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Abstract: Joint communications and sensing (JCAS) has recently attracted extensive attention due to 1

its potential in substantially improving the cost, energy, and spectral efficiency of Internet-of-Things 2

(IoT) systems that need both radio frequency functions. Given the wide applicability of orthogonal 3

frequency-division multiplexing (OFDM) in modern communications, OFDM sensing has become 4

one of the major research topics of JCAS. To raise the awareness of some critical yet long-overlooked 5

issues that restrict OFDM sensing capability, a comprehensive overview of OFDM sensing is provided 6

first in this paper and then a tutorial on the issues is presented. Moreover, some recent research 7

efforts for addressing the issues are reviewed, with interesting designs and results highlighted. In 8

addition, the redundancy in OFDM sensing signals is unveiled, based on which a novel method is 9

developed to remove the redundancy by introducing efficient signal decimation. Corroborated by 10

analysis and simulation results, the new method further reduces the sensing complexity over one of 11

the most efficient methods to date, with minimal impact on sensing performance. 12

Keywords: Joint communications and sensing (JCAS); Internet-of-Things (IoT); orthogonal frequency- 13

division multiplexing (OFDM); radar sensing; multi-carrier; single-carrier; discrete Fourier transform 14

(DFT); fast Fourier transform (FFT); decimation 15

1. Background and Motivation 16

Joint communications and sensing (JCAS) has attracted extensive attention lately 17

due to its potential of substantially improving cost-, energy- and spectral-efficiency for 18

a myriad of modern wireless systems that require both communications and radar, e.g., 19

many smart IoT applications [1,2]. As a popular waveform in both communications and 20

radar, the orthogonal frequency-division multiplexing (OFDM) based JCAS has regained 21

great interest, after its arguable debut in 2007 [3]. The seminal work, however, did not 22

illustrate OFDM radar sensing, and was only focused on the impact of radar antenna 23

set-ups (unidirectional or omni-directional) on communication performances, e.g., bit error 24

rate and system throughput. Before the work [3], OFDM radar had been studied since 2000, 25

yet without considering communications in general [4]. Early OFDM radar works between 26

2000 and 2009 mainly treat OFDM waveform just as the conventional radar waveforms, 27

e.g., chirp, and intend to design the OFDM-based waveforms, e.g., the phases of OFDM 28

sub-carriers, to improve radar ambiguity functions [5–10]. Although many of these works 29

[4–10] mention the applications of OFDM in data communications, they barely take into 30

account any communication aspects either in waveform design or in signal processing. 31

The true OFDM-based JCAS is enabled by the method first published in 2009 [11] and 32

more comprehensively elaborated on in [12]. At a radar receiver, the method [11] treats 33

each OFDM symbol as in communication systems by first removing the cyclic prefix (CP) 34

and then taking the discrete Fourier transform (DFT). In the frequency domain, the method 35

[11] removes the communication data symbols, as added on sub-carriers at the transmitter, 36

through a point-wise division (PWD), attaining the scaled sum of the outer products 37
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Table 1. List of abbreviations

6G Sixth-generation mobile communications
CP Cyclic prefix
COS Classical OFDM sensing
CCC Cyclic cross-correlation
CRLB Cramer-Rao lower bound
C-COS CCC-based COS
CFAR Constant false-alarm rate
DFT Discrete Fourier transform
DFT-s-OFDM DFT-spread OFDM
DCOS Decimation-based COS
GA Genetic algorithm
GLRT Generalized likelihood ratio test
ML Maximum likelihood
IDFT Inverse DFT
ICI Inter-carrier interference
IN Interference-plus-noise
JCAS Joint communications and sensing
MMR Maximum measurable range
MMD Maximum measurable Doppler
MIMO Multiple-input and multiple-output
OTFS Orthogonal time-frequency space
OFDM Orthogonal frequency-division multiplexing
PWD Point-wise division
PWP point-wise product
RDM Range-Doppler map
Rx Receiver
SINR Signal-to-interference-plus-noise ratio
SNR Signal-to-noise ratio
Tx Transmitter
VCP Virtual CP

between range and Doppler steering vectors. A two-dimensional Fourier transform is then 38

taken over the sub-carrier and time domains, resulting in the so-called range-Doppler map 39

(RDM), matrix or profile. Target detection and estimation can be performed using the RDM, 40

which will be further illustrated in Section 3. 41

The sensing method [11,12] has been extensively applied in the past decade and 42

become a de facto standard for OFDM radar, particularly in automotive sensing [13–23]. 43

For illustration convenience, we call the method [11] the classical OFDM sensing (COS) 44

hereafter. Recent OFDM sensing works mainly base on COS but also introduce new 45

techniques to improve the RDM quality. The work in [16] introduces the stepped carrier 46

technique to increase the overall baseband bandwidth of the OFDM radar and hence the 47

resolution of RDMs. The work in [17] randomizes the stepped carrier and exploits the 48

compressive sensing technique to reconstruct a high-resolution RDM. While previous 49

works generally ignore the inter-carrier interference (ICI) issue, the work in [18] considers 50

the impact of ICI on OFDM sensing and develops a novel signaling, which repeats the 51

same OFDM symbol over (slow-)time, to facilitate the estimation and suppression of ICI. 52

The OFDM sensing methods [11,12,16–18] reviewed above are for the single-antenna 53

transceiver. One of the greatest advantages of using OFDM as radar waveform is that 54

multiple antennas can be utilized to realize an orthogonal MIMO radar-like sensing1. This 55

advantage is first noticed in [24], where an equidistant sub-carrier interleaving scheme is de- 56

veloped to make the signals transmitted by different antennas orthogonal. More specifically, 57

the scheme makes antenna m only use sub-carriers m + iM for m = 0, 1, · · · , M − 1 and 58

i = 0, 1, · · · , where M is the antenna number. However, as noted in [19–22], the equidistant 59

1 In theory, given M transmitter antennas and N receiver antennas, an orthogonal multiple-input and multiple-
output (MIMO) radar can achieve an extended virtual array of MN antennas.
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interleaving can reduce the unambiguously measurable distance of a MIMO-OFDM radar. 60

To address the issue, a non-equidistant sub-carrier interleaving scheme is proposed in [19], 61

where the genetic algorithm (GA) is used to maximize the ranging performance in terms 62

of the sub-carrier interleaving patterns of transmitter antennas. In [20], the random time- 63

frequency multiplexing is proposed to enhance the inter-antenna signal orthogonality of a 64

MIMO-OFDM radar. For the same purpose, coded MIMO-OFDM radars are developed in 65

[21,22], where special coding over time, frequency, space and joint domains are developed. 66

Targeting at sole radar applications, the methods reviewed above pay little atten- 67

tion to (MIMO-)OFDM data communications. Recently, the communication community 68

has been highly active in promoting JCAS. In fact, given its potential in improving cost- 69

/energy-/spectral-efficiency and in substantially benefiting emerging use cases of mobile 70

networks, e.g., smart home/city/ transportation [25], JCAS has been envisioned as a hall- 71

mark technology of the future sixth generation mobile communications (6G) [26]. The 72

communication-centric JCAS designs in the communication community generally fall into 73

two broad categories: general designs and communication standards-based ones. 74

The general JCAS waveforms have been designed in spatial, time and frequency do- 75

mains without referring to some specific communication standards. In the spatial domain, 76

dual-functional precoders/beamformers are generally designed to, e.g., approach desired 77

sensing waveforms subject to signal-to-interference-plus-noise ratio (SINR) requirements 78

for multi-user downlink MIMO communications [27]. In the time and frequency domains, 79

existing works mainly resort to designing frame structure [28], sub-carrier occupation [29], 80

power allocation [30] and pilot/preamble signals [31]. These JCAS works [27–31] evaluate 81

sensing performance by statistical or asymptotic metrics, e.g., the signal-to-interference- 82

plus-noise ratio (SINR) and the Cramer-Rao low bound (CRLB). They either do not discuss 83

specific sensing methods or refer to some common ones, e.g., COS [11] reviewed above. 84

Standards-based JCAS designs generally integrate sensing into an existing communi- 85

cation system and prioritizes communications. In this line of research, IEEE 802.11ad-based 86

millimeter-wave (mmWave) communication system is a popular choice. To counteract the 87

severe attenuation of mmWave signals, IEEE 802.11ad mainly uses the DFT-spread OFDM 88

(DFT-s-OFDM) waveform2 for data transmission. In [33,34], different sensing methods 89

are developed using the Golay complementary sequences (GCSs) in the preamble of IEEE 90

802.11ad communication signals. In [35], the Doppler resilience of IEEE 802.11ad-based 91

sensing is improved by incorporating Prouhet-Thue-Morse sequences in the preamble. 92

In [36], an adaptive mmWave JCAS based on IEEE 802.11ad is developed, where a few 93

non-uniformly placed preambles are transmitted to construct several receive virtual pream- 94

bles for enhancing velocity estimation accuracy at the cost of a small reduction in the 95

communication data rate. While these methods exploit the superb auto-correlation feature 96

of GCSs for a high ranging performance, it can be non-trivial to adapt them for other 97

communication standards. It is more so for existing wifi-based JCAS designs which mainly 98

exploit the channel state information estimated by wifi devices [37]. 99

The standards-based JCAS designs reviewed above exploit only a small portion of 100

available signals in a standardized communication system. To further improve the sens- 101

ing robustness against interference and noises, data signals of IEEE 802.11ad, with much 102

wider availability than preamble signals, are exploited for sensing in [38,39]. In [38], the 103

generalized likelihood ratio test (GLRT) is employed to formulate a maximum likelihood 104

(ML) problem for target detection and estimation. An adaptive algorithm is developed to 105

solve the ML problem by iteratively estimating the current strongest target, reconstructing 106

the target echo signal, and removing it for estimating the next strongest target. While the 107

method [38] results in an ML-like sensing performance, it has a much higher computational 108

complexity than COS [11]. However, COS, if directly applied to DFT-s-OFDM, can cause 109

severe noise enhancement, as the communication signals modulated on sub-carriers approx- 110

2 DFT-s-OFDM is also known as the single-carrier OFDM (SC-OFDM). It performs a DFT precoding before
modulating data symbols onto sub-carriers and generally achieves lower peak-to-average-power ratio (PAPR)
than OFDM [32].
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imately conform to a centered Gaussian distribution. To address the noise enhancement 111

issue, the work [39] modifies COS by replacing PWD with a point-wise product (PWP). 112

Since the PWP of two frequency-domain signals plus a Fourier transform result in the cyclic 113

cross-correlation (CCC) of the corresponding time-domain signals, we call the method [39] 114

C-COS hereafter. 115

COS and C-COS have the complexity only dominated by Fourier transforms. Thus, 116

they particularly suit communication platforms needing (or benefiting from) radar sensing 117

yet with limited computing ability, such as low-profile IoT devices. Although COS and 118

C-COS have sub-optimal sensing performance compared with the optimal ML estima- 119

tion, they can provide satisfactory sensing performance for numerous scenarios, such as 120

detecting car presence in a car park or people presence indoors. Moreover, we can also 121

perform COS and C-COS for initial sensing and then exploit ML to refine the initial results. 122

Such combination can have much lower computational complexity than using ML directly. 123

Further, as they do not make changes to communications, COS and C-COS allow sensing 124

to be added onto existing communication systems with minimal changes. Therefore, we 125

envision that COS and C-COS will promisingly contribute to speeding up the market 126

penetration of JCAS in the near future. This would be more so if the following issues of 127

COS and C-COS can be effectively addressed. 128

1. Passively reusing communication signals without making any changes make COS 129

and C-COS suffer from the sensing constraints imposed by communication signal 130

formats. In particular, the maximum sensing distance is limited by the CP length 131

of the underlying communication systems; and the maximum measurable velocity 132

is inversely proportional to OFDM symbol duration. So can we relieve the sensing 133

limits without changing communication signal formats? 134

2. COS and C-COS provide two different ways of generating RDMs. While their com- 135

putational complexity is the same, a question follows naturally: which one gives the 136

better sensing performance? It was shown through simulations in [39] that the C-COS 137

can have better sensing performance than COS in certain low SNR regions. This, how- 138

ever, is not always the case, as disclosed in our recent work [40]. A comprehensive 139

analytical comparison between COS and C-COS is still missing. 140

3. Can COS and C-COS be applied to future variants of OFDM? Recently, the orthogonal 141

time-frequency space (OTFS) waveform has become increasingly popular due to its 142

unique ability of handling fast time-varying channels. Like DFT-s-OFDM, OTFS is 143

also DFT-precoded OFDM. Unlike DFT-s-OFDM that is only precoded once along the 144

sub-carrier dimension, OTFS is additionally precoded over (slow-)time. However, 145

directly applying COS or C-COS to OTFS can be hard, as the OTFS with a reduced 146

cyclic prefix (RCP), i.e., a single CP for the whole block of OTFS symbols, is the main 147

trend in the OTFS literature. 148

4. Indeed, COS and C-COS already have quite low computational complexity. But 149

should we rest on our laurels? In time-critical JCAS applications, we may require 150

sensing to be done as fast as possible. This can be extremely challenging, particular 151

when the spatial volume to be sensed is large. All these factors put up with highly 152

stringent requirements on sensing efficiency. Therefore, it is always beneficial to 153

further reduce the sensing computational complexity, even only slightly. 154

We remark that the issues highlighted above have been rarely treated yet in the 155

literature, not to mention effective solutions. To raise the awareness of the issues in the 156

JCAS community, we will provide a short tutorial on them in Section 3 after we establish 157

the signal model in Section 2. These two sections act as fundamental basis to understand 158

the recent progress and new solutions to be introduced sequentially. In particular, we will 159

illustrate in Section 4 some recent research efforts, which are based on our own works 160

[40,41], in addressing the first three issues mentioned above. Moreover, in Section 5, we 161

will unveil that there exists non-trivial redundancy in OFDM-like sensing signals. To the 162

best of our knowledge, such redundancy has not been explicitly treated in the literature 163

yet. Noticing that, we develop a novel low-complexity sensing method based on COS by 164
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introducing efficient signal decimation. We also provide analysis and extensive simulations, 165

demonstrating that the decimation-based COS can reduce sensing complexity in a non- 166

trivial manner yet incur only minimal impact on sensing performance. 167

2. Signal Model of OFDM-, DFT-s-OFDM- and OTFS-based Sensing 168

Consider a general JCAS scenario where OFDM communication symbols are also 169

used for sensing through a full-duplex synchronized receiver (Rx) co-located with the 170

transmitter (Tx). We assume that proper full-duplex techniques are used to avoid/remove 171

self-interference from Tx to Rx; see e.g., [2] for a review of such techniques. In addition, 172

single-antenna Tx and Rx are employed to introduce the core idea that is independent of 173

spatial information in theory. Note that we start with OFDM for illustration clarity and will 174

extend the signal model to DFT-s-OFDM and OTFS later. 175

For the m-th (m = 0, 1, · · · , M − 1) OFDM symbol, there are N data symbols to be
transmitted, as denoted by sm(n) (n = 0, 1, · · · , N − 1). In OFDM, these N data symbols
are multiplied onto N orthogonal sub-carriers which essentially are single-tone signals at
center frequencies of n/T. Here, T is the duration of the sub-carriers in the time domain.
This further indicates that the bandwidth of the considered OFDM system is B = N/T. Let
Ts denote the sampling time which satisfies Ts = 1/B = T/N in OFDM. Accordingly, the
m-th OFDM symbol can be expressed as a discrete function of time index k, i.e.,

xm(k) =
1
N

N−1

∑
n=0

sm(n)ej2πnkTs/T =
1
N

N−1

∑
n=0

sm(n)ej2πnk/N , k = 0, 1, · · · , N − 1. (1)

From (1), we see that multiplying data symbols with N orthogonal sub-carriers is equivalent 176

to taking the N-dimensional inverse DFT (IDFT) of the data symbols. In turn, taking the 177

DFT of xm(k) with respect to (w.r.t.) k can recover sm(n). 178

According to the circular shift property [42], the DFT of any circularly shifted xm(k) is
still sm(n) yet with extra phase shifts. Based on (1), we can write

xm(⟨k − l⟩N) =
1
N

N−1

∑
n=0

(
sm(n)e−j2πln/N

)
ej2πnk/N , k = 0, 1, · · · , N − 1, ∀l (2)

where ⟨·⟩N denotes modulo-N. Since the sample delay l resembles the echo delay in the
sensing Rx, it is implied by (2) that the sequence of sm(n) can always be recovered from the target
echo as long as a complete (circularly shifted) OFDM symbol is available. To ensure this, a CP is
generally added to xm(k) by copying the last Q samples and pasting them to the beginning
of xm(k); refer to Fig. 1. Denoting the number of samples in the CP by Q, the m-th OFDM
symbol becomes

x̃m(k̃) = xm(⟨k̃ − Q⟩N), k̃ = 0, 1, · · · , N + Q − 1, (3)

which is obtained by plugging k = ⟨k̃ − Q⟩N into (1). The timing relation between x̃m(k̃) 179

and xm(k) is described in Fig. 1. 180

Next, we build the signal model for target echos. For illustration convenience and
clarity, we model a single sensing target whose range, velocity and reflection coefficient
are r, v and α, respectively. We also assume that r, v and α keep constant over M OFDM
symbols, as complied with the Swerling-I target fluctuation model [43, Ch.7]. The round
trip (from Tx to target then back to Rx) causes a delay of kr = 2r/(CTs) samples in the
target echo, as compared with the transmitted OFDM symbol, where C is the microwave
propagation speed. Note that kr may not be an integer. The target velocity incurs a Doppler
frequency which can be calculated as µ = 2v fc/C, where fc denotes the carrier frequency
of the JCAS system. Taking into account kr and µ, the target echo can be modeled as

ỹm(k̃) = αg(k̃)x̃m(k̃ − kr)ej2πmT̃µ, k̃ = 0, 1, · · · , N + Q − 1 (4)
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Symbolm

Symbol m+1Symbolm

Symbol m+1

Symbol m

Add CP: copy and paste

Sample

Symbol m+1

Tx

Rx

Q samples

Q
N+Q

Figure 1. Illustrating the changes of signal timing in OFDM sensing, where CP is short for cyclic
prefix and Q is the number of samples in a CP. The top signal, xm(k) given in (1), is the essential part
of OFDM symbols. The middle signal, x̃m(k̃) given in (3), illustrates the CP-OFDM symbols to be
emitted. The bottom signal, ỹm(k̃) given in (4), is the baseband echo at the sensing Rx, where the
delay of kr samples account for the round-trip traveling from Tx to Rx.

where g(k̃) = 0 for k̃ = 0, 1, · · · , ⌊kr⌉ − 1 and g(k̃) = 1 for the remaining values of k̃; and 181

T̃ = T + QTs denotes the time duration of a CP-OFDM symbol. Here, ⌊x⌉ rounds x to the 182

nearest integer. The echo timing with reference to the emitted signal is exemplified in Fig. 183

1. Though noises are inevitable in any practical Rx, they are suppressed in (4) for brevity. 184

Moreover, the “stop-and-hop” model [43] has been used to account for the Doppler effect 185

by omitting the intra-symbol Doppler-related change3. 186

Extension to DFT-s-OFDM: As mentioned in Section 1, DFT-s-OFDM is a DFT-precoded
OFDM. The precoding happens along the sub-carrier domain. Thus, instead of directly
modulating communication data symbols onto sub-carriers, a DFT is taken first and then
the results are mapped to OFDM sub-carriers in interleaving or consecutive manners. Let
s̃m(ñ) (ñ = 0, 1, · · · , Ñ − 1) be the communication data symbols to be transmitted, where
Ñ is generally a fraction of N. Assume Ñ = N

L with L being an integer (related to the
number of users in frequency-division multiple access). Taking the Ñ-point DFT of s̃m(ñ),
we obtain s̆m(n̆) (n̆ = 0, 1, · · · , Ñ − 1). Then we can map s̆m(n̆) onto N sub-carriers. In the
interleaving mapping, we have

s̄m(n) = s̆m(n̆) for n = l + n̆L, ∀l = 0, 1, · · · , L − 1. (5)

In the consecutive mapping, we have

s̄m(n) = s̆m(n̆) for n = lÑ + n̆, ∀l = 0, 1, · · · , L − 1. (6)

If multiple user-ends are served, they can be assigned with different l’s. Replacing sm(n) in 187

(1) with s̄m(n), the signal given in (4) also models the echo signal in DFT-s-OFDM sensing. 188

Extension to OTFS: Compared with DFT-s-OFDM, OTFS adds another DFT precoding 189

over the slow time dimension. Let s̄m(n) (m = 0, 1, · · · , M − 1; n = 0, 1, · · · , N − 1) denote 190

the signal modulated onto sub-carriers. Different from OFDM, s̄m(n) is not directly from 191

a communication constellation and, instead, is now a two-dimensional sympletic Fourier 192

transform of data symbols, as denoted by s̃m̃(ñ) (m̃ = 0, 1, · · · , M − 1; ñ = 0, 1, · · · , N − 1). 193

If no window function is used, s̄m(n) is just the DFT of s̃m̃(ñ) over ñ and the IFDT of 194

the DFT results over m̃. Note that m̃ has a physical meaning of Doppler index and ñ the 195

range index. They are dual variables of m (slow-time) and n (sub-carrier), respectively. 196

Replacing sm(n) in (1) with s̄m(n), we obtain the time-domain symbols. In CP-OTFS [45], 197

each time-domain symbol is added with a CP, as shown in Fig. 1. However, the OTFS with 198

3 Despite its wide applicability in conventional radar processing, the “stop-and-hop” model can be subject to the

condition that 4πv2TCPI
λC is less than a fraction of π radians, e.g., π/4 [44]. Here, TCPI is a coherent processing

time interval. Interested readers are referred to [44, Chap. 2] for how the phase term is derived.
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Rx

Q samples

Q

Symbol M 1

Symbol 0 Symbol 1

Add CP: copy
and paste

Symbol 0 Symbol 1

Figure 2. Illustrating the signal timing in RCP-OTFS sensing, where different from OFDM shown in
Fig. 1, only a single CP is added to a whole block of symbols.

targets per symbol, i.e.,m

RF Chain
of S Rx

RF Chain
of C Tx

a copy to Rx

D
F
T

R
e
m
o
v
e

C
P

PWD

PWP B
u
ff
e
r
M

sy
m
b
o
ls

2
D
D
F
T

Receiving Processing at S Rx
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Figure 3. Illustrating the processing diagram of COS and C-COS, where C-Tx stands for
communication-transmitter, S-Rx for sensing receiver, PWD for point-wise division, PWP for point-
wise product, RDM for range-Doppler map.

reduced CP (RCP-OTFS) is more popular in existing OTFS studies, as illustrated in Fig. 2. 199

Although the CP leads to a cyclically shifted version of the whole block of symbols at the 200

sensing receiver, the ICI can be severe, particularly when the block duration is large. The 201

severe ICI invalidates COS and C-COS for OTFS, as they implicitly require negligible ICI to 202

generate RDMs. This will be clear shortly in Section 3. 203

Remark 1. For OFDM, the frequency-domain signals, i.e., those modulated onto sub-carriers, are 204

independently drawn from a communication constellation, such as PSK and QAM. Thus, they 205

conform to uniform distributions with a limited number of values. For DFT-s-OFDM and OTFS, 206

however, their frequency-domain signals approximately conform to centered Gaussian distributions. 207

This is because they are DFT(s) of the communication data symbols independently drawn from 208

some constellations, while such DFT results converge in distribution to complex Gaussian random 209

processes [46]. 210

3. COS and C-COS 211

In this section, we first review COS [11] and C-COS [39] based on the signal model 212

established above. Then we further illustrate the issues highlighted at the end of Section 1. 213

The diagram of the two methods is illustrated in Fig. 3. They share the same signal 214

preprocessing. Namely, they first remove the CP of each received symbol, i.e., ỹm(k̃) given 215

in (4) and then transform the CP-removed symbol into the frequency domain via a DFT. 216

From Fig. 1, we see that the non-trivial part of ỹm(k̃) contains a circularly shifted 217

OFDM symbol if kr ≤ Q is satisfied, where kr is the target delay and Q is the CP length. 218

Under the condition, removing the first Q samples of ỹm(k̃) yields ȳm(k) = αxm(⟨k − 219

kr⟩N)ej2πmT̃µ for k = 0, 1, · · · , N − 1. By taking l = kr in (2), the DFT of xm(⟨k − kr⟩N) w.r.t. 220

k is sm(n)e−j2πnkr/N . Since αej2πmT̃µ is a coefficient independent of k, the DFT of ȳm(k) w.r.t. 221

k can be directly given by y̆m(n) = αsm(n)e−j2πnkr/Nej2πmT̃µ. The next step of removing the 222

communication data symbol sm(n) differentiates COS and C-COS. 223

In COS, PWD is used, leading to

ym(n) = y̆m(n)/sm(n) = αe−j2πnkr/Nej2πmT̃µ, (7)
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where we assume that the sensing receiver has a copy of sm(n), as shown in Fig. 3. Taking
the 2D-DFT of ym(n) gives the following RDM,

Yb(k) = α
N−1

∑
n=0

wN(n)e−
j2πnkr

N e−j 2πkn
N ×

M−1

∑
m=0

wM(m)ej2πmT̃µe−j 2πbm
M , (8)

where wN(n) and wM(m) denote window functions of lengths N and M, respectively. If
rectangular window functions are used, the n- and m-related summations will approach
two sinc functions. They have mainlobes centered around k = k† = ⟨N − ⌊kr⌉⟩N and
b = b̃† = ⌊µT̃M⌉ and sidelobes elsewhere. As in the digital filter design, a proper window
function, such chebshev, can be employed to suppress the sidelobes over k and b at the cost
of increased mainlobe width [42]. Given kr = ⌊2r/(CTs)⌉ and µ = 2v/λ, r and v can be
estimated as

r̂ ≊ (N − k†)CTs/2, v̂ ≊ b†C
/
(2M fcT̃), s.t. b† =

{
b̃† if b̃† ≤ M/2
b̃† − M otherwise

, (9)

where b† is a modified version of b̃† to account for negative velocities. 224

In C-COS, PWD performed in (7) is replaced with PWP, which can be expressed as

zm(n) = y̆m(n)× s∗m(n) = α|sm(n)|2e−j2πnkr/Nej2πmT̃µ, (10)

where ()∗ denotes conjugate. Then, a 2D-DFT of zm(n) yields the following RDM,

Zb(k) = α
M−1

∑
m=0

wM(m)

(
N−1

∑
n=0

wN(n)|sm(n)|2e−
j2πnkr

N e−j 2πkn
N

)
ej2πmT̃µe−j 2πbm

M , (11)

where Zb(k) ̸= Yb(k) if |sm(n)| ̸= 1; otherwise Zb(k) = Yb(k). Note that if wN(n) = 1 the
n-related summation in Zb(k) can be rewritten into

N−1

∑
n=0

sm(n)s∗m(n)e
− j2πnkr

N e−j 2πkn
N

(a)
=

N−1

∑
n=0

N−1

∑
k′=0

s̃m
(
⟨k′ − kr⟩N

)
e−j 2πk′n

N s∗m(n)e
−j 2πkn

N

(b)
=

N−1

∑
k′=0

s̃m
(
⟨k′ − kr⟩N

)
s̃∗m
(
⟨k′ + k⟩N

)
, (12)

where s̃m(k) denotes the IDFT of sm(n) (which is the frequency-domain signal),
(a)
= is ob- 225

tained by replacing sm(n) with its DFT expression, i.e., the k′-summation in the middle 226

result, and
(b)
= is because the n-summation can be seen as the conjugate of the IDFT of sm(n). 227

Note that the last result is the CCC of s̃m(k) and s̃m(⟨k − kr⟩N). Thus, the n-related summa- 228

tion in (11) resembles the matched filtering in the conventional radar signal processing. 229

As illustrated in Remark 1, sm(n) approximately conforms to a centered Gaussian 230

distribution. Since IDFT is a unitary transformation, s̃m(k), as the IDFT of sm(n), is also 231

a centered Gaussian signal. Thus, the CCC result given in (12) will present a mainlobe 232

around k = k† = ⟨N − ⌊kr⌉⟩N , the same as in COS. The difference is that we do not have 233

an analytical model to depict the CCC result. Moreover, the sidelobe levels in the CCC 234

result are unpredictable; c.f., the deterministic sidelobes of |Yb(k)| over k’s. On the other 235

hand, comparing (8) and (11), the two RDMs share the same Doppler measurement ability 236

which is solely dependent on the m-related summation. Based on the above elaboration, 237

we conclude that the estimates given in (9) also apply to C-COS. 238

Fig. 4(a) illustrates the RDM Ym(b) by plotting its amplitude against range and Doppler 239

grids. Three targets are set with parameters summarized in Table 2. From Fig. 4(a), we 240

see three mainlobes corresponding to three targets. Based on the illustration below (8), 241

the indexes of the range grids of the three targets can be calculated as ⟨N − ⌊kr⌉⟩N × 16 = 242
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Figure 4. Illustrating RDMs. Note that |Ym(b)| with constant-modulus sm(n) is plotted in (a),
demonstrating OFDM under PSK constellations processed by either PWD or PWP. Moreover, |Ym(b)|
(obtained under PWD) with noise-like sm(n) is plotted in (b). In addition, |Zm(b)| (using PWP)
with noise-like sm(n) is plotted in (c). According to Remark 1, DFT-s-OFDM and OTFS have their
frequency-domain signals, i.e., sm(n), conform to normal distribution. Thus, Figs. 4(b) and 4(c) can
represent either DFT-s-OFDM or OTFS. Here, R and D stands for range and Doppler grids, respec-
tively. When generating the RDMs as performed in (8) and (11), the DFT sizes in both dimensions are
increased by 16 times to make the grids denser.

4064, 4040 and 4016, where multiplying 16 is due to the increasing of the DFT size (as 243

illustrated in the caption of Fig. 4). Similarly, we can calculate the indexes of the Doppler 244

grids of the targets, as given by ⌊µT̃M⌉ × 16 = 32, 32 and 64. We see from Fig. 4(a) that the 245

peak locations match the above calculations. 246

Target detection: If there exists a single target, detecting the target can be readily 247

done through identifying the peak of |Yb(k)| or |Zb(k)|. The single-target scenario may 248

sound unrealistic to the conventional radar community. However, in mmWave JCAS, the 249

single-target sensing can be practical and has been studied in [33,36,38]. To counteract 250

the sever path loss of mmWave signals, mmWave communication systems generally use 251

large-scale antenna arrays to steer highly directional beams. Therefore, a mmWave signal 252

in the beam direction is likely to be blocked by the first target. 253

In multi-target scenarios, there can be multiple mainlobes in the RDM. Directly iden- 254

tifying the peak of the RDM will detect the strongest target. Then the parameters of the 255

strongest target can be estimated based on (9). With its parameter estimates, the target can 256

be reconstructed and removed from the RDM, enabling the detection of the next strongest 257

target. Such a sequential detection can be time-consuming, as the detection of each target 258

will involve a searching over the whole range-Doppler space. 259

Classical radar detectors can be employed to detect multiple targets efficiently. The 260

constant false-alarm rate (CFAR) detector is one of the most commonly used radar detectors 261

[43]. Briefly speaking, CFAR tests all range and Doppler grids, as indexed by k and b, 262

Table 2. Target parameters, where three targets are simulated, U[x,y] denotes the uniform distribution
in [x, y], and γ denotes the SNR1.

Var Value Var Value

α
[ejx1 , ejx2 , ejx3 ] (xi ∼

U[0,2π] ∀i)
kr [2, 3.5, 5]

µT̃M [2, 2, 4] M 128

N 256 γ −10 dB
1Note that γ is defined based on the time-domain echo signal given in (4). The signal power is averaged over the
three targets and hence is one. The noise, though not shown in (4), is a complex Gaussian signal with the power
set as 10 dB in the simulation.
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respectively, to check the presence of a target. At a grid under test (GUT), CFAR calculates 263

the background interference-plus-noise (IN) power by averaging the power of the grids 264

around GUT. The adjacent grids around GUT are generally excluded from the power 265

evaluation to reduce the impact of the strongest sidelobes of a target. The estimated IN is 266

amplified by a coefficient and used as a threshold, where the coefficient is dependent on 267

the expected false-alarm rate. If the power of the GUT is greater than the threshold, then 268

CFAR reports the presence of a target at the GUT; otherwise, CFAR reports target absence. 269

A simulation tutorial of CFAR is provided by MathWorks in [47]. 270

Target estimation: After targets are detected, their locations can be submitted to (9) 271

for estimating their parameters. However, the range and velocity estimation obtained 272

in (9) suffer from errors as large as CTs/4 and C
/
(4M fcT̃), respectively. In fact, we can 273

further refine the estimations using, e.g., the classical multiple signal clarification (MUSIC) 274

algorithm [48]. Some newer estimators [49–51], which are efficient with low complexity, 275

are also good candidates for refining target estimations. These estimators interpolate DFT 276

coefficients around the integer range-Doppler grid of a target, as obtained in the target 277

detection; and then solve the accurate parameter estimations from a pre-established relation 278

between the interpolations and target parameters. Interested readers are referred to [49–51] 279

for more details. 280

CP-limited maximum measurable range (MMR): To obtain the RDMs in (8) and (11), 281

we have assumed that the maximum target delay is no greater than CP duration, Q. This, 282

in turn, indicates that the MMR of COS and C-COS is limited by CP. Specially, it can be 283

given by CQTs/2, where Q is the CP length. Unfortunately, such limitation stands for COS 284

and C-COS even when we have a sufficient link budget for sensing a longer distance. In 285

essence, the MMR limitation exists because each communication symbol, e.g., in Figs. 1 and 286

2, is treated as an independent sensing waveform and the zero inter-symbol interference 287

is pursued in COS and C-COS. If we treat a block of consecutive symbols, e.g., symbol 288

0, · · · , M − 1 in Fig. 2, as a single waveform and use the whole signal block as a matched 289

filter coefficient to process the received echo signal, the MMR limitation discussed here 290

may be lifted. This whole-block processing, however, can suffer from non-negligible intra- 291

block Doppler impact. A pointwise Doppler compensation can be performed before range 292

processing [14,18]. Moreover, a two-dimensional maximum likelihood-based range and 293

Doppler simultaneous estimation can also be performed [52,53]. These options generally 294

have non-trivially higher complexity than COS and C-COS. 295

Symbol-limited maximum measurable Doppler (MMD): From the echo signal model 296

given in (4), we see that the sampling interval over the slow time is T̃ = (N + Q)Ts which 297

is dominated by the OFDM symbol duration. The sampling frequency is 1/T̃. Then the 298

maximum measurable Doppler frequency is given by 1/(2(N + Q)Ts). Moreover, the 299

Doppler resolution can be given by 1/(M(N + Q)Ts) which is inversely proportional to 300

the overall time of a whole block. 301

COS versus C-COS: As shown in Fig. 3, COS and C-COS are differentiated by the way 302

they handle frequency-domain communication signals. Recall that COS and C-COS apply 303

PWD and PWP, respectively, as given in (8) and (11). When the communication signals 304

have constant modulus in the frequency domain, PWD and PWP yield the same result. 305

However, for DFT-s-OFDM and OTFS, the communication signals conform to centered 306

Gaussian distribution, as illustrated in Remark 1. In such cases, PWD can severely enhance 307

background noise in the RDM, as the signal being or approaching zero is used as a divisor; 308

see (8). (For illustration simplicity we ignored the noise term in (8) while it is inevitable in 309

practice.) PWP is proposed to relieve noise enhancement [39]. Comparing Figs. 4(b) and 310

4(c), we see that PWP indeed leads to smaller noise background in the RDM. However, 311

PWP can lead to a non-negligible noise floor in moderate and high SNR cases. Thus, 312

analytical comparisons between PWP and PWD are worth investigating to provide the 313

guidance in an ad hoc selection between them. 314
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Figure 5. A novel sensing framework that suits OFDM, DFT-s-OFDM and OTFS, where SB stands
for sub-block and VCP for virtual CP. The left sub-figure show the sensing diagram, where the DFT
results will go through the last three steps in Fig. 3 to generate RDMs. The right sub-figure is a novel
signal segmentation proposed in [40], where x(i) can be the middle signal in Fig. 1 or 2. That is, the
sensing framework suits OFDM or DFT-s-OFDM with regular CPs (one per symbol), as well as the OTFS
with a reduced CP (i.e., a single CP for a long block of symbols).

4. Recent Progress 315

The three issues discussed at the end of last section have rarely been noticed in the 316

literature, not to mention any solutions. Recently, we have performed some preliminary 317

studies on relieving the issues [40,41]. In this section, we highlight some interesting results 318

and remaining challenges. 319

Whether the waveform is OFDM, DFT-s-OFDM or OTFS, we are actually facing the 320

same problem: detect and estimate targets given a block of communication signals, e.g., the middle 321

signals in Figs. 1 and 2, and the target echo signals, e.g., the lower signals in Figs. 1 and 2. We 322

emphasize that in the considered JCAS, we do not intend to make any changes to the 323

underlying communication system. In COS and C-COS reviewed earlier, they segment the 324

communication signals at a sensing receiver by fully complying to communications format, 325

i.e., (N + Q) samples a symbol and M symbols in total. From the end of Section 3, we have 326

seen that such compliance is the root of the sensing restrictions. 327

In light of the above observation, we propose a novel sensing framework recently in 328

[40]. Here, we unitedly use x(i) to denote the communication-transmitted signal in the time 329

domain, where the communication system can be based on either OFDM, DFT-s-OFDM or 330

OTFS. That is, x(i) can be the middle signal in either Fig. 1 or Fig. 2. Moreover, we point 331

out that x(i) is a signal sequence with i = 0, 1, · · · , I − 1. In the case of CP-OFDM and 332

DFT-s-OFDM, we have I = M(N +Q)− 1, where M is the number of symbols and (N +Q) 333

is the number of samples per symbol (including CP); see Fig. 1. In the case of RCP-OTFS 334

(as illustrated at the end of Section 2), we have I = MN + Q − 1, where a single CP of Q 335

samples is applied to a block of M symbols; see Fig. 2. As shown on the left of Fig. 5, x(i) 336

hits targets and propagates to the sensing receiver, resulting in the echo signal denoted 337

by y(i). Thus, y(i) is the scaling of the time-delayed x(i); similar to the relation between 338

ỹm(k̃) and x̃m(k̃ − kr) depicted in (4). As mentioned in Section 2, the co-located transceiver 339

is considered in this paper. Thus, it is reasonable to assume that the sensing receiver shares 340

the same clock as the transmitter and has a copy of x(i) stored for sensing processing. 341

The sensing framework [40] starts with a segmentation, as performed on both x(i) 342

and y(i) in the same way. In particular, we ignore the signal format of the underlying 343

communication system and segment x(i) and y(i) in a sensing-favorable manner. As shown 344

in Fig. 5, x(i) and y(i) are segmented into consecutive sub-blocks (SBs) evenly with Ñ 345

samples per segment, where Ñ = N is no longer necessary. Adjacent SBs are allowed to 346

overlap for Q̄(≥ 0) samples. Let xm(n) and ym(n) denote the signal in the m-th SB. Due 347

to target delay, ym(n) only contains a part of xm(n), with the remaining part right after 348

ym(n); see the illustration in Fig. 5. Thus, we can add the Q̃ samples right after ym(n) onto 349

the beginning of ym(n), making ym(n) contain cyclically shifted versions of xm(n). This 350

will require Q̃ is no smaller than the maximum target delay. Clearly, the Q̃ samples have a 351

similar role as the CP in OFDM. Thus, we call them the virtual CP (VCP). However, we 352

emphasize that VCP is not related to the original CP in any way. A key difference between 353
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Algorithm 1 A novel sensing framework [40]

Input: x(i) (i = 0, 1, · · · , I − 1) (a copy of communication-transmitted signal sequence), y(i) (echo
signal at a sensing receiver), Ñ (SB length), Q̃ (VCP length), Q̄ (overlapping between adjacent SBs)

1. Segment x(i) and y(i) evenly into consecutive sub-blocks (SBs), as given by xm(n) and ym(n).
The m-th (m = 0, 1, · · · , M̃) sub-block consists of samples i = m(Ñ − Q̄) + (0, 1, · · · , Ñ − 1);

2. Add VCP, i.e, the Q̃ samples right after ym(n), onto the beginning of ym(n), leading to ỹm(n);
3. Take the DFT (w.r.t. n) of xm(n) and ỹm(n), yielding Xm(k) and Ym(k);
4. Under PWD, we have Ũm(k) = Ym(k)./Xm(k), while using PWP, we obtain Ṽm(k) =

Ym(k)× X∗
m(k).

5. Taking the 2D-DFT of Ũm(k) and Ṽm(k) generate the RDMs Ub(n) and Vb(n), respectively.

them is that CP is determined by the communication system but VCP is designated at 354

the sensing receiver for sensing purpose. However, as shown in Fig. 5, adding VCP can 355

introduce inter-SB interference, which is the price paid for pursuing flexible sensing. 356

The DFT results in Fig. 5 can be input to PWD and PWP for generating RDMs. For 357

clarity, we summarize the novel sensing framework in Algorithm 1. In Step 1, the m- 358

th SB starts at the m(Ñ − Q̄)-th sample and has Ñ samples. Given I signal samples in 359

x(i) and based on the illustration in the right sub-figure of Fig. 5, the number of SBs is 360

M̃ = ⌊ I−Q̃−Q̄
Ñ−Q̄ ⌋, where ⌊·⌋ takes flooring. In Step 2, VCP is added for the echo signal so that 361

the m-th SB of the echo signal becomes underlain by the m-th SB of the transmitted signal, 362

as illustrated in the right sub-figure of Fig. 5. Steps 3-5 are the same as the last three steps 363

of COS and C-COS illustrated in Fig. 3. However, by introducing of the novel segmentation 364

and VCP, ad hoc adjustment can be made to the sensing framework, hence better catering for 365

different sensing scenarios. For example, we can increase Q̃ for sensing a longer distance; 366

we can reduce Ñ to increase the maximum measurable Doppler frequency; and we can 367

adjust Q̄ in accordance with Ñ and Q̃ to improve sensing SINR. Next, we provide more 368

elaborations on how to determine these key parameters. 369

Remark 2. Criteria of configuring the sensing framework are illustrated below. First, we can 370

set Q̃ based on rmax, the required MMR. As related to the VCP length Q̃, the MMR can be 371

given by CQ̃Ts
2 , which, equating with rmax, yields Q̃ = 2rmax/CTs. Second, we determine M̃ 372

given the requirements on velocity measurement. The maximum measurable Doppler frequency is 373

half the sampling frequency over SBs (equivalent to the slow time in radar processing), which is 374

1
/(

2(Ñ − Q̄)Ts
)
. Here, (Ñ − Q̄)Ts is the difference between the starting times of any two adjacent 375

SBs (and hence the sampling time over the slow time domain); see Fig. 5. Consequently, to cater for 376

the maximum measurable Doppler, as denoted by µmax, we need to keep Ñ ≤ 1
/(

2µmaxTs
)
+ Q̄. 377

Third, given Ñ, we can then set Q̄. To increase the SINR in both RDMs, we expect to have Q̄ 378

as large as possible; see (13) and (14) to be illustrated shortly. However, the larger Q̄ the more 379

correlated the signals between adjacent sub-blocks can be; see Fig. 5. The correlation can make the 380

results in (13) and (14) less precise. The detailed impact, however, is difficult to analyze. As shown 381

through the simulations in [40], the SINRs in (13) and (14) are consistently precise even when Q̄ 382

takes as large as M̃/2 − Q̃. 383
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Table 3. Simulation settings for Fig. 6, where fc is the carrier frequency, fs denotes the sampling
frequency and γ is the SNR of the time-domain echo signal y(i).

Var Value Var Value

α ejx (xi ∼ U[0,2π] ∀i) kr 320

µ 480 Hz M 128

N 256 Q 64
fc 2.4 GHz fs(= B) 3.84 MHz
γ −10 dB – –

Analytical SINRs of the two RDMs are helpful in investigating the sensing framework.
The SINR of Ub(n), as obtained in Step 5 of Algorithm 1, can be expressed as [40, (33)]

γU


γ0≪ 1

σ2
P≈

Ñ
(
(I−Q̃−Q̄)
(Ñ−Q̄)

)
γ0σ2

P(
1+ Q̃

Ñ

)
b(ϵ)

(a)
≈ Iγ0σ2

P(
1− Q̄

Ñ

)(
1+ Q̃

Ñ

)
b(ϵ)

γ0≫ 1
σ2

P≈ I
/((

1 − Q̄
Ñ

)
Q̃
Ñb(ϵ)

) , s.t. b(ϵ) = 2 ln

 2(1 − ϵ)(
e
√

ϵ(2 − ϵ)
)
,

(13)

where γ0 is the SNR in the time-domain echo signal, i.e., y(i) in Algorithm 1; I the total
number of samples of y(i); σ2

P is the total power of targets; e is the natural number; and ϵ is
a sufficiently small number, e.g., 1/I. Note that b(ϵ) accounts for the noise enhancement
when diving a centered Gaussian signal by another one; see [41] for a detailed analysis of
this issue. The SINR of Vb(n), as obtained in Step 5 of Algorithm 1, can be expressed as [40,
(35)]

γV


γ0≪ 1

σ2
P≈ Iγ0σ2

P

/((
1 − Q̄

M̃

)(
1 + Q̃

M̃

))
γ0≫ 1

σ2
P≈ I
/((

1 − Q̄
M̃

)(
1 + Q̃

M̃

)) . (14)

Remark 3. Based on (13) and (14), we can make the following comparisons between the PWD- and 384

PWP-based RDMs: 385

3a) In low SNR regions where γ0 ≪ 1/σ2
P, Vb(n) has an SINR that is b(ϵ) times the SINR in 386

Ub(n), where b(ϵ) > 1 in general; 387

3b) In high SNR regions where γ0 ≫ 1/σ2
P, Ub(n) can have a greater SINR than Vb(n), provided 388

b(ϵ) ≤ M̃
Q̃

. 389

3c) Regardless of γ0, the Vb(n) always has a greater SINR than Ub(n), if b(ϵ) > M̃
Q̃
+ 1. 390

The comparisons made above are helpful in selecting between PWD and PWP when generating 391

RDMs. 392

Before ending the section, we use a set of simulation results to showcase the superiority 393

of the sensing framework illustrated in Algorithm 1 over conventional OFDM sensing 394

(COS) in terms of the maximum measurable range. The simulation parameters are given in 395

Table 3. Note that the CP length Q is much smaller than the sample delay of the target, i.e., 396

kr. This setting is particularly employed to validate the point made at the end of Section 397

3 (in terms of the limited maximum measurable range of COS and C-COS). Based on the 398

review on COS and C-COS given in Section 3, we know that these conventional methods 399

would not be able to sense the target set in Table 3. In contrast, the sensing framework 400

given in Algorithm 1 can flexibly set Q̃ and Ñ according to Remark 2 so as to cater for 401

different sensing needs. In particular, to sense kr = 320, we set Q̃ = 321, Ñ = 2Q̃ = 642 402
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Comparing RDMs of C-COS and the novel sensing framework (NSF) illustrated in Algo-
rithm 1, where simulation parameters are summarized in Table 3, the results in the first row are for
C-COS, and the results in the second row are for NSF. Note that COS and NSF are performed with the
same communication-transmitted and sensing echo signals.

and Q̄ = 128. The settings further lead to M̃ = 78. For convenience, random signals, 403

conforming to a centered Gaussian distribution with the unit variance, are loaded onto 404

the OFDM sub-carriers. This essentially simulates DFT-s-OFDM, as the frequency-domain 405

signal presents such randomness according to Remark 1. Thus, C-COS is used to simulate 406

the conventional OFDM sensing. 407

Fig. 6 compares the RDMs generated by C-COS and the novel sensing framework 408

(NSF). The results in the first row are obtained by C-COS. We see from Fig. 6(a) that the 409

RDM of C-COS is noise-like over the whole range-Doppler bins. Then, a close look at 410

the range-Doppler bins around the theoretical target location is provided in Fig. 6(b). We 411

still see no obvious target. The theoretical range bin of the target is kr = 320. Since it is 412

greater than N, a modulo is taken, leading to 64. Based on the elaboration right after (8), 413

the theoretical Doppler bin of the target can be calculated as ⌊µM(N + Q)/ fs⌉ = 5. The 414

range and Doppler cuts of the RDM of C-COS are given in Figs. 6(c) and (d), respectively. 415

Again, we do not see any obvious targets. That is, C-COS fails to detect the target set in 416

Table 3. 417

The results in the second row are obtained by the NSF. Substantially different form 418

Fig. 6(a), Fig. 6(e) presents a normal RDM with the target shown as a sharp peak. The 419

theoretical range bin here is the same as that for C-COS, i.e., 320. The theoretical Doppler 420

bin of NSF needs to be recalculated as ⌊µM̃(Ñ − Q̄)/ fs⌉ = 5 (the result is the same though). 421

Fig. 6(f) zooms in the RDM around the bin pair (321, 6) (both theoretical bins are added 422

by one due to that the MATLAB index starts from one not zero in our calculation). From 423

Fig. 6(f), we see that the target peak is about 40 dB stronger than the background noise. 424

This strongly contrasts with Fig. 6(b), validating the significant improvement of the novel 425

sensing framework over the conventional COS. Range and Doppler cuts of NSF are given 426

in Figs. 6(g) and (h), respectively. We clearly see strong peaks at target locations. 427

There is a remaining issue of NSF on false targets. We see from Fig. 6(g) that other than 428

the true target at the 321-th range bin, there are two other weaker targets which locate at the 429
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65-th and 577-th range bins. These numbers have implicit relations with 321. Specifically, 430

we have 321 + N(= 256) = 577 and 312 − N = 65. These fake targets are generated due 431

to the partial periodicity shown in the signal after adding VCPs; see Step 2 in Algorithm 432

1. The issue was also revealed in [40]. But to date, there is no solution yet. One potential 433

solution of suppressing fake targets is to employ the special relation between the locations 434

of fake targets and that of the true target, in combination with the amplitude and phase 435

features of their peaks. Another potential way of suppressing fake targets is to design NSF 436

parameters, Ñ, Q̃ and Q̄, so that the partial periodicity leading to the fake targets can be 437

removed. Validating these solutions or others calls for more research efforts. 438

5. A Novel Design to Further Reduce Sensing Complexity 439

We proceed to introduce an efficient design that further reduces the sensing complexity.
Let us revisit the PWD-processed echo signal in COS, i.e., ym(n), as originally given in (7)
and rewritten below

ym(n) = αej2πmT̃µe−j2π(nTs)
kr

NTs = αej2πmT̃µe−j2π(nTs)
kr B
N , (15)

where the last result is due to B = 1/Ts. From the above expression, we see that the 440

frequency of ym(n) is krB/N. As underlined in Section 3, COS requires kr ≤ Q. This 441

indicates that the bandwidth of ym(n) is no greater than QB/N = B/D, where D = N/Q. 442

In OFDM communication systems, Q ≪ N is generally satisfied [32]. Thus, we make the 443

following assertion: Provided that the maximum sample delay in target echo is no greater than 444

the CP length and the CP length is much less than the sub-carrier number, the PWD-processed 445

echo signal has a much smaller bandwidth of than an OFDM symbol. Although we base our 446

illustration on COS, the analysis and method are also applicable to C-COS and the novel 447

sensing framework given in Algorithm 1. 448

Based on the signal models in Section 3, the above assertion can be interpreted as: 449

provided kr ≤ Q ≪ N, ym(n) has a much smaller bandwidth than xm(k) given in (1). 450

With this noticed fact, we can further conclude that only 1/D of the whole frequency band 451

contains useful information for sensing and the rest is filled with noises. In other words, 452

ym(n) can have considerably redundant information. To this end, we propose to decimate 453

ym(n) to remove the inherent redundancy and hence reduce the number of signal samples along the 454

n-dimension, prior to sensing. The decimation leads to a smaller RDM and hence reduce the 455

complexity of RDM-dependent target detection and estimation. 456

Remark 4. The assertion made for ym(n) also applies to zm(n), the PWP-processed signal given in 457

(10), and ỹm(n), the VCP-added signal obtained in Step 2 of the algorithm summarized in Algorithm 458

1. Therefore, the decimation proposed above can also benefit C-COS and the novel sensing framework 459

in Algorithm 1, in reducing the RDM dimension and the complexity of target detection/estimation. 460

5.1. Efficient Decimation 461

We proceed to illustrate the efficient implementation of the proposed decimation. As 462

seen from (15), ym(n) is a bandpass signal with frequency band [−B/D, 0]. To decimate 463

ym(n) by the factor of D, we develop the following procedure, as illustrated in Fig. 7(a). 464

1) Anti-aliasing filtering: is performed on ym(n) to suppress out-of-band interference 465

and noises. The passband of the filter is the same as that of ym(n), while the stopband 466

is given by [−B/2, B/2]⊘ [−B/D, 0], where ⊘ denotes set difference. The frequency 467

spectrum of an ideal bandpass filter is shown in Node B of Fig. 7(b). The signal 468

spectrum before and after filtering is shown in Nodes A and C of Fig. 7(b), respectively. 469

As ideally illustrated in Node C, out-of-band noises are totally removed, which is 470

impractical but can be well approximated by designing the anti-aliasing filter with a 471

large stopband attenuation. 472
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Figure 7. (a) Illustration of general steps for decimation; (b) spectrum features at different stages of
decimation; (c) decomposing the anti-aliasing filter in Fig. 7(a); (d) the polyphase structure-based
decimation specifically tailored for OFDM sensing.

2) Downsampling: is denoted by “D ↓” in Fig. 7(a). It keeps every D-th sample (starting 473

from sample 0) and deserts others. After downsampling, the sampling frequency is 474

reduced to B/D, and the spectrum center becomes −B/(2D); see Node D of Fig. 7(b). 475

3) Frequency shifting: shifts the spectrum center of the downsampled signal to zero, 476

which leads to the spectrum shown in Node E of Fig. 7(b). 477

Above are the general steps of a bandpass decimation. By invoking the polyphase structure, 478

the decimation can be implemented more efficiently. 479

At the core of the polyphase structure is the decomposition of the anti-aliasing filter.
Consider an (L − 1)-order finite impulse response anti-aliasing filter. Let h(l) denote the
l-th (l = 0, 1, · · · , L − 1) filter coefficient. The z-transform of h(l) can be expressed as [54,
Ch.6]

H(z) =
L−1

∑
l=0

h(l)z−l =
D−1

∑
d=0

z−d
P−1

∑
p=0

h(d + pD)z−pD =
D−1

∑
d=0

z−d Hd(zD), (16)

where the second equality is obtained by decomposing l = d + pD and the p-related 480

summation is denoted by Hd(zD) in the last result. Note that L = PD is assumed in the 481

above decomposition. The condition can be readily satisfied by specifying the filter order 482

as (PD − 1) when designing the anti-aliasing filter. Based on (16), we see that the filter can 483

be implemented in D parallel branches, as illustrated in Fig. 7(c). The input signal ym(n) 484

goes into different branches simultaneously, and the outputs of the branch-filters, denoted 485

by Hd(zD) (∀d), are supposed to be summed and then downsampled. But in Fig. 7(c), we 486

move the downsampler to before the summation and equivalently put a downsampler in 487

each branch. Doing so allows us to invoke the notable identity, as illustrated in Fig. 7(c), 488

to exchange the orders of filter and downsampler in each branch. The order exchanging 489

makes the delay block, z−d, adjacent to a downsampler. To this end, the samples to be 490

filtered by the d-th (∀d) branch-filter become ym(D̃ − d + qD) (q = 0, 1, · · · , Q − 1), where 491

“−d” reflects the d-delay block in branch d, D̃ = (D − 1) is added to sample indexes to 492

ensure that the indexes are no less than zero, and qD is a result of the downsampler. Based 493

on (16), the coefficients of the d-th branch-filter are hd+pD (p = 0, 1, · · · , P − 1). 494

The filter decomposition and the order exchanging illustrated above lead to the
polyphase structure of bandpass decimation, as shown in Fig. 7(d). In the figure, we
use a buffer to collect continuous Q samples, i.e., ym(D̃ − d + qD) (q = 0, 1, · · · , Q − 1) for
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the d-th branch, and each branch-filter is implemented in the frequency domain due to the
following relation

hd+pD ⊛ ym(D̃ − d + qD) ≡ IFFTQ̃

{
FFTQ̃{hd+pD} ⊙ FFTQ̃

{
ym(D̃ − d + qD)

}}
,

where “⊛” denotes linear convolution, “≡” means that the calculations on its two sides are 495

equivalent, IFFTQ̃ and FFTQ̃ denote size-Q̃ IFFT and FFT, respectively, and “⊙” calculates 496

the point-wise product. Note that the above equivalence requires Q̃ ≥ (P + Q − 1). For 497

radix-2 (I)FFT, we can take Q̃ such that log2 Q̃ = ⌈log2(P+ Q− 1)⌉. Since each branch-filter 498

produces (P − 1) transient outputs and takes Q samples as input, the indexes of valid filter 499

outputs are P − 1, P, · · · , Q − 1. Thus, we keep the valid outputs and dump others, as 500

shown in Fig. 7(d). 501

Referring back to Fig. 7(a), we are now at the last step of decimation, i.e, shifting the
filtered and downsampled signal to the baseband. To differentiate with ym(n), we use n̂
to denote the index of valid samples after downsampling, as also highlighted in Fig. 7(d).
Based on (15), the filtered signal, after removing transients, can be expressed as

αej2πmT̃µe−j2πn̂Dkr/N = αej2πmT̃µe−j2πn̂kr/Q, n̂ = 0, 1, · · · , Q − P.

As a discrete function of n̂, the spectrum center of the above signal is now at π, since the
mean value of kr is Q/2. According to the frequency shift property of Fourier transform, we
know that an angular frequency shift of π can be equivalently realized by multiplying the
time-domain sequence with ejπn̂ = (−1)n̂, which leads to the frequency shift block shown
in Fig. 7(d). Accordingly, the final output of the polyphase structure-based decimation is

ŷm(n̂) = αej2πmT̃µe−j2πn̂kr/Q × ejπn̂ = αej2πmT̃µe−j2πn̂ kr+Q/2
Q . (17)

5.2. Decimation-based COS (DCOS) 502

Similar to COS reviewed in Section 3, sensing can also be performed based on ŷm(n̂),
leading to DCOS. Taking the two-dimensional DFT of ŷm(n̂) w.r.t. m and n̂ generates the
below RDM (referred to as DCOS-RDM), which has a smaller size than the RDM given in
(8) (similarly referred to as COS-RDM),

Ŷb(k̂) = α
Q−1

∑̂
n=0

wQ(n̂)e
− j2πn̂(kr+Q/2)

Q e−j 2πk̂n̂
Q ×

M−1

∑
m=0

wM(m)ej2πmT̃µe−j 2πbm
M . (18)

Identifying the peaks of |Ŷb(k̂)| along k̂- and b-dimensions can estimate range and velocity,
respectively. Assume that the n̂-related summation achieves the maximum at k̂ = k̂†. It is
easy to see from (18) that the maximum is only achieved when kr + Q/2 + k̂† = aQ, where
a takes an integer or zero. Solving the equation subject to kr ∈ [0, Q − 1] yields,

k̂r = Q/2 − k̂†, if k̂† ∈ [0, Q/2]; k̂r = 3Q/2 − k̂†, if k̂† ∈ [Q/2 + 1, Q − 1], (19)

where k̂r denotes the estimate of kr. Comparing (8) and (18), we see that COS and DCOS
have the same velocity measurement. To sum up, DCOS has the following range and
velocity estimates, where v̂ is given in (9),

r̂d = k̂rTsC/2, v̂ ≊ b†C
/
(2M fcT̃). (20)

Again, we highlight that the illustration in this subsection can be similarly applied to 503

C-COS and the novel sensing framework in Algorithm 1. Details are suppressed here for 504

brevity. 505

The RDMs of COS and DCOS are compared in Fig. 8, where the parameter settings 506

are given in Table 4. From Figs. 8(a) and 8(b), we see high similarity between the RDMs 507
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(a) (b) (c) (d)

Figure 8. Illustration of target detection, where COS-RDM is given in (a), DCOS-RDM in (b), the
range cuts at v = −10m/s are shown in (c), and the velocity cuts at r = 56m in (d). Most settings in
Table 4 are again used here, except that the number of OFDM symbols is M = 256 and the hamming
window is used in (8) and (18) for both range and velocity measurements. In addition, three targets
are set here. Their ranges and velocities are [50, 56, 56]m and [−10,−10, 0]m/s, respectively.

of the two methods. This validates the efficacy of the newly introduced decimation. It is 508

noteworthy that DCOS reduces the complexity of generating the RDM shown in the figure 509

by almost an order of magnitude, compared with COS. This can be readily validated by 510

substituting the parameter settings in the above complexity analysis. Fig. 8(c) compares the 511

range cuts between COS and DCOS. We see that DCOS has a slightly wider mainlobe than 512

COS, which is caused by different window lengths. Fig. 8(d) compares the velocity cuts of 513

the two methods. As expected, our design does not affect the velocity measurement. 514

5.3. Comparison Between COS and DCOS 515

Here, we compare COS and DCOS from numerous aspects, through which the advan- 516

tages and disadvantages of introducing the efficient decimation are analyzed. 517

Computational Complexity: DCOS reduces the sensing complexity in two ways: first, it 518

has lower complexity than COS in generating RDM; second, DCOS-RDM has a smaller dimension 519

than COS-RDM, thus reducing the complexity of RDM-dependent target estimation. From Fig. 3, 520

we see that the computational complexity of COS-RDM is dominated by the 2D-DFT. The 521

complexity is O(MN log2 N + NM log2 M), which equals to O(MN log2(MN)) by basic 522

logarithmic laws. 523

DCOS has two parts of computations: the 2D-DFT for generating DCOS-RDM and dec- 524

imation. Like COS, the first part of computation has the complexity of O
(

MQ log2(MQ)
)
. 525

According to Fig. 7(d), the computational complexity of the polyphase decimation is 526

dominated by the first column of FFTs and the third columns of IFFTs. Their complexity 527

is given by O
(
2DQ̃ log2 Q̃

)
, since the first (third) column has D numbers of Q̃-size FFTs 528

(IFFTs). By designing the anti-aliasing filter such that P ≪ Q, we can take Q̃ ≈ Q, and 529

then O
(
2DQ̃ log2 Q̃

)
becomes O(2DQ log2(Q)). Note that 2DQ log2(Q) is much smaller 530

than MQ log2(MQ), since M can take several hundreds while D is around ten. Thus, the 531

computational complexity generating DCOS-RDM is dominated by O
(

MQ log2(MQ)
)
. 532

For target detection, COS and DCOS have the same complexity, if the same detection 533

algorithm, e.g., CFAR, is used. For target estimation, particularly, the range estimation, 534

Table 4. Simulation settings for comparing COS and DCOS, which are with reference to [12, Tab.2].

Var Value Var Value

α
ejxi (xi ∼ U[0,2π], ∀i) M 1

N 1024 Q 128
fc 24 GHz fs(= B) 93 MHz
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Figure 9. Illustration of SNR in DCOS-RDM versus P in (a) and (b); and (c) a comparative illustration
of the SNR in RDM of both COS and DCOS versus γ, the SNR in (7). Parameter settings are
summarized in Table 4.

COS would have higher complexity than DCOS. This is because range estimation mainly 535

relies on the row dimension of the RDM, i.e., Yb(k) given in (8) for COS, and Ŷb(k) given in 536

(18) for DCOS. While Ŷb(k) has N rows, Ŷb(k) only has Q (a fraction of N). A wall-clock 537

time comparison between the complexities of COS and DCOS will be provided shortly 538

through simulations. 539

Processing Gain: COS and DCOS have approximately the same processing gain which is 540

defined as the difference between the SINR in the RDM, i.e., in (8) and (18), and the SINR in the 541

pre-processed target echo, i.e., in (7). Let γ denote the SINR of ym(n) given in (7). Although 542

noises are not explicitly shown in the signal models, the SINR change is easy to track. COS- 543

RDM is obtained from a two-dimensional DFT of ym(n), and hence the SINR in COS-RDM 544

becomes MNγ. Namely, the processing gain of COS is given by MN. 545

DCOS decimates ym(n) first. The decimated version ŷm(n̂) given in (17) has the SINR 546

of Dγ, since the decimation with factor D does not change signal power while reduces the 547

noise power by D times. The two-dimensional DFT performed in (18) improves the SINR 548

to M(Q − P + 1)Dγ ≈ MNγ, where M(Q − P + 1) ≈ MQ and the approximation is valid 549

given P ≪ Q. We see that the processing gain of DCOS is approximately MN. 550

Remark 5. The impact of P on DCOS can be non-trivial. For instance, as P increases, a higher 551

quality filter can be obtained (e..g, one with lower passband ripple, stronger stopband attenuation 552

and narrower transition bandwidth); however, a lower processing gain, as given by M(Q − P + 1), 553

is yielded. Analytically, it is difficult to tell which of the following dominates: the SINR improvement 554

earned by a better filter or the SINR degrading caused by the reduced processing gain. To this end, 555

we resort to simulation next. 556

Figs. 9(a) and 9(b) illustrates that, as P increases from 1 to 50, the SINR in DCOS-RDM 557

first increases, then plateaus, and next decreases. The same pattern is seen for both small 558

and large values of γ. From this observation, we conclude that the SINR in DCOS-RDM 559

can be maximized by properly setting P. For the OFDM system configured in Figs. 9, the 560

maximum is achieved at P = 16. Using this value, we compare in Fig. 9(c) the SINR in 561

DCOS-RDM with that in COS-RDM, as γ increases. We see that the SINRs achieved by COS 562

and DCOS are almost identical in the whole region of γ. Note that the difference between 563

the y-axis and x-axis is the processing gain. Thus, the results in Fig. 9(c) validate that COS 564

and DCOS have approximately the same processing gain. 565

Range and Velocity Measurement: COS and DCOS share the same maximum unam- 566

biguous range/velocity; they also have the same range/velocity resolution. In terms of velocity, 567

the above statement is because the decimation does not incur any change to Doppler- 568

related information, as manifested in (8) and (18). Based on (8), the range of Doppler 569

frequency that can be unambiguously estimated is µ ∈ [− 1
2T̃ , 1

2T̃ ], where 1
T̃ resembles the 570

sampling frequency along the Doppler dimension. Since the number of samples is M, the 571

Doppler frequency resolution is ∆µ = 1
T̃M . Given the relation µ = 2v/λ, we obtain the 572

range of unambiguous velocity, i.e., v ∈ [− λ
4T̃ , λ

4T̃ ], and the velocity resolution, as given by 573

∆v = λ
2T̃M . 574
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(a) (b) (c) (d)

Figure 10. Comparing C-COS and DCOS in terms of detection and estimation performances, where
the OFDM parameters are given in Table 4, and a single unit-power target is set here with range
and velocity randomly generated over 104 independent trials. Fig. 10(a) illustrates the detection
probability of the two methods under 10−4 false-alarm rate and γ = −60 dB. Fig. 10(b) and Fig. 10(c)
illustrates the range and velocity estimation performance, respectively, where the estimation method
[49] is employed for both parameters. Fig. 10(d) compares the wall-clock time per run, including
RDM generation, detection and estimation, for the two methods, as averaged over 104 trials.

It terms of ranging, we see from (8) and (18) that the range estimation is turned into 575

the problem of identifying kr in both COS and DCOS. Since kr(= ⌊2rB/C⌉) is independent 576

of the sampling rate (or range dimension) in different RDMs, its estimate remains the same 577

for COS and DCOS in theory. As illustrated in Section 3, kr ≤ Q is required for OFDM 578

sensing. Let R denote the maximum unambiguous detectable range. Solving 2RB/C = Q, 579

we obtain R = CQ
2B , for both COS and DCOS. We see from (8) and (18) that the resolution of 580

kr detection is unit one for both methods, and hence the range resolution, denoted by ∆r, 581

can be solved from 2∆rB/C = 1, leading to ∆r =
C
2B . 582

Windowing Effect: For ranging, COS can achieve a better windowing effect than DCOS 583

in the sense that COS has a narrower range mainlobe than DCOS given the same attenuation of 584

peak sidelobe, while for velocity measurement, the two methods have the same windowing effect. 585

The reason is because the decimation in DCOS reduces the number of samples, hence 586

the window length, along the range dimension (compared with those of COS), while the 587

decimation does not affect the velocity dimension. 588

Fig. 10 compares the specific detection and estimation performances of C-COS and 589

DCOS. CFAR is employed to evaluate the detection performance, where a 10× 8 rectangular 590

window is used to filter the RDMs (in power). The numbers of guard intervals are two 591

and four in the Doppler and Range dimensions, respectively. For range and Doppler 592

estimations, the method [49] is employed. From Figs. 10(a), 10(b) and 10(c), we can see that 593

C-COS and DCOS have very similar detection and estimation performance. This shall not 594

be surprised, as DCOS, simply removing redundancy through signal decimation, does not 595

lose any essential information related to targets. From Fig. 10(a), we see that DCOS has 596

a slightly lower detection probability compared with C-COS. This can be caused by the 597

decimation filter with inevitable pass-band ripples and transition frequency bands. From 598

Fig. 10(d), we see clearly that DCOS has non-trivially lower running time than C-COS, 599

which validates the reduced complexity of DCOS. 600

6. Conclusion 601

In this paper, we first provide an overview of existing works on OFDM sensing. 602

Through the overview, we highlight some low-complexity sensing methods that have 603

gained great popularity. We then point out some critical issues of the methods that have 604

long been overlooked. To raise the awareness of these issues, we provide a short tutorial, 605

providing the fundamental basis for the sequential review of some recent research efforts 606

in addressing the issues. To further reduce sensing complexity, we develop a novel method 607

that reduces the dimension of RDM by removing the signal redundancy. Although the 608
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recent research efforts, including our own [40,41], have relieved some issues pointed out 609

at the end of Section 1, we are still facing non-trivial challenges using communication 610

waveforms for sensing. Some are highlighted below. 611

1) As demonstrated in Fig. 6, the sensing framework reviewed in Section 4 can have 612

fake targets. This calls for new methods/designs to either differentiate the fake from 613

true targets or holistically design the core parameters of the sensing framework to 614

prevent the fake targets from presenting. Moreover, though several core parameters 615

are shown to have significant impact on the performance of the sensing framework, 616

scenario-adaptive selection of the parameters are still missing. 617

2) Most multi-/single-carrier communication-based sensing reviewed in Section 1 and 4 618

are based on single-antenna transceivers. It may not be easy to extend these meth- 619

ods/designs to MIMO communications. Note that signals transmitted from multiple 620

antennas in MIMO communications are not as orthogonal as those in conventional 621

orthogonal MIMO radars. This is more so when communication signals are subject 622

to little or no changes. Although the methods reviewed in Section 4 do not require 623

any changes made to a communication transmitter, they alter the signal format at the 624

sensing receiver. Consequently, they can weaken signal orthogonality among anten- 625

nas, if orthogonal waveforms are employed by the communication transmitter array. 626

Effective sensing using MIMO communication signals needs further investigation. 627

3) Practical communication systems apply pulse shaping filters at transmitting and 628

receiving sides. The differences between transceiver filters, and other hardware 629

imperfections, can have non-trivial impact on sensing performance. Such impact, 630

however, has not been taken into account in the method design and evaluation of most 631

works including this one. Evaluating such impact can be difficult, as the hardware 632

error sources may not be easy to model. Prototype-assisted studies may be a better 633

option to investigate the issue. 634
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