC: 97.5% Early identification of
Carotidartery Atherosclerosis 2019

Song et al. [127] GAN IDC: 0.624 Prediction of perfusion
parameters 2019

Giacalone et al.
[124] SVM IPRES: 95% Final lesion prediction 2018

Arbabshirani et al.
[158] CT DCNN HAUC: 0.846

Detecting of ICH based on
clinical database of brain CT

images

5. Challenges and Future Directions

While surveying the field, we encountered many approaches, applications, and tech-
niques based on various datasets, and it was difficult to evaluate them all in generality.
Many methods claimed to be fully automated yet relied on human assistance/interaction
for parameter initialization. A fully automated process would require a powerful intelligent
system which can adapt and customize based on patient condition/severity of symptoms
and would avail a host of opportunities regarding the prospects of artificial intelligence
in this area. A remarkable progress in terms of segmentation has already been carried
out, yet the task of specifically locating the penumbra and core is still to be explored and
refined. Concerning identification of the penumbra, more work is needed as this would
help to rejuvenate it faster. In stroke detection, we found less work in identification of its
sub–classes and a lack of research on the dynamic evolution of stroke as time progresses. A
heterogeneous dataset containing images across the regions and countries with different
conditions must be developed for better research and more clarity on their impact.

Future research can be directed in several ways:

1. IoT based personalized AI: AI being the main protagonist of Industry 4.0, having far–
reaching implications, especially in healthcare. Hyper personalization of healthcare
could provide tailor–made diagnostics and would vastly improve early detection
of disease.

2. Creation of a large hetero public database: The dataset that we have addressed
consists of few images for train and test, with regard to particular domain or region.
A larger public dataset would assist to better cover major areas.
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3. Remote patient monitoring through federated learning: Figure 10 shows a proto-
type for remote patient monitoring with cloud–based AI Models. Wearable modes
with continuous monitoring of biomarkers with easy transfer of meta–data to cloud
through phones for collective learning and personalized prediction would be helpful.
These could act as a digital expert to assist in patient diagnosis and prognosis.

Figure 10. Prototype model for remote patient monitoring with cloud–based AI Model.

6. Conclusions

In this study we reviewed the status, trends, and future directions in stroke detection
and segmentation. It is clear that a rapid, adaptable process facilitating timely neuroimag-
ing analysis is imperative in stroke management. This is due to the fact that neuroimaging
has a prime role in the diagnosis and optimal management of different types of strokes. Due
to recent advancements in neuroimaging, AI, and computation power, the development of
automated diagnostic tools is clearly within reach. Advances in this field and translation
into clinical practice will result in reduced patient morbidity and mortality.

Based on the findings of this systematic literature review, we make a number of sug-
gestions for how the performance of automated diagnostic tools can be improved and
a more comprehensive automated system can be built. Firstly, segmentation techniques
could be automated and personalized for individual patients, allowing translation of clini-
cal research into clinical diagnostic practice. Secondly, instead of training the systems on
specific datasets, a more heterogeneous dataset could be considered. This would help the
models to comprehensively learn all cases, both regionally and country–wide. Thirdly, be-
sides the prospects mentioned on the different stroke stages in Section 5, a fully automated
segmentation system with deeper networks for stroke area segmentation (especially in
sub–acute and chronic strokes) could be built in for future paradigms. Fourthly, as there
have been recent attempts to predict infarcts and the extent of the penumbra, more research
should be focused on these strategies, in order to devise and combine prognostic tools for
strokes, such as the degree of infraction, into stroke management algorithms. Fifthly, GANs
could certainly prove helpful in generating synthetic datasets in cases of data scarcity,
class imbalance and cases when the cost of obtaining labelled data is huge. However, care
must be taken to keep original distribution unperturbed and that new data doesn’t create
any bias in the decision-making process. Sixthly, segmentation models greatly depend on
quality of image quality, acquisition and the reconstruction parameters of the modality.
Small changes in these parameters can lead to a substantial deviation in the output in
model output [177]. It could be better to have proper standards for parameters can which
could potentially prevent this and help in improving the reproducibility of the results.
Lastly, it would be ideal to explore the possibility of remote patient monitoring, to enhance
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equity of access to excellent stroke management in the most cost–effective and acceptable
manner, and also boost the prediction of stroke, with the potential to prevent this disabling
condition arising in the first place, thereby trans–forming patient outcome. Perhaps in
the future, the accuracy of stroke prediction via metadata analysis will be an important
criterion to evaluate stroke segmentation results.
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