
“© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 

all other uses, in any current or future media, including reprinting/republishing this material for  

advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works.” 



1

A Template-based 3D Reconstruction of Colon
Structures and Textures from Stereo

Colonoscopic Images
Shuai Zhang, Liang Zhao, Member, IEEE, Shoudong Huang, Senior Member, IEEE, Qi Hao, and Menglong Ye

Abstract—This paper presents a framework for 3D recon-
struction of colonic surface using stereo colonoscopic images.
Due to the limited overlaps between consecutive frames and
the nonexistence of large loop closures during a normal screen-
ing colonoscopy, the state-of-art simultaneous localization and
mapping (SLAM) algorithms cannot be directly applied to this
scenario, thus a colon model segmented from CT scans is used
together with the colonosocopic images to achieve the colon 3D
reconstruction with high accuracy. The proposed framework
includes 3D scan (point cloud with RGB information) recon-
struction from stereo images, a visual odometry (VO) based
camera pose initialization module, a 3D registration scheme for
matching texture scans to the segmented colon model, and a
barycentric-based texture rendering module for mapping textures
from colonoscopic images to the reconstructed colonic surface. A
realistic simulator is developed using Unity to simulate the proce-
dures of colonoscopy and used to provide experimental datasets
in different scenarios. Experimental results demonstrate the good
performance of the proposed 3D colonic surface reconstruction
method in terms of accuracy and robustness. Currently, the
framework requires a pre-operative colon model as the template
for colon reconstruction and can reconstruct 3D colon maps when
the colon has no large deformation and the colon structure is
clearly visible. The datasets used in this paper and the developed
simulator are made publicly available for other researchers to
use1.

Index Terms—colonoscopy, 3D reconstruction, SLAM, texture,
simulator.

I. INTRODUCTION

COLORECTAL cancer is the second most commonly
occurring cancer in women and the third most commonly

occurring cancer in men all over the world. Colonoscopy is
considered as the gold-standard method to detect changes and
remove precancerous polyps in the large intestine. However,
recent studies report that around 20% of the abnormalities
(polyps, abnormal lesions and cancer) are missed [1] and
approximately 60% of colorectal cancer cases detected after
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optical colonoscopy are closely associated with missed polyps
and lesions [2].

There are two main reasons for missed abnormalities: i)
the areas where abnormalities reside are never visualized
by the colonoscopy, often called non-visualization; ii) these
areas are inspected but the abnormalities are not recognized.
Non-visualization mainly results from the lack of orientation
changes of the endoscope to the full circumference of the
colon [3] and the occlusion from the structural complexity
of colon [4]. Non-recognition is due to the difficulty to detect
abnormalities from video alone. Although virtual colonoscopy
is a non-invasive, radiographic method of visualizing the colon
by flying through the segmented colon model, it has difficulty
in detecting 5mm or less size lesions and flat lesions and
meanwhile the patient will be exposed to a certain dose of
radiation [5]. Therefore, the traditional optical colonoscopy
will be ultimately needed to detect very small and flat colon
lesions and remove polyps or any abnormalities identified from
virtual colonoscopy.

If a 3D map of the entire colon internal surface with
detailed textures can be reconstructed during the colonoscopy
procedures, the following two main potential benefits can be
achieved: i) uninspected areas can be shown on this map
and gastroenterologists can navigate the endoscope to these
missing areas to ensure more colon surfaces are inspected;
ii) the detailed textures on the reconstructed map can help
gastroenterologists to inspect abnormalities offline.

Reconstructing a complete 3D virtual colon from a se-
quences of colonic images has to deal with the following
technical challenges:

1) Special geometric structure. The human colon has long
and narrow tubular structure with many colon folds and a
lot of turns, which make it impossible to have large loop
closures and difficult to observe the back side of colon
folds during a colonoscopy screening. This is the main
reason for deficient coverage in a normal colonoscopy
and large drift in the colon reconstruction if directly
using visual SLAM algorithms;

2) Reconstruction with detailed textures. Detailed texture
information is necessary for the gastroenterologists to
identify abnormalities. Accurate texture matching re-
quires highly accurate camera pose estimation and
highly accurate scan registration which is very difficult
to achieve using information from images only;

3) Colonoscopy datasets with ground truth. Complete
datasets of colonoscopic images with ground truth of
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camera poses and depths are critical to develop and
validate colon reconstruction algorithms. These datasets
are challenging to generate since depth sensors and
absolute 3D positioning sensors are impractical to be
coupled to a colonoscope;

4) Camera motion estimation. In a normal colonoscopy, the
tiny camera attached to the end of a colonsocope moves
fast with significant view changes and the deformation
of colon itself creates a further challenge to recover the
camera motion; how to improve the accuracy and ro-
bustness of camera motion estimation becomes critical.

In this work, we develop a template-based framework for
3D reconstruction of colon structures and textures from stereo
colonoscopic RGB images, which mainly addresses the first
three challenges listed above. The template model segmented
from preoperative colon CT scans is used as a global reference
to increase the stability and accuracy of the camera pose
estimation. The joint photometric and geometric optimization
pipeline optimizes the camera poses to address the inconsis-
tency of texture matching problem. Based on the estimated
camera poses, the point correspondences between the recon-
structed scan and the colon model are extracted and used to
map the detailed textures from the corresponding image to the
registered areas on the colon model. A realistic colonoscopy
simulator which can generate binocular colonoscopic RGB
images with the ground truth of camera poses is developed to
evaluate the proposed framework. The fourth challenge listed
above, regarding the deformation of colon structure, has not
been well addressed in the current work yet. We will deal with
that challenge in our future work.

II. RELATED WORKS

Some works have been developed to reconstruct colonic
surface based on the advances in computer vision and image
processing techniques. Some methods try to generate a 2D
visibility map of internal colonic surface, and some other
studies have been focused on generating a small portion of
the 3D colon surface. Karargyris et al. [6] used shape from
shading (SfS) algorithm [7] to compute colon structures from
the brightness of colon surface. Koppel [8] et al. and Chen
et al. [9] used shape from motion (SfM) algorithm [10] to
reconstruct a small portion of 3D colonic surface with textures
from multiple sequential colonoscopic images. Kaufman et al.
[11] used the SfS algorithm [7] to reconstruct partial colonic
surfaces from individual frames, then utilized the camera poses
estimated by the SfM [10] to integrate the partial flattened
surfaces obtained from several consecutive frames to form a
relatively large surface. However, the SfS algorithm would
incorrectly express the colon lumen as relatively far surface,
not a tubular structure, and the SfM algorithm requires very
slow camera motion to estimate the camera poses.

There are other advanced approaches with restrictive as-
sumptions. Zhou et al. [12] adopted an optical flow based
method to reconstruct small colon segments with the as-
sumptions that the neighboring folds in an image are not
occluded and that the colon fold contours are circular in nature.
However, partial occlusion of folds is very common and the

transverse, ascending and descending segments of colon have
no well circular characteristic. Hong et al. [13] took the
advantage of the tubular nature of the colon to estimate colon
folds and only reconstructed a colon segment from a single
colonoscopic image. Armin et al. [14] fitted a cylinder model
to the colon structure generated by 3D pseudo stereo vision
and unrolled the fitted model to a 2D band image. Then the
estimated camera poses were used as initial values to register
these 2D band images together to build a large 2D visibility
map, but the generated 2D map was less intuitive than a 3D
dense reconstruction. Despite the fact that remarkable progress
has been made in this field, all of the research has focused on
3D or 2D surface reconstruction of very small parts of colon.

Currently, the popularization of visual SLAM algorithms
which can be classified into sparse [15], [16], semi-dense
[17], [18], [19], [20] and dense reconstruction [21], [22],
[23] have inspired researchers to apply SLAM technology to
recover the 3D structures of the human colon. Chen et al. [24]
trained an adversarial depth estimation neural network in a
supervised approach from synthetic dataset of a phantom, then
input monocular images paired with depth estimation from the
neural network to the ElasticFusion [21] to stitch depth images
and reconstruct a dense surfel point cloud. However, the metric
accuracy of estimated camera poses and reconstruction is not
given. Also, it is not suitable to directly apply ElasticFusion
on a colonoscopy since it requires slow camera motion. Ma
et al. [25] used sparse depth estimated from SfM as a ground
truth proxy to train a recurrent neural network for depth and
the camera pose estimation. Then the output of the network
is passed into the direct sparse odometry SLAM system [17]
for refinement.

In general, these SLAM systems do not need a template, but
require slow camera motion and large loop closure to reduce
the drift in the camera pose estimation. Although promising
results can be achieved for other scenarios, these algorithms
are seldom directly applied in colon reconstruction scenarios
mainly due to the following reasons. The human colon has
a tubular shape and the colon inner space is limited, so the
camera attached to the colonoscope is tiny and its field of view
is limited by the tubular shape. During a normal colonoscopy
screening, the camera moves fast relative to the colonic surface
and causes large inter frame motions and less frame overlaps,
and this will cause inaccurate or even failed camera pose
estimations. Meanwhile, there is no large loop closures in
a normal colonoscopy procedure since the colonoscope is
withdrawn from the cecum (the distal end of colon) to the
rectum (the proximal start of colon) and this will cause a large
drift for the camera pose estimation and scene reconstruction.
Furthermore, the poor texture of colonoscopic images is a
challenge for feature-point-based SLAM methods, e.g., ORB-
SLAM2 [15]. All these will lead to misalignment in textures
on the reconstructed colon map.

In this work, we aim to develop a framework for recon-
structing a 3D map of the internal surface of the colon using
stereo colonoscopy. The input of our framework is a sequence
of stereo colonoscopic images and a corresponding colon mesh
model segmented from pre-operative CT scans, and the final
output of the framework is the reconstructed and texturized 3D
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Fig. 1: The framework of reconstructing and texturing 3D colon structures.

colon maps. Specifically, this work will focus on resolving the
following problems assuming no much deformation happens:

1) How to robustly estimate the motion of the camera inside
a human colon during colonoscopy;

2) How to precisely reconstruct a complete 3D virtual colon
map from stereo colonoscopic images;

3) How to map the texture from colonoscopic images to
the reconstructed map.

The proposed framework is validated on datasets of different
scenarios from the developed colonoscopy simulator and the
accuracy of the reconstruction and texture rendering is within
[−0.04, 0.04] rad for Euler angles, and [−0.5, 0.5] mm for
translation.

The rest of the paper is organized as follows: Section III
describes the proposed framework and the development of
simulation platform. Section IV presents the technical details
of the proposed method. Section V provides validation and
experimental results. Section VI concludes the paper and
outlines our future work.

III. FRAMEWORK OVERVIEW AND SIMULATION PLATFORM

A. Framework overview

Fig. 1 illustrates the proposed framework for reconstructing
and texturing a 3D colon map from stereo colonoscopic
images, which includes 3D scan reconstruction from stereo
images, VO based camera initialization, geometric and photo-
metric scan to colon model registration and barycentric-based
texture rendering.

The developed colonoscopy simulator works in a way
similar to a real colonoscopy, it starts to take images during
the withdraw processing of the colonoscope, which means
the reconstruction processing starts from the distal end of
the human colon. Therefore, the 3D colon map is initially
reconstructed by the geometric-only ICP registration between
the first estimated scan and the colon model. Then, each time
when a new frame is incorporated, the relative pose between
the current scan and the previous scan is estimated by the
VO module. As a result, this relative pose combined with the

optimized pose between the previous scan and the colon model
estimated in the last step is used as the initial guess of the
relative pose between the current scan and the colon model.

This initial guess sets the current scan to a good initial
position for registration between itself and the colon model.
After that, the developed geometric and photometric based
scan registration is applied between the current scan and the
colon model. Hence, the pose of current scan is optimized
and dense point correspondences between the scan and the
vertices of the colon model are established from the proposed
registration processing. Based on the established point cor-
respondences, texture coordinates between 2D color images
and the colon model are extracted using the barycentric-based
mapping algorithm. Section IV will explain all the modules in
details.

B. Simulation Platform

To develop algorithms for recovering the 3D structures of
the human colon in colonoscopy procedures or to train a
depth prediction network for depth estimation of colonoscopic
images, both synthetic and real clinical data are crucial.
However, due to reasons of patient privacy, human and animal
rights, guarantee of operation safety and conflict of interest,
it is hard to obtain any dataset with complete or segmental
colonoscopic images with corresponding ground truth depth
and camera poses. Therefore, we developed a realistic simula-
tor to simulate colonoscopy procedures. To encourage research
in the field, we have made the simulator and datasets of
synthetic colonoscopy images with corresponding depth and
camera poses publicly available 1.

Fig. 2 shows the schematic diagram of the developed
colonoscopy simulator framework. The framework mainly
consists of 3D colon mesh model segmentation and optimiza-
tion, creation of a 2D image texture that wraps around the
segmented colon model and implementation of the virtual
visualization and interaction system.

The triangular 3D colon surface mesh is segmented from a
set of 2D colon CT scans using 3D Slicer and then be sculpted
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Fig. 2: Schematic diagram of the developed colonoscopy simulator framework. The length of CT segmented colon is about
1.5 meters and its bounding box size is 36cm× 26cm× 14.9cm

and polished using the software Softimage and ZBrush. To
texture the colon mesh and make the simulator as realistic
as possible, the UV-mapping tool Unfold3D is used to create
the UV ( “U” and “V” denote the axes of the 2D texture
image) map for the colon mesh and this UV map will be
used in the Unity platform for applying the vessels texture
over the mesh. Then, seamless and tillable textures of the
blood vessels, perlin noise and mucous are created in the
Photoshop and added into the 2D texture image. The blood
vessels textures are extracted from the real colon images which
are downloaded from Google Images directly. After that, the
created UV map is imported into Softimage to bake ambient
occlusion into the mesh vertices colors and this can help to mix
some deep shadow and realistic look to the shader and material
of the colon. Last, the visualization and interaction interface
is mainly built by the Playmaker plugin of Unity3D. The
Playmaker uses Finite State Machines (FSMs) to add functions
to a game object. In our simulator, the game object Action
Manager with many FSMs is used to trigger important events
on the colon mesh model. The events mainly include user
interface load, virtual camera creation, camera path creation,
start and stop camera movement, manually control of camera,
data capture and saving, etc. There are also other plugins
of Unity that have been used in the simulator development,
“Easy Save 3” is used to provide save and load functions
to the simulator, the “StandaloneFileBrowser” is used for
creating file open/save browser window, “Post Processing
Stack” is used to add some visual effects such as Motion
Blur, Vignette, Bloom and Grain and “AmplifyShaderEditor”
is used to create the shader of surface of the colon. Therefore,
the visualization module can create 3D virtual visualization
environment of the colon model and provide volume-based
rendering of endoscopic views during the virtual camera’s
flight through the colon model. For the interaction part, it
allows the user to manually control cameras using buttons on a
keyboard and output simulated colonoscopic images together
with ground truth of camera poses and image depths. To

prevent the camera from moving through the colonic surface,
a mesh collider which roughly defines the shape of the colon
mesh is built for the purposes of physical collisions.

Fig. 3: The interface of the developed colonoscopy simulator.

Fig. 4: Simulated and real colonoscopic images. The first and
third rows show real images generated from a colonoscopy,
the second and the last row show simulated images generated
from our simulator.

Fig. 3 shows the interface of the developed colonoscopy
simulator. In the user interface of the simulator, some specific
parameters of the monocular or stereo camera or the visualiza-
tion environment can be adjusted, such as the hue, saturation
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and wetness of colon inside, and the light source configuration
for specular reflection. The field view of camera can be set
within [50◦, 150◦], and corresponding range of focal length is
[1, 8] mm, the baseline of stereo camera can be set within
[0.5, 4.5] mm.

Fig. 4 shows visual comparison between real colonoscopic
images with clearly structure and the simulated images gener-
ated by the developed simulator. The motion blur and image
distortion effects are currently not taken into consideration in
the developed simulator.

IV. METHODOLOGY

A. 3D scan reconstruction from stereo images

The semi-global matching algorithm (SGM) [26] is used
as the scan reconstruction method. First, a disparity map is
computed from a pair of rectified stereo images using SGM
algorithm. Then, the 3D coordinates of the pixel points in
the camera coordinate frame are computed to reconstruct a
3D scan and each 3D scan has one to one correspondence
to a corresponding 2D image. Fig. 5 shows an example of
ground truth scans and corresponding reconstructed 3D scans,
respectively.

Fig. 5: Examples of reconstructed scan and ground truth. The
first and third rows show ground truth scans, the second and
last rows show corresponding scans from stereo.

B. Sparse key correspondences and camera pose initialization

In the VO based camera motion initialization module, first,
two disparity maps are computed from the current and the
previous pairs of stereo images and the corresponding two
3D scans can be computed from the disparity maps. Then,
2D Scale-Invariant Feature Transform (SIFT) features are
extracted and matched between the consecutive left images.
For an accurate motion estimation, Random Sample Consensus
(RANSAC) is used to remove outliers from the set of 2D SIFT

feature correspondences. After that, these 2D SIFT features are
migrated into 3D scans by tracing the pixel indices of these
2D SIFT points in their corresponding 3D scans, and a set
of 3D key point correspondences (anchor points) between the
two scans are acquired. In our experiments, around 100-200
successfully matched SIFT features between two consecutive
images could be obtained and the mean rate of outliers is
around 8-9%.

Since the 3D-to-2D method is more accurate than 3D-to-3D
methods [27] and the RANSAC algorithm can help to remove
outliers. After acquiring 2D SIFT feature point correspon-
dences and corresponding 3D anchor point correspondences
from the SIFT approach. The perspective-three-point (P3P)
algorithm in conjunction with the RANSAC algorithm are
applied [28] on 3D-to-2D point correspondences to estimate
the camera motion robustly. This relative pose between the
current scan and the previous scan is then combined with the
optimized pose of the previous scan and used as the initial pose
of the current scan in the scan-to-model registration processing
described in Section IV-C.

C. Scan to colon model registration
One can build the 3D colon map by incrementally regis-

tering all the scans together, but the errors of poses estima-
tion accumulate during scan to scan registration. Also, only
the geometric constraint applied on the registration causes
inconsistency of texture matching in the overlapping region
of two scans. To address these problems, we formulate an
objective function by combining the geometric constraint and
the photometric feature constraint:

E(T ) = (1− σ)EG(T ) + σEF (T ), (1)

where EG(T ) is the geometric term of the objective function
and the EF (T ) is the photometric feature term provided by
the pair-wise 3D sparse anchor points generated from 2D SIFT
features described in Section IV-B, σ ∈ [0, 1] is the weight that
balances the two terms. Here “photometric” is used to express
that these constraints are from the texture information instead
of the geometric structure. Our goal is to find the optimal
transformation T that best aligns the reconstructed scan to the
colon model.

The geometric term EG(T ) sums all the squared distances
between each source point si = [six, siy, siz, 1]T in a scan and
the tangent plane at its closest point di = [dix, diy, diz, 1]T in
the colon model:

EG(T ) =
∑
i

((T · si − di) • ni)
2 (2)

where ni = [nix, niy, niz, 0]T is the unit normal vector at di,
and “•” denotes the dot product.

Similarly, the photometric term EF (T ) sums all the point-
to-point distances between the 3D anchor point sfj =

[sfjx, s
f
jy, s

f
jz, 1]T in a scan and its corresponding 3D anchor

point df
j = [dfjx, d

f
jy, d

f
jz, 1]T in the colon mesh, provided in

Section IV-B:

EF (T ) =
∑
j

(T · sfj − df
j ) • (T · sfj − df

j ). (3)
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D. Optimization

A 3D rigid transformation ∆T can be expressed as:

∆T = t(tx, ty, tz) ·Rz(γ) ·Ry(β) ·Rx(α) (4)

where t(tx, ty, tz) =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

, tx, ty, tz are the cor-

responding translation component along x-axis, y-axis and
z-axis, respectively. Rx(α), Ry(β) and Rz(γ) are rotations
of α, β and γ radians around the x-axis, y-axis and z-axis,
respectively. When α, β, γ ≈ 0, then ∆T is approximated by:

∆T ≈


1 −γ β tx
γ 1 −α ty
−β α 1 tz
0 0 0 1

 . (5)

Therefore, we minimize the objective function E(T ) in (1)
by iteratively linearizing the rigid transformation matrix T
[29]. Thus, at the kth iteration, T is approximated by a linear
function of x:

T ≈


1 −γ β tx
γ 1 −α ty
−β α 1 tz
0 0 0 1

 · T k (6)

where x = [α, β, γ, tx, ty, tz]T , T k is the transformation
estimated in the last iteration and is used to update all the
source points described in (3). Then, we can rewrite (1) and
compute x by solving the following least squares problem:

min
x

(1− σ)|A1x− b1|2 + σ|A2x− b2|2 (7)

where (A1|b1) and (A2|b2) are the augmented matrices of
the liner expression of EG(T ) and EF (T ) respectively, both
evaluated at T k. Given N1 pairs of point correspondences in
EG(T ), A1 is an N1 by 6 matrix and b1 is an N1 by 1 vector:

A1 =


[ŝ1 × n̂1]T , n̂T

1

...

[ŝi × n̂i]
T , n̂T

i

...

[ŝN1
× n̂N1

]T , n̂T
N1

 ,b1 =


[d1 − s1] • n1

...
[di − si] • ni

...
[dN1

− sN1 ] • nN1


(8)

where ni = [n̂Ti , 1]T , si = T k · si, si = [ŝ
T

i , 1]T and “×”
denotes the cross product.

Similarly, given N2 pairs of point correspondences in
EF (T ), A2 is a 3N2 by 6 matrix and b2 is a 3N2 by 1 vector:

A2 =


AT

21

...
AT

2j

...
AT

2N2

 , b2 =


bT
21

...
bT
2j

...
bT
2N2

 , (9)

where

A2j =

 0 sfjz −sfjy 1 0 0

−sfjz 0 sfjx 0 1 0

sfjy −sfjx 0 0 0 1

 ,
b2j =

d
f
jx − s

f
jx

dfjy − s
f
jy

dfjz − s
f
jz

 , sfj = T k · sfj .

(10)

In each iteration, we calculate the augmented matrices,
solve the least squares problem in (7), and update T by
applying the incremental transformation x to T k using (4).
In the next iteration, we re-linearize T at T k+1 and repeat
the process. Once the optimization processing is finished, the
optimal pose is estimated and point correspondences between
the scan and vertices of the colon model are established for
texture rendering described in Section IV-E.

E. Texture mapping using barycentric coordinates

One can assign RGB color data from points in each scan to
the corresponding vertices in the colon mesh, then color each
pixel of a triangle face by interpolating between the colors
of the three vertices in the colon mesh model. However, the
texture in triangle faces will be blurry since the vertices in the
colon mesh are much sparser than the point cloud in the scans
and one vertex in the colon mesh may correspond to multiple
points in a scan. Thus in this paper, as each 3D point in a scan

P = [𝑥P, 𝑦P, 𝑧P]
𝑇

p = [𝑢p, 𝑣p]
𝑇

A = [𝑥A, 𝑦A, 𝑧A]
𝑇

(0, 0)

C = [𝑥C, 𝑦C, 𝑧C]
𝑇

B = [𝑥B, 𝑦B, 𝑧B]
𝑇

𝑎 = [𝑢a, 𝑣a]
𝑇

𝑏 = [𝑢b, 𝑣b]
𝑇

𝑐 = [𝑢c, 𝑣c]
𝑇

𝑣

𝑢

Fig. 6: Barycentric coordinates based texture mapping

corresponds to a 2D pixel in a 2D image when reconstructing
the scan, we can extract a triangular texture region 4abc
(where a, b, and c are the 2D locations of the three vertices
of the triangle) in 2D images for each triangle 4ABC (where
A, B and C are the corresponding 3D vertices of the triangle
face) in the colon mesh, which is shown in Fig. 6. After that,
we use the barycentric-based mapping technique [30] to map
pixel color from the 2D texture region4abc to the 3D triangle
4ABC face as

P =
[
A B C

]
· λ, p =

[
a b c

]
· λ (11)

where λ = [λ1, λ2, λ3]T with λ1 + λ2 + λ3 = 1 indicates
the barycentric coordinates of an arbitrary point P inside the
triangle 4ABC. Then, P’s corresponding texture coordinates
p can be determined by (11).
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TABLE I: A brief summary of experimental data for evaluating
the proposed framework

Case Frames Path Case Frames Path
0 6000 manual 8 362 manual
1 259 auto 9 279 manual
2 260 auto 10 192 manual
3 260 auto 11 618 fully
4 260 auto 12 859 fully
5 260 auto 13 679 fully
6 260 auto 14 339 fully
7 845 manual 15 150 fully

The resolution of all collected colonoscopic images is 640× 480,
the baseline of stereo camera is set to 4.5mm and the camera field
of view is set to 74◦ with corresponding focal length 4.969mm.
“auto” represents that datasets are automatically captured on the
simulator-planned camera flight paths; “manual” represents that
datasets are manually captured by three people with different
clinical skills; “fully” represents that datasets are captured on the
designed camera flight paths that aim to fully recover the internal
surface of the colon.

V. RESULTS

In the experiments, we begin with showing the limita-
tions of the state-of-art SLAM algorithms Kintinuous [22],
ElasticFusion [21], KinectFusion [23], ORB-SLAM2 [15] and
StereoDSO [20] to colonoscopic datasets captured in scenarios
simulating the real normal colonoscopy screening as well as in
scenarios where the camera is operated with very slow camera
motion. Then, we validate the robustness and accuracy of the
proposed framework using 15 different datasets collected in
different scenarios using the developed colonoscopy simulator.
Finally, an in-vivo video sequence is used to demonstrate
the practicality of the proposed framework. Note that the
experiments with state-of-the-art RGB-D SLAM algorithms
are not trying to make comparisons, but to show the limitations
of these methods when applied to colonoscopic images. The
summary of experimental datasets is shown in Table I.

A. Evaluation of RGB-D and stereo SLAM systems on colono-
scopic images

We run all the SLAM algorithms in offline mode. For
RGB-D SLAM algorithms Kintinuous, ElasticFusion and
KinectFusion, the images from the left camera together with
the corresponding ground truth depth are used. The paired
stereo color image sequences are input into ORB-SLAM2
and StereoDSO to reconstruct maps. The datasets captured
from a normal colonoscopy scenario (Cases 7 to 9) are first
used and all the SLAM algorithms fail. Fig. 7 illustrates the
failure using Case 8. Since the major working principle of
KinectFusion relies heavily on feature matching step using
ICP, it fails when the camera moves fast during the normal
colonoscopy procedures. For the voxel-based Kintinuous and
surfel-based ElasticFusion, fast camera motion violates the
assumption behind projective data association and hinders
tracking performance, so their estimated trajectories suffer
from very large errors which create many outlier points and no
map is generated. StereoDSO extracts candidate points from

the first frame in initialization and fails to track them in the
following key frames. It keeps resetting until the last segment
of the colon, and thus only generates a very short trajectory
with sparse point clouds. This also happens to ORB-SLAM2,
it only obtains a small segment of sparse map. Therefore,
the experiment results show that these SLAM systems are
not suitable for map reconstruction using images from normal
colonoscopy procedures.

Then, we collect a large complete set of colonoscopic image
sequences with very unrealistically slow camera motions (Case
0). It contains 6k pairs of stereo color and depth images.
Fig. 8 shows comparison of the ground truth trajectory and
estimated trajectories from the different SLAM algorithms,
and the reconstructed maps are shown in Fig. 9. It shows that
Kintinuous performs poorly because the trajectory is long and
has a lot of turns as well as the camera is forward facing.
ElasticFusion recovers the main topological structures but the
estimated trajectory is very wrong. KinectFusion is very easy
to lose tracking and only able to reconstruct a small segment
of the colon map. The initialization of StereDSO is slow and
unstable if there are only little rotations without relatively large
translations. The estimated trajectory of StereoDSO has large
drift and the obtained map is unacceptable. ORB-SLAM2 can
obtain a reasonable trajectory with drift but it only built a
sparse map. The evaluation results show that these stereo or
RGB-D SLAM algorithms are not directly suitable for 3D
reconstruction in colonoscopy even with the unrealistic very
slow camera motion.

B. Colon 3D reconstruction on simulator-planned camera
flight paths

In this and the following two subsections, we evaluate our
algorithm using datasets collected in different scenarios. Six
planned camera flight paths are generated by the simulator to
automatically guide the camera through the entire colon lumen
and we record Case 1 to 6 of the experimental datasets. Fig.
11 (a) shows the trajectory of camera flight path in Case 1
and Fig. 11 (b) shows the reconstructed complete colon map
with detailed textures. Fig. 11 (c) and Fig. 11 (d) illustrate
the registration errors between scans from stereo images and
colon model using the proposed joint optimization algorithm.
The Euler angle errors along X, Y and Z axis are within
[−0.04, 0.04] rad and the translation errors along X, Y, Z are
within [−0.5, 0.5] mm, respectively. Fig. 11 (e) and Fig. 11 (f)
show the Euler and translation error distributions on datasets
Case 1 to Case 6, respectively, which validates the robustness
and accuracy of the proposed method. For each scan to colon
model registration, the algorithm takes 50 iterations on average
to converge. Fig. 10 shows the comparison between several
textured regions which are reconstructed by the proposed
method and the actually seen regions, their textures are slightly
different as the field of view of a scan is smaller than the
corresponding pair of stereo images.

It is noted that at least 40% of colon internal surface are
missed in the colonoscopy procedures, especially the opposite
sides of the colon wall, since the camera always keep forward
moving during the simulator-planned flight.
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Fig. 7: Trajectories and maps estimated from SLAM systems on Case 8 with normal camera motion: (a) The trajectory estimated
from ElasticFusion suffers from large errors; (b) StereoDSO only obtains the trajectory of the last part of the colon; (c) ORB-
SLAM2 only obtains the trajectory of the last part of the colon; (d) StereoDSO obtains sparse point clouds; (e) ORB-SLAM2
obtains a small segment map corresponds to its trajectory.
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Fig. 8: Comparison of the ground truth trajectory and estimated trajectories on Case 0 with very slow camera motion: (a)
Kintinuous suffers from large errors; (b) ElasticFusion recovers the main topological structures, the turns numbered 1, 2, 3
and 4 in estimated trajectory correspond to the turns numbered 1, 2, 3 and 4 in the ground truth trajectory, respectively; (c)
The initialization of StereoDSO is unstable and it recovers a complete trajectory with large drift; (d) The initialization of
ORB-SLAM2 is more stable than StereoDSO and it obtains a relatively good trajectory with drift; (e) Our method can achieve
very accurate result.

(a) The ground truth (b) ElasticFusion (c) StereoDSO (d) ORB-SLAM2 (e) Ours

Fig. 9: Reconstructed maps on Case 0 with very slow camera motion: (a) The ground truth map; (b) ElasticFusion recovers the
main topological structure of the colon; (c) StereoDSO recovers a complete semi-dense map with large drift; (d) ORB-SLAM2
obtains sparse map; (e) Our result is close to the ground truth.
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Fig. 10: Examples of texture region comparison. The first row
shows the ground truth texture regions and the second row
shows the corresponding reconstructed texture regions.

C. Colon 3D reconstruction on manually flown paths

To simulate the real colonoscopy procedures by clinicians
with different skills, datasets of Case 7, 8 and 9 are manually
collected by three people with different level of clinical skills
after training. Fig. 12 (a), (b) and (c) show the estimated
camera trajectories of Case 7 to 9, respectively. The camera
in Case 7 is flown through the entire colon lumen and the
images are taken from the forward, side and opposite view
of the colon. For the camera in Case 8, it took images from
the forward views and some side views of the colon. Very
similar to the real colonoscopy procedures, the camera in Case
7 and Case 8 are operated with sudden changes of rotation
and translation. By contrast, the trajectory of the camera in
Case 9 is smooth and the least number of images are taken.
Fig. 12 (d), (e) and (f) show the reconstructed and texturized
colon maps, respectively. We can find that the reconstructed
map from Case 7 is more complete than Case 8 and Case 9
because a large amount of colon internal surface is covered.
Although the map from Case 8 is slightly more complete
than Case 9, there are still many areas that are uninspected,
especially the opposite sides of colon folds. The registration
error distributions on Case 7, 8 and 9 are shown in Fig. 15.
The errors in Case 9 are relative small compared to Case 7 and
8 because its camera motion is smooth and there are certain
overlapped areas between each pair of consecutive frames.
Overall, all the Euler angle errors and translation errors are
relatively small.

D. Colon 3D reconstruction on fully inspected colon

The last evaluation is conducted on datasets of Case 10 to
15 which are manually collected and aimed to validate the
ability of the proposed 3D reconstruction framework to fully
recover the internal colon surface.

As shown in Fig. 13, six segments of camera flight paths
(from Case 10 to Case 15) are designed to fully inspect the
internal surface of anatomical segments (Rectum, Sigmoid,
Descending, Transverse, Ascending and Cecum) of the human
colon, respectively. To inspect as much area as possible of the
internal surface of the colon and simulate the real colonoscopy
procedures, the camera is manually flown to inspect from

(a) Camera path on Case 1 (b) Reconstructed map on Case 1
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Fig. 11: 3D reconstruction results on the simulator-planned
cases, r, p and y represent roll, pitch and yaw angles along
axis X, Y and Z axis respectively.

the forward, side and opposite views of the colon segments
with challenging conditions including large changes of view-
ing angles and close distance to the colon surface. Fig. 14
shows very complete colon maps with detailed textures and
Fig. 15 shows the mean registration errors of X, Y, Z axis,
which demonstrates the capability and high accuracy of 3D
reconstruction with fully recovery of internal colon surface.

E. In-Vivo Experiments

We also show some preliminary results using in-vivo dataset
to demonstrate the practicality of the proposed framework. The
synthetic colonoscopy images with ground truth of depths are
used to train a supervised convolutional neural network for
monocular depth estimation, then the trained network is used
to predict depth for the real colonoscopy images [31]. The pre-
dicted depth images are dense and we can reconstruct 3D scan
for each real monocular colonoscopy image. Fig. 16 shows
the reconstructed map of the colon chunk with structures and
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(a) Case 7 (b) Case 8 (c) Case 9 (d) Case 7 (e) Case 8 (f) Case 9

Fig. 12: 3D reconstruction results on manually flown cases: (a), (b) and (c) show the camera flight path on Case 7, 8 and 9,
respectively; (d), (e), (f) show the corresponding reconstructed colon map on Case 7, 8 and 9, respectively.

(a) Rectum colon (b) Sigmoid colon (c) Cecum colon (d) Ascending colon

(e) Descending colon (f) Transverse colon

Fig. 13: Designed camera flight trajectories to fully inspect the colon.

textures. However, the quality of the reconstructed map is not
as good as that in the simulation experiments. The degradation
is mainly caused by errors of predicted depth images and the
deformation of the real colon. In our future work, we will
further improve our framework to better handle in-vivo data.

VI. CONCLUSION AND FUTURE WORK

This paper presents a framework for 3D reconstruction of
colon structures and detailed textures from stereo colonoscopic
images. A colon model segmented from CT is used together
with the colonoscopic images to achieve high quality recon-
struction results. A realistic colonoscopy simulator has been
developed and the proposed framework is validated using 15
different datasets generated from the simulator. Experimental
results have demonstrated the high accuracy and robustness
of the proposed framework. Also, an in-vivo dataset is used

to show the potential clinical applications in colonoscopy
procedures.

Although very promising results have been achieved, there
are a few limitations in the current work. One is that the
proposed framework uses stereo images since the depth infor-
mation computed from stereo matching method is needed. To
apply our framework to 3D reconstruction using monocular
colonoscopic images, one way is to predict the depth in
monocular images using deep learning based method. How-
ever, the achievable reconstruction accuracy is expected to be
reduced. Another limitation is that the non-rigid characteristic
of the real colon will cause some degradations such as inaccu-
racy in estimating image depth and recovering camera motion.
In the future, we will also improve the proposed framework
with the capability of overcoming colon deformation using
a general template and non-rigid structure-from-motion based
approaches. We are aiming to develop robust reconstruction
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(a) Rectum colon (b) Sigmoid colon (c) Cecum colon (d) Ascending colon

(e) Descending colon (f) Transverse colon

Fig. 14: 3D reconstruction results on the fully inspected colon.
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Fig. 15: Mean reconstruction errors of Case 7 to Case 15.

(a) (b)

Fig. 16: 3D reconstruction of a real colon chunk: (a) and (b)
show the reconstructed colon chunk from the front view and
the side view, respectively.

algorithms using clinical colonoscopic images once the colon
deformation can be effectively dealt with.
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